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Abstract 

This paper develops a mathematical approach to optimize a time-dependent deployment plan of 

autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream 

consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and 

promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized 

by AVs, and the deployment plan specifies when, where, and how many AV lanes to be 

deployed. We first present a multi-class network equilibrium model to describe the flow 

distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering 

that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will 

further promote the AV adoption, we proceed to apply a diffusion model to forecast the 

evolution of AV market penetration. With the equilibrium model and diffusion model, a time-

dependent deployment model is then formulated, which can be solved by an efficient solution 

algorithm. Lastly, numerical examples based on the south Florida network are presented to 

demonstrate the proposed models.         
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1 Introduction 

Due to potential benefits on traffic safety, driver productivity, road capacity, travel speed, energy 

consumption, and vehicular emission (Shladover et al., 2012; Greenblatt and Saxena, 2015; 

Levin and Boyles, 2016a,b; Mersky and Samaras, 2016), autonomous vehicles (AVs) have 

attracted tremendous attentions. Recent progress suggests AVs are on the horizon. Since 2009 

when Google started testing self-driving technology in California, Google’s AVs have already 

achieved a total mileage over 1.5 million miles (Google Self-Driving Car Project, 2016). The 

National Highway Traffic Safety Administration (NHTSA) of the United States has agreed to 

consider the Google self-driving computer system as the “driver” of the vehicle (NHTSA, 2016). 

Besides Google, many car manufactures, such as Volvo, BMW and Audi, are testing their 

prototype AVs. More recently, Japanese government announced that AVs could be used to ferry 

people around Tokyo during the 2020 Olympics and Paralympics (2025AD, 2016).  

Despite all these exciting developments, it will still be many years for AVs to be widely 

adopted, and the heterogeneous traffic stream consisting of both conventional vehicles (CVs) and 

AVs will inevitably exist for a long time. To promote the adoption of AVs, efforts on both 

technical level and policy level are of critical importance. The former mainly refers to the 

development of AV technology primarily driven by private sectors (e.g., Google), and the latter 

refers to policies proposed by government agencies to adapt to the deployment of AV technology. 

From the policy aspect, apart from legalizing on-road AV test driving, the government agencies 

may need to identify proper locations to implement AV mobility applications, and enhance 

dedicated lanes, segments and areas for AVs. For example, some regular lanes can be converted 

into dedicated AV lanes, which can only be used by AVs. As demonstrated by Tientrakool et al. 

(2011), the capacity of those lanes will approximately become tripled due to the benefits (e.g., 

reduced inter-vehicle safe distance) resulted from vehicle-to-vehicle communication. 

Accordingly, deploying AV lanes can be expected to help AVs save trip times, which can further 

boost the market penetration of AVs and reduce the system delay. On the other hand, conversion 

of regular lanes to AV lanes may result in increased trip times of CVs due to their loss of 

accessibility to those AV lanes, and thus may damage the social welfare.  

This paper attempts to propose a general mathematical model to help government agencies 

optimally deploy AV lanes in a way to minimize the social cost. The decision-making process in 

such a planning practice possesses a structure of the leader-follower or Stackelberg game, in 

which government agencies serve as the leader and travelers are the follower. In order for 
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government agencies to optimize those planning decisions, travelers’ spontaneous responses 

need to be proactively considered in the optimization framework. This type of Stackelberg games 

have been formulated as mathematical programs with equilibrium constraints for many 

transportation applications (see, e.g., Wu et al., 2011, 2012; Yin et al., 2008; He et al., 2013, 

2015; Zhang et al., 2014; Chen et al., 2016). More specifically, given AV lanes deployed, we 

assume that CVs and AVs follow the Wardrop equilibrium principle to choose their routes that 

minimize their individual travel costs (Wardrop, 1952), and the resulting flow distribution is in a 

multi-class network equilibrium (e.g., Yang and Meng, 2001; Wu et al., 2006). Furthermore, 

since the net benefit (e.g., reduced travel cost for AVs) derived from deploying AV lanes plays 

an important role in promoting the AV adoption, we apply a diffusion model to forecast the 

evolution of AV market penetration. Based on the network equilibrium model and diffusion 

model, we proposed a time-dependent deployment model to optimize the location design of AV 

lanes on a general transportation network. The AV market penetration follows a progressive 

process instead of a radical one, thus the AV lanes should also be deployed in a progressive 

fashion. More specifically, the optimized deployment plan will not only specify where and how 

many AV lanes to be deployed, but also when to deploy them. 

For the remainder, Section 2 applies the multi-class network equilibrium model to describe 

the flow distributions of both CVs and AVs. Section 3 proposes the AV diffusion model to 

forecast the market penetration of AVs. Section 4 presents the mathematical program to optimize 

the AV-lane deployment plan, followed by numerical examples in Section 5. Concluding 

remarks are provided in the last section. 

Below are some notations used throughout the paper. 
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Sets 

  Set of paired links 

  Set of nodes 

  Set of links 

   Set of AV links 

  Set of travel modes: mode 1 denotes CVs, and mode 2 denotes AVs 

  Set of origin-destination (OD) pairs 

  
    Set of paths for travel mode     between OD pair     at year     

   
    

Set of utilized paths for travel mode     between OD pair     at year 

    

  Set of years 

Parameters 

  Index of travel mode,     

  Index of OD pair,     

  Index of path,     
   

 

    Potential AV market size for OD pair     

   Value of time (VOT) for drivers of travel mode     

  Interest rate 

  A factor converting social cost from an hourly basis to a yearly basis 

  Index of year     

  Unsafety factor for using CV 

  
  

If link   belongs to the  th link pair, and it is an AV link, then   
   ; If link   

belongs to the  th link pair, and it is not an AV link, then   
    ; otherwise, 

  
    

Variables 

  
    Demand of travel mode     between OD pair     at year     

    
    

Flow of travel mode     on link     between OD pair     at year 

    

     Aggregate flow on link     at year     

  
  

The number of lanes on the  th link pair that are converted into AV lanes at 

year     

  
    

Equilibrium travel time for mode     between OD pair     at year 

    

 

2 Multi-Class Network Equilibrium Model 

Assume that the entire planning horizon is divided into      years. Let        denote a general 

transportation network, where   and   are the sets of nodes and links in the network respectively. 

Let    represent the set of AV links in the network. Note that any link including AV lanes can be 

divided into one regular link and one AV link without affecting the network performance. For 

example, Figure 1(a) shows a simple network topology. If we consider link 1 and link 4 as the 

candidate links where AV lanes can be deployed, then its network topology can be revised as the 
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one in Figure 1(b). That is,                   and         . We further define   as the set of 

these pairs of links. Specifically, in Figure 1(b),                . We represent a link either as 

    or its starting and ending nodes, i.e.,          . Let         denote the set of travel 

modes, in which mode 1 corresponds to CV and mode 2 corresponds to AV. The set of OD pairs 

is denoted as  , and      and      define the origin and destination of OD pair    . The 

travel time of link     at year     is denoted as           , which is specified by the link 

performance function, e.g., in a form of the following function: 

             
        

    

  
  

   

  

where   
  is the free-flow travel time of link  ;   

  is the capacity of link   at year    ;      is 

the link flow at year    , and     and     are two positive parameters.      

1
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(a) Original network topology 
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(b) Revised network topology 

Figure 1 A simple network example 

The flow distributions of both CVs and AVs at any year    , can be described by the 

following network equilibrium model: 
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          (1) 

    
               (2) 

    
                  (3) 

    
                (4) 

           
   

      

      (5) 

               
        

        
                   (6) 

    
        

               (7) 

    
        

                  (8) 

    
               (9) 

    
                  (10) 

where   is the node-link incidence matrix associated with a given network, and        

      is a vector with a length of    . The vector consists of two non-zero components: one 

has a value of   corresponding to origin      and the other has a value of    corresponding to 

destination     .     
   

 is the link flow of mode     between O-D pair     at year    , 

and      is the aggregation of     
   

 over all travel modes and OD pairs. Vectors   and   are 

auxiliary variables, and   represents the node potentials. 

In the above, constraint (1) ensures the flow conservation; constraints (2) and (3) are 

nonnegative constraints on link flows; constraint (4) ensures that only AVs can use AV links; 

constraint (5) aggregates link flows across all travel modes and OD pairs; constraints (6)-(10) 

ensure that all utilized paths of the same travel mode between each OD pair share the same travel 

cost         
           

   
, while those unutilized ones possess travel cost larger than or equal to 

       
           

   
.  

In addition, finding a solution to the system of equilibrium conditions is equivalent to solving 

the following mathematical problem (NE): 

NE: 

   
 

           
    

    

 

s.t. (1)-(5) 
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The equivalence can be established by comparing the KKT conditions of NE with the defined 

network equilibrium conditions (1)-(10). 

3 AV Diffusion Model 

Diffusion models have been widely applied to forecast how a new product or idea will be 

adopted over time. For example, Yang and Meng (2001) proposed a modified logistic growth 

model to investigate the adoption rate of advanced traveler information systems. Park et al. (2011) 

proposed a diffusion model to simulate the market penetration of hydrogen fuel cell vehicles. 

Lavasani et al. (2016) developed a market penetration model to forecast the AV technology 

adoption by considering the price difference between AV and CV, as well as the economic 

wealth of the population. We here adopt the diffusion model proposed by Yang and Meng (2001). 

Specifically, the adoption of AVs at a given year depends on the adoption and the net benefit 

gained at the previous year. That is, 

    
      

        
    

      
  

   

   
                 (11) 

where     is the potential AV market size for OD pair    . Note that, the potential market 

size of a new product is predicted exogenously in many diffusion models (e.g., Lavasani et al., 

2016; Park et al, 2011; Massiani and Gohs, 2015), with a few exception (Yang and Meng, 2001; 

Huang and Li, 2007). The latter ones relate the potential market penetration level to the benefit 

brought by the new product. Doing so, however, will complicate the AV-lane deployment model 

(proposed in Section 4), and even make it intractable. Therefore, in this paper, we adopt a fixed 

potential AV market size for each OD pair.     
   is the intrinsic variable growth coefficient for 

OD pair    , which is defined as follows: 

    
           

                (12) 

where    and    are two parameters (    ;     ),     is the OD specific benefit threshold for 

OD pair    , and   
  is the net benefit gained for OD pair     at year    .   

  is 

defined as follows: 

  
           

        
       

              (13) 

where    is the value of travel time for travel mode  ,   is a nonnegative unsafety factor for 

using CVs compared with using AVs,   
  is the number of trips between OD pair     at year 

   , which could be the average annual trip number obtained from household travel survey,    
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is the additional annual cost for using AVs at year    , and   
   

 is the equilibrium travel time 

of mode     between OD pair     at year    , i.e., 

  
           

           
                 (14) 

where   can be obtained by solving NE.  

Without loss of generality, we assume that the yearly travel demand between each OD pair 

remains the same during the entire planning horizon. That is, 

   
   

   

    
   

   

          (15) 

  

4 AV-Lane Location Problem 

In this section, we will investigate how to optimally locate AV lanes to minimize the social cost 

with the consideration of the market penetration of AVs. AV lanes can only be located to a given 

set of candidate links, to reflect possible restrictions imposed in field applications. The optimal 

deployment problem of AV lanes will be formulated as a bi-level model. The lower-level 

problem is the multi-class network equilibrium defined in Eqs. (1)-(10), while the upper-level 

one investigates when, where and how many AV lanes should be deployed.  

4.1 Model formulation 

Let   
  denote the pair-link incidence. If link   belongs to the  th pair of links, and it is an AV 

link, then   
   ; if it is a regular link, then   

    ; otherwise,   
   . Further, let   

  be an 

integer variable, representing the number of lanes on the  th pair of links that are converted from 

regular lanes to AV lanes at year  . Then, the AV-lane location problem (AVLL) can be 

formulated as follows: 

AVLL: 

   
          

     
         

     
        

     
    

        

   

 

      

 

s.t. (1)-(15)   
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          (16) 

                
 

   

      

         (17) 

  
                      (18) 

where   is the discount rate per year,   is a factor converting social cost from an hourly basis to 

a yearly basis,    is a given parameter, representing the minimum capacity required for link  ,    

is a given integer, representing the maximum number of AV lanes that can be deployed on the 

 th pair of links each year,     is the initial capacity of link  ,     is the per-lane capacity of link 

 , thus                   
 
       represents the capacity of link   at year  . It should be 

noted that the increase of AV-link capacity and the decrease of the paired regular-link capacity is 

not symmetric, as their per-lane capacities are not the same. As mentioned before, the per-lane 

capacity can become tripled when it is converted from a regular lane to an AV lane due to the 

benefits from vehicle-to-vehicle communication. 

In the above, the objective function is to minimize the total social cost, consisting of the costs 

of both CVs and AVs; constraint (16) calculates the capacity of link   at year  ; constraint (17) 

ensures that the capacity of link   should be no less than a required minimum capacity. For 

example, in order to maintain the accessibility of the network, there must be at least one regular 

lane for all the regular links, otherwise, CVs of some OD pairs cannot finish their trips. 

Constraint (18) implies that   
  must be an integer number, and its upper bound is   . 

The above model can be readily extended to consider the construction cost for the AV-lane 

deployment and the government subsidy, via adding a term  
  

           
  

          to the 

objective function, where    and    are the construction cost and the government subsidy at year 

  respectively. 

4.2 Solution algorithm 

The AVLL problem can be generally categorized as a discrete network design problem (DNDP). 

And those solution algorithms proposed in the literature for DNDP can be employed to solve 

AVLL, e.g., branch-and-bound technique (LeBlanc, 1975), support-function based method (Gao 

et al., 2005), active-set algorithm (Zhang et al., 2009), system optimal-relaxation based method 



10 

 

and user equilibrium-reduction based method (Wang et al., 2013).  Here, AVLL is in form of a  

mathematical program with complementarity constraints (see, e.g., Luo et al., 1996), we employ 

the active-set algorithm developed by Zhang et al. (2009) to solve it. The basic idea is to solve a 

sequence of restricted nonlinear problems to obtain a strongly stationary solution to the original 

AVLL. 

Let    denote the smallest integer number such that         , then constraint (18) can 

be represented as   
     

     
       , where   

   
 is a binary variable for           . 

For a particular deployment plan, we define     pairs of active sets,               
    

   and               
           . These two sets should be “complete”, i.e.,      

                              . Given some deployment plan                , the 

restricted AVLL (RAVLL) problem can be formulated as below: 

RAVLL: 

   
          

     
         

     
        

     
    

        

   

 

      

 

s.t. (1)-(15)   

  
                   

   

   

 

 

      

          (19) 

                 
   

   

  

   

      

         (20) 

  
                      (21) 

  
                      (22) 

Although RAVLL is another mathematical problem with complementarity constraints, its 

optimal solution can be easily obtained by solving the NE problem, with the deployment plan 

fixed. Below is the procedure of the active-set algorithm. The convergence of the algorithm has 

been proved by Zhang et al. (2009), thus is not presented here. 

Step 0: Set     and solve NE with an initial deployment plan          
      

   for each year 

   . 
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Step 1: Construct a solution              to RAVLL based on the optimal solutions derived 

from solving NE with          
      

  . Then, solve RAVLL to determine       
  and 

      
 , the Lagrangian multipliers associated with constraints (21) and (22). Set     

     
         

     
        

     
    

                  . 

Step 2: Set      and adjust the active sets by performing the following steps: 

a) Let         solve the following knapsack problem: 

           
       

          
    

         
       

          
    

 

 s.t.  

                
   

          
 

             
   

          
 

             
   

          
 

 

   

         

        
       

          
    

         
       

          
    

   

                    

If its optimal objective value is zero, stop and the current solution is optimal. 

Otherwise, go to Step 2b. 

b) Set: 

i.           
                  

             
                  

    , 

ii.            
             

                         
          

1      , 

iii.            
             

                         
          

1      . 

c) Solve NE with a deployment plan    compatible with                  . If its social 

cost       , go to Step 2d since the location plan                   leads to a 

decrease in the social cost. Otherwise, set      , where     is sufficiently 

small, and return to Step 2a. 
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d) Set     
         ,     

         ,     , and      . Go to Step 1. 

5 Numerical Examples 

5.1 Basic settings 

The numerical examples are conducted based on the south Florida network as shown in Figure 2, 

which consists of 232 regular links, 44 AV links, 82 nodes and 83 OD pairs. The OD demand is 

given in Table 1 and link characteristics are omitted due to space limitation. Table 2 shows the 

paired links, in which each AV link is paired with one regular link. For example, link 233 is an 

AV link, and link 15 is the paired regular link. They have the same link characteristics except the 

initial number of lanes and per-lane capacity. Specifically, the initial capacities of AV links are 

set as 0, meaning that without deploying AV lanes, the AV links are only virtual links, which can 

not be utilized.  

We assume that the initial adoption rate of AVs for each OD pair is 2%, and the potential 

market size is 75% (Lavasani et al., 2016). The default model parameters include: (1) discount 

rate:       ; (2) converting factor:                (hour/year); (3) per-lane capacity 

of a regular link:            , equal to the link capacity divided by the number of lanes on that 

link; (4) per-lane capacity of an AV link:          , equal to 2.5 times the per-lane capacity of 

the paired regular link; (5) planning horizon:       ; (6) the number of trips:   
      

(trips/year),         ; (7) additional annual cost for using AVs:          ($/year), 

    ; (8) OD specific benefit threshold:           ($),     ; (9) VOT:        and 

       ($/min); (10) unsafety factor for using CV:       ($/min); (11) two parameters in Eq. 

(11):       (1/year),           (year/$); (12) minimum link capacity:           

                   ; (13) maximum number of AV lanes can be deployed each year: 

         . It should be noted that all the above values are chosen for illustrative purpose. 
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Figure 2 South Florida network 
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Table 1 OD demand of south Florida network 

OD Demand OD Demand OD Demand OD Demand 

1-36 743.56 28-57 743.56 50-19 793.76 64-30 815.30 

1-57 860.80 28-63 863.41 50-59 758.15 66-31 768.05 

4-64 810.61 29-37 794.11 50-69 806.96 68-5 801.23 

5-40 837.18 29-62 806.96 51-21 804.53 70-82 802.10 

5-41 862.89 31-70 770.49 51-23 760.76 74-8 826.94 

6-42 823.64 32-24 763.02 52-44 768.92 74-33 843.44 

7-72 809.91 32-76 848.65 52-71 757.29 75-33 832.32 

8-47 847.60 32-80 824.16 53-24 820.68 76-8 777.95 

9-46 847.08 33-74 752.60 53-46 798.97 76-33 842.74 

10-45 825.72 34-48 812.35 53-75 766.84 76-53 816.17 

12-28 810.09 36-1 845.87 54-45 835.45 78-35 828.85 

13-2 823.98 40-30 789.77 54-78 841.53 78-53 769.79 

14-1 854.38 41-51 846.91 55-48 765.62 78-55 759.89 

19-4 843.26 43-7 802.79 55-79 862.37 81-8 767.19 

19-50 856.46 44-82 864.97 57-1 832.84 81-33 845.00 

21-51 861.33 45-54 803.49 58-29 774.83 81-52 826.07 

24-53 786.64 46-53 745.82 60-1 836.84 82-22 763.89 

24-82 797.93 48-8 812.00 61-1 746.69 82-42 838.40 

26-9 825.72 48-55 768.75 61-27 782.30 82-74 811.30 

26-10 781.78 49-10 749.82 61-49 815.12 82-80 766.67 

28-56 839.27 49-34 865.49 63-29 776.22   

Table 2 AV links and their paired links 

Pair 
AV 

link 

Paired 

link 
Pair 

AV 

link 

Paired 

link 
Pair 

AV 

link 

Paired 

link 

1 233 15 16 248 94 31 263 178 

2 234 20 17 249 102 32 264 180 

3 235 23 18 250 105 33 265 194 

4 236 34 19 251 111 34 266 196 

5 237 36 20 252 112 35 267 199 

6 238 52 21 253 113 36 268 201 

7 239 53 22 254 116 37 269 204 

8 240 84 23 255 123 38 270 205 

9 241 85 24 256 127 39 271 207 

10 242 87 25 257 130 40 272 209 

11 243 88 26 258 133 41 273 217 

12 244 89 27 259 135 42 274 218 

13 245 90 28 260 147 43 275 221 

14 246 91 29 261 150 44 276 231 

15 247 92 30 262 153 
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5.2 Plan comparison 

In this section, we consider three different deployment plans to demonstrate how an appropriate 

plan can benefit the system performance. The first plan is to do nothing, meaning that no AV 

lanes will be deployed; the second plan is listed in Table 3; and the third plan is to deploy all the 

AV lanes in Table 3 at the first year (see Table 4). The social costs associated with these three 

plans are calculated to be                          and            , respectively. As 

can be observed, although the number of AV lanes and their locations are exactly the same for 

plan 2 and plan 3, the performance of plan 2 is much better than that of plan 3 in term of the 

social cost. Compared with plan 1 (to do nothing), the former reduces the social cost by 3.84%, 

while the latter only leads to a reduction of 0.45%. It implies that considering the time dimension 

into the deployment plan is of critical importance.  

Table 3 Deployment plan 2 

Pair   
Number of AV 

lanes deployed 
Pair   

Number of AV 

lanes deployed 
Pair   

Number of AV 

lanes deployed 

2 21 1 13 10 1 22 11 1 

3 10 1 13 11 1 22 12 1 

4 11 1 14 12 1 23 25 2 

4 12 3 15 9 1 26 22 1 

5 11 3 15 11 1 27 35 1 

5 12 1 16 13 1 29 13 2 

5 17 1 17 10 1 30 13 1 

8 10 1 17 11 1 37 35 3 

8 11 1 18 10 1 37 36 1 

10 35 1 18 11 1 37 37 1 

10 36 1 19 10 1 39 35 3 

11 10 1 20 15 1 39 36 2 

11 11 1 21 12 1 42 1 2 

12 11 2 21 13 1 
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Table 4 Deployment plan 3 

Pair   
Number of AV 

lanes deployed 
Pair   

Number of AV 

lanes deployed 
Pair   

Number of AV 

lanes deployed 

2 1 1 14 1 1 23 1 2 

3 1 1 15 1 2 26 1 1 

4 1 4 16 1 1 27 1 1 

5 1 5 17 1 2 29 1 2 

8 1 2 18 1 2 30 1 1 

10 1 2 19 1 1 37 1 5 

11 1 2 20 1 1 39 1 5 

12 1 2 21 1 2 42 1 2 

13 1 2 22 1 2 
   

 

We further examine the evolution of AV market penetration and the annual cost under the 

three plans, as displayed in Figure 3 and Figure 4. It can be observed that the adoption rate 

resulted from plan 3 grows the fastest, which is easy to understand since plan 3 provides all the 

capacity for AVs at the very beginning of the modeling horizon. The annual costs for the first 

four years under plan 3 are much higher than those under the other two plans. The reason behind 

is when the level of market penetration of AVs is low, although deploying all the AV lanes can 

help to enlarge the gain of this portion of vehicles, it will lead to tremendous increase in the 

travel time of CVs. As a result, the total social welfare decreases. What’s worse, as shown in 

Figure 4, such negative effect can last for several years as it takes time for CV drivers to adopt 

AVs. On the contrary, although plan 2 does not promote the adoption rate as quickly as plan 3, it 

does reduce the social cost by a larger amount via deploying AV lanes progressively. It is 

worthwhile to highlight that, in plan 2, most of the AV lanes are deployed after the 10
th

 year 

when the AV market penetration is high enough, i.e., 26% (see Figure 3). When the market 

penetration of AVs is low (e.g., at the first several years), only two AV lanes are deployed (see 

Table 3). 
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Figure 3 Evolution of AV market penetration under various plans 

 

Figure 4 Evolution of annual cost under various plans 

5.3 Sensitivity analyses 

As many parameters have impact on the market penetration of AVs, sensitivity analyses are 

conducted in this section. All the numerical experiments in this section are based on plan 2.  
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Figure 5 shows the AV market penetration curves with variable capacity ratios between AV 

lanes and regular lanes. Specifically, “3.0 times” means that the per-lane capacity becomes 

tripled when it is converted from a regular lane to an AV lane. Interestingly, although the growth 

rate increases as the capacity ratio increases, the differences among them are indistinctive in 

Figure 5, which indicates that increasing the per-lane capacity of AV lanes will not significantly 

promote the market penetration. It makes sense because the coverage area of AV links is 

relatively small, thus increasing their capacities only leads to limited reduction in the AVs’ trip 

times. Actually, the total social costs associated with “1.5 times”, “2.0 times”, “2.5 times”, and 

“3.0 times” are                                      and            , respectively. 

The variance is very small. 

 

Figure 5 Evolution of AV market penetration with variable ratios of AV-lane capacity over regular-

lane capacity  

Figure 6 specifies the evolution of AV market penetration with different unsafety factors (i.e., 

 ). As   increases, the growth rate increases, and it takes fewer years to reach the potential 

market size. The reason is straightforward: when the unsafety factor of using CVs becomes 

larger, the incentive for people to adopt AVs will be higher.    
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Figure 6 Evolution of AV market penetration with different unsafety factors 

 

Figure 7 Evolution of AV market penetration with different VOTs of AVs 

Traveling with AVs, people can concentrate on dealing with other personal matters instead of 

driving, thus their VOTs (i.e.,   ) are envisioned to be no greater than those traveling with CVs 

(i.e.,   ). To examine how    affects the AV adoption rate, Figure 7 plots the penetration curves 

with various   . It can be observed that as    increases, the growth rate increases, and the time to 

reach the saturation point becomes shorter. For example, when        ($/min), it only takes 12 
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years to reach the saturation point, which is only half of the time needed when        ($/min). 

Accordingly, we may expect that the higher autonomous level of AVs is, the higher adoption rate 

will be. 

To enable full-autonomous driving, intelligent control systems and various types of sensors 

(e.g., cameras, radar, and ultrasonic sensors) are required. Consequently, AVs are usually more 

expensive to use than CVs, and the additional costs become a critical factor preventing people 

from adopting AVs. Figure 8 describes how the evolution curve of AV market penetration 

changes with changing additional annual cost. As expected, higher additional annual costs will 

lead to lower growth rates. However, the saturation points do not vary much with different 

additional annual costs. Specifically, it takes about 26 years to achieve the potential market size 

for all scenarios.  

 

Figure 8 Evolution of AV market penetration with different additional annual costs for using AVs 

As the number of annual trips varies from person to person, Figure 9 illustrates its impact on 

the AV market evolution. As can be seen, increasing the number of annual trips results in 

increased adoption rate of AVs, as well as fewer years to reach the saturation point. This is 

because more benefit can be derived when more trips are involved as per Eq. (13). 

To investigate the impact of the potential market size on the market penetration curve, 

simulation experiments based on four potential market sizes: 65%, 75%, 85%, and 95% are 

conducted. Figure 10 illustrates the associated evolution patterns of AV market penetration. All 
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patterns have similar growth rates in the earlier years (e.g., year 1 to10), while the growth rates 

diverge in the later years, and higher potential market sizes lead to larger growth rates. It is 

worthwhile to point out that the saturation points associated with different potential market sizes 

do not vary much, which is in agreement with the finding of Lavasani et al. (2016)  

 

Figure 9 Evolution of AV market penetration with different numbers of annual trips 

 

Figure 10 Evolution of AV market penetration with different potential market sizes 
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5.4 Optimal location plan 

In this section, we solve AVLL for the south Florida network. Instead of starting with only one 

initial deployment plan, we start with different initial plans for the active-set algorithm, and take 

the best optimal plan as the final solution. By doing so, some poor local solution can be avoided. 

The final deployment plan obtained is given in Table 5, and the associated social cost is 

           . Compared with plan 1 (to do nothing), the optimal plan reduces the social cost 

by             or 3.91%. Figure 11 and Figure 12 illustrate the evolution of AV market 

penetration and annual cost under both the optimal plan and plan 1. As we can see, the optimal 

plan does not lead to reduced annual cost until the 9
th

 year, when the AV market penetration 

reaches a relative high rate.  

Table 5 Optimal deployment plan 

Pair   
Number of AV 

lanes deployed 
Pair   

Number of AV 

lanes deployed 
Pair   

Number of AV 

lanes deployed 

2 21 2 13 10 2 21 12 2 

3 1 1 14 12 1 22 9 1 

4 12 3 15 8 1 22 11 1 

4 26 1 15 11 1 23 25 2 

5 11 3 16 13 1 26 22 1 

5 13 2 17 10 2 29 13 2 

8 9 2 18 10 2 30 13 1 

11 10 2 19 10 1 42 1 1 

12 11 2 20 15 1 42 2 1 
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Figure 11 Evolution of AV market penetration under plan 1 and the optimal plan 

 

Figure 12 Evolution of annual cost under plan 1 and the optimal plan  

 

6 Concluding Remarks 

This paper proposes a mathematical procedure to optimally deploy AV lanes considering the 

endogenous AV market penetration. Given AV lanes deployed in a general road network, the 
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flow distributions of both CVs and AVs are captured by a multi-class network equilibrium model. 

Further, a diffusion model integrating the net benefit derived from deploying AV lanes is applied 

to forecast the evolution of AV market penetration over time. Based on the network equilibrium 

model and the diffusion model, a time-dependent deployment model is further formulated to 

optimize the deployment plan of AV lanes. The deployment plan indicates when, where, and 

how many AV lanes to be located. The optimization model formulated is a mathematical 

problem with complementarity constraints, and an efficient active-set algorithm is applied to 

solve it. Numerical examples are presented to validate the proposed deployment model, and to 

demonstrate the importance of designing an appropriate deployment plan. Moreover, sensitivity 

analyses for various critical parameters are conducted. Results show that (1) AV lanes should be 

deployed following a progressive process instead of a radical one; (2) AV lanes should not be 

widely deployed until the AV market penetration reaches a relative high level (e.g., more than 

20%); (3) lower additional annual cost and VOT for AVs, higher unsafety factor for using CVs, 

and higher number of annual trips have positive impact on promoting the AV adoption, while the 

variance of the per-lane capacity of AV lanes has little impact.  

A follow-up work can be the investigation of the parameters used in the proposed models, in 

order to more accurately forecast the AV market penetration. For example, the unsafety factor 

may be obtained via conducting surveys. In addition, since drivers are heterogeneous in terms of 

VOTs in reality, and those with higher VOTs are expected to adopt AVs earlier, another work 

can be carried out to expand the current model along this line.  
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