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Abstract We consider a set of users served by a single load-serving entity (LSE).
The LSE procures capacity a day ahead. When random renewable energy is re-
alized at delivery time, it manages user load through real-time demand response
and purchases balancing power on the spot market to meet the aggregate demand.
Hence optimal supply procurement by the LSE and the consumption decisions by
the users must be coordinated over two timescales, a day ahead and in real time,
in the presence of supply uncertainty. Moreover, they must be computed jointly by
the LSE and the users since the necessary information is distributed among them. In
this paper we present a simple yet versatile user model and formulate the problem
as a dynamic program that maximizes expected social welfare. When random re-
newable generation is absent, optimal demand response reduces to joint scheduling
of the procurement and consumption decisions. In this case, we show that optimal
prices exist that coordinate individual user decisions to maximize social welfare,
and present a decentralized algorithm to optimally schedule a day in advance the
LSE’s procurement and the users’ consumptions. The case with uncertain supply is
reported in a companion paper.

1 Introduction

1.1 Motivation

There is a large literature on various forms of load side management from the classi-
cal direct load control to the more recent real-time pricing [1, 2]. Direct load control
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in particular has been practised for a long time and optimization methods have been
proposed to minimize generation cost e.g. [3, 4, 5, 6], maximize utility’s profit e.g.
[7], or minimize deviation from users’ desired consumptions e.g. [8, 9], sometimes
integrated with unit commitment and economic dispatch e.g. [4, 10]. Almost all de-
mand response programs today target large industrial or commercial users, or, in
the case of residential users, a small number of them, for two, among other, impor-
tant reasons. First, demand side management is invoked rarely to mostly cope with a
large correlated demand spike due to weather or a supply shortfall due to faults, e.g.,
during a few hottest days in summer. Second, the lack of ubiquitous two-way com-
munication in the current infrastructure prevents the participation of a large number
of diverse users with heterogeneous and time-varying consumption requirements.
Both reasons favor a simple and static mechanism involving a few large users that
is sufficient to deal with the occasional need for load control, but both reasons are
changing.

Renewable sources can fluctuate rapidly and by large amounts. As their pene-
tration continues to grow, the need for regulation services and operating reserves
will increase, e.g., [11, 12]. This can be provided by additional peaker units, at a
higher cost, or supplemented by real-time demand response [13, 14, 15, 12, 16].
We believe that demand response will not only be invoked to shave peaks and shift
load for economic benefits, but will increasingly be called upon to improve security
and reduce reserves by adapting elastic loads to intermittent and random renewable
generation [17]. Indeed, the authors of [12, 18, 19] advocate the creation of a dis-
tribution/retail market to encourage greater load side participation as an alternative
source for fast reserves. Such application however will require a much faster and
more dynamic demand response than practised today. This will be enabled in the
coming decades by the large-scale deployment of a sensing, control, and two-way
communication infrastructure, including the flexible AC transmission systems, the
GPS-synchronized phasor measurement units, and the advanced metering infras-
tructure, that is currently underway around the world [20].

Demand response in such context must allow the participation of a large num-
ber of users, and be dynamic and distributed. Dynamic adaptation by hundreds of
millions of end users on a sub-second control timescale, each contributing a tiny
fraction of the overall traffic, is being practised everyday on the Internet in the form
of congestion control. Even though both the grid and the Internet are massive dis-
tributed nonlinear feedback control systems, there are important differences in their
engineering, economic, and regulatory structures. Nonetheless the precedence on
the Internet lends hope to a much bigger scale and more dynamic and distributed
demand response architecture and its benefit to grid operation. Ultimately it will be
cheaper to use photons than electrons to deal with a power shortage. Our goal is to
design algorithms for such a system.
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1.2 Summary

Specifically we consider a set of users that are served by a single load-serving entity
(LSE). The LSE may represent a regulated monopoly like most utility companies
in the United States today, or a non-profit cooperative that serves a community of
end users. Its purpose is (possibly regulated) to promote the overall system welfare.
The LSE purchases electricity on the wholesale electricity markets (e.g., day-ahead,
real-time balancing, and ancillary services) and sells it on the retail market to end
users. It provides two important values: it aggregates loads so that the wholesale
markets can operate efficiently, and it hides the complexity and uncertainty from
the users, in terms of both power reliability and prices. Our model captures three
important features:

• Uncertainty. Part of the electricity supply is from renewable sources such as
wind and solar, and thus uncertain.

• Supply and demand. LSE’s supply decisions and the users’ consumption deci-
sions must be jointly optimized.

• Two timescale. The LSE must procure capacity on the day-ahead wholesale mar-
ket while user consumptions should be adapted in real time to mitigate supply
uncertainty.

Hence the key is the coordination of day-ahead procurement and real-time demand
response over two timescales in the presence of supply uncertainty. Moreover, the
optimal decisions must be computed jointly by the LSE and the users as the neces-
sary information is distributed among them. The goal of this paper is to formulate
this problem precisely. Due to space limitation, we can only fully treat the case with-
out supply uncertainty. Results for the case with supply uncertainty are summarized
here, but fully developed in a companion paper [21].

Suppose each user has a set of appliances (electric vehicle, air conditioner, light-
ing, battery, etc.). She (or her energy management system) is to decide how much
power she should consume in each period t = 1, . . . ,T of a day. The LSE needs
to decide how much capacity it should procure a day ahead and, when the random
renewable energy is realized at real time, how much balancing power to purchase
on the spot market to meet the aggregate demand. In Section 2, we present our user
and supply models, and formulate the overall problem as an (1+T )-period dynamic
program to maximize expected social welfare. The key idea is to regard the LSE’s
day-ahead decision as the control in period 0 and the users’ consumption decisions
as controls in the subsequent periods t = 1, . . . ,T . By unifying several models in
the literature, our user model incorporates a large class of appliances. Yet, it is sim-
ple, thus analytically tractable, where each appliance is characterized by a utility
function and a set of linear consumption constraints.

In Section 3, we consider the case without renewable generation. In the absence
of uncertainty it becomes unnecessary to adapt user consumptions in real-time and
hence supply and consumptions can be optimally scheduled at once instead of over
two days. We show that optimal prices exist that coordinate individual users’ deci-
sions in a distributed manner, i.e., when users selfishly maximize their own surplus
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under the optimal prices, their consumption decisions turn out to also maximize the
social welfare. We develop an offline distributed algorithm that jointly schedules the
LSE’s procurement decisions and the users’ consumption decisions for each period
in the following day. The algorithm is decentralized where the LSE only knows the
aggregate demand but not user utility functions or consumption constraints, and the
users do not need to coordinate among themselves but only respond to the common
prices from the LSE.

With renewable generation, the uncertainty precludes pure scheduling and calls
for real-time consumptions decisions that adapt to the realization of the random re-
newable generation. Moreover, this must be coordinated with procurement decisions
over two timescales to maximize the expected welfare. Distributed algorithms for
optimal demand response in this case and the impact of uncertainty on the optimal
welfare are developed in the companion paper [21].

Finally we conclude in Section 4 with some limitations of this paper.
We make two remarks. First the effectiveness of real-time pricing for demand

response is still in active research. On the one hand, empirical studies have shown
consistently that price elasticity is low and heterogeneous; see [22, 23, 24] and refer-
ences therein. On the other hand, there are strong economic arguments that real-time
retail prices improve the efficiency of the overall system by allowing users to dynam-
ically adapt their loads to shortages, with potential benefits far exceeding the cost
of implementation [18]. Moreover, the long-run efficiency gain is likely to be sig-
nificant even if demand elasticity is small, but unfortunately, the popular open-loop
time-of-use pricing may capture a very small share of the efficiency gain of real-
time pricing [25]. We neither argue for nor against real-time pricing. Indeed we do
not consider in this paper the economic issues associated with such a system, such
as locational marginal prices, revenue-adequacy, etc. What we refer to as ‘prices’
are simply control signals that provide the necessary information for users to adapt
their consumption in a distributed, yet optimal, manner. Whether this control signal
should be linked to monetary payments to provide the right incentive for demand
response is beyond the scope of this paper, i.e., we do not address the important
issue of how to incentivize users to respond to supply and demand fluctuations.1

Second, unlike many current systems, the kind of large-scale distributed demand
response system envisioned here must be fully automated. Human users set parame-
ters that specify utility functions and consumption constraints and may change them
on a slow timescale, but the algorithms proposed here will execute automatically
and transparently to optimize social welfare. The traditional direct load control ap-
proach assumes that the controller (e.g. a utility company) knows the user consump-
tion requirements, in the form of payback characteristics of the deferred load, and
can optimally schedule deferred consumptions and their paybacks centrally. This is
reasonable for the current system where the participating users are few and their re-
quirements are relatively static. We take the view that the utilities and requirements
of user consumptions are diverse and private. It is not practical, nor necessary, to
have direct access to such information in order to optimally coordinate their con-

1 See however [19] for a discussion on some implementation issues of real-time pricing for retail
markets and a proposal for the Italian market.
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sumptions in a large, distributed, and dynamic system of the future. The algorithm
presented here is an example that can achieve optimality without requiring users to
disclose their private information.

1.3 Other related work

A large literature exists on demand response. Besides those cited above, more re-
cent works include, e.g., [26, 27] on load control of thermal mass in buildings,
[28, 29, 30] on residential load control through coordinated scheduling of differ-
ent appliances, [31, 32, 33] on the scheduling of plug-in electric vehicle charging,
and [34] on the optimal allocation of a supply deficit (rationing) among users using
their supply functions. Load side management in the presence of uncertain supply
has also been considered in [16, 10, 35, 36, 12, 37]. Unlike the conventional ap-
proach that compensates for the uncertainty to create reliable power, the authors
of [16] advocate selling interruptible power and designs service contracts, based
on [38], that can achieve greater efficiency than the conventional approach. In [10]
various optimization problems are formulated that integrate demand response with
economic dispatch with ramping constraints and forecasts of renewable power and
load. Both centralized dispatch using model predictive control and decentralized dis-
patch using prices, or supply and demand functions, are considered. A two-period
stochastic dispatch model is studied in [35] and a settlement scheme is proposed that
is revenue-adequate even in the presence of uncertain supply and demand. A queue-
ing model is analyzed in [36] where the queue holds deferrable loads that arise from
random supply and demand processes. Conventional generation can be purchased
to keep the queue small and strategies are studied to minimize the time-average
cost. The models that are closest to ours, developed independently, are [12, 37].
All our models include random renewable generation, consider both day-ahead and
real-time markets, and allow demand response, but our objectives and system oper-
ations are quite different. The authors of [12] advocate the establishment of a retail
market where users (e.g., PHEVs) can buy power from or sell reserves, in the form
of demand response capability, to their LSE. The paper formulates the LSE’s and
users’ problems as dynamic programs that minimize their expected costs over their
bids, which can be either simple, uncorrelated (price, quantity) pairs for each pe-
riod, or complex, (price, quantity) pairs with temporal correlations. The model in
[37] includes non-elastic users that are price non-responsive, and elastic users that
can either leave the system or defer their consumptions when the electricity price is
high. The goal is to maximize LSE’s profit over day-ahead procurement, day-ahead
prices for non-elastic users, and real-time prices for elastic users.
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1.4 Notations

Given quantities such as the demands qia(t) from appliance a of user i in period
t, qia := (qia(t), t ∈ T ) denotes the vector of demands at different times, qi(t) :=
(qia(t),a ∈Ai) the vector of demands of different appliances, qi := (qia,a ∈Ai) the
vector of demands of i’s appliances at different times, and q := (qi,∀i) the vector
of all demands. Similarly for the aggregate demands Qi(t) = ∑a∈Ai qia(t), Qia :=
∑t qia(t), Qi, Q, etc. Script letters denote sets, e.g., N ,Ai,T . Small letters denote
individual quantities, e.g., qia(t), qia, qi(t), qi, q, etc. Capital letters denote aggregate
quantities, e.g., Qi(t), Qia, Pd(t),Pr(t),Po(t),Pb(t), etc. We use qia(t),qia,Qi(t), etc.
for loads and Pd(t),Pr(t), etc. for supplies. We sometimes write ∑i ∑a∈Ai qia(t) as
∑i,a qia(t). For any real a,b,c, [a]+ := max{a,0} and [a]cb := max{b,min{a,c}}.
Finally, we write a vector as x = (xi,∀i) without specifying whether it is a column or
row vector so we can ignore the transpose sign to simplify the notation; the meaning
should be clear from the context.

2 Model and problem formulation

Consider a set N of N users that are served by a single load-serving entity (LSE).
We use a discrete-time model with a finite horizon that models a day. Each day is
divided into T periods of equal duration, indexed by t ∈ T := {1,2, · · · ,T}. The
duration of a period can be 5, 15, or 60 mins, corresponding to the time resolution
at which energy dispatch or demand response decisions are made.

2.1 User model

Each user i ∈N operates a set Ai of appliances such as HVAC (heat, ventilation,
air conditioner), refrigerator, and plug-in hybrid electric vehicle. User i may also
possess a battery which provides further flexibility for optimizing its electricity con-
sumption across time.
Appliance model. For each appliance a ∈ Ai of user i, qia(t) denotes its energy
consumption in period t ∈T , and qia the vector (qia(t),∀t) over the whole day. An
appliance a is characterized by:

• a utility function Uia(qia) that quantifies the utility user i obtains from using
appliance a;

• a Kia×T matrix Aia and a Kia-vector ηia such that the vector of power qia satisfies
the linear inequality

Aiaqia ≤ ηia. (1)

In general Uia depends on the vector qia. In this paper, however, we consider four
types of appliances whose utility functions take one of three simple forms. These
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models are summarized in Table 1 and justified in detail in Appendix A. The utility
of a type 1 or type 2 appliance is additive in t:2

Uia(qia) := ∑
t

Uia (qia(t), t) . (2)

The utility of a type 3 appliance depends only on the aggregate consumption:

Uia(qia) := Uia

(
∑

t
qia(t)

)
. (3)

The utility of a type 4 appliance depends on the internal temperature and power
consumptions in the past. It is of the form:

Uiq(qia) := ∑
t

Uia

(
Tia(t)+β

t

∑
τ=1

(1−α)t−τ qia(τ)

)
(4)

where Tia(t) is a given sequence of temperatures defined in equation (30) in Ap-
pendix A and α,β are given thermal constants. All utility functions are assumed to
be continuously differentiable and concave functions for each t.

For example, some of our simulations in [39, 21] use the following time inde-
pendent and additive utility function of form (2): let yia(t) be a desired energy con-
sumption by appliance a in period t; then the function

Uia(qia(t), t) := Uia(qia(t)) := −(qia(t)− yia(t))
2 (5)

measures the utility of following the desired consumption profile yia(t). Such utility
functions minimize user discomfort as advocated in [8, 9].

Table 1: Structure of utility functions and consumption constraints for appliances.

Appliances Utility function Consumption constraints Examples
Type 1 (2) (6) Lightings
Type 2 (2) (6), (7) TV, video game, computer
Type 3 (3) (6), (7) PHEV, washers
Type 4 (4) (6), (8) HVAC, refrigerator
Battery −Di(ri) (6), (7) ri = qia for battery a

The consumption constraints (1) for these appliances take three particular forms.
First, for all appliances, the (real) power consumption must lie between a lower and
an upper bound, possibly time-dependent:

q
ia
(t) ≤ qia(t) ≤ qia(t). (6)

2 We abuse notation to use Uia to denote both a function of vector qia and that of a scalar qia(t);
the meaning should be clear from the context.
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An important character of an appliance is its allowable time of operation; e.g., an EV
can be charged only between 9pm and 6am, TV may be on only between 7–9am and
6–12pm. If an appliance operates only in a subset Tia ⊆ T of periods, we require
that q

ia
(t) = qia(t) = 0 for t 6∈ Tia and Uia(0) = 0. We therefore do not specify Tia

explicitly in the description of utility functions and always sum over all t ∈T . The
second kind of constraint specifies the range in which the aggregate consumption
must lie:

Qia ≤ ∑t qia(t) ≤ Qia. (7)

The last kind of constraint is slightly more general (see derivation in Appendix A):

η ia ≤ Aiaqia ≤ η ia. (8)

Battery model. We denote by Bi the battery capacity, by bi(t) the state of charge in
period t, and by ri(t) the power (energy per period) charged to (when ri(t) ≥ 0) or
discharged from (when ri(t)< 0) the battery in period t. We use a simplified model
of battery that ignores power leakage and other inefficiencies, where the state of
charge is given by

bi(t) =
t

∑
τ=1

ri(τ)+bi(0). (9)

The battery has an upper bound on charge rate, denoted by r̄i, and an upper bound
on discharge rate, denoted by −ri. We thus have the following constraints on bi(t)
and ri(t):

0≤ bi(t)≤ Bi, ri ≤ ri(t)≤ r̄i. (10)

We assume any battery discharge is consumed by other appliances (zero leakage),
and hence it cannot be more than what the appliances need:

−ri(t) ≤ ∑
a∈Ai

qia(t). (11)

Finally, we impose a minimum on the energy level at the end of the control horizon:
b(T )≥ γiBi where γi ∈ [0,1].

The cost of operating the battery is modeled by a function Di(ri) that depends on
the vector of charged/discharged power ri := (ri(t),∀t). This cost may correspond
to the amortized purchase and maintenance cost of the battery over its lifetime, and
depends on how fast/much/often it is charged and discharged; see an example Di(ri)
in [39]. The cost function Di is assumed to be a convex function of the vector ri.

Note that in this model, a battery is equivalent to an appliance: its utility function
is−Di(ri) and its consumption constraints (9), (10), and b(T )≥ γiBi are of the same
form as (6)–(7) with qia = ri. Therefore a battery can be specified simply as another
appliance, in which case the constraint (11) requires that i’s aggregate demand be
nonnegative, ∑a∈Ai qia(t)+ ri(t) ≥ 0. This is summarized in Table 1. Henceforth,
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we will often use appliances to also include battery and may not refer to battery
explicitly when this does not cause confusion.

2.2 Supply model

We now describe a simple model of the electricity markets. The LSE procures power
for delivery in each period t, in two steps. First it procures day-ahead capacities Pd(t)
for each period t a day in advance and pays for the capacity costs cd(Pd(t); t). The
renewable power in each period t is a nonnegative random variable Pr(t) and it costs
cr(Pr(t); t). It is desirable to use as much renewable power as possible, for instance,
if the renewable generation is owned by the LSE. For notational simplicity only, we
assume cr(P; t) ≡ 0 for all P ≥ 0 and all t. Then at time t− (real time), the random
variable Pr(t) is realized and used to satisfy demand. The LSE satisfies any excess
demand by some or all of the day-ahead capacity Pd(t) procured in advance and/or
by purchasing balancing power on the real-time market. Let Po(t) denote the amount
of the day-ahead power that the LSE actually uses and co(Po(t); t) its cost. Let Pb(t)
be the real-time balancing power and cb(Pb(t); t) its cost.

These real-time decisions (Po(t),Pb(t)) are made by the LSE so as to minimize
its total cost, as follows. Given the demand vector q(t) := (qia(t),a ∈ Ai,∀i), let
Q(t) := ∑i,a qia(t) be the total demand and ∆(Q(t)) := Q(t)−Pr(t) the excess de-
mand, in excess of the renewable generation Pr(t). Note that ∆(Q(t)) is a random
variable in and before period t− 1, but its realization is known to the LSE at time
t−. Given excess demand ∆(Q(t)) and day-ahead capacity Pd(t), the LSE chooses
(Po(t),Pb(t)) that minimizes its total real-time cost, i.e., it chooses (P∗o (t),P

∗
b (t))

that solves the problem:

cs(∆(Q(t)),Pd(t); t) := min
Po(t),Pb(t)

{ co(Po(t); t)+ cb(Pb(t); t) | Pb(t)≥ 0,

Po(t)+Pb(t)≥ ∆(Q(t)), Pd(t)≥ Po(t)≥ 0}. (12)

Clearly P∗o (t)+P∗b (t) = ∆(Q(t)) unless ∆(Q(t)< 0. The total cost is

c(Q(t),Pd(t);Pr(t), t) := cd(Pd(t); t)+ cs(∆(Q(t)),Pd(t); t). (13)

with ∆(Q(t)) := Q(t)−Pr(t). We assume that, for each t, cd(·; t), co(·; t) and cb(·; t)
are increasing, convex, and continuously differentiable with cd(0; t) = co(0; t) =
cb(0; t) = 0.

Example: supply cost
Suppose c′b(0)> c′o(P),∀P≥ 0, i.e., the marginal cost of balancing power is strictly
higher than the marginal cost of day-ahead power, the LSE will use the balancing
power only after the day-ahead power is exhausted, i.e., Pb(t)> 0 only if ∆(Q(t))>
Pd(t). The solution cs(∆(Q(t)),Pd(t); t) of (12) in this case is particularly simple
and (13) can be written explicitly in terms of cb,co,cb:
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c(Q(t),Pd(t);Pr(t), t) = cd(Pd(t); t)+

co

(
[∆(Q(t))]Pd(t)

0 ; t
)
+ cb

(
[∆(Q(t))−Pd(t)]+ ; t

)
. (14)

i.e., the total cost consists of the capacity cost cd and the energy cost co of day-ahead
power, and the cost cb of the real-time balancing power. ut

2.3 Problem formulation: welfare maximization

Recall that q := (q(t), t ∈ T ) and Q(t) := ∑i,a qia(t). The social welfare is the
standard user utility minus supply cost:

W (q,Pd ;Pr) := ∑
i,a

Uia(qia)−
T

∑
t=1

c(Q(t),Pd(t);Pr(t), t). (15)

As mentioned above the LSE’s objective is not to maximize its profit through selling
electricity, but rather to maximize the expected social welfare. Given the day-ahead
decision Pd , the real-time procurement (Po(t),Pb(t)) is determined by the simple
optimization (13). This is most transparent in (14) for the special case: the optimal
decision is to use day-ahead power P∗o (t) to satisfy any excess demand ∆(Q(t)) up
to Pd(t), and then purchase real-time balancing power P∗b (t) = [∆(Q(t))−Pd(t)]+
if necessary. Hence the maximization of (15) reduces to optimizing over day-ahead
procurement Pd and real-time consumption q in the presence of random renewable
generation Pr(t). It is therefore critical that, in the presence of uncertainty, q(t)
should be decided after Pr(t) have been realized at times t−. Pd however must be
decided a day ahead before Pr(t) are realized.

The traditional dynamic programming model requires that the objective function
be separable in time t. The welfare function in (15) is not as the first term Uia(qia)
depends on the entire control sequence qia = (qia(t),∀t). So does the consumption
constraint (1). We now introduce an equivalent state space formulation of that will
allow us to state precisely the overall optimization problem as an (1+ T )-period
dynamic program.

Consider a dynamical system over an extended time horizon t = 0,1, . . . ,T . The
control inputs are the LSE’s day-ahead decision Pd := (Pd(t),∀t) in period 0 and
the user’s decisions q(t) in each subsequent period. Let v(t) denote the inputs, i.e.,
v(0) = Pd and v(t) = q(t), t = 1, . . . ,T . Note that v(0) ∈ ℜT

+ whereas q(t) ∈ ℜM

where M :=∑
N
i=1 |Ai|. The system state x(t) :=

(
x1(t),x2

ia(t),x
3(t),x4

ia(t), a ∈Ai,∀i
)

has four components, defined as follows:

• Without loss of generality, x(0) starts from the origin.
• x1(t) ∈ ℜT keeps track of the day-ahead decisions Pd : for each t = 1, . . . ,T ,

x1(t) = Pd = (Pd(τ),τ = 1, . . . ,T ).
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• x2
ia(t) ∈ ℜkia of appropriate dimension kia for each (i,a) pair keeps track of the

consumption constraint (1). The state definition and its transition are problem
specific; see a concrete example in Section 2.4.

• x3(t) ∈ ℜ+ keeps track of the random renewable power x3(0) = 0, x3(t) =
Pr(t), t = 1, . . . ,T . The purpose of this state definition is merely notational, so
that the control policy can depend on the realization of the random renewable
power Pr(t) through its dependence on state x3(t).

• x4
ia(t) ∈ℜT−1 for each (i,a) pair tracks the user decisions via(t−1) = qia(t−1)

in the previous period: x4
ia(1) = 0T−1, the T − 1 dimensional zero vector; for

each t = 2, . . . ,T , the (t−1)th component [x4
ia(t)]t−1 of x4

ia(t) is set to be the input
via(t−1) and all the other components [x4

ia(t)]τ of x4
ia(t) remain the same as those

of x4
ia(t− 1), so that the final state x4

ia(T ) is the vector (qia(t), t = 1, . . . ,T − 1)
of inputs up to period T −1. The first term in (15) is then a function of the state
and input in period T , Uia(qia) = Uia(x4

ia(T ),via(T )). This allows us to rewrite
the welfare function in (15) in a form that is separable in t; see below.

The above discussion is summarized by a time-varying state transition function ft :

x(t +1) = ft(x(t),v(t),Pr(t +1)), t = 0, . . . ,T

i.e., the new state x(t + 1) depends on the current state x(t), the input v(t), and the
new random variable Pr(t), and is therefore random. The consumption constraints
(1), which may include the battery constraints, generally translate into constraints on
the state x2(t) and input v(t) and we represent this by x(t)∈X (t) and v(t)∈V (t)⊆
ℜM , M := ∑

N
i=1 |Ai|. Sometimes these constraints also give rise to a terminal reward

that we denote by WT+1(x(T +1)).
Consider the class of feedback control laws v(t) = φt(x(t)), where φ0 : X (0)→

ℜT
+ specifies the day-ahead decision Pd and φt : X (t)→ V (t) specifies the user

decisions q(t) for each period t = 1, . . . ,T . Hence the control v(t) depends only on
the current state x(t). Under the control law φ := (φt , t = 0, . . . ,T ), the state evolves
(stochastically) according to

x(t +1) = ft(x(t),φt(x(t)),Pr(t +1)). (16)

We emphasize that x(t) is obtained under policy φ even though this may not be
explicit in the notation.

To make the welfare function in (15) separable in t, use (13) to define the welfare
in each period t, under the control law φ , as a function of the current state x(t) and
the current input v(t) = φt(x(t)):

W φ

t := W φ

t (x(t),v(t))

:=

−∑
T
τ=1 cd ([v(0)]τ ;τ) , t = 0

−cs
(
∆(Qφ (t)), [x1(t)]t ; t

)
), 1≤ t < T

∑i,a Uia((x4
ia(T ),via(T )))− cs

(
∆(Qφ (T )), [x1(T )]T ;T

)
, t = T

(17)
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where Qφ (t) =∑i,a[v(t)]ia is the aggregate demand in period t under φ , and via(T ) =
qia(T ) are the real-time consumption decisions in the last control period T . Then the
welfare function in (15) is equivalent to

Jφ :=
T

∑
t=0

W φ

t (x(t),v(t))+W φ

T+1(x(T +1))

where the definition of the terminal reward W φ

T+1(x(T + 1)) is problem specific.
We can now state precisely our objective as the constrained maximization of the
expected welfare over the control law φ :

max
φ

E Jφ = E

(
T

∑
t=0

W φ

t +W φ

T+1

)
s. t. xφ (t) ∈X (t). (18)

where the expectation is taken over Pr(t), t = 1, . . . ,T .

Remark. An important assumption in this formulation is that the consumption con-
straints (1) can be modeled by an appropriate definition of states x2

ia(t), their transi-
tions ft , the constraint sets X (t),V (t), and possibly a terminal reward WT+1(x(T +
1)).

We now illustrate the problem formulation using a concrete example.

2.4 Example

To simplify the notation we make two assumptions that do not cause any loss of
generality. First we use the total cost function c in (14) in the definition of the welfare
function (15). Second we assume each user i has a single type-2 appliance and no
battery (so we drop the subscript a). From Table 1, user utility functions are additive
in time, Ui(qi) = ∑t Ui(qi(t); t) and the consumption constraints are

q
i
(t) ≤ qi(t) ≤ qi(t), ∀i (19)

Qi ≤ ∑
T
t=1 qi(t). (20)

Since the utility functions are separable in t, we do not need to define x4(t). We now
describe the (1+T )-period dynamic program by specifying the definition of x2(t),
the state transition function ft , and the constraint sets X (t),V (t).

The system state x(t) := (x1(t),x2(t),x3(t)) consists of three components of ap-
propriate dimensions with

x(t) = (Pd ,x2(t),Pr(t)), t = 1, . . . ,T

where x2(t) is determined by the constraint (20). To simplify exposition, we make
the important assumption that Pr(t) are independent for different t; see [21] for
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a model without this independence assumption. Define x2
i (t) to be the remaining

demand of user i at the beginning of each period t: x2
i (1) = Qi, and for each t =

1, . . . ,T , x2
i (t +1) = x2

i (t)−vi(t) where vi(t) = qi(t). To enforce that x2(T +1)≤ 0,
we define the terminal cost cT+1(x(T +1)) = 0 if x2(T +1) ≤ 0N and cT+1(x(T +
1)) = ∞ otherwise, where 0n is the n-dimensional zero vector. Let the initial state
be x(0) = 0T+N+1. Denote Q := (Qi,∀i). The system dynamics is then linear time-
varying:

x(1) = x(0)+
(

IT
0(N+1)×T

)
v(0)+

 0T
Q

Pr(1)


x(t +1) =

(
IT+N 0T+N
0T+N 0

)
x(t) −

 0T×N
IN
0

v(t) +

(
0T+N

1

)
Pr(t +1), ∀1≤ t ≤ T

where In is the n×n identify matrix, 0m×n the m×n zero matrix, and Pr(T +1) := 0.
The welfare in each period, under input sequence v, is (using (14))

W v
0 (x(0),v(0)) := −

T

∑
τ=1

cd(Pd(τ);τ) = −
T

∑
τ=1

cd([v(0)]τ ;τ)

and for t = 1, . . . ,T ,

W v
t (x(t),v(t))

:= ∑
i

Ui(qi(t); t)− co

(
[Q(t)−Pr(t)]

Pd(t)
0 ; t

)
− cb

(
[Q(t)−Pr(t)−Pd(t)]+ ; t

)
= ∑

i
Ui(vi(t); t)− co

([
1v(t)− x3(t)

][x1(t)]t
0 ; t

)
− cb

([
1v(t)− x3(t)− [x1(t)]t

]
+

; t
)

where 1 is the (row) vector of 1’s.
The constraint (19) yields the input constraint sets V (0) := ℜT

+ and, for t =
1, . . . ,T , V (t) := {q(t)∈ℜN |q(t)≤ q(t)≤ q(t)}. There is no constraint on the state,
i.e., X (t) = ℜT+N+1. Let φ := {φ0 : ℜT+N+1 → ℜT

+, φt : ℜT+N+1 → V (t), t =
1, . . . ,T} be the control policy so that v(t) = φt(x(t)), 0 ≤ t ≤ T . Then the welfare
maximization problem (18) is

max
φ

E

(
W φ

0 (x(0),v(0)) +
T

∑
t=1

W φ

t (x(t),v(t)) − cT+1 (x(T +1))

)
(21)

where the state x(t) and the input v(t) are obtained under policy φ .
In [21] we study the case with supply uncertainty in detail. We propose a dis-

tributed heuristic algorithm to solve the (1+T )-period dynamic program. We prove
that the algorithm is optimal when the welfare is quadratic and the LSEs procure-
ment decisions are strictly positive. Otherwise, we bound the gap between the wel-
fare achieved by the heuristic algorithm and the maximum. Simulation results sug-
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gest that the performance of the heuristic algorithm is very close to optimal. As we
scale up the size of a renewable generation plant, both its mean production and its
variance will likely increase. As expected, the maximum welfare increases with the
mean production, when the variance is fixed, and decreases with the variance, when
the mean is fixed. More interesting, we prove that as we scale the size of the plant
up, the maximum welfare increases.

3 Optimal scheduling without supply uncertainty

In this paper we only fully treat the case where there is no supply uncertainty, i.e.,
Pr(t)≡ 0. Our goal is to optimally coordinate supply and demand to maximize social
welfare. In the absence of uncertainty (our model also ignores demand uncertainty),
it becomes unnecessary to adapt user consumptions in real-time and hence supply
and consumptions can be optimally scheduled at once instead of over two days.
Welfare maximization (18) then takes a simpler form and we develop an offline
distributed algorithm that jointly optimizes the LSE’s procurements and the users’
consumptions for each period in the following day.

3.1 Optimal procurements and consumptions

We first consider LSE’s procurement decisions. Recall that Qi(t) := ∑a∈Ai qia(t)
and ∑i Qi(t) is the aggregate demand in period t. With supply uncertainty, while Pd
is decided a day ahead, the optimization (12) must be carried out in real time after
Pr(t) has been realized to obtain optimal Po(t),Pb(t). Here, on the other hand, all
three decisions (Pd(t),Po(t),Pb(t)) can be computed in advance in the absence of
uncertainty. Hence, given an aggregate demand ∑i Qi(t), the LSE solves (instead of
(12)–(13)):

c

(
∑

i
Qi(t); t

)
:= min

Pd(t),Po(t),Pb(t)
cd(Pd(t); t)+ co(Po(t); t)+ cb(Pb(t); t) (22)

s. t. Po(t)+Pb(t)≥∑
i

Qi(t), Pd(t)≥ Po(t)≥ 0, Pb(t)≥ 0

to obtain the total cost. The solution of (22) specifies the optimal decisions (P∗d (t),P
∗
o (t),P

∗
b (t))

to satisfy the aggregate demand ∑i Qi(t) for each period t in the following day.
It is not difficult to show that c(·, t) is an non-decreasing, convex, and con-

tinuously differentiable function for each t, so the problem (22) is convex. Since
c′d(P; t) > 0, the KKT condition implies that P∗d (t) = P∗o (t) at optimality, i.e., it
is optimal to exhaust all the day-ahead capacity. This is always possible because
all procurement decisions are computed jointly without uncertainty. If we further
assume that the marginal cost of the balancing power is higher than that of the day-
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ahead power, i.e., c′b(0; t)> c′d(P; t)+ c′o(P; t) for all P≥ 0, then KKT implies that
it will never pay to use balancing power, i.e., P∗b (t) = 0 at optimality. In this case,
P∗d (t) = P∗o (t) = ∑i Qi(t).

Hence welfare maximization reduces to the computation of the user consump-
tions qia(t); the corresponding procurement decisions are then given by (22). The
optimization of the social welfare in (15) then becomes:

max
q ∑

i,a
Uia(qia)−∑

t
c

(
∑

i
Qi(t); t

)
(23)

s. t. Aiaqia ≤ ηia, a ∈Ai,∀i, (24)
0 ≤ Qi(t) ≤ Qi, ∀i (25)

The inequalities in (24) are the consumption constraints (1) of user i’s appliances
and battery. The lower inequality in (25) is the same as (11); see the discussion at
the end of Section 2.1 on battery constraints. The upper inequality in (25) imposes
a bound on the total power drawn by user i. By assumption, the objective function
is concave and the feasible set is convex. Hence an optimal point can in principle
be computed offline centrally by the LSE. This however will require that the LSE
know all the users’ utility and battery cost functions and all the constraints, which
is impractical for technical or privacy reasons. The goal of this section is to derive a
distributed algorithm to solve (23)–(25) by decomposing it into subproblems that are
solvable in a decentralized manner where the LSE only needs to know the aggregate
demand but not the individual private information.

The key idea is for the LSE to set prices π := (π(t),∀t) to induce the users to
individually choose socially optimal consumptions qi := (qia(t),∀t) in response.
Indeed, given prices π , we assume that each user i chooses its own demand qi so as
to maximize its net benefit, her total utility minus the electricity cost, i.e., each user
i solves:

max
qi

∑
a∈Ai

Uia(qia)−∑
t

π(t)Qi(t) s. t. (24)− (25). (26)

Given prices π , we denote an individually optimal solution of (26) and the corre-
sponding aggregate demand by

qi(π) := (qia(t;π),∀t,∀a ∈Ai), Qi(π) := (Qi(t;π), ∀t) :=

(
∑

a∈Ai

qi,a(t;π),∀t

)
.

Recall q(π) := (qi(π), ∀i). It is a remarkable fact in the competitive equilibrium
theory in economics that there exist prices π that align the individual optimality
with the social optimality, i.e., there are prices π∗ such that if qi(π

∗) optimize i’s
objectives for all users i then they also optimize the social welfare.
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Definition 1. A consumption vector q∗ is called (socially) optimal if it solves (23)–
(25). A price vector π∗ is called optimal if q(π∗) is optimal, i.e., any solution q(π∗)
of (26) also solves (23)–(25).

The following result follows from the welfare theorem in economics. It implies
that setting the prices to the marginal costs of power is optimal.

Theorem 1. The prices that satisfy π∗(t) := c′ (∑i Qi(t;π∗); t)≥ 0 exist and are op-
timal.

Proof. Write the welfare maximization problem as

max
qi∈Qi,Yi

∑
i,a

Uia(qia)−∑
t

c

(
∑

i
Yi(t); t

)
s. t. Yi(t) = ∑

a∈Ai

qia(t), ∀i, t

where the feasible set Qi is defined by the constraints (24)–(25). Clearly, an optimal
solution q∗ exists. Moreover, there exist Lagrange multipliers π∗i (t), ∀i, t, such that
(taking derivative with respect to Yi(t))

π
∗
i (t) = c′

(
∑

i
Y ∗i (t); t

)
= c′

(
∑

i
∑

a∈Ai

q∗ia(t); t

)
≥ 0.

Since the right-hand side is independent of i, the LSE can set the prices as π∗(t) :=
π∗i (t) ≥ 0 for all i. One can check that the KKT condition for the welfare maxi-
mization problem are identical to the KKT conditions for the collection of users’
problems. Since all these problems are convex, the KKT conditions are both neces-
sary and sufficient for optimality. This proves the theorem. ut

3.2 Offline distributed scheduling algorithm

Theorem 1 motivates a distributed algorithm to compute the optimal prices π∗ and
user decisions q(π∗). The LSE sets prices to be the marginal costs of power and
each user solves its own maximization problem (26) in response. The model is that
at the beginning of each day the LSE and (the energy management systems of) the
users iteratively compute the electricity prices π(t) and consumptions qi(t) for each
period t of the following day. These decisions are then carried out for that day. This
is an offline algorithm since all decisions are made at once before the day starts. It is
decentralized where the LSE only knows the aggregate demand but not user utility
functions or consumption constraints and the users do not need to coordinate among
themselves but only respond to common prices.

Algorithm 1: Optimal scheduling without supply uncertainty
For each iteration k = 1,2, . . . , after initialization:
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1. The LSE collects aggregate demand forecasts, denoted by (Qk
i (t), ∀t), from all

users i over a communication network. It updates the prices to the marginal costs
πk+1(t) := c′

(
∑i Qk

i (t); t
)

and broadcasts πk+1 := (πk+1(t),∀t) to all users.
2. Each user i updates its demands qk+1

i after receiving πk+1 according to

q̃k+1
ia (t) = qk

ia(t)+ γ

(
∂Uia

(
qk

i
)

∂qk
ia(t)

−π
k+1(t)

)
qk+1

ia =
[
q̃k+1

ia

]
Qi

where γ > 0 is a constant stepsize, q̃k+1
ia := (q̃k+1

ia (t), ∀t) is the new consumption
vector before being projected onto the feasible set Qi specified by constraints
(24)–(25), and [·]Qi denotes this projection. User i’s aggregate demand forecast
in period t is updated to Qk+1

i (t) = ∑a∈Ai qk+1
ia (t).

3. Increment iteration index to k+1 and goto Step 1.

Algorithm 1 converges asymptotically to optimal prices π∗ and optimal con-
sumptions q(π∗), provided the stepsize γ > 0 is small enough. More precisely, sup-
pose:

• A1: The utility functions Uia(qia) are strictly concave in the vector qia :=
(qia(t),∀t) for all i,a.

• A2: The feasible set of q defined by the consumption constraints (24)–(25) is
compact. All our user models in Section 2.1 satisfy this condition because of (6).

• A3: Suppose the spectral radius of the Hessian matrix ∇2Uia and the second
derivative c′′(·; t) are both uniformly bounded: ‖∇2Uia(qia)‖2 < ρ for all qia for
all i,a, and c′′(Q; t)< α for all Q, t.

Theorem 2. Under the assumptions A1 – A3, the sequence (πk,qk) generated by
Algorithm 1 converges to the optimal price and consumption vectors (π∗,q(π∗)),
provided γ < 2/(ρ +α ∑i |Ai|).

Proof. Let the welfare function be

h(q) := ∑
i,a

Uia(qia)−∑
t

c

(
∑

i
Qi(t); t

)

Then h(q) is strictly concave since Uia(qia) are strictly concave. The gradient ∇h(q)
has components

[∇h(q)]ia (t) =
∂Uia (qi)

∂qia(t)
− c′

(
∑

i
Qi(t); t

)
(27)

Hence Algorithm 1 is a gradient projection algorithm where in each iteration k, the
variable qk is updated to qk+1 according to:
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qk+1 =
[
qk + γ∇h(qk)

]
Q

where Q :=Q1×·· ·×QN . Moreover assumption A3 implies the following lemma,
proved in Appendix B.

Lemma 1. ∇h(q) is Lipschitz with ‖∇h(q)−∇h(q̃)‖2 < (ρ +α ∑i |Ai|)‖q− q̃‖2 for
all q, q̃.

Lemma 1 implies that, provided γ < 2/(ρ +α ∑i |Ai|), any accumulation point q∗

of the sequence qk generated by Algorithm 1 is optimal, i.e., maximizes welfare
h(q) [40, p. 214]. Assumption A2 implies that the sequence qk lies in a compact
set and hence must have a convergent subsequence. But assumption A1 implies
that the optimal q∗ is unique. Therefore all convergent subsequences, hence the
original sequence qk, must converge to q∗. By continuity of c′, πk(t)= c′(∑i Qk

i (t); t)
converges to the unique price c′(∑i Q∗i (t); t) with Q∗i (t) := ∑a∈Ai q∗ia(t) which, by
Theorem 1, is optimal. ut

The rate of convergence of Algorithm 1 depends on the stepsize γ: a larger γ gen-
erally leads to faster convergence, but a large γ can also risk instability. The bound
on the stepsize γ in Theorem 2 is conservative; in practice a much larger stepsize
can usually be used without losing stability. We simulate this algorithm in [39] with
realistic system parameters. The simulation results show that, as expected, the prices
are capable of coordinating the decisions of different appliances in a decentralized
manner, to reduce peak aggregate demand and flatten its profile, greatly increasing
the load factor. Furthermore, battery amplifies the benefits of demand response.

4 Conclusion

We have presented a simple yet versatile user model and formulated the optimal
demand response problem as an (1+T )-period dynamic program to maximize the
expected social welfare. In this paper, we have focused on the case where there
is no uncertainty. In this case demand response reduces to the deterministic welfare
maximization in (23)–(25) that has a natural decentralized and incentive-compatible
structure. We have proposed an offline distributed scheduling algorithm where the
LSE sets the day-ahead prices to be their marginal costs based on forecast demands
and, in response, the users forecast their demands to maximize their own surplus.
As long as the stepsize is small enough, this procedure will converge to the unique
optimal prices and consumptions. The algorithm is decentralized where the LSE
only knows the aggregate demand but not user utility functions or consumption
constraints, and the users do not need to coordinate with other users but only respond
to the common prices from the LSE.

The current work has several limitations. First our model does not include the
distribution system, implicitly assuming that the underlying network has enough
capacity to distribute the power demanded by the users without causing congestion.
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Second we only consider power balance in steady-state and ignore fast timescale
dynamics such as frequency and voltage fluctuations due to random supply and de-
mand. Third we do not model power market dynamics; for example, our model
assumes that the cost functions faced by the LSE are independent of the demands
and we ignore economic issues such as revenue-adequacy for the LSE. Finally our
results are only for the case without uncertainty. When there is random renewable
generation, offline scheduling alone will be insufficient and real-time demand re-
sponse should be employed to match fluctuating spply. This is considered in [21].

Appendix A: Detailed appliance models

We describe detailed models of common electric appliances summarized in Section
2.1.

Type 1. This category of appliances includes lighting that must be on for a cer-
tain period of time. The consumption constraint is (6), with the understanding that
q

ia
(t) = qia(t) = 0 for periods t that are outside its time of operation. User i attains

a utility Uia(qia(t), t) from consuming power qia(t) independent of its consumption
in other periods, and the overall utility (2) is therefore separable in t.

Type 2. This category includes TV, video games, and computers. For these appli-
ances, a user’s utility depends on her consumption in each period she wishes to use
it as well as the total amount of consumption in a day. Hence the consumption con-
straints are (6) and (7). For example, a user may have a favorite TV program that
she wishes to watch everyday. With DVR, she can watch the program at any time.
However the total power demand of TV should at least cover the program. Type 2
appliances have the same kind of utility functions (2) as Type 1 appliances. The time
dependent utility function models the fact that a user may get different benefits from
consuming the same amount of power at different times, e.g., she may enjoy a TV
program to different levels at different times.

Type 3. This category includes PHEV, dish washer, clothes washer. For these ap-
pliances, a user only cares about whether the task is completed by a certain time.
This means that the aggregate power consumption by such an appliance must ex-
ceed a threshold within its time of operation [28, 29, 33]. Hence the consumption
constraints are (6) and (7). The utility depends only on the total power consumed,
hence (3).

Type 4. This category includes HVAC (heating, ventilation, air conditioning) and
refrigerator that control the temperature of a user’s environment. Let T in

ia (t) and
T out

ia (t) denote the temperatures at time t inside and outside the place that appliance
(i,a) is in charge of, and Tia denotes the set of times when user i cares about the
temperature. For instance, for air conditioner, T in

ia (t) is the temperature inside the
house, T out

ia (t) is the temperature outside the house, and Tia is the set of times when
she is at home.
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The inside temperature evolves according to the following linear dynamics [27,
9, 26]:

T in
ia (t) = T in

ia (t−1)+α(T out
ia (t)−T in

ia (t−1))+βqia(t) (28)

where α and β are parameters that specify thermal characteristics of the appliance
and the environment in which it operates. The second term in equation (28) models
heat transfer. The third term models the thermal efficiency of the system; β > 0 if
appliance a is a heater and β < 0 if it is a cooler. Here, we define T in

ia (0) as the
temperature T in

ia (T ) from the previous day. Let [T ia, T ia] be a range of preferred
temperature, leading to the constraint:

T ia ≤ T in
ia (t) ≤ T ia, ∀t ∈Tia. (29)

Using Equation (28), we can write T in
ia (t) in terms of (qia(τ),τ = 1, . . . , t):

T in
ia (t) = (1−α)tT in

ia (0)+
t

∑
τ=1

(1−α)t−τ
αT out

ia (τ)+β

t

∑
τ=1

(1−α)t−τ qia(τ).

Define

Tia(t) := (1−α)tT in
ia (0)+

t

∑
τ=1

(1−α)t−τ
αT out

ia (τ). (30)

Then

T in
ia (t) = Tia(t)+β

t

∑
τ=1

(1−α)t−τ qia(τ). (31)

With (31), the constraint (29) becomes a linear constraint on the load vector qia: for
any t ∈Tia,

T ia ≤ Tia(t)+β

t

∑
τ=1

(1−α)t−τ qia(τ)≤ T ia.

This is the constraint (8), in addition to (6). Assume user i attains a utility Uia(T in
ia (t))

when the temperature is T in
i,a(t). Then (31) gives the utility function (4).

Appendix B: Proof of Lemma 1

We first describe the Hessian ∇2h(q). Let N := |N | be the number of users and A :=
|∪i∈N Ai| the total number of appliances. Let k take value (i,a) for i = 1, . . . ,N,a =
1, . . . ,A. For k = (i,a), let 1k be 1 if a ∈ Ai and 0 otherwise. From (27), ∇2h(q) is
given by
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∂ 2h
∂q2

k(t)
=

∂ 2Uk

∂q2
k(t)

(qk)− c′′
(

∑
j

Q j(t); t

)
1k

∂ 2h
∂qk(s)∂qk(t)

=
∂ 2Uk

∂qk(s)∂qk(t)
(qk) , s 6= t

∂ 2h
∂qk̃(t)∂qk(t)

= −c′′
(

∑
j

Q j(t); t

)
1k 1k̃, k 6= k̃

∂ 2h
∂qk̃(s)∂qk(t)

= 0, k 6= k̃ and s 6= t

To express ∇2h(q) in matrix form, let Hk(qk) denote the T ×T matrix ∂ 2Uk
∂q2

k
(qk), for

k = 1, . . . ,NA := K. Let H(q) denote the block-diagonal matrix

H(q) := diag (H1(q1), . . . ,HK(qK))

Let C be the T NA× T NA matrix with Ckt,k̃t̃ := c′′
(
∑ j Q j(t); t

)
1k1k̃ if t = t̃ and 0

otherwise. Then ∇2h(q) = H(q)−C. Hence ‖∇2h(q)‖2 ≤ ‖H(q)‖2 +‖C‖2.
Now assumption A3 implies

‖H(q)‖2 ≤ max
k
‖Hk(qk)‖2 ≤ ρ

and (with k̃ = (ĩ, ã))

‖C‖2 = ρ(C) ≤ ‖C‖∞ = max
kt

∑
k̃t̃

Ckt,k̃t̃ ≤ α max
k

1k ∑
k̃

1k̃ = α ∑
i
|Ai|

where ρ(C) is the spectral radius of matrix C and the first equality holds because C
is symmetric. Therefore ‖∇2h(q)‖2 ≤ ρ +α ∑i |Ai|. Theorem 9.19 of [41] implies
that ‖∇h(q)−∇h(q̃)‖2 < (ρ +α ∑i |Ai|)‖q− q̃‖2 for all q, q̃. ut
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