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ABSTRACT Proportional Integral Derivative (PID) controller is one of the most classical controllers,

which has a good performance in industrial applications. The traditional PID parameter tuning relies on

experience, however, the intelligent algorithm is used to optimize the controller, which makes it more

convenient. Fish Migration Optimization (FMO) is an excellent algorithm that mimics the swim and

migration behaviors of fish biology. Especially, the formulas for optimization were obtained from biologists.

However, the optimization effect of FMO for PID control is not prominent, since it is easy to skip the

optimal solution with integer-order velocity. In order to improve the optimization performance of FMO,

Fractional-Order Fish Migration Optimization (FOFMO) is proposed based on fractional calculus (FC)

theory. In FOFMO, the velocity and position are updated in fractional-order forms. In addition, the fishes

should migration back to a position which is more conducive to survival. Therefore, a new strategy based on

the global best solution to generate new positions of offsprings is proposed. The experiments are performed

on benchmark functions and PID controller. The results show that FOFMO is superior to the original FMO,

and the PID controller tuned by FOFMO is more robust and has better performance than other contrast

algorithms.

INDEX TERMS Fish migration optimization, fractional calculus, PID controller, swarm intelligence.

I. INTRODUCTION

As is known to all, PID is one of the earliest control strategies.

Since its simple structure, good robustness, and high relia-

bility, PID controller plays an important role in the closed

industrial system [1], [2]. The PID controller is designed

based on the error of the system, which uses proportion,

integral, and differential to calculate the control quantity in

order to achieve excellent performance. The traditional tuning

methods include Ziegler-Nichols and Hägglund-Aström, etc.

However, the researchers have proposed various intelligent

tuning techniques in last few decades, including the methods

based on genetic algorithm, fuzzy reasoning, and neural net-

work. The traditional PID algorithms have low efficiency and

no prominent effect, while the methods based on intelligent
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algorithms can achieve high efficiency and have a good

effect [3], [4]. Soft computing is an effective intelligent algo-

rithm to tune PID parameters. The common techniques of soft

computing include fuzzy logic, neural networks, probability

reasoning, and meta-heuristic algorithms, etc. Fuzzy logic is

a science based on multi-valued logic that uses fuzzy sets

to study fuzzy thinking, language forms, and their laws [5].

Neural networks process information by adjusting the inter-

connections between a large number of internal nodes [6],

[7]. Probabilistic reasoning is a form of reasoning that people

make decisions based on uncertain information [8]. Meta-

heuristic algorithm is an improvement of heuristic algorithm,

it is the product of combining random algorithm and local

search algorithm.

In particular, influenced by bionics, meta-heuristic algo-

rithms were generated in the 1960s. Meta-heuristic algo-

rithms can obtain optimal solutions without having any
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specific requirements [9], [10]. Furthermore, meta-heuristic

algorithms can be separated into three categories includ-

ing swarm intelligence algorithms, evolutionary algorithms,

and algorithms based on mathematical or physical models.

Among them, swarm intelligence algorithms are inspired

by the ethology of group animals. For example, Particle

Swarm Optimization (PSO) [11]–[14] is inspired by birds’

foraging behavior. Ant Colony Optimization (ACO) [15],

[16] mimicked the behavior of ants in finding the path

in the process of searching for food. Bat Algorithm (BA)

[17], [18] imitated the echolocation behavior of bats. Arti-

ficial Bee Colony (ABC) [19], [20] simulated the honey

gathering process of bees, this algorithm has a fast con-

vergence speed to find global optimal solution. Cat Swarm

Optimization (CSO) [21], [22] depicted the cats’ search

and tracking strategy. Grey Wolf Optimization (GWO) [23],

[24] is an optimal search method which is designed by

the gray wolves’ predation activities. Cuckoo Search Algo-

rithm describes the parasitism behavior of cuckoo birds [25],

[26]. Pigeon Inspired Optimization (PIO) simulated the

behavior of pigeons going home [27]. Grasshopper Optimi-

sation Algorithm (GOA) is proposed based on the behaviour

of grasshopper swarms in nature for solving optimisation

problems [28]. However, evolutionary algorithms are inspired

based on the theory of biological evolution in nature, includ-

ing Genetic Algorithm (GA) [29]–[31], Differential Evo-

lution (DE), [32], [33], and QUasi-Affine TRansformation

Evolutionary (QUATRE) [34]–[37], etc. GA is designed

based on natural selection and genetic mechanism of Dar-

winian biological evolution. DE is a heuristic random search

algorithm based on population difference. QUATRE is an

excellent algorithm which improved the drawback of DE that

did not achieve equilibrium search in search space without

prior knowledge and moveover, it generalized the crossover

operation of DE from vector to matrix. In algorithms based

on physical or mathematical models, Simulated Annealing

(SA) [38], [39] originates from the principle of solid anneal-

ing; Gravitational Search Algorithm (GSA) [40], [41] mainly

uses the law of gravitation between two objects to guide the

motion optimization of each particle to search for the optimal

solution; Sine Cosine Algorithm (SCA) [42], [43] is achieved

by iteration of sine and cosine functions.

Particularly, Fish Migration Optimization (FMO) [44],

[45] is proposed in 2010 which is a swarm intelligence

algorithm. It simulated the growth, migration processes, and

predation strategy of fish biology. The difference of the FMO

and other meta-heuristic algorithms is that the formulas for

optimization were obtained from biologists. Compared to

PSO, the FMO has higher accuracy and acceptable time

consumption. However, the optimization effect of the FMO

for low-dimensional complex functions is not very excellent.

For low-dimensional complex functions, integer order speed

update is easy to skip the optimal solution and thus cannot

achieve good optimization effect, while fractional order speed

can use fraction to update step size and can learn from histor-

ical speed, so more accurate results can be obtained.

Fractional Calculus (FC) [46] is an generalization of the

classical concept of calculus. Similar to classical calculus,

FC mainly includes fractional derivatives and fractional inte-

grals. The difference between the two kinds of calculus is,

the orders of derivatives and integrals in classical one are

integers, while in FC, the orders can be fractions. Compared

to classical calculus, FC can describe memory and inher-

ited properties of various substances and their evolutionary

processes accurately. Since the concept of FC appeared,

the related theory has been successfully applied to many

fields. Many researchers realize that they can also be used to

describe some non-classical phenomena in natural sciences

and engineering applications. In Meta-heuristic algorithm,

a novel Fractional-Order Darwinian PSO was presented in

paper [47]. In [48], BA algorithm based on FC was shown.

In Ref. [49], Fractional-Order Cuckoo Search Algorithm is

designed for financial systems. The Fractional calculus-

based firefly algorithm was described in [50] and applied

to parameter estimation of chaotic systems, and enhanced

fractional chaotic whale optimization algorithm (WOA) was

designed in paper [51] for Parameter Identification of isolated

wind-diesel power systems. The paper [52] introduced the

augmented Lagrangian PSO with fractional order veloc-

ity for fractional fixed-structure H∞ controller. In addition,

the generalization of the PSO algorithm based on complex-

order is proposed in paper [53] and obtained excellent

performance.

The problem of tuning PID controller is a low-dimensional

complex functions because it has only three parameters.

Therefore, Fractional-Order Fish Migration Optimization

(FOFMO) is proposed in this manuscript since it is reason-

able to improve the performance of the the FMO based on

fractional order velocity. The rest of the paper is organized

as following. Section II describes related works including

the FMO algorithm, the FC theory, and the PID controller.

In Section III, the FOFMO algorithm is presented in detail.

In Section IV, the experiments on benchmark functions are

shown. The PID simulation experiments are described in

Section V. Section VI depicts the main work of the paper and

gives some suggestions for further work.

II. RELATED WORKS

A. FISH MIGRATION OPTIMIZATION ALGORITHM

Every species in nature has its own way of survival, predation

and reproduction. In addition, they must be able to against

dangerous environment, since they constantly suffer from

capture by natural enemies, and not every fish can grow to

adult favourably. Biologists found that fish swim in water for

many purposes. The FMO algorithm is proposed by taking

grayling as an example. The life cycle of grayling can be

divided into five stages as follows in the algorithm.

Stage 0+: newborn and young(age from 0 to 1 year).

Stage 1+: juvenile(age from 1 to 2 year).

Stage 2+: sub-adult(age from 2 to 3 years).

Stage 3+: adult(age from 3 to 4 years).

Stage 4+: adult(age from 4 to 5 years).
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FIGURE 1. Life cycle graph of the grayling.

The fish in every stage have different fecundity rates.

FIGURE 1 shows the life cycle graph of the grayling, where

F2,F3, and F4 are the fecundity rates in stage 2+, 3+,

and 4+.

The FMO algorithm is designed to achieve the optimiza-

tion through two processes including the swim process and

themigration process. The swim process imitates the grayling

swims and grows in the water to find food sources. In this

process, energy consumption follows the movement of the

fish that is defined by Eq. (1).

Er,d = rand · E (1)

where Er,d is the energy consumed in d dimension, rand

is a random number, E is a constant defines the maxima

energy consumption in one dimension. In this algorithm, we

set E = 2.

The functional relationship between the moving distance

and energy consumption is

disoffset,d =
Er,d · Us,d

a+ b · (Us,d )x
(2)

where disoffset,d represents the moving distance and Us,d is

the swimming speed in d dimension; a, b, and x are all

constants, a denotes standard metabolic rate, b represents a

scaling constant, x is a speed exponent, in literature, a, b, and

x are 2.25, 36.2, and 2.23, respectively.

By updating the value of each dimension, the new position

can be obtained by (3), where doffset is the moving distance of

the particle.

pnew = pold + doffset (3)

If the fitness value of Pnew is better than that of Pold ,Pold
will be updated by Pnew utilizing (3). Meanwhile, the velocity

will be updated by (4).

Us = 2 · Us (4)

As the fish are mature, some of them migrate back to their

birthplace to reproduce offspring, that is migration process.

Due to the fish in stage 0+ and stage 1+ are incapable of

reproducing, the migration process only appears in stage 2+,

stage 3+, and stage 4+. The fecundity rates of the three stages

are 5%, 10%, and 100%, respectively. When fish find a new

candidate point, the coordinate will be updated by (5)

P = (dmax − dmin) · rand + dmin, (5)

where dmax , dmin denote the maximum and maximum values

of all dimensions of the fish, respectively.

Calculate the fitness value of the new candidate, the veloc-

ity will be updated by the following equation

U =

{

π · Us, F(P) < F(Pbest ),

Us, otherwise,
(6)

where Us denotes the initial velocity.

B. FRACTIONAL CALCULUS (FC)

The FC originates from the classical calculus and has a

history of more than 300 years. Due to the development of

various applied disciplines such as fluid mechanics, cyber-

netics, and biology, the FC has not made great progress until

modern times. Then people gradually realized the practical

significance of the FC, and more and more scholars began

to study FC. As a branch of mathematical analysis, the FC

has many advantages as follows. First of all, it reflects the

inevitability of historical development from the mathematical

point of view. Furthermore, memorability is a good feature of

the FC. In addition, compared to the nonlinear model, the FC

model can fit the real world better because of its concise

expression.

Three definitions of fractional derivatives (FDs) are

described as follows, where α is the order of fractional

derivative.

Definition 1 (Riemann-Liouville FD):

RLD
α
a,t f (x)

=











dnf

dtn
, α = n,

1

Ŵ(n− α)

dn

dxn

∫ x

a

(x − t)n−α−1f (t)dt, n− 1 < α < n.

(7)

Definition 2 (Caputo FD):

CD
α
a,t f (x)

=











dnf

dtn
, α = n,

1

Ŵ(n− α)

∫ x

a

(x − t)n−α−1f n(t)dt, n− 1 < α < n.

(8)

Definition 3 (Grünwald-Letnikov FD):

GLD
αf (x) = lim

h→0

1

hα

+∞
∑

k=0

(−1)kŴ(α + 1)f (x − kh)

Ŵ(k + 1)Ŵ(α − k + 1)
. (9)

For Grünwald-Letnikov FD, the discrete time situation can

be approximated by (10)

GLD
αf (t) =

1

T α

r
∑

k=0

(−1)kŴ(α + 1)f (t − kT )

Ŵ(k + 1)Ŵ(α − k + 1)
. (10)

where T is the time increment, r is the truncation order.

Ŵ(x) is Gamma function in above three FD definitions.

The above three FC has the following properties:

(a) Linearity Dα[af (x) + bg(x)] = aDαf (x) + bDαg(x).

(b) The index law Dα+β f (x) = DαDβ f (x).
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(c) Generalized Leibniz rule

Dα[f (x) · g(x)] =
∞
∑

i=0

Dif (x) · Dα−ig(x),

where a, b are constants.

C. PID CONTROLLER

The PID controller has three parameters that have different

effects on PID controller. The proportional gainKP can adjust

the deviation proportionally, quickly, and timely to improve

the control sensitivity, but there is a steady-state error and the

control accuracy is low. The integral gainKI can eliminate the

steady-state error, but it will affect the stability of the system.

The integral gainKD can speed up the response of the system,

reduce the overshoot, reduce the oscillation, and ‘‘predict’’

the dynamic process.

The input-output equation in the time domain of the clas-

sical PID controller is

e(t) = y(t) − r(t), (11)

u(t) = KPe(t) + KI

∫ t

0

e(τ )dτ + KD
de(t)

dt
. (12)

where r(t), y(t), u(t) are system input, controller output, and

system output, respectively, e(t) is error signal.

The corresponding transfer function of PID controller is

G(s) =
U (s)

E(s)
= KP +

KI

s
+ KDs. (13)

III. PROPOSED FRACTIONAL-ORDER FISH MIGRATION

OPTIMIZATION ALGORITHM

In this section, a novel Fractional-Order Fish Migration

Optimization (FOFMO) algorithm is described detailly. The

FOFMO algorithm combines the FMO algorithm with the

concept of Grünwald-Letnikov FD. The difference between

the FMO algorithm and the FOFMO algorithm lies in two

aspects. On the one hand, the update strategy of fractional-

order velocity is used in the FOFMO. On the other hand,

the new offspring position of the FOFMO is produced based

on the global best particle.

A. FRACTIONAL-ORDER VELOCITY

Based on the analysis in Section 2.1, the velocity in the FMO

is updated by (4) and (6). Although the FMO algorithm has a

strong advantage in searching global optimal solution, it still

has a weak exploitation ability since it takes a lot of time to

make explore. In order to improve the ability of exploitation,

the FC is used to update velocity. Supposing the time interval

is 1, then

doffset =
Er · U t

s

a+ b · (U t
s )
x
,

U t
s = Pt − Pt−1. (14)

From (14), due to a = 2.25, b = 36.2, x = 2.23, it can

be find that for the whole fraction, compared to numerator,

denominator is much bigger. As the iterative process con-

tinues, the speed of the fish gradually slows down, which

will cause the algorithm to stagnate. In order to avoid the

algorithm falling into the local optimal solution, the concept

of Grünwald-Letnikov FD is introduced in this manuscript.

From (9), let α = 1, we obtain

GLD
α[ft+1] = ft+1 − ft . (15)

Equation (15) is the derivative of order 1 in the discrete case.

For Ŵ(x), we have

Ŵ(α + 1) = αŴ(α),

Ŵ(α + 1) = α(α − 1)Ŵ(α − 1),

Ŵ(α + 1) = α(α − 1)(α − 2)Ŵ(α − 2),

Ŵ(α + 1) = α(α − 1)(α − 2)(α − 3)Ŵ(α − 3), (16)

In order to generalize, let T = 1, r = 4 [50]–[52], Eq. (17)

can be obtained.

GLD
α(ft+1) =

1

T α

r
∑

k=0

(−1)kŴ(α + 1)ft+1−kT

Ŵ(k + 1)Ŵ(α − k + 1)

= ft+1 − αft −
1

2
α(1 − α)ft−1

−
1

6
α(1 − α)(2 − α)ft−2

−
1

24
α(1 − α)(2 − α)(3 − α)ft−3. (17)

For the proposed algorithm, assume the population size

of fish is ps and the dimension is Dim, let the position

matrix P = P(ps,Dim) = [p1, p2, · · · , pps]
T , where

pi = [pi,1, pi,2, · · ·, pi,Dim] is the position of particle

i. Similarly, let Ppre = [Ppre1,Ppre2,Ppre3,Ppre4] denote

the historical position of the particles which is used to

calculate fractional-order velocity. Specifically, Ppre{h} =

Ppre{h}(ps,Dim) = [p
pre{h}
1 , p

pre{h}
2 , · · · , p

pre{h}
ps ]T , p

pre{h}
i =

[p
pre{h}
i,1 , p

pre{h}
i,2 , · · · , p

pre{h}
i,Dim ] where h = 1, 2, 3, 4; i =

1, 2, · · · , ps. Therefore, the velocity of the particle is updated

by (18), where Us,d is the velocity of dimension d .

Us,d = pi,d − αp
pre1
i,d −

1

2
α(1 − α)p

pre2
i,d

−
1

6
α(1 − α)(2 − α)p

pre3
i,d

−
1

24
α(1 − α)(2 − α)(3 − α)p

pre4
i,d .

pnewi,d =
Er,d · Us,d

a+ b · (Us,d )x
.

p
pre4
i,d = p

pre3
i,d .

p
pre3
i,d = p

pre2
i,d .

p
pre2
i,d = p

pre1
i,d .

p
pre1
i,d = pnewi,d . (18)

B. NEW POSITIONS OF THE OFFSPRINGS

Moveover, the graylings migration back to reproduce the new

offsprings when they have group to maturity. The graylings

should breed in a position that is more conducive to survival.
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FIGURE 2. The diagram of the proposed FOFMO.

Therefore, the positions of the new offsprings should close to

the global best particle. Equation (5) is replaced by (19).

pnewi = pgbest + rand · (poldi − pgbest ) (19)

C. THE PROPOSED ALGORITHM

In this section, the novel algorithm based on the fractional-

order velocity and the new positions is described in detail.

The diagram of the FOFMO is given in FIGURE 2.

TABLE 1 shows the pseudo code of the FOFMOalgorithm,

whereRatefecundity is the fecundity rates at specific stage,Emin
is the minimum energy to eliminate, xg,i is the grow status,

and xeng,i is the energy of particle i.

IV. EXPERIMENTAL RESULTS AND ANALYSIS ON

BENCHMARK FUNCTION

The value of α affects significantly on the memory of the

FOFMO. In this section, 23 classical benchmark functions

utilized by many researchers [23], [24] are used to examine

the performance of the proposed FOFMO algorithm with

different α. In detail, TABLE 2 contains seven unimodal

functions, TABLE 3 shows the details of six common mul-

timodal functions, and TABLE 4 displays the details of ten

multimodal functions in low dimension. Unimodal functions

have only one global optimal solution, but there is no local

optimal solution, this can verify whether the algorithm has

the ability to search the global optimal solution. Due to

multimodal functions have many local optimal solutions, it is

possible to verify if the algorithm falls into the local optimal

solution. Multimodal functions in low dimension can verify

the convergence of the algorithm under more strict condi-

tions. Search space denotes the boundary of search space; D

means the dimension of the function and fmin represents the

optimal value of the function.

TABLE 1. The pseudo code of FOFMO algorithm.

In order to find the optimal fractional order α in (10),

the FMO, FOFMO(α = 0.1), FOFMO(α = 0.3),

FOFMO(α = 0.5), FOFMO(α = 0.7), and FOFMO(α =

0.9) algorithms are examined in the experiment. The exper-

iment runs 30 times and 1000 iterations on each bench-

mark function. The population has 100 individuals. TABLE 5

shows the statistical results of the FMO and the five FOFMO

algorithm with different value. AVG is the mean of the result

and STD is the standard deviation of the results of 30 times.

The red data represent the optimal result. The blue data rep-

resent all algorithms acquire the optimal result. The last line

represents the number of times of each algorithm achieves the

optimal result.

From TABLE 5, it can be seen that the effect becomes

worse as the value of α increases. In detail, these six algo-

rithms obtain the same optimal solutions on eight benchmark

functions. Among them, three unimodal functions, six com-

mon multimodal functions, and two multimodal functions in

low dimension. The FMO only achieves 2 optimal results.

However, The FOFMO(α = 0.1) obtains 9 optimal (red)

results, the FOFMO(α = 0.3) and the FOFMO(α = 0.5)
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TABLE 2. Unimodal benchmark functions.

TABLE 3. Common multimodal benchmark functions.

TABLE 4. Multimodal benchmark functions in low dimension.

obtain 3 optimal results, respectively. The FOFMO with

these 3 values is superior to the FMO algorithm. In special,

the FOFMO(α = 0.1) obtains the most optimal results and

performs best. Therefore, α = 0.1 is the optimal order
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TABLE 5. The statistical results of FMO, FOFMO(α = 0.1), FOFMO(α = 0.3), FOFMO(α = 0.5), FOFMO(α = 0.7), and FOFMO(α = 0.9).

in this experiment and it can be concluded that (18) is

effective.

TABLE 6 shows the runtime of the FMO and the

FOFMO(α = 0.1, 0.3, 0.5, 0.7, 0.9) in the experiment.

We can see that the FOFMO algorithm has a longer runtime

than the FMO. The main reason is that the velocity and

position update by (18) of the FOFMO are more complicate.

V. SIMULATION EXPERIMENT ON THE PID CONTROLLER

A. PERFORMANCE ANALYSIS

In this section, we design and optimize the PID controller

such that it has good performance. From (12) and (13),

we find that the PID controller has three parameters: KP,KI ,

and KD, so we need to optimize them only. For the design and

optimization experiment of PID controller, there are many

performance evaluation criterions. The common performance

evaluation criterions are integral absolute error (IAE), inte-

gral square error (ISE), integral time absolute error (ITAE),

and integral time square error (ITSE).

JIAE =

∫ ∞

0

|e(t)|dt

JISE =

∫ ∞

0

e2(t)dt

JITAE =

∫ ∞

0

t|e(t)|dt

JITSE =

∫ ∞

0

te2(t)dt, (20)

where e(t) is error signal. In this paper, we apply the ITAE

performance evaluation criterion, so JITAE is the fitness

function.

In this paper, the system (21) is examined for the PID

tuning problem.

G1(s) =
s+ 2

s4 + 8s3 + 4s2 − s+ 0.4
(21)

In order to verify the performance of the proposed

algorithm, we utilize the FOFMO(α = 0.1) with

PSO [11], fractional-order particle swarm optimization algo-

rithm FOPSO(α = 0.9) [12] and the FMO [44] for design and

optimization of the PID controller, respectively, and compare

the results. The parameter α = 0.1 in the experiment refers to

the order of fractional derivative, because FOFMO performs

best at this value. Similarly, α = 0.9 is the best parameter

of the FOPSO. In the experiment, all algorithms run 5 times,

500 iterations, and 20 particles on fitness function. The PID

controller is shown in FIGURE 3. We set the PID controller
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TABLE 6. The time consumption of the test algorithms.

FIGURE 3. Block diagram of PID controller.

TABLE 7. The statistical results of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP , KI , KD ≤ 300).

parameters 0 ≤ KP ≤ 300, 0 ≤ KI ≤ 300, and 0 ≤

KD ≤ 300.

TABLE 7 shows the statistical results of the PSO,

FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1) when

0 ≤ KP,KI ,KD ≤ 300. In TABLE 7, AVG is the mean of

the optimal values of 5 times, STD is the standard deviation

of the optimal values of 5 times. We find that the FOPSO has

smaller AVG value than the PSO and FOFMO has smaller

AVGvalue than the FMO.At the same time, the FOFMO(α =

0.1) achieves the smallest AVG value. FIGURE 4 shows the

curves of the fitness value of the results of 5 times.

FIGURE 4. The fitness values of PSO, FOPSO, FMO, and FOFMO.

TABLE 8. The parameter values of PID controller tuned by four
algorithms for G1(s) (0 ≤ KP , KI , KD ≤ 300).

TABLE 8 shows the parameter values (KP,KI , and KD)

corresponding to the optimal values when 0 ≤ KP,KI ,KD ≤

300. The results show that the FOPSO has smaller fitness

value than PSO and FOFMO has smaller optimal value than

FMO. At the same time, FOFMO(α = 0.1) achieves the

smallest optimal value.
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FIGURE 5. The terminal voltage step response of PID controller tuned by
four algorithms for G1(s) (0 ≤ KP , KI , KD ≤ 300).

TABLE 9. The overshoots (OS) of PID controller tuned by four algorithms
for G1(s) (0 ≤ KP , KI , KD ≤ 300).

TABLE 10. The parameter values and performance of PID controller
tuned by four algorithms for G2(s) (−50 ≤ KP , KI , KD ≤ 50).

FIGURE 5 shows the terminal voltage step response of the

PID controller which tuned by the PSO, FOPSO(α = 0.9),

FMO, and FOFMO(α = 0.1) when 0 ≤ KP,KI ,KD ≤ 300.

In TABLE 9, we can find that the overshoots of the PSO and

FMO become smaller with the help of fractional derivative.

Therefore, fractional derivative is effective for improving

the performance of the PID controller. Meanwhile, the PID

controller tuned by the FOFMO has the smallest overshoot.

As a whole, the results show that the FOFMO algorithm has

good performance for the design and optimization of the PID

controller.

In order to further examine the performance of the pro-

posed algorithm, another system (22) [54] is examined for

the PID tuning problem.

G2(s) =
−1.39s2 − 1.99s− 0.2577

s3 + 1.408s2 + 0.656s+ 0.1013
(22)

The result is shown in TABLE 10. The FOFMO achieves

the smallest AVG value and optimal value. This is the same

conclusion as in Table 7 and Table 8.

B. ANALYSIS ABOUT THE RANGE OF KP , KI , KD

TABLE 11 shows the statistical results of the PSO,

FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1) when

0 ≤ KP,KI ,KD ≤ 100. The conclusion is similar to that in

TABLE 7. That is, the FOPSOhas smaller AVGvalue than the

PSO and the FOFMO has smaller AVG value than the FMO.

TABLE 11. The statistical results of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP , KI , KD ≤ 100).

TABLE 12. The parameter values of PID controller tuned by four
algorithms for G1(s) (0 ≤ KP , KI , KD ≤ 100).

TABLE 13. The statistical results of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP , KI , KD ≤ 30).

TABLE 14. The parameter values of PID controller tuned by four
algorithms for G1(s) (0 ≤ KP , KI , KD ≤ 30).

Similarly, FOFMO(α = 0.1) achieves the smallest AVG

value. TABLE 12 shows the parameter values corresponding

to the optimal values when 0 ≤ KP,KI ,KD ≤ 100. The

results show that the FOPSO has smaller optimal value than

the PSO and FOFMO has smaller optimal value than FMO.

At the same time, the FOFMO(α = 0.1) achieves the smallest

optimal value.

TABLE 13 shows the statistical results of the PSO,

FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1) when

0 ≤ KP,KI ,KD ≤ 30. The conclusion is similar to that in

TABLE 7 and TABLE 11. That is, the FOPSO has smaller

AVG value than the PSO and FOFMO has smaller AVG

value than FMO. At the same time, the FOFMO(α = 0.1)

achieves the smallest AVG value. TABLE 14 shows the

parameter values corresponding to the optimal values when

0 ≤ KP,KI ,KD ≤ 30. The results show that the FOPSO

has smaller optimal value than the PSO and FOFMO has

smaller optimal value than the FMO. At the same time,

the FOFMO(α = 0.1) achieves the smallest optimal value.

C. ROBUSTNESS ANALYSIS

Robustness is an important property to evaluate the stabil-

ity and reliability of a controller [55]–[58]. In this section,

the robustness of the PID controller for different tuning meth-

ods forG1(s) is tested. The system slightly different from (21)

is used as (23).

Gtd (s) =
s+ 2

s4 + 8s3 + 4s2 − s+ 0.4
e−0.01s (23)
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TABLE 15. The parameter values and performance of PID controller
tuned by four algorithms for Gtd (s) (0 ≤ KP , KI , KD ≤ 300).

FIGURE 6. The terminal voltage step response of PID controller for Gtd (s).

TABLE 16. The running time of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP , KI , KD ≤ 100).

In order to test the robustness of these different tuning

methods, the time delay is added to G(s). TABLE 15 shows

the the performance on tuning the PID controller with the

PSO, FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1).

In TABLE 15, OS is the overshoot, and ts (± 2%) is the

settling time.

FIGURE 6 shows the terminal voltage step response of the

PID controller which tuned by the PSO, FOPSO(α = 0.9),

FMO, and FOFMO(α = 0.1).

From TABLE 15 and FIGURE 6, we can see that the

PID controller tuned by the FOFMO is more robust and

has better performance in terms of the AVG, STD, optimal

value, overshoot, and settling time compared to other PID

controllers.

D. RUNNING TIME

TABLE 16 shows the running time of the PSO, FOPSO(α =

0.9), FMO, FOFMO(α = 0.1) when 0 ≤ KP,KI ,KD ≤ 100.

We find that both the FMO and FOFMO are much faster than

the PSO and FOPSO. This result is consistent with the result

of paper [44]. Furthermore, the PSO is faster than the FOPSO

and the FMO is faster than the FOFMO. The main reason is

that the velocity and position update by fractional-order are

more complicate.

VI. CONCLUSION

In order to improve the performance on tuning the PID

controller, a novel FOFMO algorithm is proposed in this

manuscript based on the FC concepts. In particular, the veloc-

ity and position in the FOFMO are updated in fractional-order

form.Meanwhile, the discrete fractional derivative used in the

FOFMO is derived in detail. The experiment on benchmark

functions shows that the proposed algorithm is superior to

the original FMO on performance. In addition, the FOFMO

algorithm is utilized to tune the PID controller by simula-

tion experiment. The result reveals the PID controller tuned

by the FOFMO has the best performance of the four algo-

rithms including the PSO, FOPSO, and FMO. Therefore, it is

effective to use the FOFMO algorithm for optimal control.

The initial particle numbers affects the performance of many

algorithms, and there are many other outstanding algorithms

proposed in recent years. These will be tested in our future

work.
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