
1
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Abstract—Time-shiftable loads have recently received an in-
creasing attention due to their role in creating load flexibility and
enhancing demand response and peak-load shaving programs. In
this paper, we seek to answer the following question: How can
a time-shiftable load, that itself may comprise of several smaller
time-shiftable subloads, submit its demand bids to the day-ahead
and real-time markets so as to minimize its energy procurement
cost? Answering this question is challenging because of the inter-
temporal dependencies in choosing the demand bids for time-
shiftable loads, and also due to the coupling between demand
bid selection and time-shiftable load scheduling problems. Nev-
ertheless, we answer the above question for different practical
bidding scenarios and based on different statistical characteristics
of practical market prices. In all cases, closed-form solutions are
obtained for the optimal choices of the price and energy bids. The
bidding performance is then evaluated in details by examining
several case studies and analyzing actual market price data.

Keywords: Optimal price and energy bids, time-shiftable load,
day-ahead market, real-time market, demand side management,
multi-stage stochastic optimization, closed-form solutions.

I. INTRODUCTION

The deregulation of electricity markets has provided the

load entities with new and major opportunities to procure their

energy needs from diverse resources in a competitive market in

order to lower their energy expenditure. In the United States,

large consumers and load serving entities (LSEs) are already

eligible to participate in both the forward markets and the real-

time markets that are operated by several Independent System

Operators (ISOs), such as the Electric Reliability Council of

Texas (ERCOT) [1], the Pennsylvania-Jersey-Maryland (PJM)

Interconnection [2], and the California ISO [3].

In a typical two-settlement electricity market, load entities

can procure energy from a day-ahead market and a real-time

market [4]. Power procurement is facilitated by submitting

demand bids. The demand bids that are submitted to the day-

ahead market indicate an energy quantity and possibly also a

price quantity. The bids that are submitted (or metered) to the

real-time market only indicate an energy quantity [1]–[3].

In this paper, our focus is on finding optimal demand bids

for time-shiftable loads, a.k.a. deferrable loads with deadlines.

In brief, a time-shiftable load is a task that requires consuming

a certain total energy to finish, but its operation can be

scheduled any time within a given time frame, where the end

of such time frame is the deadline to finish operation. Some

examples of time-shiftable loads include: charging electric

vehicles [5], [6], intelligent pools [7], irrigation pumps [8],

water heaters [9], batch processes in data centers and computer

servers [10], [11], industrial equipment in process control and

manufacturing [12], [13], and various home appliances such
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as washing machine, dryer, and dish-washer [14]–[19]. Time-

shiftable loads have recently received a great deal of attention

due to their role in demand response and peak-load shaving

programs. In many cases, a time-shiftable load consists of

several smaller time-shiftable subloads or subtasks.

A. Summary of Technical Contributions

The immediate application of the designs in this paper is for

large time-shiftable loads in different sectors (or their LSEs)

to optimally bid in the electricity markets. But this work is

also beneficial to demand response programs, as it can help

utilities and aggregators to better exploit their time-shiftable

load potentials to lower their total energy procurement cost.

The analysis in this paper is challenging, first and foremost,

because of the inter-temporal dependencies in choosing the

demand bids for time-shiftable loads. Furthermore, the bid

selection problem for time-shiftable loads is inherently cou-

pled with the problem of time-shiftable load scheduling. The

contributions in this paper can be summarized as follows:

• A time-coupled multi-stage stochastic optimization prob-

lem is formulated for selecting price and energy bids to

the day-ahead market and energy bids to the real-time

market to operate time-shiftable loads with deadlines.

• Two design scenarios are considered: the case where per-

subload bidding is allowed; and the case where the time-

shiftable load is mandated by the market to submit single

demand bids, regardless of the number of its subloads.

• For each design, the impact and importance of holding

or removing the assumption on price independence across

the day-ahead and real-time markets are investigated.

• Several case studies are analyzed using PJM price data.

The impact of different price scenarios, subload configu-

rations and sizes, and bidding rules are investigated.

B. Related Work

The related work in the literature can be classified into three

separate groups. One thread of research that has emerged only

recently focuses on modeling and utilizing time-shiftable loads

in the context of smart grid and demand side management. For

example, the problem of scheduling time-shiftable loads under

different retail electricity pricing scenarios is addressed in [16],

[17], [19] for residential loads, in [12], [13] for industrial and

commercial loads, and in [20] for electric vehicle charging

stations. As another example, there are studies on optimiz-

ing the operation of time-shiftable loads for different design

objectives such as peak-load shaving [18], voltage control or

frequency regulation [21], and integration of renewable energy

resources [22]. However, the prior studies do not address the

issue of optimal demand bidding for time-shiftable loads.
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The second group of studies discuss the general problem of

demand bidding in deregulated electricity markets, but they do

not consider time-shiftable loads. For example, in [23], [24],

the authors explained how an LSE should bid in the wholesale

market based on some fixed or forecasted load data. In this

regard, our paper can be seen as an extension of [23], [24]

to the case of serving time-shiftable loads. The papers in this

second group also include [25], [26], where the focus is on

understanding the strategic interactions between bidding load

entities and bidding generators using game theory.

Finally, there are some recent studies on linking demand

response to market operations for price-elastic loads, where the

load is modeled using a concave utility function. For example,

the joint problem of power procurement and demand response

for price-elastic loads was addressed in [27], [28], with and

without the presence of renewable generators. Our work is

different in two key aspects. First, the studies in [27], [28] do

not - in any way - discuss the problem of selecting the demand

bids and the uncertainties that arise on whether the bids will

be cleared in the market. Second, since the focus in [27],

[28] is on price-elastic power loads, they do not address the

challenges with respect to inter-temporal dependencies that are

caused by time-shiftable energy loads and their requirements

on finishing certain jobs by certain deadlines. The papers in

this group also include [29], where new complex bidding rules

are proposed for demand response aggregators. In contrast,

here, we obtain the optimal price and energy bids for time-

shiftable loads based on the existing bidding structures.

II. PROBLEM STATEMENT

A. Two-settlement Electricity Market

Consider an organized wholesale electricity market, such as

the ones that are operated by PJM, ERCOT, and California ISO

in the United States [1]–[3]. Under a two-settlement market

framework, energy trading can be done at both day-ahead

markets and real-time markets. Load entities can participate

in these markets by submitting demand bids. In general, a

demand bid may or may not include a price component [4]. If a

demand bid includes both energy and price components, then it

indicates that the load is willing to purchase the given quantity

of energy only if the price is equal to or below the price bid.

Depending on the ISO, such demand bids are referred to as

Limit Order bids [1], Decrement bids [2], or Economic bids

[3]. If a demand bid includes only an energy component, but

not a price component, it indicates that the load is willing to

purchase the given quantity of energy, regardless of the price.

Such demand bids are referred to as Fixed Demand bids [1] or

Self-Schedule bids [3]. In this paper, our focus is on submitting

demand bids with price components, i.e., of type Limit Order,

to the day-ahead market, and bids without price component,

i.e., of type Fixed Demand, to the real-time market.

B. Time-Shiftable Load

The time-shiftable load model in this paper is similar to

those that are widely used in the demand response literature,

e.g., in [12], [13], [16]–[22]. A time-shiftable load is assumed

to comprise L ≥ 1 subloads, where for each subload l =
1, . . . , L, parameters αl and βl indicate the beginning and the

end of the time interval at which the operation of subload l
can be scheduled, where αl < βl. A higher βl − αl indicates

more time flexibility in scheduling the operation of subload l.
Parameter βl gives the deadline to complete the operation of

subload l. The operation of each subload l requires procuring

and consuming a total of el ≥ 0 MWh of energy to complete.

C. Optimal Demand Bidding Problem

Let us divide the operation time into T equal time-slots

based on the market bidding intervals and the time-shiftable

load scheduling horizon. For example, T = 24 for a daily

operation of a time-shiftable load over hourly market intervals.

The optimal demand bidding problem for a time-shiftable load

can be formulated as the following optimization problem:

Min
Bids

T
∑

t=1

E

{

Cost (Procured Energy

During Time Slot t)
}

S.t.

β1
∑

t=α1

[

Procured Energy for 1th Subload

During Time Slot t
]

= e1

...

βL
∑

t=αL

[

Procured Energy for Lth Subload

During Time Slot t
]

= eL,

(1)

where E denotes the expected value. The above problem is a

T + 1 stage stochastic optimization problem [30]. At the first

stage, the Limit Order bids are submitted to the day-ahead

market. The other T stages correspond to submitting T Fixed

Order bids to the T bidding cycles of the real-time market.

The reason for problem (1) to be a stochastic optimization

problem is the uncertainty in the electricity prices, both at the

day-ahead market and at the real-time market. The variables

are all demand bids, which comprise T variables for the energy

components of the Fixed demand bids in the real-time market

and 2 T variables for the energy and price components for

the Limit Order demand bids in the day-ahead market. We

seek to choose the day-ahead and real-time demand bids so as

to minimize the combined expected cost of procuring power

across the two-settlement market, subject to completing the

operation of all subloads before their deadlines. Throughout

the paper, we assume that the time-shiftable load is price-taker.

III. THE CASE WITH ONE SUBLOAD

In this section, we address the special case with L = 1, i.e.,

when the time-shiftable load comprises only one subload. The

general case with L > 1 will be discussed in Section IV.

Consider the T + 1 stage bidding framework in Fig. 1. If

L = 1, then we can assume that α1 = 1 and β1 = T . Energy
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Fig. 1. The T +1 stage demand bidding framework for time-shiftable loads.

is procured from the day-ahead market by submitting Limit

Order bids p , p[1], . . . , p[T ] and x , x[1], . . . , x[T ], where

p is the vector of price bids and x is the vector of energy bids.

Once the day-ahead market is settled and the clearing market

prices a[1], . . . , a[T ] are realized, if a[t] ≤ p[t], then the

time-shiftable load procures the generation right of x[t] MWh

during time slot t. If a[t] > p[t], then no energy is procured

from the day-ahead market for time slot t. As we approach

the operation time, energy may be procured also from the real-

time market by submitting (or metering) Fixed Demand bids

y , y[1], . . . , y[T ]. Under Fixed Demand bidding, procuring

y[t] MWh of energy is guaranteed, but the cost of such energy

procurement is determined only after the real-time market is

settled and the clearing market price b[t] is realized [4].

A. Selecting the Optimal Bids to Real-Time Market

Assume that the bids p and x are submitted to the day-ahead

market; the day-ahead market is settled; and the day-ahead

prices are realized as a[1], . . . , a[T ]. The amount of energy

that is procured from the day-ahead market is obtained as

X =
T
∑

t=1

I(a[t] ≤ p[t])x[t], (2)

where I(·) is the 0-1 indicator function. If a[t] ≤ p[t], then

I(a[t] ≤ p[t]) = 1; otherwise, I(a[t] ≤ p[t]) = 0. Note that,

0 ≤ X ≤ e1. Given X , and based on the bidding framework

in Fig. 1, the bid y[1] is submitted during the first cycle of the

real-time market. Once the first cycle is settled, the price b[1]
is determined. Then, given X , y[1], and b[1], the bid y[2] is

submitted during the second cycle of the real-time market.

These bidding cycles will continue until the last time slot

where, given X , y[1], . . . , y[T − 1], and b[1], . . . , b[T − 1],
the time-shiftable load submits the bid y[T ]. At each bidding

stage t, the goal is to minimize the expected value of the

energy procurement cost in the remaining T − t stages, while

ensuring that the total energy e will be procured by the time

that we reach the load deadline at the end of time slot T .

Theorem 1: If the number of subloads is L = 1, then, once

the day-ahead market is cleared and X in (2) is known, the

optimal energy bids to the real-time market are obtained as

y[t] = I(t = tb)(e1 −X), t = 1, . . . , T, (3)

where

tb = argmin
1≤t≤T

E{b[t]}. (4)

The proof of Theorem 1 is given in Appendix A. From

Theorem 1, once the day-ahead market is cleared, the demand

bidding process at the real-time market reduces to purchasing

the entire remaining energy e1−X at time slot tb, i.e., the time

slot with the lowest real-time market expected price during

time interval [1, T ]. Given the realization of price b[tb], the

cost of such real-time market purchase is b[tb] (e1 −X).

B. Selecting the Optimal Bids to Day-Ahead Market

Since submitting the bids to the day-ahead market is the first

stage in the T + 1 stage bidding process in Fig. 1, no prior

knowledge is assumed to be available. However, the decision

process must take into account the fact that once p and x are

submitted and the day-ahead market is cleared, then the bids

to the real-time market will be chosen as in (3). From (1), (2),

and (3), we can formulate the stochastic optimization problem

for selecting the bids to the day-ahead market as follows:

Min
p≥0,x≥0

E

{

T
∑

t=1

I (a[t] ≤ p[t]) a[t]x[t]

+ b[tb]

(

e1 −

T
∑

t=1

I(a[t] ≤ p[t])x[t]

)}

S.t.

T
∑

t=1

I(a[t] ≤ p[t])x[t] ≤ e1, ∀a[1], . . . , a[T ],

(5)

where the first and the second lines in the objective function

denote the expected cost of energy procurement from the day-

ahead market and the real-time market, respectively. Here, the

price values a[1], . . . , a[T ] and b[tb] are random variables.
Since the inequality constraints in (5) must hold for any

realization of the day-ahead market prices a[1], . . . , a[T ], we

need any binary-weighted summation of the day-ahead market

energy bids x[1], . . . , x[T ] to be less than or equal to e1.

Therefore, the feasible set that is constructed by the infinite

number of constraints in (5) is equal to the feasible set that

is constructed by a single constraint
∑T

t=1 x[t] ≤ e1. From

this, and after removing the fixed term E{b[tb]}e1 from the

objective function in (5), we can rewrite problem (5) as

Min
p≥0,x≥0

T
∑

t=1

E

{

(a[t]− b[tb]) I (a[t] ≤ p[t])

}

x[t]

S.t.

T
∑

t=1

x[t] ≤ e1.

(6)

The difficulty in solving the above problem is the presence

of the 0-1 indicator functions. Nevertheless, we can obtain

closed-form solutions for problem (6) as we will show next.

1) Design I: Assuming Independent Markets: First, suppose

that the day-ahead market prices a[1], . . . , a[T ] are indepen-

dent from the price b[tb] at time slot tb in the real-time market.

In that case, the objective function in problem (6) becomes

T
∑

t=1

E

{

(a[t]− E{b[tb]}) I (a[t] ≤ p[t])

}

x[t], (7)

where the outmost expected value is now with respect to only

a[t]. Therefore, we can show the following key theorem.
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Theorem 2: If the number of subloads is L = 1 and under

the market price independence assumption, the optimal price

bids to the day-ahead market are obtained as

p[1] = . . . = p[T ] = E{b[tb]}. (8)

The proof of Theorem 2 is given in Appendix B. From

Theorem 2, at optimality, all price bids to day-ahead market

are equal to the lowest expected price in the real-time market.

From (8), the objective function in (6) further reduces to

T
∑

t=1

E

{

(a[t]− E{b[tb]}) I (a[t] ≤ E{b[tb]})

}

x[t]. (9)

Since at each time slot t and for any realization of a[t], we have

(a[t] − E{b[tb]})I(a[t] ≤ E{b[tb]}) ≤ 0, all the T expected

value terms in (9) are always non-positive. Therefore, the

problem of choosing the energy bids x boils down to the

following linear program with non-positive coefficients:

Min
x≥0

T
∑

t=1

E

{

(a[t]− E{b[tb]}) I(a[t] ≤ E{b[tb]})

}

x[t]

S.t.

T
∑

t=1

x[t] ≤ e1.

(10)

The next theorem explains the closed-form solution of (10).

Theorem 3: The optimal energy bids to day-ahead market

are

x[t] = I(t = ta)e1, t = 1, . . . , T, (11)

where

ta = argmin
1≤t≤T

E

{

(a[t]− E{b[tb]}) I(a[t] ≤ E{b[tb]})

}

. (12)

The proof of Theorem 3 is given in Appendix C. From

Theorem 3, if the time-shiftable load has L = 1 subload, then

it must submit only one non-zero energy bid to the day-ahead

market. The timing of such non-zero bid is ta that is calculated

as in (12). Since there is no reason to submit a non-zero price

bid p[t] if the energy bid x[t] is zero; from the results in

Theorems 2 and 3, we can rewrite the optimal price bids as

p[t] = I(t = ta)E{b[tb]}, t = 1, . . . , T. (13)

2) Design II: Not Assuming Independent Markets: Next, we

relax the assumption about the independence of day-ahead and

real-time market prices. Thus, we may no longer replace b[tb]
in (6) with E{b[tb]}. Accordingly, we cannot use Theorem 2

anymore. Nevertheless, we can still find a closed-form solution

for problem (6) through a slightly different analysis.

Suppose that the price bid vector p is already selected. Then,

the problem of finding the energy bid vector x becomes

Min
x≥0

T
∑

t=1

E

{

(a[t]− b[tb]) I(a[t] ≤ p[t])

}

x[t]

S.t.

T
∑

t=1

x[t] ≤ e1.

(14)

The above problem is a linear program, but its coefficients are

not guaranteed to be non-positive. For notational simplicity,

we denote the coefficient of variable x[t] in (14) as

C(t, p[t]) = E

{

(a[t]− b[tb]) I(a[t] ≤ p[t])

}

. (15)

The extension of Theorem 3 in this case is as follows.

Theorem 4: Given p, the solution of problem (14) is

x[t] = I(t = ta,p)I(C(ta,p, p[ta,p]) ≤ 0)e1, t = 1, . . . , T,
(16)

where

ta,p = argmin
1≤t≤T

C(t, p[t]). (17)

The proof of Theorem 4 is given in Appendix D. Note that,

if I(C(ta,p, p[ta,p]) ≤ 0) = 0, then all the coefficients in the

objective function in (14) are positive; and at optimality, we

have x[1] = . . . = x[T ] = 0. From Theorem 4, for the given

p, the optimal objective value in (14) is obtained as

I(C(ta,p, p[ta,p]) ≤ 0) C(ta,p, p[ta,p]) e1. (18)

If C(ta,p, p[ta,p]) ≤ 0, then the optimal objective value in (18)

is C(ta,p, p[ta,p]) e1; otherwise, the optimal objective value

is zero. From (17) and (18), and since e1 is a constant, the

problem of finding the optimal price bid vector p in (14) boils

down to solving the following optimization problem:

Min
p≥0

I(C(ta,p, p[ta,p]) ≤ 0)C(ta,p, p[ta,p])

= Min
p≥0

min
1≤t≤T

C(t, p[t])I(C(t, p[t]) ≤ 0)

= min
1≤t≤T

Min
p[t]≥0

C(t, p[t])I(C(t, p[t]) ≤ 0),

(19)

where the first equality is the direct result of the defini-

tion of ta,p in (17), and the second equality holds because

C(t, p[t]) I(C(t, p[t]) ≤ 0) depends only on p[t] but not on

p[1], . . . , p[t−1], p[t+1], . . . , p[T ]. Here, we use the fact that

min
v,w

min
{

f(v), g(w)
}

= min
{

min
v

f(v),min
w

g(w)
}

. (20)

From (19), finding the optimal price bid vector p ≥ 0 under

Design II is decomposed into T separate subproblems over

time slots t = 1, . . . , T . For each time slot t, we choose

the scalar price bid p[t] ≥ 0 such that we minimize the

corresponding coefficient term in (15), if it is non-positive.

Theorem 5: If the number of subloads is L = 1 and

we relax any market price dependency assumption, then the

optimal price bids to the day-ahead market are obtained as

p[t] = I(t = ta)p̄[t], t = 1, . . . , T, (21)

where

ta = argmin
1≤t≤T

E

{

(a[t]− b[tb]) I(a[t] ≤ p̄[t])

}

, (22)

and for each t = 1, . . . , T , we have

p̄[t] = argmin
p[t]≥0

E

{

(a[t]−b[tb]) I(a[t]≤p[t])

}

× I

(

E

{

(a[t]−b[tb]) I(a[t]≤p[t])

}

≤0

)

.

(23)
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The above Theorem is the direct result of the problem

formulation in (19) and the definitions in (22) and (23). The

values of p̄[1], . . . , p̄[T ] depend on the statistical characteristics

of the day-ahead and real-time market prices. Therefore, they

can be calculated offline and used later at the time of bidding.

Given the optimal price bid vector p from Theorem 5, the

optimal energy bid vector x is readily obtained using Theorem

4, where ta,p in (16) is replaced by ta in (22).

If the day-ahead market prices are in fact independent from

the real-time market price at time tb, then p̄[1] = . . . = p̄[T ] =
E{b[tb]}; and (21) reduces to (13), while (22) reduces to (12).

C. Case Study

Consider the PJM price data in Fig. 2; and assume that a

time-shiftable load with one subload seeks to procure energy

based on the bidding framework in Fig. 1. We assume that

α1 = 5:00 PM = 17, β1 = 10:00 PM = 22, and e1 = 5 MWh.

We have tb = 8:00 PM and E{b[tb]} = $41.07. For Design

I in Section III-B-1, the term E{(a[t] − E{b[tb]})I(a[t] ≤
E{b[tb]})} is obtained as -$7.21, -$5.17, -$4.60, -$4.15, -

$4.39, and -$5.09, for t = 17, . . . , 22. From (12), we have ta =
5:00 PM = 17. The bids to the day-ahead market are obtained

as p[17] = $41.07 and x[17] = 5 MWh; while p[t] = x[t] = 0
for any t 6= 17. The expected energy procurement cost is

calculated as $189.43. For Design II in Section III-B-2, the

bidding parameter p̄[t] in (23) is obtained as $44.01, $44.62,

$42.50, $32.14, $29.68, and $49.03, for t = 17, . . . , 22.

Accordingly, the terms E{(a[t] − b[tb])I(a[t] ≤ p̄[t])} are

obtained as -$3.49, -$1.34, -$0.41, -$0.03, -$0.02, and -$1.75.

From (22), we have ta = 5:00 PM = 17. The bids to the day-

ahead market are obtained as p[17] = $44.01 and x[17] = 5

MWh, with p[t] = x[t] = 0 for any t 6= 17. The expected

energy cost is calculated as $187.85. We can see that relaxing

the assumption on price independency between the day-ahead

and real-time markets can further lower the cost.

As a baseline for comparison, if energy usage is evenly

distributed from 5:00 PM to 10:00 PM and energy at each time

slot is procured only from the day-ahead market at the clearing

market price, then the expected cost of energy procurement

is $211.15. Compared to this baseline, Design I in Section

III-B-1 reduces energy cost by 11.0%. The energy cost further

reduces by 0.8% when Design II in Section III-B-2 is used.

If energy is procured only from the day-ahead market at the

hour with the lowest expected day-ahead market price, i.e., at

t = 17, then the expected energy procurement cost becomes

$200.12. Also if energy is procured only from the real-time

market at the hour with the lowest expected real-time market

price, i.e., at t = 20, then the expected energy procurement

cost becomes $205.33. Designs I and II outperform both cases.

IV. THE CASE WITH SEVERAL SUBLOADS

In this section, we consider the general case where the

time-shiftable load comprises of several smaller time-shiftable

subloads, i.e., L > 1. We consider two different scenarios

to submit the bids. The first scenario is per-subload bidding,

where for each subload l and at each time slot t, we submit one

bid pair pl[t] and xl[t] to the day-ahead market and one bid
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Fig. 2. Statistical characteristics of the day-ahead and real-time market prices
at PJM for reported data from January 1 to June 30, 2013. The shaded area
indicates the 90% confidence interval for day-ahead market prices. The data
in this figure is used for the case studies in Sections III and IV.

yl[t] to the real-time market. The second scenario is single

bidding, where, regardless of the number of subloads, we

submit only one bid pair p[t] and x[t] to the day-ahead market

and only one bid y[t] to the real-time market. It is clear that

by submitting per-subload bids we increase granularity and

allow a more fine-grained bidding process. Therefore, the per-

subload bidding is always no worse than single bidding. As

a result, there is no reason not to go for per-subload bidding,

unless the time-shiftable load is mandated by the market to

submit only a single bid despite having multiple subloads.

A. When Per-Subload Bidding is Possible

Under the per-subload bidding scenario, at each time slot

t, the time-shiftable load submits price bids pl[t], . . . , pL[t]
and energy bids xl[t], . . . , xL[t] to the day-ahead market and

energy bids yl[t], . . . , yL[t] to the real-time market. Of course,

for each subload l, there is no need for energy procurement

outside the time frame [αl, βl]; and we can trivially choose

pl[t] = xl[t] = yl[t] = 0,
t = 1, . . . , αl − 1,
t = βl + 1, . . . , T.

(24)

Since separate bids are submitted for each subload, and

with the assumption that the time-shiftable load is price taker,

the problem of selecting the bids is essentially independent

across different subloads. As a result, the optimal bids for

each subload is obtained by following the exact same steps

that we explained in Section III. For example, for the case of

Design I, where the day-ahead and real-time market prices are

independent, for each subload l, the optimal bids are

pl[t] = I(t = ta,l)E{b[tb,l]}, t = αl, . . . , βl, (25)

xl[t] = I(t = ta,l)el, t = αl, . . . , βl, (26)

yl[t] = I(t = tb,l) (el −Xl) , t = αl, . . . , βl, (27)

where

tb,l = argmin
αl≤t≤βl

E{b[t]}, (28)
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ta,l = argmin
αl≤t≤βl

E

{

(a[t]− E{b[tb,l]})I (a[t] ≤ E{b[tb,l]})

}

,

(29)

and

Xl = I(a[t] ≤ E{b[tb,l]})el. (30)

The optimal bids for the case of Design II with no assumption

on market price independency can be obtained similarly by

extending the related results in Theorems 1, 4, and 5.

Let us define L , {1, . . . , L}. From (25)-(30), for each

time slot t, the time-shiftable load submits exactly La[t] bids

to the day-ahead market and Lb[t] bids to the real-time market,

where La[t] and Lb[t] are the cardinalities of sets

La[t] = {l | l ∈ L, t = ta,l} , (31)

Lb[t] = {l | l ∈ L, t = tb,l} . (32)

Once the day-ahead market is settled and the market clearing

price a[t] is realized, the total amount of power that is procured

from the day-ahead market at time slot t is calculated as

X[t] =
∑

l∈La

I (a[t] ≤ E{b[tb,l]}) el. (33)

It is interesting to note that X[t] in (33) is in fact the demand

function of the time-shiftable load at time slot t, a measure

that is widely used in electricity market analysis [4].

As a case study, consider the example in Fig. 3, where

we have visualized the subload parameters of a time-shiftable

load with L = 10 subloads. Each line segment represents one

subload l, where the start and the end points denote parameters

α1 and βl, respectively. For example, for l = 1, we have

α1 = 17 and β1 = 22; and for l = 2, we have α2 = 11 and

β2 = 19. The optimal demand bids to the day-ahead market

for the example time-shiftable load in Fig. 3, based on both

Design I and Design II, are shown in Fig. 4. Here, again, we

assume that the electricity market prices are as in Fig. 2.

First, consider the demand bids in the first row in Fig. 4,

which are obtained based on Design I. There are non-zero

demand bids at six different hours: La[7] = {4, 5, 9}, La[8] =
{8}, La[14] = {3}, La[16] = {2, 6, 10}, La[17] = {1}, and

La[22] = {7}. As an example, consider the demand bid at

hour t = 7:00 PM. It consists of three segments, including

the segment for subload number 4. This is because ta,4 = 7.

To see why, note that α4 = 5 and β4 = 12; and the term

E{(a[t] − E{b[tb,4]})I(a[t] ≤ E{b[tb,4]})} is obtained as -

$2.80, -$2.82, -$3.64, -$2.36, -$0.92, -$1.48, -$1.21, and -

$1.16, for t = 5, . . . , 12. Also, from (28), we have tb,4 = 5,

tb,5 = 6, tb,9 = 4; and E{b[tb,4]} = $26.91, E{b[tb,5]} =
$28.95, and E{b[tb,9]} = $25.85. For the demand bid at hour

t = 7, the price bids are at $25.85, $26.91, $28.95; and the

energy bids are at e5 = 2, e5+e4 = 8 MWh, and e5+e4+e9 =
12 MWh. As another example, consider the demand bid at

hour t = 16 = 4:00 PM, which has only one segment. Since

tb,2 = tb,6 = tb,10 = 15, the price bid is at E{b[15]} = $39.30
and the energy bid is at e2 + e6 + e10 = 15 MWh.

Next, consider the demand bids in the second row in Fig.

4, which are obtained based on Design II. This time, there

are non-zero demand bids at seven different hours: La[3] =
{9}, La[5] = {4}, La[14] = {3}, La[15] = {8}, La[16] =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
  

 1
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Fig. 3. Parameters of an example time-shiftable load with L = 10 subloads.
For each subload l, the line segment starts from αl and ends at βl.

{2, 6, 10}, La[17] = {1}, and La[18] = {5, 7}. We can see

that there are some similarities but also some major differences

between the demand bids that are obtained based on Design I

and Design II. For example, the bid segment corresponding to

subload number 4 has now moved from 7:00 PM to time slot

t = ta,4 = 5:00 PM. From Theorem 5, the price component

for the demand bid for this subload is p̄4[ta,4] = $18.90.

When obtaining the optimal bids based on Designs I and II

in Sections III-B-1 and III-B-2, the expected cost of energy

procurement is calculated as $1,632 and $1,595, respectively.

For the baseline scenario that we defined in Section III-C,

the expected cost of energy procurement is $1,835. Compared

to the baseline, Design I reduces energy cost by 11.1%. The

energy cost further reduces by 2.3% when Design II is used.

If energy is procured only from the day-ahead market at the

hours with the lowest expected day-ahead market price, then

the expected energy procurement cost becomes $1,669. Also

if energy is procured only from the real-time market at the

hours with the lowest expected real-time market price, then the

expected energy procurement cost becomes $1,639. Therefore,

Designs I and II outperform both cases in this example.

B. When Per-Subload Bidding is not Possible

Based on the per-subload bidding mechanism in Section

IV-A, each subload can potentially create a new segment in

the total demand bid. As a result, the demand bids at certain

hours may have multiple segments, as in the cases of hour 7:00

AM and hour 6:00 PM in Fig. 4, with three and two segments,

respectively. This is an interesting observation, because in

practice, there is typically a limit on the number of segments

(stairs) in the demand or supply bids. For example, in the

California ISO day-ahead market, the number of bid segments

is limited to 10. Therefore, it is natural to ask the following

question: How binding, in terms of demand bidding efficiency,

is the limit on the number of segments in each bid? Clearly,

having the limit at 10 is no worse than having it at 9, and

having the limit at 9 is no worse than having it at 8, and so

on and so forth. Therefore, if any such limit is going to be

binding, then we should see it in the most restrictive scenario
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Fig. 4. The optimal demand bids to the day-ahead market for the example time-shiftable load in Fig. 3 with L = 10 subloads. The first row shows the
results based on Design I. The second row shows the results based on Design II. Only the hours with non-zero demand bids are shown here.

where the demand bid is limited to only one segment. Hence,

to gain insights, we examine such highly restrictive scenario

in this section. That is, we consider the case where the market

mandates each time-shiftable load to submit only one bid for

each time slot, regardless of the number of its subloads.

Because of the linear property of Fixed Demand bids and

the price-taker assumption, submitting L different bids y1[t],
. . . , yL[t] to real-time market at time slot t results in an

identical energy procurement as if we submit a single bid

y[t] =

L
∑

l=1

yl[t]. (34)

Thus, by conducting a backward induction analysis similar to

the one in the Proof of Theorem 1, we can show that the single

optimal bid to the real-time market is obtained as

y[t] =
L
∑

l=1

yl[t] =
L
∑

l=1

I(t = tb,l) (el −Xl) , (35)

where Xl is the portion of the total energy that is procured

from the day-ahead market for consumption at subload l at

time slot t. For each subload l, notation tb,l is as in (28).

Next, we note that once the day-ahead market is cleared, the

time-shiftable load operator must distribute the total procured

energy I(a[t] ≤ p[t])x[t] across its subloads. This can be done

by using auxiliary decision variables x1[t], . . . , xL[t], where

x[t] =

L
∑

l=1

xl[t], (36)

and for each subload l = 1, . . . , L, we must have

Xl =

βl
∑

t=αl

I(a[t] ≤ p[t])xl[t] ≤ el, ∀a[1], . . . , a[T ]. (37)

Therefore, the stochastic optimization problem for selecting

the bids to the day-ahead market can be formulated as

Min
p,x

x1, . . . ,xL

E

{

T
∑

t=1

I (a[t] ≤ p[t]) a[t]x[t]

+

L
∑

l=1

b[tb,l]

(

el−

T
∑

t=1

I(a[t]≤p[t])xl[t]

)}

S.t.

β1
∑

t=α1

I(a[t]≤p[t])x1[t] ≤ e1, ∀a[1], . . . , a[T ],

...

βL
∑

t=αL

I(a[t]≤p[t])xL[t] ≤ eL, ∀a[1], . . . , a[T ],

xl[t] = 0, l = 1, . . . , L, t /∈ [αl, βl],

x[t] =
L
∑

l=1

xl[t], t = 1, . . . , T.

(38)

where for each time slot t, we define xl[t] , xl[1], . . . , xl[T ].
As in problem (5), we can replace the infinite number of in-

equalities for each subload with a single inequality constraint.

We can also eliminate the equality constraints on the last line

by substituting any x[t] with
∑L

l=1 xl[t] for all t = 1, . . . , T .

As for the objective function in (38), after reordering the terms,

and once we remove all fixed terms, it becomes

L
∑

l=1

T
∑

t=1

E

{

(a[t]− b[tb,l]) I (a[t] ≤ p[t])

}

xl[t]. (39)

Therefore, we can rewrite problem (38) as

Min
p,x1,...,xL

L
∑

l=1

T
∑

t=1

E

{

(a[t]−b[tb,l])I (a[t]≤p[t])

}

xl[t]

S.t. xl[t] = 0, l = 1, . . . , L, t /∈ [αl, βl],
βl
∑

t=αl

xl[t] ≤ el, l = 1, . . . , L.

(40)
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Problem (40) generalizes problem (5). If we assume that the

prices in the day-ahead and real-time markets are independent,

then we can accordingly generalize Theorem 2. However, such

generalization provides only some bounds for p[t] rather than

an exact closed-form solution as in Theorem 2. Therefore,

next, we directly move to the general case of Design II,

where there is no particular assumption on the statistical

characteristics of the day-ahead and real-time market prices.

Suppose the price bid vector p is already selected. This

removes the coupling across different subloads in problem (40)

and allows us to decompose problem (40) into L separate

subproblems. Given p, for each l = 1, . . . , L, we must solve

Min
xl

βl
∑

t=αl

E

{

(a[t]− b[tb,l])I (a[t] ≤ p[t])

}

xl[t]

S.t.

βl
∑

t=αl

xl[t] ≤ el.

(41)

Next, let us denote the coefficient of variable xl[t] in (41) as

Cl(t, p[t]) = E

{

(a[t]− b[tb,l]) I(a[t] ≤ p[t])

}

. (42)

Similar to the case in Theorem 4, we can show that for a given

p and for each time slot t, at optimality, we have

xl[t] = I(t = ta,l,p) I(Cl(ta,l,p, p[ta,l,p]) ≤ 0) el, (43)

where

ta,l,p = argmin
αl≤t≤βl

Cl(t, p[t]). (44)

The optimal objective value in (41) for the given p becomes

I(Cl(ta,l,p, p[ta,l,p]) ≤ 0) Cl(ta,l,p, p[ta,l,p]) el. (45)

Therefore, we can rewrite problem (41) over p as

Min
p

L
∑

l=1

I(Cl(ta,l,p, p[ta,l,p]) ≤ 0)C(ta,l,p, p[ta,lp])el

= Min
p

L
∑

l=1

min
αl≤t≤βl

Cl(t, p[t])I(Cl(t, p[t]) ≤ 0)el

= Min
p

L
∑

l=1

min
1≤t≤T

Cl(t, p[t])I(Cl(t, p[t]) ≤ 0)

× I(αl ≤ t ≤ βl)el.

(46)

Because of the summation over l, we cannot switch the two

min operators on the last line in (46). Therefore, unlike

problem (19), problem (46) is not separable. Nevertheless, we

can still follow the approach in Section III-B-2 and decompose

problem (46) in order to obtain a sub-optimal solution:

p[t] = argmin
p[t]≥0

L
∑

l=1

E

{

(a[t]− b[tb,l]) I(a[t] ≤ p[t])
}

I

(

E

{

(a[t]−b[tb,l]) I(a[t] ≤ p[t])
}

≤0
)

,

(47)

where t = 1, . . . , T . Given the price bids in (47), the corre-

sponding optimal energy bids x are readily obtained using the

results in (43) and (44) and the relationship in (36).

In practice, the optimality gap for the above sub-optimal

solutions is very small. This can be verified by comparing

the expected energy procurement cost when we use (43) and

(47) with the expected energy procurement cost when we use

the optimal per-subload bidding solutions in Section IV-A.

For example, recall from Section IV-A that under per-subload

bidding, the total expected energy procurement cost for the

time-shiftable load in Fig. 3 is $1,595. Since per-subload

bidding is always no worse than single bidding, this number

gives a lower bound for the objective value of the minimization

problem in (40). Now, if we use the bids in (43) and (47),

the total expected energy procurement power again becomes

$1,595. Therefore, in this example, the optimality gap is zero.

V. ADDITIONAL CASE STUDIES

A. Other Price Data

Again, consider the subloads in Fig. 3. For the results in

Sections IV-A and IV-B, we used the price data in Fig. 2.

Next, we re-examine the results for ten different 6-months

PJM price data sets, as in Fig. 5. For each year, two sets of

results are shown here, one based on the data from January 1

to June 30 and another one based on the data from July 1 to

December 31. The Baseline is defined as in Section III-C.

We can see that all designs highly outperform the baseline,

while Design II slightly outperforms Design I in all cases.

Interestingly, the difference between per-subload bidding and

single bidding is relatively minor, suggesting that a mandate

on submitting only a single bid does not significantly increase

the time-shiftable load’s energy procurement cost. On average,

and across all ten price cases, the cost of energy procurement

for the Baseline, Single Bid - Design I, Per-Subload Bid -

Design I, Single Bid - Design II, and Per-Subload Bid Design

II, is $1,966, $1,669, $1,662, $1,623, and $1,617, respectively.

If energy is procured only from the day-ahead market at the

hours with the lowest expected day-ahead market price, then

on average, i.e., across all ten price cases, the expected energy

cost is $1,683. If energy is procured only from the real-time

market at the hours with the lowest expected real-time market

price, then on average, the expected energy cost is $1,672. We

can see that Designs I and II outperform both cases.

B. Other Subload Configurations

Next, we examine 20 scenarios with different subload con-

figurations. For each scenario, we randomly choose parameters

αl, βl, and el for L = 10 subloads. Furthermore, for each

scenario, we assume that the price data is randomly selected

from the ten different 6-months PJM price data sets that we

discussed in Section V-A. The results are shown in Fig. 6. We

can see that the trends are similar to those that we previously

saw for the particular subload configuration of Fig. 3. This

suggests that the advantages of the proposed design is not

specific to a particular subload configuration. On average,

and across all 20 randomly generated subload configuration

scenarios, the cost of energy procurement for the Baseline,

Single Bid - Design I, Per-Subload Bid - Design I, Single Bid

- Design II, and Per-Subload Bid Design II, is $2,339, $1,966,

$1,956, $1,910, and $1,904, respectively.
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Fig. 6. The expected energy procurement cost of a time-shiftable load with
20 different randomly generated subload configurations, where L = 10.

If energy is procured only from the day-ahead market at

the hours with the lowest expected day-ahead market price,

then, on average, i.e., across all 20 randomly generated subload

configuration scenarios, the expected energy cost is $1,997.

If energy is procured only from the real-time market at the

hours with the lowest expected real-time market price, then,

on average, the expected energy cost is $1,958. Single Bid -

Design I and particularly the two approaches for Design II

outperform both cases. We see that restricting the number of

bids to only one segment may slightly hurt the bidder in some

load configurations. Although, even in those cases, Design II

can still provide a very efficient demand bidding performance.

C. Increasing the Number of Subloads

The results when we increase the number of subloads are

shown in Fig. 7, where each point denotes the average ex-

pected energy procurement cost across 20 different randomly

generated subload configuration scenarios. For example, the

results for L = 10 are the average of the results in Fig. 6.

As we increase L, the relative performance of the various

designs is more or less maintained. With L = 100 subloads,
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Fig. 7. The impact of increasing the number of subloads. Each point indicates
the average expected energy procurement cost across 20 random scenarios.

the average expected energy procurement cost for the Baseline,

Single Bid - Design I, Per-Subload Bid - Design I, Single Bid -

Design II, and Per-Subload Bid Design II, is $22,515, $18,847,

$18,730, $18,309, $18,213, respectively.

If L = 100 and energy is procured only from the day-ahead

market at the hours with the lowest expected day-ahead market

price, then, on average, i.e., across all 20 randomly generated

subload configuration scenarios, the expected energy cost is

$19,052. If energy is procured only from the real-time market

at the hours with the lowest expected real-time market price,

then on average, the expected energy cost is $18,721. The two

approaches for Design II always outperform both cases.

VI. CONCLUSIONS AND FUTURE WORK

We developed a multi-stage stochastic optimization frame-

work, together with several closed-form solutions, to optimally

select the demand bids for time-shiftable loads. Both per-

subload bidding and single bidding were considered. Using

PJM price data, the proposed designs were tested in various

case studies. The impact of different price scenarios, subload

configurations, and bidding rules were investigated. We ob-

served that, while per-subload bidding outperforms single

bidding, the performance loss for the latter is typically small.

Also, in general, it is preferred to take into account the statis-

tical dependence between the day-ahead and real-time market

prices. The designs in this paper can help large consumers,

LSEs, and utilities to better exploit their time-shiftable load

potentials to lower their energy costs in electricity markets.

The analysis and results in this paper can be extended

in several directions. First, the focus throughout this work

was limited to the most generic form of time-shiftable loads.

However, the same methodology can be applied to incorporate

more details about loads and their characteristics. For example,

one can take into consideration the limits on power usage at

each time slot, ramping constraints, and whether the time-

shiftable load is interruptible or uninterruptible. Second, it

is interesting to see how the results may change when we

relax the price-taker assumption. Such extension is particularly

important if we increase the penetration of time-shiftable loads
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in the electricity market to a level so that they become price-

maker, i.e., the time-shift in their demand creates noticeable

change in the price values. Third, when it comes to price-

maker loads, such as large utilities whose service territory

covers several trading nodes within a transmission network,

the congestion effect in the underlying transmission network

topology has to be considered in the bidding strategy.
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APPENDIX

A. Proof of Theorem 1

Using backward induction from dynamic programming, we

start from the last bidding stage at time slot T and go backward

in time to see how the bids are selected. Recall that, when it

comes to the time to submit the last bid, we already know the

values of X and y[1], . . . , y[T − 1], where

0 ≤ X +

T−1
∑

t=1

y[t] ≤ e1. (48)

Therefore, in order to assure procuring total energy e1 before

deadline T , the only acceptable bidding scenario is to choose

y[T ] = e1 −X −

T−1
∑

t=1

y[t]. (49)

Next, we move backward in time and examine the choice of

bid y[T−1]. At this stage, given X and y[1], . . . , y[T−2], and

also based on the knowledge that the bid in the last stage will

be chosen as in (49), we need to select y[T − 1] to minimize

the expected value of the cost of procuring power. Therefore,

we need to solve the following optimization problem

Min
y[T−1]

(

T
∑

t=1

I(a[t] ≤ p[t])a[t]x[t]

)

+

(

T−1
∑

t=1

b[t]y[t]

)

+ E

{

b[T − 1]y[T − 1]

+ b[T ]

(

e1 −X −

T−2
∑

t=1

y[t]− y[T − 1]

)}

S.t. 0 ≤ y[T − 1] ≤ e1 −X −

T−2
∑

t=1

y[t].

(50)

After reordering the terms in the objective function and once

we remove any term that does not depend on the optimization
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variable y[T − 1], problem (50) reduces to

Min
y[T−1]

(E{b[T − 1]} − E{b[T ]}) y[T − 1]

S.t. 0 ≤ y[T − 1] ≤ e1 −X −

T−2
∑

t=1

y[t].
(51)

If E{b[T − 1]} ≤ E{b[T ]}, then, at optimality, we have

y[T − 1] = e1 −X −

T−2
∑

t=1

y[t] ⇒ y[T ] = 0. (52)

Otherwise, we have

y[T − 1] = 0 ⇒ y[T ] = e1 −X −
T−2
∑

t=1

y[t]. (53)

Therefore, any shortage of energy e1 − X −
∑T−2

t=1 y[t] that

is realized before the last two time slots will be purchased in

full at the time slot with the lowest expected market price.
Next, we examine the optimal choice of bid y[T−2]. At this

stage, we need to solve the following optimization problem:

Min
y[T−2]

E

{

b[T − 2]y[T − 2]

+ b[T − 1]I (E{b[T − 1]} ≤ E{b[T ]})

×

(

e1 −X −

T−3
∑

t=1

y[t]− y[T − 2]

)

+ b[T ] (1− I (E{b[T − 1]} ≤ E{b[T ]}))

×

(

e1 −X −

T−3
∑

t=1

y[t]− y[T − 2]

)}

S.t 0 ≤ y[T − 2] ≤ e−X −

T−3
∑

t=1

y[t].

(54)

After removing the fixed terms, the objective function becomes
(

E{b[T−2]} − E{b[T−1]}I (E{b[T−1]} ≤ E{b[T ]})

− E{b[T ]} (1− I (E{b[T − 1]} ≤ E{b[T ]}))
)

y[T − 2]

=
(

E{b[T − 2]} − E{b[T ]} − (E{b[T − 1]} ≤ E{b[T ]})

× I (E{b[T − 1]} ≤ E{b[T ]})
)

y[T − 2]

=
(

E{b[T−2]} −min
[

E{b[T ]} , E{b[T−1]}
]

)

y[T−2].

Therefore, we can rewrite the optimization problem in (54) as

Min
y[T−2]

(

E{b[T − 2]}

−min
[

E{b[T ]} , E{b[T − 1]}
]

)

y[T − 2]

S.t. 0 ≤ y[T − 2] ≤ e1 −X −
T−3
∑

t=1

y[t].

(55)

If E{b[T − 2]} ≤ min
[

E{b[T ]} , E{b[T − 1]}
]

, then

y[T−2] = e1−X−

T−3
∑

t=1

y[t] ⇒ y[T−1] = y[T ] = 0. (56)

Otherwise, we have y[T − 2] = 0. In that case, y[T − 1] and

y[T ] are set based on a comparison between E{b[T − 1]} and

E{b[T ]} and according to (52) and (53), where y[T − 2] = 0.

Thus, any shortage of energy e1 − X −
∑T−3

t=1 y[t] that is

realized before the last three time slots will be purchased in

full at the time slot with the lowest expected clearing market

price. If we continue this backward induction process down to

time slot t = 1, the optimal bids will be obtained as in (3). �

B. Proof of Theorem 2

Let F (p,x) denote the objective function in (5). Also let 1

denote a T × 1 vector with all entries equal zero. Finally, let

p−t = p[1], . . . , p[t − 1], p[t + 1], . . . , p[T ] denote the vector

of all price bids to the day-ahead market, except for p[t]. We

want to show that, at any time slot t = 1, . . . , T , we have

Min
p
−t

,x, 1Tx≤e1

F (p[t] > E{b[tb]},p−t,x)

≥ Min
p
−t

,x, 1Tx≤e1

F (p[t] = E{b[tb]},p−t,x)
(57)

and

Min
p
−t

,x, 1Tx≤e1

F (p[t] < E{b[tb]},p−t,x)

≥ Min
p
−t

,x, 1Tx≤e1

F (p[t] = E{b[tb]},p−t,x).
(58)

Together, the above two inequalities directly result in (8).

To show (57), first, we expand the expected value terms in

the objective function in (5) based on scenarios 1, . . . ,K with

probabilities π1, . . . , πK . Here, K can be an arbitrarily large

number to achieve any desirable accuracy. Let ak[1], . . . , ak[T ]
denote the realization of the day-ahead market price when

scenario k occurs. For any time slot t and for any p[t] >
E{b[tb]}, we divide set K = {1, . . . ,K} into three disjoint

subsets:

K1 = {k | ak[t] ≤ E{b[tb]}} , (59)

K2 = {k | E{b[tb]} < ak[t] < p[t]} , (60)

K3 = {k | p[t] ≤ ak[t]} . (61)

Accordingly, we can rewrite the objective function F (p,x) as
∑

k∈K1

πkfk(p,x)+
∑

k∈K2

πkfk(p,x)+
∑

k∈K3

πkfk(p,x), (62)

where for each k = 1, . . . ,K, we have

fk(p,x) =

T
∑

τ=1

(ak[τ ]−E{b[tb]}) I (ak[τ ]≤p[τ ])x[τ ]. (63)

From (59), (61), and (63), for each k ∈ K1 ∪ K3, we have

fk(p[t] > E{b[tb]},p−t,x)

= fk(p[t] = E{b[tb]},p−t,x).
(64)

Also, from (60) and (63), for each k ∈ K2, we have

fk(p[t] > E{b[tb]},p−t,x) = (ak[t]−E{b[tb]})x[t]

+

T
∑

τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t]
(65)
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and

fk(p[t] = E{b[tb]},p−t,x) = 0

+

T
∑

τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t].
(66)

By subtracting (66) from (65), for each k ∈ K2, we have

fk(p[t] > E{b[tb]},p−t,x)− fk(p[t] = E{b[tb]},p−t,x)

= (ak[t]− E{b[tb]})x[t],
(67)

where

ak[t]− E{b[tb]} > 0, ∀k ∈ K2. (68)

Finally, from (62), (67), and (68), we have

Min
p
−t

,x, 1Tx≤e
F (p[t] > E{b[tb]},p−t,x)

= Min
p
−t

,x, 1Tx≤e

(

F (p[t] = E{b[tb]},p−t,x)

+
∑

k∈K2

πkfk(p[t] > E{b[tb]},p−t,x)

−
∑

k∈K2

πkfk(p[t] = E{b[tb]},p−t,x)

)

≥ Min
p
−t

,x, 1Tx≤e
F (p[t] = E{b[tb]},p−t,x)

+ Min
p
−t

,x, 1Tx≤e

∑

k∈K2

πk

(

fk(p[t] > E{b[tb]},p−t,x)

− fk(p[t] = E{b[tb]},p−t,x)

)

= Min
p
−t

,x, 1Tx≤e
F (p[t] = E{b[tb]},p−t,x)

+ Min
p
−t

,x, 1Tx≤e

∑

k∈K2

πk(ak[t]− E{b[tb]})x[t]

= Min
p
−t

,x, 1Tx≤e
F (p[t] = E{b[tb]},p−t,x),

(69)

where the first equality is due to (62), the first inequality is

because maxx g(x) + h(x) ≤ maxx g(x) + maxx h(x), the

second equality is due to (67), and the third equality is due to

(68). This concludes the proof to show (57).

Next, in order to show (58), for a given time slot t and

p[t] < E{b[tb]}, we divide set K into three disjoint subsets

K1 = {k | ak[t] ≤ p[t]} , (70)

K2 = {k | p[t] < ak[t] < E{b[tb]}} , (71)

K3 = {k | E{b[tb]} ≤ ak[t]} . (72)

We can verify that (64) still holds in this case. From (63) and

(71), for any k ∈ K2, we have

fk(p[t] < E{b[tb]},p−t,x) = 0

+
T
∑

τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t]
(73)

and

fk(p[t] = E{b[tb]},p−t,x) = (ak[t]− E{b[tb]})x[t]

+

T
∑

τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t].

(74)

By subtracting (74) from (73), for each k ∈ K2, we have

fk(p[t] < E{b[tb]},p−t,x)− fk(p[t] = E{b[tb]},p−t,x)

= − (ak[t]− E{b[tb]})x[t],
(75)

where

− (ak[t]− E{b[tb]}) > 0, ∀k ∈ K2. (76)

The rest of the proof is similar to that of showing (57). �.

C. Proof of Theorem 3

Since the minimization in (10) is a linear program and all

coefficients are non-positive, the objective function is mini-

mized when x[ta], i.e., the variable with the lowest coefficient,

is maximized. From the inequality constraint in (10), this

means that at optimality, we have x[ta] = e1; and x[t] = 0, for

any t 6= ta. For the rare scenario when not even a single price

realization at any time slot in the day-ahead market may ever

drop below E{b[tb]}, all coefficients in (10) would be zero,

and at optimality, we would have x[1] = . . . = x[T ] = 0. �

D. Proof of Theorem 4

The minimization in (14) is a linear program. The low-

est coefficient in the objective function is denoted by

C(ta,p, p[ta,p]). If C(ta,p, p[ta,p]) > 0, then all the coefficients

in the objective function in problem (14) are positive and the

optimal solution is obtained as x[0] = . . . = x[T ]. Otherwise,

we can minimize the objective function if x[ta], i.e., the

variable with the lowest coefficient, is maximized. From the

inequality constraint in (14), this means that at optimality, we

must have x[ta] = e1; and x[t] = 0, for any t 6= ta. �
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