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Abstract

This paper addresses the design of sustainable chemical supply chains (SCs) in the pres-
ence of uncertainty in the life cycle inventory associated with the network operation. The
design task is mathematically formulated as a bi-criterion stochastic mixed-integer nonlin-
ear program that simultaneously accounts for the maximization of the net present value
(NPV) and the minimization of the environmental impact for a given probability level.
The environmental performance is measured through the Eco-indicator 99, which incor-
porates the recent advances made in Life Cycle Assessment (LCA). The stochastic model
is converted into its deterministic equivalent by reformulating the probabilistic constraint
required to calculate the environmental impact in the space of uncertain parameters. The
resulting deterministic bi-criterion MINLP is further reformulated as a parametric MINLP,
which is solved by decomposing it into two sub-problems and iterating between them. The
capabilities of the proposed model and solution procedure are illustrated through two case
studies for which the set of Pareto optimal, or efficient solutions that trade-off environmen-
tal impact and profit, are calculated. These solutions provide valuable insights into the
design problem and are intended to guide the decision maker towards the adoption of more
sustainable design alternatives.

Keywords: Supply chain management, optimization, sustainability, uncertainty, life cycle
assessment.
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1 Introduction

Traditionally, the optimization models devised in Process Systems Engineering (PSE) to assist
in the operation and design of chemical processes have focused at the plant level. However, in
the past decade, significant research effort has been devoted to extend the boundaries of the
analysis in order to capture a broader range of business practices. This trend has been mainly
motivated by the opportunity of achieving higher benefits through an integrated management
of the whole supply chain (SC), and has been helped by advances in optimization theory and
software applications. As a result of this trend, the area of supply chain management (SCM) has
recently become a key issue in the chemical process industry (CPI) and is expected to gain more
importance in the future global market, in which the fierce competition will force companies to
operate under tighter profit margins.

This paradigm shift in the scope of the analysis carried out in PSE has led to the development
of a new generation of tools that provide decision-support for SCM.1–7 These strategies enable
the coordination and simultaneous optimization of manufacturing sites, logistics and distribu-
tion tasks in a SC environment. The final aim is to find an overall optimal solution for the
whole network in terms of some predefined criteria. This solution should not only optimize a
given performance indicator, but also satisfy the set of mass balances, assignment and capacity
constraints imposed by the network topology.

The definition of an appropriate performance measure for the accurate and efficient assessment
of the network operation, poses a significant challenge that must be addressed when devising
new modeling systems and solution techniques for SCM. In practice, the production-distribution
activities undertaken by a firm are usually evaluated in terms of their ability to markedly improve
the overall earnings of the company. For this reason, the economic benefit of the process has been
traditionally pursued as the objective in the optimization procedure, and has become the most
widely used performance indicator.8 However, the decisions made by the firm in the context of
SCM are not only driven by economic criteria. In fact, companies operate their SCs bearing in
mind different conflicting goals related to diverse aspects of the business. These include, among
many others, customer responsiveness,9,10 flexibility11,12 and risk management.13,14

In particular, in the past years there has been a growing awareness of the importance of
incorporating environmental concerns along with traditional economic criteria in the optimization
of chemical processes. This trend has been motivated by several issues, a major one being the
tighter governments regulations. Additionally, the need to improve the customers’ perception of
the firm by being more environmentally conscious, which may eventually lead to higher product
sales, has also contributed to this business trend.

The interest in incorporating pollution prevention techniques into process design is not new
and dates back to the 1970s. Since then, numerous approaches have been proposed in the
literature to decrease the energy and resource consumption in chemical plants (for a detailed
review see Cano and McRae15). The main drawback of these strategies is that they usually
focus on manufacturing, and therefore their scope is somewhat limited. Furthermore, they can
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sometimes lead to solutions that decrease the impact locally at the expense of increasing the
negative effects in other stages of the life cycle of the product, in such a manner that the overall
environmental damage is increased. To overcome this drawback, the boundaries of the study
must be extended beyond the production stage to embrace a wider range of logistic activities.
Thus, in the past decade it has become clear that the environmental issues must be considered
throughout the entire production chain.

The field of Green supply chain management (GrSCM)16 arose in response to this situation.
This area addresses the influence and relationships between SCM and the natural environment.
GrSCM has recognized the role played by SCM in sustainability and the possibility of taking
advantage of this framework for holistically assessing the environmental performance of a process.
Particularly, the application of SCM in this context is motivated by the system analysis that it
adopts, which covers all the stages of the life cycle of the product. Regarding the PSE community,
it is worth noting that the contribution made to GrSCM has been rather limited. Thus, although
there are some articles in the field,17–21 the area is still ripe for further research.

An extensive review with more than 227 citations related to GrSCM can be found in the
work of Srivastava.16 The author points out that mathematical programming (i.e., LP, NLP,
MILP and MINLP) has not been used extensively in the design of environmentally conscious
SCs. Thus, although the potential benefits of such tools have been already acknowledged in the
literature, little research has been conducted to date in this direction.

The use of mathematical programming in GrSCM offers the possibility of performing a si-
multaneous optimization of process operations and environmental issues. Unfortunately, the
application of these techniques is hampered by the numerical difficulties that may arise when
dealing with large scale problems. Furthermore, the environmentally conscious chemical process
design problem is further complicated by the high degree of uncertainty brought about by exter-
nal (demand, prices, costs, etc.) as well as internal factors (product yields, energy consumption,
life cycle inventory, damage impact model, etc.).

Despite the importance of explicitly incorporating the treatment of uncertainties into the
problem formulation, almost all the approaches devised to date in the area of sustainable chem-
ical process design are deterministic.17,21–25 These strategies assume nominal parameters values
and do not provide any control on the variability of the environmental objective function over
the different possible outcomes of the input parameters. This assumption has the disadvan-
tage of leading to “optimistic” solutions that are optimal for the mean scenario, but have high
probabilities of exceeding the nominal environmental performance.26

The aim of this paper is to contribute to the emerging area of GrSCM by incorporating
environmental concerns at the strategic level of SCM. Specifically, this work addresses the optimal
design and planning of sustainable chemical processes and provides a quantitative tool based
on mathematical programming that aims at facilitating the decision-making in this area. The
main contribution of this article compared to other approaches devised to date is the explicit
consideration of the uncertainty of the emissions released and feedstock requirements associated
with the network operation. Furthermore, a novel decomposition technique is also provided to
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reduce the computational burden of the method and enhance its implementation in real industrial
scenarios.

The overall problem is formulated as a bi-criterion stochastic mixed-integer nonlinear program
(MINLP) that accounts for the maximization of the NPV and minimization of the environmental
impact for a given probability level. The identification of the Pareto optimal solutions of the
resulting multi-objective MINLP is formulated as a parametric programming problem, which is
solved by decomposing it into two hierarchical levels and iterating between them.

The paper is organized as follows. Section 2 presents a formal definition of the problem of
interest. In section 3, the mathematical model derived to address the problem under study is
given. The solution procedure proposed for the calculation of the Pareto optimal set is described
in section 4, and its performance is illustrated through two examples in section 5. Finally, some
conclusions about this work are drawn in section 6.

2 Problem statement

The SC design problem addressed in this article has as objective to determine the configuration
of a three-echelon SC (production-storage-market) with the goal at maximizing the NPV and
minimizing the environmental impact. Decisions to be made include the technologies installed in
the plants, the capacity and location of the plants and warehouses, the production rates and the
material flows between the selected nodes of the SC. The structure of the three-echelon SC taken
as reference in this work is depicted in Figure 1. This network includes the following elements:

• A set of plants with a set of available technologies, where products are manufactured.

• A set of warehouses where products are stored before being shipped to the markets.

• A set of markets where products are available to customers.

The environmentally conscious SC design can therefore be stated as follows.

Given are a fixed time horizon, demand and prices of products in each market and time
period, fixed and variable investment costs associated with capacity expansions of plants and
warehouses, fixed investment cost for the establishment of transportation links, lower and upper
bounds on capacity expansions of plants and warehouses, costs associated with the SC operation
(operating, raw materials, and inventory costs), interest rate, tax rate and salvage value.

The goal is to determine the SC configuration along with the planning decisions that maximize
the NPV and minimize the environmental impact. The decisions to be made include:

• Structural decisions: number, location and capacities of plants (including the technologies
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selected in each of them) and warehouses to be set; transportation links between the SC
entities).

• Planning decisions: production rates at the plants in each time period; materials flows
between plants, warehouses and markets.

The mathematical formulation is presented in the following section.

3 Mathematical formulation

The most common approach to address the SC design problem is to formulate a large-scale mixed-
integer program (MIP) that captures the relevant features associated with the network.2,14,21,27

In this paper a MIP is also proposed to address the environmentally conscious SC design. In a
similar way as was done by Hugo and Pistikopoulos,21 our model incorporates elements of the
classical plant location problem28 and the long range planning of chemical processes29 within a
single mathematical formulation. We should note that although the proposed model is based on
the three-echelon SC previously described, it could easily be extended to more complex topologies.
The equations involved in such a formulation are classified into three main groups. These are
the mass balance equations, the capacity constraints and the objective function. These sets of
equations are described in detail in the next sections.

3.1 Mass balances

The mass balance must be satisfied in each of the nodes embedded in the network. Thus, for
each plant j and chemical p, the purchases plus the amount produced must equal the amount
transported from the plant to the warehouses plus the amount consumed.

PUjpt +
∑

i∈OUT (p)

Wijpt =
∑

k

QPL
jkpt +

∑

i∈IN(p)

Wijpt ∀j, p, t (1)

In equation 1, PUjpt denotes the amount of product p purchased by plant j in time period t, Wijpt

is the input/output flow of p associated with technology i at plant j in t and QPL
jkpt represents

the amount of p transported between plant j and warehouse k in time period t. Regarding the
purchases of products, let us note that these can be either raw materials or final products (i.e.,
outsourcing). For each product, the total purchases are constrained within lower (PUjpt) and

upper limits (PUjpt), which are given by its availability in the current market place:

PUjpt ≤ PUjpt ≤ PUjpt ∀j, p, t (2)

Equation 3 is added to represent the material balance for each technology i installed at plant j.

Wijpt = µipWijp′t ∀i, j, p, t ∀p′ ∈ MP (i) (3)
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In this equation, µip denotes the material balance coefficient for technology i and chemical p,
whereas MP (i) is the set of main products corresponding to each technology.

Equation 4 represents the mass balance for the warehouses. Here, the initial inventory
(INVkpt−1) plus the amount transported from the plants j to the warehouse k must equal the
material flow from the warehouse to the markets (QWH

klpt ) plus the final inventory.

INVkpt−1 +
∑

j

QPL
jkpt =

∑

l

QWH
klpt + INVkpt ∀k, p, t (4)

The sales of products at the markets (SAlpt) are determined from the amount of materials sent
by the warehouses, as it is stated in equation 5:

∑

k

QWH
klpt = SAlpt ∀l, p, t (5)

Finally, constraint 6 forces the total sales of product p at market l in period t to be greater
than the minimum demand target level (i.e., the minimum demand that the firm wants to fulfill)

(DMK
lpt ) and lower than the maximum demand (DMK

lpt ).

DMK
lpt ≤ SAlpt ≤ DMK

lpt ∀l, p, t (6)

Thus, the model assumes that part of the demand can be left unsatisfied because of limited
production capacity or low product profitability.

3.2 Capacity constraints

3.2.1 Plants

The capacity of each technology i at plant j in period t is represented by a continuous variable
denoted by CPL

ijt . Equation 7 constraints the production rate of technology i to be lower than
the existing capacity and higher than a minimum desired percentage, τ , of the available installed
capacity:

τCPL
ijt ≤ Wijpt ≤ CPL

ijt ∀i, j, t ∀p ∈ MP (i) (7)

The capacity of plant j in any time period t is calculated from the existing capacity at the end
of the previous period plus the expansion in capacity carried out in t:

CPL
ijt = CPL

ijt−1 + CEPL
ijt ∀i, j, t (8)

In this equation, CEPL
ijt represents the expansion in capacity of technology i executed in period

t at plant j.
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Equation 9 is applied to bound the capacity expansions within lower and upper limits, which
are denoted by CEPL

ijt and CEPL
ijt , respectively.

CEPL
ijt XPL

ijt ≤ CEPL
ijt ≤ CEPL

ijt XPL
ijt ∀i, j, t (9)

This equation makes use of the binary variable XPL
ijt , which indicates the occurrence of the

capacity expansion. This variable takes the value of 1 if technology i at plant j is expanded in
capacity in time period t, and 0 otherwise.

Equation 10 limits the number of expansions for technology i available at plant j over the
entire planning horizon.

∑
t

XPL
ijt ≤ NEXP PL

ij ∀i, j (10)

3.2.2 Warehouses

The capacity of the warehouses is also represented by a continuous variable denoted by CWH
kt .

Equation 11 forces the total inventory kept at warehouse k to be lower than the available capacity
in every time period t.

∑
p

INVkpt ≤ CWH
kt ∀k, t (11)

Furthermore, the amount of products sent from a warehouse to the markets is constrained by
its capacity. Thus, our model assumes that the capacity required to handle a given amount of
products, assuming regular shipment and delivery schedule, is twice the average storage inventory
level kept at the warehouse, which is denoted by ILkt:

30

2ILkt ≤ CWH
kt ∀k, t (12)

The value of ILkt is calculated from the output flow of materials and the turnover ratio of the
warehouse (TORk), which represents the number of times that the stock is completely replaced
per time period:

ILkt =

∑
l

∑
p QWH

klpt

TORk

∀k, t (13)

Finally, the capacity of the warehouse at any time period is determined from the previous one
and the expansion in capacity executed in the same period:

CWH
kt = CWH

kt−1 + CEWH
kt ∀k, t (14)

Similarly, as with the plants, the value of CEWH
kt is bounded within lower and upper limits, as

it is stated in equation 15.

CEWH
kt XWH

kt ≤ CEWH
kt ≤ CEWH

kt XWH
kt ∀k, t (15)
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This constraint includes the binary variable XWH
kt , which equals 1 if an expansion in the capacity

of warehouse k takes place in time period t and 0 otherwise.

Equation 16 limits the number of expansions of warehouse k over the entire planning horizon:

∑
t

XWH
kt ≤ NEXPWH

k ∀k (16)

3.2.3 Transportation links

The existence of a transportation link between any two adjacent nodes of the network is rep-
resented by the binary variables Y PL

jkt and Y WH
klt . A zero value of these variables prevents the

flow of materials (QPL
jkt and QWH

klt ) between the corresponding nodes (i.e., between plant j and
warehouse k and warehouse k and market l, respectively) from taking place in period t. On
the other hand, a value of 1 allows the material flows within some lower and upper limits. The
definition of these binary variables is enforced via the following constraints:

QPL
jktY

PL
jkt ≤ QPL

jkt ≤ QPL
jktY

PL
jkt ∀j, k, t (17)

QWH
klt Y WH

klt ≤ QWH
klt ≤ QWH

klt Y WH
klt ∀k, l, t (18)

3.3 Objective function

The SC design model previously described must attain two different targets. The economic
objective is represented by the NPV, whereas the environmental concerns are captured within
the mathematical formulation by using the Eco-indicator 99. The calculation of each of these
metrics is described in detail in the next sections.

3.3.1 NPV

The NPV is calculated as the summation of the discounted cash flows generated in each of the
time periods in which the total time horizon is divided (CFt):

NPV =
∑

t

CFt

(1 + ir)t−1
(19)

In this equation, ir represents the interest rate. The cash flow in each time period is computed
from the net earnings (i.e., profit after taxes), and the fraction of the total depreciable capital
(FTDCt) that corresponds to the period:

CFt = NEt − FTDCt t = 1, ..., NT − 1 (20)
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Furthermore, in the calculation of the cash flow of the last time period (t = NT ), it is necessary
to take into account the fact that part of the total fixed capital investment (FCI) may be
recovered at the end of the time horizon. This amount, which represents the salvage value of the
network (SV ), may vary from one type of industry to another.

CFt = NEt − FTDCt + SV FCI t = NT (21)

The net earnings are given by the difference between the incomes and the total cost, as it is stated
in equation 22. Here, revenues are determined from sales of final products, whereas the total
cost includes (1) the purchases of raw materials, (2) the operating and inventory costs associated
with plants and warehouses and (3) the cost of transporting materials between the SC entities.

NEt = (1− ϕ)

[∑

l

∑
p

γFP
lpt SAlpt −

∑
j

∑
p

γRM
jpt PUjpt

−
∑

i

∑
j

∑

p∈MP (i)

υijptWijpt −
∑

k

πktILkt −
∑

j

∑

k

∑
p

ψPL
jkptQ

PL
jkpt

−
∑

k

∑

l

∑
p

ψWH
klpt QWH

klpt

]
+ ϕDEPt ∀t

(22)

In this equation, ϕ denotes the tax rate, whereas γFP
lpt and γRM

jpt are the prices of final products
and raw materials, respectively. Furthermore, υijpt denotes the production cost per unit of main
product p manufactured with technology i at plant j in period t, πkt represents the inventory
cost per unit of product stored in warehouse k and ψPL

jkpt and ψWH
klpt are the unitary transport

costs. With regard to the depreciation of the capital invested, we will assume the straight-line
method:

DEPt =
(1− SV )FCI

NT
∀t (23)

where FCI denotes the total fixed cost investment, which is determined from the capacity
expansions made in plants and warehouses as well as the establishment of transportation links
during the entire time horizon:

FCI =
∑

i

∑
j

∑
t

(
αPL

ijt CEPL
ijt + βPL

ijt XP
ijt

)
+

∑

k

∑
t

(
αWH

kt CEWH
kt + βWH

kt XWH
kt

)

∑
j

∑

k

∑
t

(
βTPL

jkt Y PL
jkt

)
+

∑

k

∑

l

∑
t

(
βTWH

klt Y WH
klt

) (24)

The parameters αPL
ijt , βPL

ijt and αWH
kt , βWH

kt are the variable and fixed investment terms corre-
sponding to plants and warehouses, respectively. On the other hand, βTPL

jkt and βTWH
klt are the

fixed investment terms associated with the establishment of transportation links between plants
and warehouses, and warehouses and markets, respectively. Note that equation 24 reflects the
concept of economies of scale. The total amount of capital investment can be constrained to be
lower than an upper limit, as stated in equation 25

FCI ≤ FCI (25)
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Finally, the model assumes that the payment of the fixed capital investment is divided into
equal sums for each time period. This assumption allows the calculation of the Fraction of Total
Depreciable Capital (FTDCt):

FTDCt =
FCI

NT
∀t (26)

3.3.2 Environmental impact assessment: application of LCA principles

A key issue in the proposed methodology is how to evaluate the design alternatives from an
environmental perspective. Defining a suitable environmental performance measure for the SC
operation is not an easy task. In fact, so far there has not been an agreement about the index that
should support objective environmental assessments, and it is very likely that such an agreement
will never be reached.15

Specifically, this work makes use of the Eco-indicator 9931 to assess the environmental per-
formance of the network. This metric is based on the principles of Life Cycle Assessment (LCA).
LCA is a methodology for evaluating the environmental loads associated with a product, process
or activity.32 During its application, the energy and materials used in a process are first identified
and quantified along with the waste released to the environment. This information is further
translated into a set of environmental impacts that can be aggregated into different groups.
These impacts are finally used to assess diverse process alternatives that may be implemented to
achieve environmental improvements. Today, LCA has become the main instrument to evaluate
the environmental performance of chemical processes.21,23,33–35

One of the main advantages of LCA is that it covers the entire life cycle of the product, process
or activity. This is achieved by expanding the boundaries of the study in order to include the
upstream and downstream activities related to the main process itself. Thus, the essence of
LCA is that it considers all material and energy flows from the “cradle” of primary resources
(such as oil or ore deposits) to the “grave” of final disposal (such as stable inert material in a
landfill). Furthermore, another advantage of LCA is that it employs a damage model that links
the emissions released and waste generated with the corresponding environmental damage. The
calculation of the Eco-indicator 99 follows the four main LCA phases (see Figure 2). These are the
goal and scope definition, the inventory analysis, the impact assessment and the interpretation.
Such phases are described in detail in the next sections.

Goal and scope definition In this phase, the system boundaries and the impact categories
are identified. Ideally, the boundaries of the system should include the entire life cycle of the
process. However, in our specific case, the environmental analysis is restricted to the domain
of SCM. Thus, we perform a “cradle-to-gate” analysis that embraces all the logistic activities
from the extraction of raw materials to the delivery of final products to customers. However,
this study does not include the associated downstream processes, such as secondary processing,
product-use and disposal.
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With regard to the impact categories, the Eco-indicator 99 accounts for the following 11
impact categories:

1. Carcinogenic effects on humans.

2. Respiratory effects on humans caused by organic substances.

3. Respiratory effects on humans caused by inorganic substances.

4. Damage to human health caused by climate change.

5. Human health effects caused by ionizing radiations.

6. Human health effects caused by ozone layer depletion.

7. Damage to ecosystem quality caused by ecosystem toxic emissions.

8. Damage to ecosystem quality caused by the combined effect of acidification and eutrophi-
cation.

9. Damage to ecosystem quality caused by land occupation and land conversion.

10. Damage to resources caused by extraction of minerals.

11. Damage to resources caused by extraction of fossil fuels.

These groups can be further aggregated into three damage categories: human health, ecosys-
tem quality and resources. With regard to the functional unit of the analysis, this is defined as
the total demand to be satisfied in the final markets over the entire time horizon.

Inventory analysis The second phase provides the inputs and outputs of materials and energy
associated with the process (Life Cycle Inventory), which are required to calculate the impacts
in the different damage categories.

In the context of SCM, the environmental burdens are given by the production of raw ma-
terials and final products, the generation of the utilities consumed by the SC entities, and the
transport of materials between them. In practice, the environmental data of the main process un-
der study is usually available, whereas the one associated with the suppliers need to be retrieved
from specific databases that contain the inventories of emissions and feedstock requirements of
a wide range of chemical processes found in Europe.36–38

Mathematically, the inventory of emissions released and feedstock requirements associated
with the SC operation can be expressed as a function of some continuous decision variables of
the model. Specifically, they can be calculated from the purchases of raw materials (PUjpt), the
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production rates at the manufacturing plants (Wijpt) and the transport flows (QPL
jkpt and QWH

klpt ),
as stated in equation 27.

LCIb =
∑

j

∑
p

∑
t

ωPU
bp PUjpt +

∑
i

∑
j

∑

p∈MP (i)

∑
t

ωPR
bp Wijpt +

∑
i

∑
j

∑

p∈MP (i)

∑
t

ωEN
b ηEN

ijp Wijpt

∑
j

∑

k

∑
p

∑
t

ωTR
b λPL

jk QPL
jkpt +

∑

k

∑

l

∑
p

∑
t

ωTR
b λWH

kl QWH
klpt ∀b

(27)

In this equation, ωPU
bp , ωPR

bp , ωEN
b , ωTR

b and ωTR
b denote the life cycle inventory entry (i.e., emis-

sions released or feedstock requirements) associated with chemical b per reference flow of activity.
In the raw materials production as well as the production of intermediate and final products the
reference flow is one unit of product manufactured. In the energy generation the reference flow
is one unit of fuel oil. The reference flow for the transport of materials is one unit of mass
transported per one unit of distance. Here, ηEN

ijp represents the consumption of energy per unit
of product p manufactured with technology i at plant j in time interval t. This includes utilities
such as electricity, steam, fuel and cooling water, which are converted into fuel oil equivalent tons
(FOET). Thus, the life cycle inventory of the generation and supply of thermal energy from the
combustion of one unit of fuel oil can be used to estimate the consumption of utilities. Finally,
λPL

jk and λWH
kl denote the distance between plants and warehouses and warehouses and markets,

respectively.

Note that in order to avoid double counting in the calculation of the life cycle inventory, ωPR
bp

should only include the direct emissions (i.e., fugitive emissions) of the main processes under
study. Finally, let us mention that this equation can easily be modified in order to account for
by-products and energy savings, if this was necessary.

Impact assessment In this stage the process data are translated into environmental informa-
tion. As was mentioned before, three different damage categories are considered in the compu-
tation of the Eco-indicator 99. The human health damages are specified in Disability Adjusted
Life Years (DALYs). A damage of 1 means that 1 life year of one individual is lost, or one
person suffers 4 years from a disability with a weigh of 0.25. On the other hand, the ecosystem
quality damages are specified as PDF·m2·year. PDF stands for Potentially Disappear Fraction
of Species. A damage of 1 means all species disappear from 1 m2 during 1 year, or 10 % of all
species disappear from 1 m2 during 10 years. With regard to the damages to resources, these
are specified as MJ surplus energy. A damage of 1 means that due to a certain extraction of
resources, further extraction of the same resources in the future will require one additional MJ
of energy due to the lower resource concentration or other unfavorable characteristics of the
remaining reserves. The specific point in the future is chosen arbitrarily as the time at which 5
times the cumulative extraction of the resource before 1990 is extracted.31

The damage caused in each impact category c belonging to a specific damage category d
(IMc) is calculated from the life cycle inventory and the corresponding set of damage factors
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(θbc), as stated in equation 28.

IMc =
∑

b

θbcLCIb ∀c (28)

The damage factors are the link between the results of the inventory phase and the damage in
each impact category. For instance, for the human health damage category, the corresponding
damage model includes: (1) a fate analysis, to link any emission, which is expressed in terms of
mass, to a temporary change in concentration; (2) an exposure analysis, to link this temporary
concentration to a dose; (3) an effect analysis, to link the dose to a number of health effects; (4)
a damage analysis to translate the health effects into Disability Adjusted Life Years (DALYs).

Furthermore, there are three different damage models available in the Eco-indicator 99 frame-
work according to three different perspectives based on Cultural Theory.31 In the Egalitarian
perspective, which is a long term perspective, even a minimum of scientific proof justifies inclu-
sion of effects. In the Individualist (short time perspective), only proven effects are included. In
the Hierarchist (balanced time perspective), consensus among scientist determines inclusion of
effects. The impact caused in each damage category can be finally calculated by using equation
29:

DAMd =
∑

c∈ID(d)

IMc ∀d (29)

Here ID(d) denotes the set of impact categories c that contribute to damage d. Finally, the
damages are normalized and aggregated into a single impact factor (i.e., Eco-indicator 99), as
stated in equation 30.

ECO99 =
∑

d

δdξd ·DAMd (30)

This equation makes use of normalization (δd) and weighting (ξd) factors. The normalization set
is based on a damage calculation of all relevant European emissions, extractions and land-uses.
As there are three damage models, there are also three normalization sets. With regard to the
weighing method, there are four versions of the weighting set: one average for all panelists, and
three versions for subgroups of the panel, which could be regarded as adhering to a perspective.
Specifically, this work applies the Hierarchist perspective combined with the default (average)
weighting factors.

Interpretation Finally, in the fourth phase the results are analyzed and a set of conclusions or
recommendations for the system are formulated. In this regard, the final goal of LCA is to provide
criteria and quantitative measures that may be used for comparing different process operation
and design alternatives. One of the main shortcomings of LCA is that it lacks a systematic way
of generating such alternatives and identify the best ones in terms of environmental performance.
This drawback can be overcome by coupling LCA with optimization tools. Although the potential
benefits of combining LCA and process optimization within a single framework have been already
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acknowledged in the literature, only a limited number of case studies have been reported to
date.21,23

Notice that as opposed to other techniques that account for environmental concerns by adding
constraints on operations, in our work the preferences are articulated in the post-optimal analysis
of all the Pareto optimal solutions. This approach provides further insights into the design
problem and allows for a better understanding of the inherent trade-off between economic and
environmental criteria.

3.3.3 Uncertainty in the life cycle inventory

Many LCA studies assume nominal values for the input data and do not include a systematic
way of assessing the validity of the environmental analysis in the space of uncertain parameters.39

However, the Eco-indicator 99 methodology is affected by three main sources of uncertainty.31

These are: (1) the operational or data uncertainty, (2) the fundamental or model uncertainties,
and (3) the uncertainty on the completeness on the model. Whereas the second and third
sources of uncertainty cannot be covered by standard statistical analysis, the first one can be
easily documented. For this reason, our analysis is restricted to the operational uncertainties.

The operational uncertainties include the uncertainty associated with the inventory results
(i.e., emissions released and feedstock requirements), and the one related to the damage model.
The uncertainties that affect the damage assessment calculations are difficult to document and
quantify.31 For this reason, we consider that the damage factors of the damage model can be
perfectly known in advance and focus on the uncertainty associated with the life cycle inventory.
This source of uncertainty arises from the lack of reliable information regarding the emissions
due to the operation of the systems that provide raw materials and utilities to the supply chain
under study. We assume that the emissions released and resources consumed per unit of reference
flow of activity follow Gaussian distributions whose mean values and standard deviations must
be provided as input data by the decision-maker. This assumption makes it possible to perform
an analytical integration of the probability function that characterizes the Eco-indicator 99. The
normal probability distribution is one of the most widely used statistical distributions in LCA
and has been repeatedly applied in the LCA literature.39–41

Usually stochastic optimization models attempt to account for uncertainty by optimizing
the expected performance of the objective function. However, this strategy does not reflect
the variability of performances in the space of uncertain parameters. Therefore, in this work we
propose to control the variability of the environmental impact by accounting for the minimization
of the Eco-indicator 99 for a given probability level. The definition of this performance measure
gives rise to the following probabilistic constraint (see Figure 3):

Pr [ECO99 ≤ Ω] ≥ κ (31)

Here, κ is the probability level that has to be defined beforehand, whereas Ω denotes the Eco-
indicator 99 value associated with that probability level. The value of Ω should then be appended
to the objective function as an additional criterion to be optimized along with the NPV.
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In equation 31, ECO99 is a random variable that is normally distributed due to the normal-
ity assumption associated with the life cycle inventory results per reference flow of activity (see
Figure 3). The deterministic equivalent of this probabilistic constraint can be obtained by ap-
plying general concepts from chance constrained programming.42–44 Specifically, by subtracting
the mean ( ˆECO99) and dividing by the standard deviation of the Eco-indicator 99 (ECOSD

99 ),
the chance constraint can be written as:

Pr

[
ECO99 − ˆECO99

ECOSD
99

≤ Ω− ˆECO99

ECOSD
99

]
≥ κ (32)

If the uncertain parameters are assumed to follow independent uncorrelated normal distributions,
then the mean and the standard deviation of the Eco-indicator 99 can be calculated as follows:
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In these equations, ω̂PU
bp , ω̂PR

bp , ω̂EN
b , ω̂TR

b denote the mean of the life cycle inventory results
per reference flow of activity, whereas σPU

bp , σPR
bp , σEN

b and σTR
b are the standard deviations of

the corresponding normal distributions. Note that the square root function that appears in
constraint 34 is convex, as has been shown by Kataoka.45

The left hand side of the equality within the probabilistic sign of constraint 32 is now a
normally distributed random variable with a mean value of 0 and a variance of 1 (standardized
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form). This allows us to replace the chance constraint by the following deterministic equivalent
expression:

Φ

(
Ω− ˆECO99

ECOSD
99

)
≥ κ (35)

where Φ(·) denotes the standardized normal cumulative probability function. The inverse of this
function, which is denoted by Φ−1(·), can be next applied to obtain the following expression:

Ω− ˆECO99

ECOSD
99

≥ Φ−1(κ) (36)

which finally leads to:

ECOSD
99 Φ−1(κ) + ˆECO99 ≤ Ω (37)

This equation can be combined with equations 33 and 34 in order to replace the values of
ˆECO99 and ECOSD

99 by their corresponding mathematical defintion. This gives rise to a nonlinear
constraint, the convexity of which can be preserved for positive values of Φ−1(κ).45

This transformation also allows to further reformulate the model as a parametric programming
problem with an uncertain parameter in the right hand side of one constraint, as it will be
discussed in the next section. Finally, the overall mathematical model can be written as follows:

max (NPV,−Ω)
s.t. equations 1-30, and 37

For the sake of simplicity, this model will be represented from now on as follows:

(M) max
x,y

(NPV (x, y),−Ω(x, y))

s.t. h(x, y) = 0
g(x, y) ≤ 0
x ∈ <n , y ∈ {0, 1}m

where x and y denote the continuous and binary variables of the model, respectively. h(x, y) = 0
denote the equality constraints, which are all linear. The inequality constraints, which are
represented by g(x, y) ≤ 0, are all linear except the one that defines Ω (i.e., equation 37), which
is nonlinear but convex.

4 Solution procedure

For the calculation of the Pareto set of (M), two main methods exist in the literature. These are
the weighted-sum method and the ε-constraint method.46 Specifically, both of these methods are
based on formulating a single-objective problem that is related to the original multi-objective
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one. This problem is then solved repeatedly for different values of some auxiliary parameters
introduced in the model. In the weighted-sum method, which is only rigorous for the case
of convex problems, these parameters take the form of a vector of weighs that multiplies the
vector of objectives. In the ε-constraint method, which is also rigorous for the nonconvex case,
they represent the limits imposed to those objectives of the multi-objective problem (MOP)
that are transferred to some additional constraints. Each single-objective problem provides a
weakly efficient point of the MOP. However, the strictly efficiency of such solutions can only be
guaranteed after exploring the whole space of auxiliary parameters.

The identification of the noninferior solutions of (M) with the ε-constraint method can be
formulated as a parametric programming problem of the following form:47

(P1) ẑ(ε) = max
x,y

NPV (x, y)

s.t. Ω(x, y) ≤ ε
ε ≤ ε ≤ ε
h(x, y) = 0
g(x, y) ≤ 0
x ∈ <n , y ∈ {0, 1}m

where the lower and upper limits ε and ε that define the interval within which the ε parameter
must fall are obtained from the optimization of each separate scalar objective:

(P1a) (x̄, ȳ) = arg min
x,y

Ω(x, y)

s.t. h(x, y) = 0
g(x, y) ≤ 0
x ∈ <n , y ∈ {0, 1}m

which defines ε = Ω(x̄, ȳ) and

(P1b) (x̄, ȳ) = arg max
x,y

NPV (x, y)

s.t. h(x, y) = 0
g(x, y) ≤ 0
x ∈ <n , y ∈ {0, 1}m

which defines ε = Ω(x̄, ȳ).

Problem (P1) can then be solved by algorithms based on parametric programming. These
strategies determine the set of critical regions of the parametric problem and the associated
parametric profiles.47 The main advantage of parametric programming compared to standard
scalarization techniques, is that it avoids the need of exhaustively enumerating the entire space
of auxiliary parameters.
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4.1 Proposed decomposition technique

The decomposition technique applied for solving (P1) is inspired on the work of Pertsinidis et
al.,48 which focused on solving bi-criterion MILPs. Our strategy is based on decomposing (P1)
into two levels. In the upper level, a master convex MINLP, in which the ε parameter is treated
as a free variable, is solved to provide a vector of integer variables. This vector is then passed to
the lower level, in which a parametric NLP resulting from fixing the binary variables calculated
by the upper level is solved to obtain a lower bound to problem (P1). This procedure is repeated
iteratively. In each iteration, the master problem is forced to improve the current lower bound
(i.e., the current approximation of the Pareto set) in at least one point, whereas the parametric
profile is updated with the results of the new parametric NLP being solved.

From now on and without loss of generality, it will be assumed that the NPV is regarded as
main objective and the environmental impact is transferred to the auxiliary epsilon constraint.
The steps of the algorithm are described in detail in the following sections.

4.1.1 Initialization

This step requires the initialization of the parameters of the algorithm, mainly the iteration
count, the lower bound and the set of best integer solutions. The lower and upper limits ε and
ε within which the value of Ω must fall are also determined in this first step. The computation
of ε, which is obtained by solving (P1b), provides the first integer solution that will be taken as
a basis for calculating future improvements. Let the solution of this problem be given by y = y.

4.1.2 Lower level: parametric NLP

Here, the solution y provided by the upper level is fixed in (P1), and the resulting parametric
NLP is solved:

(P2) ẑ(ε, y) = max
x,ε

NPV (x, y)

s.t. Ω(x, y) ≤ ε
ε ≤ ε ≤ ε
h(x, y) = 0
g(x, y) ≤ 0
x ∈ <n , y ∈ {0, 1}m

The solution of this problem can be obtained by performing a sensitivity analysis with respect
to ε. Specifically, in this paper we apply the method proposed by Fiacco49(see Appendix). The
underlying idea consists of approximating the parametric NLP solution by a piecewise linear
function that provides a valid lower bound to the true parametric solution of (P2) with a given
tolerance error tol. This lower bound, denoted by ẑ(ε, y), comprises a set of linear intervals,
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labeled as ẑn(ε, y), that have the following form:

ẑn(ε, y) = an + bn(ε− εn) (38)

Furthermore, each of these linear intervals corresponds to a different critical region CRn of (P2).
The entire parametric profile ẑ(ε, y) is a valid lower bound of (P2), and thus a valid lower bound
of (P1). Figure 4 illustrates the parametric solution of an NLP, which comprises 3 critical regions.
The parametric solution in critical region n, which corresponds to the interval [εn, εn+1], is given
by the linear profile ẑn(ε, y).

4.1.3 Comparison of parametric profiles

The parametric profile associated with (P2) (i.e., ẑ(ε, y)) is intersected with the current lower
bound (i.e., ẑ∗(ε)), so the latter can be updated. Note that in the first iteration of the algorithm
the lower bound is set to −∞, and therefore the comparison procedure reduces to making the
lower bound equal to the current parametric NLP solution.

Figure 5 illustrates the comparison step that must be performed in further iterations of the
algorithm. Specifically, the figure depicts the intersection between a parametric NLP solution
and a possible current lower bound. The lower bound involves two different discrete solutions,
which are denoted by y∗1 and y∗2, whereas the NLP profile is associated with solution y. The set
Ȳ∗ includes all the discrete solutions that appear in the lower bound, in this case Ȳ∗ := {y∗1, y∗2}.
The comparison between the profiles is carried out by keeping the best linear profile and discrete
solution for each intersecting interval. Note that each profile may have a different number of
critical regions that will overlap. As a result of this step, a new current lower bound with a new
set of critical regions and integer solutions is obtained. Specifically, in this example, there are
4 critical regions and 2 different discrete solutions in the lower bound profile. The comparison
step leads to an updated lower bound with 5 critical regions and 3 discrete solutions. These
new linear intervals and discrete solutions, which represent the actual best approximation to the
Pareto set, will be updated in the next iterations of the algorithm.

4.1.4 Upper level: master MINLP

If the current lower bound ẑ∗(ε) cannot be improved in the region [ε, ε], then it represents the
Pareto set to the original MOP. However, the need of restructuring the SC according to the
specific environmental restrictions to be met in each case will make this situation quite unusual.
Thus, in general it will be possible to find a solution able to exceed the current lower bound in
at least one point. To identify such a solution, it is necessary to unlock the binary variables and
force the model to improve the current lower bound in at least one linear interval. Thus, the
search of this new integer solution requires the definition of a customized convex MINLP of the
following form:
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max
x,y

NPV (x, y) (P3)

s.t.
∨
n

[
NPV (x, y) ≥ ẑ∗n(ε) + tol
εn ≤ ε ≤ εn+1

]

∑

m∈F 1
r

yr
m −

∑

m∈F 0
r

yr
m ≤ |F 1

r | − 1 ∀r; F 1
r := {m|yr

m = 1}; F 0
r := {m|yr

m = 0};

h(x, y) = 0

g(x, y) ≤ 0

x ∈ <n , ε ∈ <1 , y ∈ {0, 1}m

This master MINLP is based on model (P1) but incorporates two additional elements. The first
one is a parametric cut that takes the form of a disjunctive term and forces the model to find a
solution that exceeds the current lower bound ẑ∗(ε). Notice that the exact interval in which the
current solution will be exceeded by the new integer successor cannot be known in advance. For
this reason, all the critical regions found so far must be included in the disjunction.

Specifically, among the possible integer solutions that satisfy the above requirement, the
interest is placed on the one that first intersects the current lower bound profile. This allows
the sequential generation of the whole family of integer solutions that appear in the Pareto
set. The requirement of finding the first of the integer solutions that satisfy this property is
automatically fulfilled by keeping always the same objective function (i.e., the NPV). Thus, the
proposed algorithm takes advantage of the monotonicity property of the Pareto curve and avoids
having to explore each critical region separately, as the general purpose algorithms for parametric
programming usually do.50

Figure 6 illustrates the way in which the master MINLP operates. The disjunction forces to
improve the current lower bound in at least one of the intervals. In this case, the current lower
bound is exceeded in its first linear interval. The solution found is then fixed in the parametric
NLP to calculate a new parametric profile that must be intersected with the current lower bound.
The figure also depicts the comparison between the parametric NLP profile of the new integer
solution, denoted by y∗4, and the current lower bound. This step is repeated iteratively until the
termination criteria is satisfied.

The second type of cuts in (P3) are integer cuts that are applied to exclude the solutions
found so far. In this equation, F 0

r and F 1
r represent, for each previous iteration r, the sets of

integer variables valued at one and zero respectively, and |F 1
r | is the cardinality of the set F 1

r .

Note that if there is no feasible solution to the master MINLP (P3), the current lower bound
represents the Pareto set. This situation arises when the lower bound cannot be improved. We
should also note that (P3) can be converted into a standard convex MINLP by employing either
the convex hull51 or the big-M reformulation.52
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4.2 Algorithmic steps

The steps of the algorithm are next summarized.

• Step 0 (initialization). Set the following values: iteration count, r = 0; lower bound,
ẑ∗(ε) = −∞; set of Pareto optimal integer solutions Ȳ∗ := {∅}. Calculate the lower and
upper limits ε and ε within which the value of Ω must fall. The computation of ε, which is
obtained by solving (P1b), provides in turn the first integer solution y.

• Step 1 (parametric NLP). Solve the parametric NLP resulting from fixing y in (P1) (see
Appendix) and obtain the corresponding parametric profile ẑ(ε, y). Update the iteration
count, r = r + 1.

• Step 2 (comparison of parametric solutions). Compare ẑ∗(ε) with ẑ(ε, y). If ẑ(ε, y) ≥ ẑ∗(ε)
for some linear interval of ε, update the best current lower bound ẑ∗(ε) and the associated
set of best integer solutions Ȳ∗ with the values of ẑ(ε, y) and ȳ.

• Step 3 (master subproblem). Formulate and solve the master MINLP (P3), treating ε as
a free variable and introducing parametric cuts of the form NPV ≥ ẑ∗n(ε)+ tol, and integer
cuts for excluding previous explored solutions. If (P3) is infeasible, stop; otherwise store
the value of the integer solution found by (P3) (i.e., y) and go to step 1.

4.2.1 Remarks

It is interesting to highlight the following aspects of the algorithm:

• The proposed decomposition strategy provides the Pareto set of (M) in a finite number
of major iterations. The number of iterations is equal to the number of different integer
solutions of the Pareto set plus one.

• The disjunction of (P3) must be constructed according to the current lower bound. Notice
that it is not necessary to include in the disjunctive term the intervals beyond the intersec-
tion between the current lower bound and the NLP parametric profile of the last integer
solution found, as these intervals were already explored in previous iterations. Figure 7
illustrates this idea. Specifically, it shows how the current lower bound depicted in Figure
6 cannot be improved in intervals beyond the intersection point, as these intervals were
already evaluated by (P3) in previous runs. As mentioned before, this property will always
hold because of the monotonicity property of the Pareto curve. Finally, let us note that
these intervals can still be incorporated into the formulation to make it tighter. Regarding
this issue, it will be necessary to find the proper balance between a tighter formulation and
an increase in the size of (P3).
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• It may occur in some cases that the parametric NLP of the lower level will not be feasible
in the entire interval [ε, ε] for some vectors of binary variables. In these cases it will be
necessary to introduce additional “artificial” intervals in the current best profile in order
to be able to generate the entire Pareto set. These intervals will take a zero value and will
cover the regions where the NLPs render infeasible.

• The integer cuts are added cumulatively at each iteration to the master MINLP, thus
leading to an increase of its size.

• The proposed approach can also be applied to deterministic problems, where the life cycle
inventory results per reference flow of activity are assumed to be known in advance. In
this case, the problem can be posed as a parametric MILP and decomposed into a master
MILP and a parametric LP, in a similar way as in the nonlinear case.

• The modeling framework and solution approach presented in this article can also handle the
case in which the uncertain parameters are correlated (i.e., vary together). This requires
the definition of the covariance matrix that describes the correlation between the uncertain
parameters. Furthermore, the convexity property of the resulting MINLP still holds for
this specific case.45

5 Case studies

We next present two different examples that illustrate the application and computational effec-
tiveness of the proposed algorithm. The models were implemented in GAMS 21.453 and solved
with the MINLP solver DICOPT interacting with CPLEX 9.0 and SNOPT 6.2 on an Intel 1.2
GHz machine.

5.1 Case study 1

In this first example, we address the optimal retrofit of an existing SC established in Europe in
terms of economic and environmental performance under uncertainty. The superstructure of the
case study is depicted in Figure 8, whereas the set of available technologies is given in Figure
9. Specifically, there are 6 different technologies available to manufacture 6 main products. The
original SC comprises 1 plant and 1 warehouse that are both placed in Tarragona (Spain), and
4 final markets that are located in the following European cities: Leuna (Germany), Neratovice
(Czech Republic), Sines (Portugal) and Tarragona. The demand is expected to increase in
Leuna and Neratovice, so the problem consists of determining whether it is better to expand
the capacity of the existing plant or open a new one in Neratovice, which would be close to the
growing markets.

A demand satisfaction target level of 85% must be attained in each of the years in which
the total time horizon of 3 years is divided. The existing plant has an installed capacity of 100
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kton/year for each available technology, whereas the capacity of the existing warehouse equals
100 kton. The lower and upper limits within which the capacity expansions must fall are 50 and
400 ktons/year for plants and 50 and 400 ktons for warehouses, respectively. No bounds on the
total number of expansions of plants and warehouses are imposed. Furthermore, no upper limits
on the purchases of raw materials are fixed. On the other hand, to prevent outsourcing from
taking place, we set zero upper limits on purchases of intermediate and final products. The lower
and upper bounds on the flows of materials between plants and warehouses and warehouses and
markets are 5 and 500 kton/year in both cases, respectively. The turnover ratio is equal to 10
and the initial inventories at the warehouses are assumed to be zero. No minimum production
levels are fixed at the plants. The interest rate, the salvage value and the tax rate are equal to
10%, 20% and 30%, respectively. This example assumes low unitary transportation costs equal to
0.4 ¢/ton · km. The fixed investment terms associated with the establishment of transportation
links are all set to zero.

All the remaining data associated with the problem is given in Tables 1 to 7.

The sources of the emission inventories for the illustrative example have been taken from
different databases that are integrated within the Simapro software.37 The direct emissions
associated with the manufacturing technologies are neglected. We assume standard deviations of
5, 10 and 20 % for the entries of the life cycle inventories of the energy generation, raw materials
production and transportation tasks, respectively. The probability level κ is set to 90 %.

The values of ε and ε are first calculated by solving (P1a) and (P1b), respectively. Note that
(P1b) can be reformulated as an MILP by dropping the nonlinear constraint that defines Ω. On
the other hand, (P1a) takes the form of a convex MINLP. The solution of the aforementioned
MILP provides the first point of the Pareto set. The vector of binary variables given by this
solution is next fixed in the lower level, and the associated parametric profile is determined. This
profile is taken as a basis for future improvements. The algorithm then proceeds as described in
section 4 until an infeasible MINLP is obtained in the upper level.

To initialize the parametric NLPs, we divide the original interval [ε, ε] into 5 sub-intervals of
equal length and solve the NLP for the limits of each of these sub-intervals. In each iteration
the linearizations used to solve the parametric NLPs are added to the master MINLP in order
to make it tighter, which in turn reduces the number of iterations required by DICOPT. The
size of the master MINLP is kept constant by including only those linearizations corresponding
to the last NLP being solved. The absolute optimality gap is set to $250·103. The tolerance
error of the master problems is also fixed to $250·103. The single objective problem has 1,963
constraints, 1,837 continuous variables and 78 binary variables. Table 8 shows the solution times
for the subproblems solved in each of the iterations of the proposed decomposition algorithm.
The complete Pareto set is generated in 68.30 CPU seconds.

Figure 10 shows the Pareto curve obtained by following the proposed procedure. As can be
observed, there is a clear trade-off between NPV and Ω, since reductions in the environmental
impact can only be achieved by compromising the economic benefit of the SC. Each point of
the Pareto set entails a specific SC structure and a set of planning decisions. In this context,
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the environmental impact under uncertainty is decreased by properly adjusting the design and
planning variables according to the environmental requirements to be fulfilled in each case.

Figures 11 and 12 show the SC configurations of the extreme solutions. The figures in
the plot represent the capacities of the plants and warehouses expressed in tons per year and
tons, respectively. As can be observed, both solutions entail the construction of a new plant in
Neratovice. However, they primarily differ in the SC topology and the total network capacity.
In the maximum NPV solution, part of the total production is made in the new plant that will
be opened in Neratovice, and then shipped to the warehouse that is close to the existing plant
located in Tarragona. By doing so, the model takes advantage of the lower investment and
production costs in Czech Republic compared to Spain. On the other hand, in the minimum
Ω solution, products are manufactured as close as possible to the markets. This SC topology
reduces the emissions due to the transportation tasks. The second difference lies in the SC
capacity, which is lower in the minimum environmental impact design. In this solution, the
production rates are reduced and the demand satisfaction level drops to its lower limit, which
was set to 85%. Figures 13 and 14 depict the probability curves associated with the maximum
NPV and minimum Ω solutions, respectively. As can be observed, when Ω is minimized, the
probability curve is shifted to the left. This results in a reduction of the probability of high
environmental impacts in the space of uncertain parameters.

Figure 15 depicts the expected value of the environmental impacts that are included in the
Eco-indicator 99 for each of the extreme solutions. In both cases, the main impacts are: (1)
carcinogenic effects on humans, (3) respiratory effects on humans caused by inorganic substances,
(4) damage to human health caused by climate change, and (11) damage to resources caused
by extraction of fossil fuels. Finally, Figures 16 and 17 show the contribution of the different
sources of environmental damage to the total environmental impact. Note that in all the cases
the generation of raw materials represents the most significant contribution to the total impact.

5.2 Case study 2

This second example addresses the optimal design of another SC to be established in Europe.
There are three potential locations for plants and warehouses: Neratovice (Czech Republic),
Tarragona (Spain) and Wloclaweck (Poland). The markets to be satisfied are located in Kaz-
incbarcika (Hungary), Neratovice, Tarragona and Wloclaweck. The superstructure of the case
study, which is given in Figure 18, comprises 20 different technologies that can manufacture 14
main products. Figure 19 depicts the main products associated with each technology, some of
which can be recycled and used as raw materials in other processes.

The time horizon for this example is also 3 years. The minimum demand satisfaction level
is 97.5 %. No upper limits on the purchases of raw materials and intermediate products are
imposed, whereas zero upper limits are set for final products. The lower and upper bounds on
the flows of materials between plants and warehouses are 100 and 750 kton/year, respectively.
The lower and upper bounds imposed to the capacity expansions are 7,5 and 500 ktons/year for
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plants and 10 and 500 ktons for warehouses. The mass balance coefficients associated with the
different technologies have been take from the literature.54 The lower and upper transport limits
between warehouses and markets are 50 and 250 kton/year, respectively. The turnover ratio is
equal to 10 and the initial inventories at the warehouses are assumed to be zero. No minimum
production levels are fixed at the plants. The interest rate, the salvage value and the tax rate are
equal to 10%, 20% and 30%, respectively. This example considers higher transportation costs
(21 ¢/ton · km) than the previous one. Again, the fixed investment terms associated with the
establishment of transportation links are all set to zero. All the remaining data associated with
the problem is given in Tables 9 to 15.

The emission inventories for the generation of raw materials, intermediate products and utili-
ties have also been taken from Simapro.37 The direct emissions associated with the manufacturing
technologies are neglected. We assume standard deviations of 15, 20 and 30 % for the entries of
the life cycle inventories of the energy generation, raw materials production and transportation
tasks, respectively. The probability level κ is set to 90%.

The problem is solved in a similar way as was done in the previous example. The parametric
NLPs of the lower level are calculated with an absolute optimality gap of $500·103. The tolerance
error of the master problems is also fixed to $500·103. This case study leads to a larger master
MINLP, the solution of which is expedited by making use of a customized initialization scheme.
Specifically, in each iteration the linearizations used to solve the parametric NLP of the lower
level are employed to construct a linear outer approximation of the original master MINLP,
in which the convex nonlinear equation that defines Ω is replaced by a set of linear inequality
constraints. The resulting MILP, which is solved with CPLEX, provides an integer solution that
is used to bypass the first relaxed NLP solved by DICOPT. Thus, instead of solving a relaxed
NLP, we solve an NLP where the binary variables are fixed. The starting point for this NLP is
given by the solution of the aforementioned MILP. Furthermore, these linear inequalities (i.e.,
supporting hyperplanes) are added to the master MINLP in order to make it tighter, in a similar
way as was done in the first example.

The single objective problem has 9,808 constraints, 10,231 continuous variables and 252 binary
variables. Table 16 shows the solution times for the subproblems solved in each iteration of the
algorithm. The complete Pareto set is generated in 332.46 CPU seconds.

Figure 20 depicts the Pareto curve associated with the problem, whereas Figures 21 and 22
show the SC configurations associated with each of the extreme solutions and the capacities of
the warehouses expressed in tons. The capacities of the technologies installed at the plants are
given in Table 17. As can be observed, both solutions entail the establishment of a plant and
a warehouse in each potential location. Furthermore, the warehouses fulfill the demand of the
nearest markets and avoid long-distance shipments of products. The reason why both solutions
present similar topological features lies in the high transportation costs assumed in the example.
Thus, given this data, the maximum NPV and minimum environmental solutions will both try
to minimize the transportation distance between the SC nodes, since this will simultaneously
result in lower costs and environmental impacts. On the other hand, the solutions differ in
the technology selected for the production of acetic anhydride. The maximum NPV solution
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produces this chemical from ketene and acetic acid, which is the cheapest reaction pathway. On
the other hand, the minimum Ω solution employs the oxidation of acetaldehyde, which leads
to higher costs but causes less environmental impact. The second difference lies in the total
production capacity of the SC, which is lower in the minimum environmental impact design.

Figures 23 and 24 depict the probability curves associated with the maximum NPV and
minimum Ω solutions, respectively. As in the previous case, the probability curve is shifted to
the left. This results in a reduction of the probability of high environmental impacts in the space
of uncertain parameters.

6 Conclusions

This paper has addressed the optimal design and planning of chemical processes under un-
certainty in the life cycle inventory. The problem has been mathematically formulated as a
bi-criterion stochastic MINLP that accounts for the maximization of the NPV and minimization
of the environmental impact for a given probability level. The environmental performance has
been measured through the Eco-indicator 99, which includes the recent advances made in LCA.
The deterministic equivalent of such a model has been obtained by reformulating the chance
constraint required to calculate the environmental performance in the space of uncertain pa-
rameters. The resulting deterministic bi-criterion MINLP has been further reformulated as a
parametric MINLP, which has been solved by decomposing it into two problems and iterating
between them.

The capabilities of our approach have been highlighted through two case studies. Numerical
examples have shown that our modeling framework and solution strategy can be effectively used
to control the variability of the environmental impact in the space of uncertain parameters.
This goal is met by properly adjusting the design and planning SC decisions according to the
environmental needs to be fulfilled in each case. The solutions obtained by our method provide
valuable insights into the design problem and are intended to guide the decision-maker towards
the adoption of more sustainable process alternatives.

26



7 Notation

Indices
b environmental burdens
c impact categories
d damage categories
i manufacturing technologies
j plants
k warehouses
l markets
p products
t time periods

Sets
ID(d) set of impacts c contributing to damage category d
IN(p) set of manufacturing technologies that consume p
MP (i) set of main products p of technology i
OUT (p) set of manufacturing technologies that produce p

Parameters

CEPL
ijt upper bound on the capacity expansion of manufacturing technology i

at plant j in time period t
CEPL

ijt lower bound on the capacity expansion of manufacturing technology i

at plant j in time period t

CEWH
kt upper bound on the capacity expansion of warehouse k in time period t

CEWH
kt lower bound on the capacity expansion of warehouse k in time period t

DMK
lpt maximum demand of product p sold at market l in period t

DMK
lpt minimum demand of product p to be satisfied at market l in period t

ir interest rate
FCI upper limit on the total capital investment
NEXP PL

ij maximum number of capacity expansions for technology i available at plant j
NEXPWH

k maximum number of capacity expansions for warehouse k
NT number of time periods
PUjpt upper bound on the purchases of product p at plant j in period t
PUjpt lower bound on the purchases of product p at plant j in period t

QPL
jkt upper bound on the flow of materials between plant j and warehouse k

in time period t
QPL

jkt lower bound on the flow of materials between plant j and warehouse k

in time period t

QWH
klt upper bound on the flow of materials between warehouse k and market l

in time period t
QWH

klt lower bound on the flow of materials between warehouse k and market l

in time period t
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SV salvage value
TORk turnover ratio of warehouse k
µip mass balance coefficient associated with product p

and manufacturing technology i
ϕ tax rate
γFP

lpt price of final product p sold at market l in time period t
γRM

jpt price of raw material p purchased at plant j in time period t
υijpt operating cost of manufacturing technology i available at plant j

per unit of main product p in time period t
πkt inventory cost at warehouse k in period t
ψPL

jkpt unitary transport cost of product p sent from plant j to warehouse k in time period t
ψWH

klpt unitary transport cost of product p sent from warehouse k
to market l in time period t

αPL
ijt variable investment term associated with technology i at plant j in time period t

βPL
ijt fixed investment term associated with technology i at plant j in time period t

αWH
kt variable investment term associated with warehouse k in time period t

βWH
kt fixed investment term associated with warehouse k in time period t

βTPL
jkt fixed investment term associated with the establishment of a transport link

between plant j and warehouse k in time period t
βTWH

klt fixed investment term associated with the establishment of a transport link
between warehouse k and market l in time period t

ωPU
bp emissisions/feedstock requirements of chemical b

per unit of raw material p generated
ωPR

bp emissisions/feedstock requirements of chemical b
per unit of intermediate/final product p generated

ωEN
b emissisions/feedstock requirements of chemical b

per unit of FOET combusted
ωTR

b emissisions/feedstock requirements of chemical b
per unit of mass transported one unit of distance

ω̂PU
bp mean value of emissisions/feedstock requirements of chemical b

per unit of raw material p generated
ˆωPR
bp mean value of emissisions/feedstock requirements of chemical b

per unit of intermediate/final product p generated
ω̂EN

b mean value of emissisions/feedstock requirements of chemical b
per unit of FOET combusted

ω̂TR
b mean value of emissisions/feedstock requirements of chemical b

per unit of mass transported one unit of distance
σPU

bp standard deviation of emissisions/feedstock requirements of chemical b
σPR

bp standard deviation of emissisions/feedstock requirements of chemical b
per unit of raw material p generated

σEN
p standard deviation of emissisions/feedstock requirements of chemical b

per unit of FOET combusted
σTR

p standard deviation of emissisions/feedstock requirements of chemical b
per unit of mass transported one unit of distance
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ηEN
ijp energy consumed per unit of chemical p produced

with manufacturing technology i at plant j
λPL

jk distance between plant j and warehouse k
λWH

kl distance between warehouse k and market l
θbc damage factor of chemical b contributing to impact category c
κ probability level (i.e., probability of yielding an Eco-indicator 99 value lower than Ω)
δd normalization factor for damage category d
ξd weighting factor for damage category d
τ minimum desired percentage of the available installed capacity that must be utilized

Variables
CPL

ijt capacity of manufacturing technology i at plant j in time period t
CEPL

ijt capacity expansion of manufacturing technology i at plant j in time period t
CWH

kt capacity of warehouse k in time period t
CEWH

kt capacity expansion of warehouse k in time period t
CFt cash flow in period t
DAMd impact in damage category d
DEPt depreciation term in period t
ECO99 Eco-indicator 99

ˆECO99 mean value of the Eco-indicator 99
ECOSD

99 standard deviation of the Eco-indicator 99
FCI fixed capital investment
FTDCt fraction of the total depreciable capital that must be paid in period t
ILkt average inventory level at warehouse k in time period t
IMc damage in impact category c
INVkpt inventory of product p kept at warehouse k in period t
LCIb life cycle inventory entry (i.e., emissisions/feedstock requirements)

associated with chemical b
NEt net earnings in period t
NPV net present value
PUjpt purchases of product p made by plant j in period t
QPL

jkpt flow of product p sent from plant j to warehouse k in period t
QWH

klpt flow of product p sent from warehouse k to market l in period t
SAlpt sales of product p at market l in time period t
Wijpt input/output flow of product p associated with technology i at plant j in t
XPL

ijt binary variable (1 if the capacity of manufacturing technology i at plant j
is expanded in time period t, 0 otherwise)

XWH
kt binary variable (1 if the capacity of warehouse k

is expanded in time period t, 0 otherwise)
Y PL

jkt binary variable (1 if a transportation link between plant j and warehouse k
is established in time period t, 0 otherwise)

Y WH
klt binary variable (1 if a transportation link between warehouse k and market l

is established in time period t, 0 otherwise)
Ω Eco-indicator 99 value for a probability level equal to κ
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Appendix

This section describes the method used to solve the parametric NLPs of the lower level of our
algorithm. The outline of the algorithm, which is based on the work of Fiacco,49 is as follows
(see Figure 25):

• Step 1 (initialization). Set n = 1. Identify the lower and upper limits εn(y) and εn(y) of
the environmental impact attained by the integer solution y provided by (P3).

• Step 2. Solve (P2) at the extreme points of the interval [εn(y), εn(y)]. Let NPV ∗(εn, y)
and NPV ∗(εn, y) denote the optimal values of the objective function in each case.

• Step 3 (parametric lower bound). Obtain a parametric lower bound zn(ε, y) to the solution
of (P2) in [εn(y), εn(y)]. This step relies on the concavity property of the parametric solution
of (P2). This property holds for nonlinear maximization problems with convex parametric
constraints in the space of the continuous variables as well as the uncertain parameters,
which turns out to be our case. It can be shown that under the concavity assumption, the
connecting line segment:

zn(ε, y) = αNPV ∗(εn, y) + (1− α)NPV ∗(εn, y) α ∈ (0, 1) (39)

is a valid parametric lower bound of (P2) in the interval [εn(y), εn(y)].

• Step 4 (parametric upper bound). A parametric upper bound of (P2) is given by:

zn(ε, y) = max
(
UBn(εn), UBn(εn)

)
(40)

where UBn(εn) and UBn(εn) are computed as follows:

UBn(εn) = NPV ∗(εn, y) + λεNPV ∗(εn, y)(ε− εn) (41)

UBn(εn) = NPV ∗(εn, y) + λεNPV ∗(εn, y)(ε− εn) (42)

Here λε represent the Lagrangean multiplier associated with the parametric constraint. No-
tice that the validity of these bounds also relies on the concavity property of the parametric
solution of (P2).

• Step 5 (check convergence criteria). If the difference between the upper and lower bounds
is within a given tolerance error then stop. Otherwise, increase the number of intervals
by one n = n + 1 and sharpen the current upper and lower bounds by identifying the
point where this difference takes its maximum value. This point will lie in the intersection
of two adjacent linear intervals of the current upper bound (i.e., UBn(εn) and UBn(εn)).
Let εint represent this point. Define the subintervals [εn(y), εn(y)] and [εn+1(y), εn+1(y)],
where εn(y) and εn+1(y) are the lower and upper limits of the original interval, respectively,
and εn(y) = εn+1(y) = εint. Go to step 2 and repeat steps 2 to 4 for all the subintervals
generated so far until for a given number of intervals N the finalization criteria is met:

zn(ε, y)− zn(ε, y) ≤ tol n = 1, ..., N (43)
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The following points of the algorithm should be highlighted:

• The parametric solution of (P2) ẑ(ε, y) is approximated by the lower bound LBn in the
final iteration (i.e., the current lower bound when the finalization criteria is met). Then,
we have:

ẑn(ε, y) = zn(ε, y) n = 1, ..., N (44)

• The algorithm provides n+1 solutions that can be used to construct a linear outer approx-
imation of the convex feasible region of (P3). This linear outer approximation can then be
added to the master problem in order to expedite its solution, which can be obtained via
any suitable algorithm for MINLP. Thus, the optimal values x∗n of the decision variables of
(P2) that have been calculated in the N iterations of the parametric algorithm are used to
obtain the following linear inequalities:

Ω(x∗n, y) + λxΩ(x∗n, y)(x− x∗n) ≤ ε n = 1, ..., N (45)

Due to the convexity property of Ω(x, y), these linear inequalities strictly underestimate
the value of Ω and thus do not chop off any feasible solution when are added to (P3).

• The parametric algorithm can be expedited by making use of several starting points in
the initialization step. Thus, at the initial phase, several NLPs are calculated for different
points of the interval [ε, ε]. A possible way to generate these points consists of dividing the
original interval into sub-intervals of equal length and then pick the lower and upper limits
of each of them.
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Figure 1: SC topology taken as reference.
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Figure 2: Phases of LCA.
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Figure 3: Probabilistic analysis of the environmental performance.
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Tarragona (existing warehouse)
Neratovice (new warehouse)

Technology 1Technology 2Technology 3 Technology 4Technology 5Technology 6
Figure 8: Case study 1.
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T1-One step oxidation of ethyleneT2-Cyanation / oxidation of ehtylene AcetaldehydeAcrylonitrileEthylene T3-Ammoxidation of propylenePropylene Phenol
HCN HClH2SO4O2NH4T4-Hydration of propyleneT5- Reaction of benzene and propylene IsopropanolT6-Oxidation of cumeneBenzene Cumene Acetone0.670.38 1.35 10.610.831.200.76

H2SO4 NaOH0.010.011 10.43 0.15 110.900.6 0.170.68 0.40 1O2

Figure 9: Superstructure of technologies of case study 1.
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Figure 10: Pareto set of case study 1.
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TarragonaSinesLeunaNeratovice
Tarragona (existing warehouse)
Neratovice (new warehouse)50,000
100,000

83,895 51,818
Figure 11: Maximum NPV solution.
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Plants j=1,…,J Warehouses k=1,…,K Marketsl=1,…,L100,000100,000100,000 100,000100,000100,000Tarragona (existing plant)
Neratovice (new plant)

TarragonaSinesLeunaNeratovice
Tarragona (existing warehouse)

Neratovice (new warehouse)50,000
100,00050,00062,207 50,000130,39661,187

Figure 12: Minimum Ω solution.
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Figure 13: Probability curve of Eco-indicator 99 (maximum NPV solution).
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Figure 14: Probability curve of Eco-indicator 99 (minimum Ω solution).
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Plants j=1,2,3 Warehouses k=1,2,3 Marketsl=1,2,3,4T 1 Neratovice Kazincbarcika
NeratoviceTarragona
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Figure 18: Case study 2.
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T5-cyanation / oxidation of ethylene
T1-air oxidation of acetaldehydeT2-alkylation of benzeneT3-ammoxidation of propyleneT4-chlorination of ethyleneT6-dehydrochlorination of chlorobenzeneT7-dehydrogenation of isopropanolT8-direct oxidation of acetaldehydeT9-hydration of ethyleneT10-hydration of propyleneT11-ketene and acetic acidT12-carbonylation of methanolT13-one step oxidation of ethyleneT14-oxidation of ethanolT15-oxidation of ethyleneT16-oxidation of methanolT17-oxidation of propyleneT18-oxychlorination of benzeneT19-reaction of benzene and propyleneT20-sulfonation of benzene

Acetic acid
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Acetaldehyde
Chlorobenzene

Acetic acidAcetaldehyde
Acetic anydride
EthylbenzeneAcrilonitrileEthylene dichlorideAcrilonitrileHydrogen chlorideAcetic acidAcetic anydride

Ethylene glycolFormaldehydeAcetoneCumenePhenol
Figure 19: Superstructure of technologies of case study 2.
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Figure 21: Maximum NPV solution.
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Figure 22: Minimum Ω solution.
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Figure 23: Probability curve of Eco-indicator 99 (maximum NPV solution).
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Figure 25: Parametric NLPs.
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Table 1: Case study 1: variable and fixed investment cost of plants for t = 1 (assume a 5%
increase in each period of time)

αPL
ijt ($/ton) βPL

ijt (thousand $)

Tech./Plant Neratovice Tarragona Neratovice Tarragona
T1 91.28 109.53 8,306.45 9,967.74
T2 93.43 112.12 8,502.82 10,203.38
T3 235.81 282.97 21,459.49 2,5751.38
T4 104.73 125.68 9,530.80 1,1436.97
T5 46.34 55.60 4,216.72 5,060.06
T6 165.59 198.70 15,069.01 18,082.81

Table 2: Case study 1: operating cost for t = 1 (assume a 5% increase in each period of time)
and consumption of energy

υijpt ($/ton) ηEN
ijp

Tech./Plant Neratovice Tarragona (FOET/ton)
T1 13.36 16.03 0.22
T2 36.42 43.71 0.60
T3 9.11 10.93 0.15
T4 23.07 27.68 0.38
T5 3.64 4.37 0.06
T6 23.07 27.68 0.38

Table 3: Case study 1: price of final products for t = 1 (assume a 5% increase in each period of
time)

γFP
lpt ($/ton)

Chemical/Market Leuna Neratovice Sines Tarragona
acetaldehyde 509.26 487.43 491.07 500.17
acetone 432.87 414.32 417.41 425.14
acrylonitrile 36.40 34.84 35.10 35.75
cumene 401.23 384.04 386.90 394.07
isopropanol 401.23 384.04 386.90 394.07
phenol 709.88 679.45 684.52 697.20
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Table 4: Case study 1: cost of raw materials for t = 1 (assume a 5% increase in each period of
time)

γRM
jpt ($/ton)

Chemical/Plant Neratovice Tarragona
ammonia 140.54 148.81
benzene 200.51 212.30
ethylene 233.68 247.42
hydrochloric acid 116.18 123.02
hydrogen cyanide 468.47 496.03
oxygen 29.98 31.75
propylene 159.28 168.65
sodium hidroxide 140.54 148.81
sulfuric acid 42.16 44.64

Table 5: Case study 1: demand of products for t = 1 (assume a 5% increase in each period of
time)

DMK
lpt (kton/year)

Chemical/Market Leuna Neratovice Sines Tarragona
acetaldehyde 13.5 37.5 12.0 7.5
acetone 10.8 30.0 9.6 6.0
acrylonitrile 18.0 50.0 16.0 10.0
cumene 13.5 37.5 12.0 7.5
isopropanol 9.0 25.0 8.0 5.0
phenol 12.6 35.0 11.2 7.0

Table 6: Case study 1: matrix of distances

λWH
kl (km)

Ware./Market Leuna Neratovice Sines Tarragona
Neratovice 295.45 0 2,970.72 1,855.47
Tarragona 1,781.36 1,855.47 1,212.82 0

Table 7: Case study 1: variable and fixed investment costs and inventory costs associated with
warehouses for t = 1 (assume a 5% increase in each period of time)

Warehouse αWH
kt ($/ton) βWH

kt (thousand $) πkt ($/ton)
Neratovice 1.98 180.58 0.18
Tarragona 2.38 216.69 0.22
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Table 8: Case study 1: progress of iterations

Upper level Lower level Total time

Iteration Intersection Time (CPU s) Time (CPU s) (CPU s)
1 653.45 1.56 2.82 4.38
2 651.44 1.11 7.19 8.30
3 648.24 1.27 8.56 9.83
4 635.88 1.59 7.13 8.72
5 609.94 2.31 6.33 8.64
6 595.80 0.91 5.06 5.97
7 Infeasible 22.46 - 22.46

Total 31.21 37.09 68.30
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Table 10: Case study 2: operating cost for t = 1 (assume a 5% increase in each period of time)
and consumption of energy

υijpt ($/ton) ηEN
ijp

Tech./Plant Neratovice Tarragona Wloclaweck (FOET/ton)
T1 17.79 26.09 21.35 0.29
T2 1.40 2.06 1.68 0.02
T3 9.29 13.63 11.15 0.15
T4 6.26 9.18 7.51 0.10
T5 36.61 53.70 43.93 0.60
T6 32.36 47.46 38.83 0.53
T7 20.22 29.66 24.26 0.33
T8 19.61 28.77 23.54 0.32
T9 45.11 66.16 54.13 0.74
T10 23.26 34.11 27.91 0.38
T11 16.58 24.31 19.89 0.37
T12 13.54 19.86 16.25 0.27
T13 22.65 33.22 27.18 0.22
T14 13.54 19.86 16.25 0.22
T15 39.04 57.26 46.85 0.64
T16 0.19 0.28 0.23 0.00
T17 46.93 68.83 56.32 0.77
T18 12.33 18.08 14.79 0.20
T19 3.83 5.62 4.60 0.06
T20 12.94 18.97 15.52 0.21
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Table 11: Case study 2: price of final products for t = 1 (assume a 5% increase in each period
of time)

γFP
lpt ($/ton)

Chemical/Market Kazincbarcika Neratovice Tarragona Wloclaweck
acetaldehyde 582.01 618.39 727.51 636.57
acetic acid 564.37 599.65 705.47 617.28
acetic anydride 881.83 936.95 1102.29 964.51
acetone 511.46 543.43 639.33 559.41
acrylonitrile 917.11 974.43 1146.38 1003.09
chlorobenzene 917.11 974.43 1146.38 1003.09
cumene 458.55 487.21 573.19 501.54
ethanol 599.65 637.13 749.56 655.86
ethylbenzene 458.55 487.21 573.19 501.54
ethylene dichloride 352.73 374.78 440.92 385.80
ethylene glycol 793.65 843.25 992.06 868.06
formaldehyde 493.83 524.69 617.28 540.12
isopropanol 458.55 487.21 573.19 501.54
phenol 811.29 861.99 1014.11 887.35

Table 12: Case study 2: cost of raw materials for t = 1 (assume a 5% increase in each period of
time)

γRM
jpt ($/ton)

Chemical/Plant Neratovice Tarragona Wloclaweck
ammonia 124.01 181.88 148.81
benzene 176.92 259.48 212.30
carbon monoxide 41.34 60.63 49.60
chlorine 99.21 145.50 119.05
ethylene 206.18 302.40 247.42
hydrogen chloride 102.51 150.35 123.02
hydrogen cyanide 413.36 606.26 496.03
methane 74.40 109.13 89.29
methanol 115.74 169.75 138.89
methyl acetate 99.21 145.50 119.05
oleum 42.99 63.05 51.59
oxygen 26.46 38.80 31.75
propylene 140.54 206.13 168.65
sodium hydroxide 33.07 48.50 39.68
sodium sulfite 41.34 60.63 49.60
sulfuric acid 37.20 54.56 44.64
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Table 13: Case study 2: demand of products for t = 1 (assume a 5% increase in each period of
time)

DMK
lpt (tons)

Chemical/Market Kazincbarcika Neratovice Tarragona Wloclaweck
acetaldehyde 5,788 6,381 7,757 8,144
acetic acid 4,631 5,105 6,205 6,516
acetic anydride 9,261 10,210 12,411 13,031
acetone 4,631 5,105 6,205 6,516
acrylonitrile 9,261 10,210 12,411 13,031
chlorobenzene 4,631 5,105 6,205 6,516
cumene 4,631 5,105 6,205 6,516
ethanol 5,788 6,381 7,757 8,144
ethylbenzene 5,788 6,381 7,757 8,144
ethylene dichloride 9,261 10,210 12,411 13,031
ethylene glycol 5,788 6,381 7,757 8,144
formaldehyde 5,788 6,381 7,757 8,144
isopropanol 9,261 10,210 12,411 13,031
phenol 5,788 6,381 7,757 8,144

Table 14: Case study 2: matrix of distances

λWH
kl (km)

Ware./Market Kazincbarcika Neratovice Tarragona Wloclaweck
Neratovice 695.5 0 1,855.5 277.1
Tarragona 2,385.8 1,855.5 0 2,110.4
Wloclaweck 644.2 277.1 2,110.4 0

Table 15: Case study 2: variable and fixed investment costs and inventory costs associated with
warehouses for t = 1 (assume a 5% increase in each period of time)

Warehouse αWH
kt ($/ton) βWH

kt (thousand $) πkt ($/ton)
Neratovice 1.98 180.57 1.81
Tarragona 2.91 264.84 2.65
Wloclaweck 2.38 216.69 2.17
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Table 16: Case study 2: progress of iterations

Upper level Lower level Total time

Iteration Intersection Time (CPU s) Time (CPU s) (CPU s)
1 737.59 62.39 48.32 110.71
2 730.55 13.18 61.74 74.92
3 718.02 25.79 56.75 82.54
4 708.35 15.38 45.18 60.56
5 Infeasible 3.73 - 3.73

Total 120.47 211.99 332.46
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