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Optimal Demodulation of PAM Signals
JOHN B, MOORE AND PRITI HETRAKUL

Abstract—Kalman filtering theory is applied to yield an optimal

causal demodulator for pulse-amplitude-modulated (PAM) signals in
the presence of white Gaussian noise. The discrete-time data (or sampled

continuous-time data) are assumed to he either a stationary or non-
stationary Gaussian stochastic process, io general nonwhite.

Optimal demodulation with delay is also achieved by application

of Kalman filtering theory. The resulting demodulators (fixed-lag
smoothers) are readily constructed and their performance represents

in many cases a significant improvement over that for the optimal
demodulator without delay. The fixed-lag smoothing results are in

contrast to those for amplitude-modulated signals (AM) where only

approximate fixed-lag smoothing is possible, and this with considerable

design effort.

The performance of the optimal PAM demodulator is shown to be

equivalent to that of an optimal discrete filter for the discrete data.

1. INTRODIJcTION

BROADLY speaking, the problem to be considered in

this paper is the optimal demodulation of pulse-
amplitude-modulated (PAM) signals in the presence of
white Gaussian channel noise. The term “optimal” is used

in the minimum-least-squares-error sense.

The conventional frequency-domain approaches to this
problem [1], [2] yield the spectrum of the receiver (de-
modulator) for the unrealizable case when an infinite delay
in demodulation is assumed. The frequency spectrum of
the optimal receiver is not given explicitly, and complicated
algorithms are presented for its calculation. Once this is
obtained, standard techniques can then be employed to
yield a realizable (causal) demodulator where a fixed time
lag (the lag may be zero) exists between the signal produc-

tion and its estimation. Of course the greater this lag, the
more nearly optimal will be the system.

The problem considered in this paper can now be less
broadly stated as the optimal fixed-lag demodulation of
PAM signals.

The approach to this problem to be adopted throughout
the paper is the state-variable approach. In particular, both
continuous-time and discrete-time Kalman-filtering results

are applied to a state-space PAM signal model to yield the
various results. For those familiar with state-space methods

and Kalman-filtering results and their application to com-
munications system designs [3]–[5], the application of

these methods is perfectly straightforward, although per-
haps not immediately obvious.

One important advantage of using the state-variable
approach in filtering problems is that time-varying signal
models and receivers present no special difficulties. These
time-varying systems cannot be handled without the in-
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production of some simplifying assumptions using frequency-
domain approaches since these are restricted to time-in-
variant systems. As for the PAM filtering problem under
consideration, the signal model used in our paper is a time-
varying one and we believe corresponds better to the prac-

tical situation than does the model of [3], [4]. As a con-
sequence of the time-varying model, the optimal receiver
is time varying, but we hasten to point out that the optimal

time-invariant receiver can be determined if required.
A direct comparison of the results of this paper with the

frequency-domain results is difficult, as the problems solved

are posed somewhat differently. Since the solutions are
optimum or near optimum in either case, comparison is
perhaps best attempted by considering the calculations
involved, the resulting optimum system structures, and the
claims of optimality made for each approach.

Before proceeding with the development of the ideas of
the paper, we present a precise problem statement. Con-
sider the case of discrete data y(t~), k = 1,2,. ... which is

a sample function of a discrete-time Gaussian stochastic
process, which can be modeled as follows:

X(tk) = r#(rk,tk- ~)x(tk - ,) + Z/(fk - ~) (1)

y(rk) = hex (2)

where x(t~) is a state n-vector and u(t~) is a white Guassian
noise discrete process of zero mean and covariance

Q(t~) d(t~ – ?,). The initial state vector is a zero-mean
Gaussian random vector independent of U(”) and having
a covariance PO. It is now assumed that unknown noisy

measurements z([) are made of a carrier signal c(r) mod-

ulated by the data y(r~) as follows

z(t) = C(t)y(tk) + u(t), tk<t<tk+l, k= 1,2, . . . . (3)

Here c(t) is assumed to be periodic with period 1~+~ –
t~ = T, while o(t) is a zero-mean white Gaussian noise
process independent of U(.) and X(to), which has a covari-
ance r(t) d(t – ~). The case of vector measurements is
not discussed since to treat this case is but a minor extension.

We seek an optimal estimate of the data conditioned on

the measurements as follows

j(tk/t) = E[y(fk)/z(T), tks T< t]. (4)

For the case of PAM demodulation without delay, we
require tk< t < tk+,.For the case of PAM demodulation
with delay, we require /l < t < tl+,where I > k.

Of course the discrete data .p(tk)could be in Fact samples
taken from a continuous-time process. For the case when

the continuous-time process can be modeled using a linear
dynamical finite-dimensional system driven by white Gaus-
sian noise, it is not difficult to determine the parameters of

( 1) and (2) from those of the continuous model [6].
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In the next section both continuous-time and discrete-

time linear optimal filtering results are reviewed in order to

introduce notation and for reference purposes. In the

following section these results are applied to yield optimal

PAM demodulators without delay. In Section IV, the case

of optimal demodulation with delay is considered, while in

Section V further extensions are briefly discussed.

11. REVIEW OF LINEAR OPTIMAL FILTERING RESULTS

A. Continuous-Time Case

Consider the linear dynamical system described by the

differential equation

i(t)= F(t)x(t) + G(t)u(t) (5)

z(t) = H’(t)x(t) + v(t) (6)

where x(t) is the state n-vector, z(t) the measurement
m-vector, and inputs u(t) and v(t)are independent white
Gaussian noise vectors of zero mean and covariances
Q(t) 6(t– T)and R(t) ~(t – T), respectively. The matrices
F, G, and H are of appropriate dimension. The initial state
vector x(to) = XO is a zero-mean Gaussian random vector

independent of U(. ) and U(.) and having a covariance PO.
The optimal (minimum error variance) filter for the

continuous system (5), (6) consists of the following dif-
ferential equations for the conditional mean 2(t/t)and

error covariance matrix P(t)

&t/t)= F(t).i?(t/t)+ K(t).qt), (7)

with f(O/0) given

~(t)=

K(t) =

P(t) =

P(to) =

Z(I) – H’(t) l(t/t) (8)

P(t) H(t) R-l(t) (9)

F(t)P(t) + P(f) F’(t) – P(t) H(t) R-’(t) H’(t)P(t)

+ GAG’ (lo)

Po.

Of course the definitions of the conditional mean -t(t/t)
and error covariance P(t) are .i(t/t) = ~[X(t)/Z(T), O <
T < t] and P(t)= E{[x(t)– f(t/t)][x(t) – ~(t/t)]’}. In
order to give relevant stability results we first define the
following quantities

W(tl,fo)= ~c(tl,to)Po@c’( tl,to)

+
J

“ (jC(tl,f)G(t)Q( t) G’(t)@C’(t,,t) (it
to

~c(t,to) = F(t)(jc(t,to) ; @c(to,to) = I.

Now as established in [7], [1 1] with F,H,Q and R-1

bounded, with [F, HR - 1/2] uniformly completely observ-
able and with W(tl ,to)nonsingular for some t,the optimal
filter is asymptotically stable (but not necessarily exponen-

tially asymptotically stable although this is guaranteed if

[F, GQ12] is also uniformly completely controllable).
An example of the direct application of these results is

to the optimal demodulation of amplitude-modulated
stationary Gaussian siznals in white Gaussian noise r31–r51.
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For this case F and G are constant and H is time varying.

The simplest case is double-sideband suppressed-carrier

modulation (DSB-SC), where H’(t) = H’ sin coctwith co,

the carrier frequency. Clearly the filtering results (7)-(9)

can be specialized to this case. Actually, silmp]ifying ap-

proximations can be made to the results for the usual case

when the modulating signal is bandlimited and the carrier
frequency is much greater than this message bandwidth.
This is simply because the Iowpass nature of the optimal
filter ensures that the parameter variations at carrier
frequency are filtered out. We see that the equations

}(t/t)= Fi(f/f)+ P(t) HR - 12(f) sin oct

5(c)= z(t) – H’f(~/t) sin coct

P(t)= FP(t) + P(t)F’ – P(t) HR - lH’P(t) sin2mCt

+ GQG’, P(o) = P.

may be approximated by [3]

i(t/t)= F2(t/t)+ ~HR-12(t)

~(t) = z(t) sin o,t – ~H’f(t/t)

O = F~ + ~F’ – ~~HR-lH’~ + GQG’.

These equations define a stationary filter.
A ready extension to the preceding results is possible

when the carrier is gated with a binary signal as in some
forms of PAM. These extensions are not considered here
since this form of PAM, although often discussed in text-
books, is not usually implemented in practice.

B. Discrete-Time Case

Consider the vector difference equation

X(?k) = ~d(tk,tk - l)x(tk - 1) + U(tk - 1) (11)

z (tk) = H ‘(tk)x(tk) + U(tk) (12)

wherek = 1,2, . . . and x(t~) is the n-vector state, ‘#d(tk,t~- 1)

the nonsingular state transition matrix, and the vectors
u(t~) and u(tk)are independent white Gaussian noise se-
quences of zero mean and having covariances Q(tk)d(tk– tl)

and R(~~) d(tk– t,),respectively. The initial state vector
x(rO) = XO is a zero-mean Gaussian random vector, inde-
pendent of U() and z>(”)and having a covariance PO.

The optimal (minimum error variance) filter for the

discrete system (1 1), (12), consists of the following difference

equations for the conditional mean f(tk/tk)= E[x(t~)/z(tl),
1 < / < k] and error covariance matrix P(tJ = E{[x(tJ –

f(tk/tk)] [X(tk) – qtk/fk)]’}

f(tk/tk - ,) = #d(fk,tk - ,) f(tk _ ,/tk _ ,) (13)

f(tk/tk)= i(fk/tk-,)+ K(tk)2(tk) (14)

~(tk) = Z(tk) – H’(tk)f(tk/fk - ;) (15)

K(tk) = P(tk/tk_ ,) H(fk)[H’(tk)P(tk/tk- ~)H(tk)

+ R(fk)] -1 (16)

p(tk/t~- ,) = od(tk,f~- ,)p(tk- l/tk - I)@d’(th$fk - 1) + Q(t~- 1)

(17). . LJLA
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P(fk//k) = [P - ‘(1,/1, -,) + H(fk)R - ‘( fk)H’(tk)]- ‘

= [1 - K(f,)H’(f,)]P(t,/f,_ ,). (18)

Manipulation of these equations yield alternative ex-

pressions for the filter as

f(t~/t~) = [1 – K(f~)H’(f~)]~d(f~,t~- ,) f(t~- ,/t~- ,)

+ K(tJz (tJ

– P(tk/fk)P - l(tk/lk _ ,)~d(fk,tk - ,) f(fk - ,/fk - ,)—

+ K(tL)z(lk). (19)

Uniform complete controllability and uniform complete
observability of the discrete system (1 1) and (12) together
with the boundedness of @, H, Q, and R– 1 ensures uniform

exponential asymptotic stability of the filter (19) for the
limiting case as k approaches infinity [7], [1 1].

111. OPTIMAL PAM DEMO~ULATION—WITHOUT DELAY

The first step in our derivation of an optimal PAM

demodulator without delay is a key step. It is to construct
a signal process model of (PAM) from ( l)–(3) amenable to
the application of the filtering theory reviewed in the
previous section.

We consider the signal process model of Fig. 1(a), which

is described by the following equations.

i(r) = o (20)

z(t) = C(t)l?’(tk)x(t) + u(t) (21)

for tk< t < tk+,and k = 1,2,. ~. . To complete the model
we include the relationship

x(fk) = qb(tk,rk_~)x(rk_ ,) + U(fk- ~). (1)

Now the solution of (20) is x(t) = x(t~), for tk< t < tk+,

and k = 1,2,. ... and this substitution of (20) into (2 I ) and

application of (2) yields

z(t) = c(t),l’(tk)+ r(t) (3)

and thus equations (20), (21), and (1) represent a valid PAM
signal process model.

Application of the continuous-time filtering theory re-
viewed in the previous section to this model of Fig. l(b)
now yields the following equations for the conditional mean

f(t/t)and covariance P(t)

-i(t/t)= k(t);(f) (22)

,?(t)= z(t) – c(t)/? ’(tk)qt/t) (23)

k(t) = P(t)h(t,)c(t)r - l(t) (24)

P(t) = –C’(t)r - ‘(t) P(t)/7(tk)/?’(f JP(t), (25)

where tkg t < rk+l,and k = 1,2, “. These equations
follow directly from (7)-( 10) by direct substitution of the
parameters G(t) = O, F(t) = O, H(f) = c(t)h(tL), which

are extracted from the signal process representation equa-
tions (20) and (21). Notice that .t(r~/r~) and P(rL), for /i =

1,2, are not defined from these equations, We show in

the next two paragraphs that they may, however, bc

u(tk) x(tk)

r-lh’(tk) Y(t,, )

Delay

E[x(to)x’(to)] = P.

(a)

i

v(t)

I/ z(t)

I It(t)

X(tk) = o(L!f_lh(tk_l) + U(tk.l)

E[x(to)x’(to)] = Po

(b)

Fig. 1, (a) Discrete message model. (b) Representation of noisy
observations of PAM signal for f~ < f < IL+ , and k = 1,2,. ~.
(Note equations for resetting the state x(. ) at instants r,).

determined using their definitions together with (1) for

k=l,2, as

i(tk/fk)= rj(tk,tk- ,).t(fL-/fk-) (26)

P(tk) = ~(tk,tk_,w(tk-)o’(f,,tk-,)+ at, -,) (27)

where f(tT/tT) = O and P(l~) = PO. The notation ~(tz) is

used to denote X(tk– .s)for arbitrarily small s > 0.
The proof of (26) is as follows. Taking the expectations

of both sides of (1) conditioned on the measurements z(~),

t, S T < tk yields

f(tk/tk)= ()(tk,tL_t),f(tk-,/tk)

= O(fk>tk- ,) f(fk-/fk)

= ()(tk,tk- t)f(tk-/t,-). (26)

The first equality holds since E[u(tJ/z(~), tl < T < tk+ ,] =

0, To see this observe that the measurements z(T), f, s

T < t depend only on the noise P(T), t, < T < f and the
states x((l), I < 1 < k, both of which are independent of
u(tk).The second equality holds since x(tk-, ) = x(tk - )

[from (20)] and the final equality holds by virtue of the

definition of the conditional expectation.
The proof of (27) follows from the definition of P(tJ and

the application of (1) and (26) as follows.

P(tk) = E{[x(fk) – .t(t,/tk)][x(fk) – f(tk/tk)]’}.

The error term [x(tk) – .t(tk/tk)] may be rewritten using ( I )

and (26) as

.~(~~)– .?(~~/~~)= ~j(~~,t~..,)[.~(~& 1) – ‘(tk-/rk-)] + ‘d~h- I ).

This is the sum of two independent Gaussian random
variab]cs ~nd therefore the covariance of the sum is the

sum of the covariances, namely (27).

~lr(’ optinlal det}lodlilator ,f(jr PAM sigjtlul.v i~ tllcrt;fi)rl’
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.giuetr by (22)-(27). Fortwoalternative forms fortherealiza-
tion of the demodulator, see Fig. 2. The error covariance is

given explicitly by (25) and (27). We comment that this is
like a continuous-time Kalman filter except that the
integrators are reset at the instants tk.

We have so far seen that the structure of the optimal

demodulator is in the form of a Kalman filter with its

integrators reset at the time instants tk.We now go on to
show that the performance and stability properties of this
filter at the time instants tkare identical to those for a
discrete Kalman filter driven from noisy measurements of
the unmodulated discrete message signal, In particular, we

show that the covariance of the noise for this discrete case
is a discrete covariance ~(~~) 6(t~ – (1) defined from

Ji=’(r) = ‘ C2(T)r- ‘(T) dT, t, < t < t,+,. (28)
fk

for t~ < t < tk+,.These results lead to

E’(f~+ ,) = [P - ‘(tk) + /2(rk)i - l(rk-+ ,)/?’(tk)] -1 (32)

= [z - k(r;+ ,)/?’(tk)]P(?k).

Clearly (27), (3 1), and (32) may be solved recursively to
obtain F’(f~) and P(f~-) for k = 0,1,. ~. without the need to

explicitly calculate P(t),for tk< t < /k+,. Furthermore,

these recurrence relationships have a one-to-one corre-
spondence with ( 17), ( 16), and ( 18) for the discrete filtering
problem. The one-to-one correspondence between (29) and
( 19) is also now in context. The various correspondences
are as follows.

‘(tk-+ 1) - P(tk/tk)

@( fk>tk- 1) + #d(?,/fk- ,)

}I(tk) ~ H(tk)

As a first step to deriving this result we consider the .i?(tk:+~/rL:+~) ~ f(fk/[k)
transition matrix ~c~ associated with the closed-loop PAM
demodulator (22), (23). Its equation is P(tk) - P(tk)tk- ,)

(&Y(t,tk)= – ‘(t)b(tk)dt)t’ - ‘(t)c(t))t’(tk)~~~(t,f,) F(tk-+,) - R(tk)

for tk< t < tk+,,where of course ~cL(tk,tk)= I.Using ii(tk:+,) - Ii’(t,).

this equation together with (25), it is not hard to show that From a study of the one-to-one correspondence just
mentioned, we conclude that the performance and stability

j [P- ‘(t)~cL(t,tk)] = o properties of an optimal PAM demodulator are identical to

those for optit?lal jiltering of the noisy measurements of the

and thus that unmodulated discrete si<qna[Where tile noise is discrete t~’itll

covariance 7(tL) d(tk — tl). That is, the optimal PAM
@CL(t>tk) = ‘(t)p ‘(tk) demodulator is guaranteed to be exponentially asymp-

where tk< t < tk+l.
totically stable for the case when ~, h, Q, and r -1 are

Now by virtue of (26) and the b
definition of @cJt,tk) we have

ounded and the system (1) and (2) is uniformly completely
controllable and uniformly completely observable.

‘iCL(fk+T>tI) = @CL(fi+ , >tk)~(tk>tk - , )
The case of a time-invariant, completely observable, and

completely controllable message model with a stationary

#CL(rk+i?ti) = ‘(ti+ ,)p - l(tk)@(t,>tk - ,) (29) noise process is of interest. For this case @(tk,tk_,)= ~,

At this stage we simply comment that this equation is very
b(tk)= h,Q(t) = Q, and r(t) = r, where ~, h, and r are

like that for the transition matrix P(tk/tJP - l(?k/tk _ ~)
constant. As for the discrete Kalman-filter recurrence

~~(t~,t~- j) of the discrete filter of (19).
equations, for the limiting case as k becomes infinite, the

As a second step to relating the PAM demodulator (22),
recurrence equations (27) and (25) have solutions inde-

(23), to a discrete filter we consider the explicit solution of
pendent of k. Denoting these solutions as

the Riccati equation (25). From (25) P = lim P(tL) F = Iim P(t~-)
k-. k+x

P-](t) = c2(t)r- l(t)/?(lk)b’(t~)
it is clear that these may be determined from the following

/

i
p-’(t) =

algebraic equations
c2(T)r - l(T)/? (tk)/?’(tk) a? + P -1 (tk)

fk F = [P-1 + /lF-l/l’]-l = PII – bk’] (31)

and thus F=$~qY+Q (32)

P(t) = [P-’(tk) + /7(tk)7 ‘(t)h’(tk)]- ‘ where, with T the time interval between measurement data,

= P(tk)[z – be’] (30)
f

i-’(t)= r-l ‘ c’(~) cL7 k(t) = F’/l[F(f) + h’Ph]- ‘

where we have used the Schur matrix identity, the definitions
o

(33)
(27)-(28), and the definition

for O s t < T, 7 = i(T-), and k = k(l’-).

E(t)= P(t,)h(tk)[r(t ) + h’(tk)P(tk)b(lk)] -1 (31) The solution P(t) is calculated using a specialization of
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;(tk/tk) = ?$(t~,tk_l)i(t;/t;)

;(t; /t;) = o

z(t)

(a)

;(tk/t L) = o(tk, tk_l); (t; /t;)

x(t7/t; ) = o

I c(t) I l,’(t)

t
z(t) l----(r-l(t) F(t)h(tk)

(b)

Fig, 2. Alternative forms of the optimal PAM demodulator for /, < f < /,+, and k = 1,2,. ~.

(28) ilS

P(f) = [P-1 + /?)‘ - ‘(1)/1’] -1 = PII - /7/7(()] (34)

for O < t < T, Clearly, the calculations involved and the
construction of an optimal PAM demodulator are con-
siderably more straightforward for the case when the
message is a stationary random process.

In order to illustrate the usage of (31)-(33), ~ is calculated

as a function of r -1 for the scalar message model case and

the results plotted in Fig. 3, These results can be compared
with those obtained using frequency-domain techniques

in [1].
So far, our demodulation results are for an arbitrary

periodic carrier signal c(t) where c(t) is periodic with
period t~+, – t~. Once the carrier c(~) is specified simplify-
ing approximations can usually be made. For example, for
the case of double-sideband suppressed-carrier ( DSB-SC),
PAM modulation, c(t) = c sin coCt and cz(~) = (c2/2) –

(c2/2) cos 2~<t. Now, since as indicated in Fig, 2(b), c’(t) is

injected into J loop with low-pass filter characteristics

inside the loop, the effects of the (c2/2) cos 2u,t term for
the usual case when 20, is large can be ignored. This
allows the simplification as indicated in Fig, 4, which is
drawn for the stationary message and noise case,

A major drawback of the optimal PAM demodulator
derived previously is the inclusion of the time-varying gain
element whose value depends on the solution of multi-
dimensional Riccati equation. In what follows we shall
consic!er the optimal tinlc-in~ariant PAM demodulator for

[he case of a time-invtiriaot message mo(iel and stationary
noise. The optimal demodulator will be assumed to have

the structure inciicatcd in Fig. 4, where the gain element L ,
is gikcn by L , = P,//F -1 for some }? x )7 matrix [)x,

The steady-state error cotariance ~, aswwiatcd with the

time-in~driant fil[cr of Fig 4 cat] h \hfJ\Yn to be tht w)lu-

tion of

where A = – ( T/2)k$1’. The optimal

“kl~~J’g-4r ~/T

time-invariant de-
modulator gain element kf is now determined by selecting
PZ to minimize F,, or equivalently to minimize tr[P,].
Results have been calculated for the case of a one-dimen-

sional message model. These are indicated in Fig. 5 in
terms of a scalar quantity z defined from the following:

Ip,=p-’+
1

w’Th2 “
2“

Notice that when ~ = 0, P, = ~, and when z = 1, Px = ?’.
The plots on Fig. 5 indicate that the optimal value of ~ is
z N 0,5 or equivalently that the optimal value of PX is
P, = [P-’ + (F--l T/72)/4]-’.

IV. OPTIMAL DEMOI)ULATION” OF PAM SIGNALS WITII D[ LAY

[t is well known that the performance of a demodulator

can be improved if the estimation of the message at any
instant t is based on signal measurements after t as well as

on measurements prior to time [ rather than on nlcasurc-
ments prior to time r alone. Fixed-lag smoothing of data,
or equikalent]y demodulation with a fixed dcl:iy, is in fact
an “on-line” estimation process in which estimation of the
message at time t is based on noisy measurements of the
modulated signal up to time (t+ A), where A is a positike

time interval, There is [bus a fixed dc]ay A between the
sending of a modulated ~ignal and its dcmodul:ition.

The improvement in performance achieved using de-
modulation with an in(inilc delay ([he unrealizable c:isc) is
not dit~cult tt) cieriJe and ii gilen. at lea~( for Iillcar prc~h-
lcnl~ or c)ptin~:il ,\M clclllc)clLll:lti(>ll, in tari(~u~ texti, “l”he



kkhk) - @;(t;/t;)

;(t; /t;) - 0

1c(t) - c Sinu.let

z(t) ‘1--+[~ ;(t/t)
;-l(t)~(~)h

Fig. 3. Simplified optimal PAM demodulation for the stationary message and noise case when c(f) = c sin (J,/. (The
JlsEj.Sc Case,) For optimal time-varying filter kf(f) = r- ‘( f)h~(t). For the optima] lime-inwriant filter /\J == r ‘/1/’,.
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general problem of demodulation with a finite delay is, in

filtering-theory terms, a nonlinear fixed-lag smoothing
problem, which is one step more difficult than the nonlinear

filtering problem for which only approximate solutions

exist in other than the simplest of cases. Even the case of
linear fixed-lag smoothing is difficult for continuous systems

and only approximate finite-dimensional (suboptimal)

smoothers can be achieved [8], [1 2]. 1 This problem is
currently being investigated.

The case of PAM demodulation is the one important
demodulation problem for which optimal (as opposed to
suboptimal) fixed-lag demodulators can be constructed,
As we indicate in this section, these optimal PAM de-
modulators with finite delay can be derived by applications

of Kalman linear filtering theory to an augmented signal

process model. The key idea behind the derivations of this

section is that the fixed-lag smoothed estimate of a signal is
in fact nothing other than the filtered estimate of the signal

delayed by the amount of the fixed lag but still conditioned
on the noisy measurements of the undelayed signal. In
considering demodulation of PAM with delay it is con-
venient to choose a delay equal to an integer number

(say N) of time intervals of the discrete message process.
As a first step then in achieving a fixed-lag smoothed

estimate, we consider the construction of a signal process
model which includes the signal delayed by the fixed lag.

For the PAM case, such a signal process model is the original

model of the previous section augmented with integrators

as indicated in Fig. 6 and the following equations

H

io(t)
i,(t) = ON,,

iN(t )

HI

Xo(tk) lj(tk+,,tk) o ‘ o
‘l(tk) = o

I

xN(tk) o1

[

xo(tk_ ,)
X,(tk-, )

xN(fk _ ~)

x (tk) - (tkjtk_l)x (tk_l) + U(tk_l)

[/p
z(t)

IXl(tk) - xo(tk_l)

,mlJ:xe,tk_2)
●

●

●

d---‘N(tk)-%l(’k-l)
●

f xN(t) - ~(tk) - xo(tk.N)

Fig, 6. Augmented signal process model. Note that /L s / < f~+,,
k=o,l,. ...

measurements up until time tyields

fi(l/1) = fi(t~/t) = fo(fk - i/t). (39)

’35) In other words, the desired fixed-lag smoothed estimate

.tO(tk_,v/t) is equivalent to the filtered estimate 2N(t/1). To
obtain .tN(t/t) we simply apply the filtering theory of the
previous section to the augmented signal process model

(35)-(37),
Defining the covariance of the error signal {[xO’(t) –

fo’(t/r)][xl’(l) – ,?l’(t/t)] ~~~[xN’(t) – .tN’(t/t)])’ to be

[:

P PIO’ . PNO’00
P P,,10

... .

PNO . P’NN1

rxo(tk)l r[ 1 we now give the equations of the optimal filter for the aug-

Z(t) = C(t)[h’(tk)o. . .0]

El+Wf) ’(37)

wheretk < t < tk+l,k= 1,2,. ... and E[x(to)x’(to)] = PO,

Observe that the solution of (35) is

Xi(r) = ~,(fk) = Xo(fk- i) (38)

fori = 0,1,, N,t~ < t < t~+l, and(k – i) = 1,2,. .

The important consequence of this equation for us here is

that taking the expectation of (38) conditioned on the

‘ Recent studies indicate that optimal stable fixed-lag smoothers
can be realized using switching networks and delay elements,

mented signal process model as

ii(t/t)=

z(t)=

k,(t) =

k,(f) =

—

PiO(t) =

Pii(t) =

fori=O,l,. . .

ki(t)~(t)

z(t) – c(t)/1’(tk)20(t/t)

Pie(t)/?(fk)c(t)r - ‘(t)

Pio(tyl(tk)[?(t) + h’(rk)Poo([k)/?(tk)] - ‘

Pio(t)Poo -l(t) Lo(t)

pio(tk)[~ – ho’]

Pii(tJ – Pio(tk)h(rk)ki’(t)

.N and
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;o(tk/tk) - $(tk, tk-I)lo(t; /t;)

z(t)

I I
x (tk/tk) - x (t; /t;)

;2 (tk/tk) - :,(t; /t;)

I
,.

I l+p’ x2(t/t) - 20(tkJt)
P2(t) *

I

L1-mJ==
Fig,7, Optinml PAM clcmodulo(or with delay for/, s f .: /,, , anci~ = 1,2, . . . .

.?o(tJJ = c/)(tk,lk-l)f”(rL-/fk )

.ki(f~,f~) = fi-,(~k-/~h-)

Poo(fk) = d)(/k,fk_, )P(tk)d)’(fk,tk-, ) + Q(fk-1)

Pio(t~) = Pj-j,~(tk -)(/) ’(t~,(L-l)

fii(t~) = Pi-l,i-j(tk-)

for i = 1,2,. .,N. These equations are all valid for L =

1,2,. and tk< t < tk.}., and together with (39) describe
the optimal PAM demodulator with a delay of N discrete
time intervals, see also Fig. 7.

The error covariance P~~(I) in fact is the covariance of
the error ~.~,y(t) – .?,v(t/t)] = [x{j(tk.,%)– .f(,(tk,v/l)]for

tk < t < f~, ,. A fOrlll U]a fOr PN,V(TL+ ,) indicating (ha[

[POO(tk-,v) - ~,v,i(t,)], the Crror Covariancc reduction due
to smoothing, is nonnegative, can be cierivcd from [hc abo~c

equations as follows:

\
p“{](~~ ,\) – ~\ \(t J = ~ ‘Y j,O(r& j)il((l, j)[p(l~~ I /)

,=,

+ 2h’(tA -;) P,)(,(tL ,M((k ,)] ‘

h’([~ ,) P\. ,,()(fk ,)

:? (),

‘I”hcw rciult~ ct>rreipond to smoothing impr(l~clllctll
ftjrnlulai l’t)r ,1 I)urcl} discrctc signal procci$ nl(dcl a> ill
I!lc L] ~~,)1 [l~,lllL]{lLll:(ti(Jttwi[ll(jut delay. [)iwrc(u (ixtd lit:

‘,l, ~,), }Ii:I rI,IIli, II’ [()] art al~f) rclc~ant,
!/, ,?, ! f ’111lur lrc~lutli{lll in crr{>r r~)\(l![Lit]c~. 11):1[

is possible from fixed-lag smoothing for tbc Iir\t-order
model case is about 50 percent. This is achieved in the high-
signal-to-noise-ratio situation. An even greater improlc -
ment is possible for higher order signal models with a
sharp I_alloll’ in frequency characteristics. Each problenl
requires its own calculations.

A further comment on improvement due to smoothing i~

relevant. If the lixcd lag is chosen (o be 2r, say. where ~ ii

the tinic constant of the optimal filter, then el~ccti~ely a~
much improvement as is possible from smoothing is

achicveci.
To conclude tbi~ section, we ~trcss the fact that optimal

demodulators with a fixed LIclay for PAM signals can bc
achieved using an optimal demodulator without delay
together with a I’cw additional clcnlcn~i.

V. ~“()~( 1l,l)[w(, I<] \l,41{h S

The results of the previous sections can Ix cxtcndcd to

less straightl’orwarci situations or specialized to hnowtl

rcfults. Some of these will now bc diicussccl.

A ( “/1u/1//(’/JVithM(’/}w/’.l’

Such may ariw when tbc channel i~ for example a

~ran~mission line. Ior this caw wc coniicicr the ~ig}lai
pr(we$~ modci ai indicattxi in Fig. X. Its cquati(ltli al-c a~
l-oilow\”

i(l) () ()

1!
Y(()

i-,(t) [’(/ )(; ,/l’(l A) /’, l,(f)

.(!) 10 /1,’1
\(1)

!l(/)
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‘(tk - ‘(tk~tk-~)x(tk_l) + U(tk_l)

i

v(t)

[Jr

x(t) iI - FIX I + c(t) G,h-(tk)x

y - h;x,
z(t)

Y(t)

c(t)

Fig. 8, Signal process model with channel memory for f, < f < f,+, and k = 1,2,. ~.

The theory for this case is not difficult to develop along the
lines of that in the previous sections. The multipath problem
is a little more difficult and is a study in its own right.

Intersymbol interference results can be extracted from
studies of these more involved problems.

B. The Colored-Noise Case

If the channel noise included colored noise as well as
white noise, a whitening filter could be constructed at the
input to the receiver. Using this construction, the channel
for the colored noise case is viewed as a channel with
memory and white noise disturbances as above.

C. The Case When ~(t~,t~_ ~) = O

When the message is uncorrelated from instant to in-

stant (that is, the message is white noise) then of course
@(t,+, ,t,) = O and the equations simplify to the case
frequently treated in textbooks [10]. Each received pulse
is demodulated without reference to the previous data. The
results of this paper are clearly an improvement on these

known results since in many cases of practical importance
the assumption q$(t~+,,t~) = O is a severe one.

D. Compatrded PAM

Frequently, in a practical PAM system a nonlinearity is

included in the modulator to limit the pulse amplitude.

Optimal demodulation in this instance requires the applica-
tion of nonlinear filtering theory and will be discussed in a
companion paper dealing with optimal demodulation of
pulse-modulated signals when the modulation is nonlinear,

such as in pulse-frequency modulation (PFM).

E. Incoherent Demodulation

The case when the carrier signal is sinusoidal but of

unknown phase at the receiver cannot be treated using
linear filtering theory, since usually the phase of the carrier

at the receiver is assumed to be a random variable uni-
formly distributed in the range [0,27T). The details will not
be considered here. We comment, however, that for the
low-noise case, the receiver of Fig, 3 can be modified to

involve envelope detection with essentially no loss in
performance. The modifications correspond to those in-
dicated in the texts (see, for example, [1 O]) for the simpler

receivers in which rj(t~,t~_, ) = O.

F. Preempllasis Filtering

Frequently, improved system performance can be
achieved by inserting a filter between the message signal
and the modulator. As far as the theory of this paper is
concerned, this preemphasis filter is simply an augnlenta-
tion of the message model and can be incorporated without
undue difficulty. It appears that there is no explicit formula
for the optimum preemphasis filter using the theory of the

paper, and so it is suggested that standard search procedures
be used to optimize the preemphasis filter parameters. The
search is of course subject to bandwidth and power

constraints.
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