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Abstract—This paper describes a hybrid method for calculating
the performance of a coreless stator axial flux permanent-magnet
(AFPM) generator. The method uses a combination of finite-ele-
ment analysis and theoretical analysis. The method is then incor-
porated into a multidimensional optimization procedure to opti-
mally design a large power coreless stator AFPM generator. The
measured performance of the manufactured prototype compares
favorably with the predicted results. The design approach can be
applied successfully to optimize the design of the coreless stator
AFPM machine.

Index Terms—Axial flux, design, finite-element methods, opti-
mization methods, permanent-magnet generator.

I. INTRODUCTION

A
XIAL FLUX permanent-magnet (AFPM) machines with

coreless stators are regarded as high-efficiency machines

for distributed power generation systems [6], [13], [19]. Because

of the absence of core losses, a generator with this type of de-

sign can potentially operate at a higher efficiency than conven-

tional machines. Besides, the high compactness and disk-shaped

profile make this type of machine particularly suitable for me-

chanical integration with wind turbines and internal combustion

engines (ICE), e.g., as integrated starter-generators.

A schematic drawing of a typical coreless stator AFPM ma-

chine is shown in Fig. 1. The machine consists of two outer

rotor disks and one coreless stator in the middle. On the two op-

posing rotor disks, there are surface-mounted permanent mag-

nets (PMs). The coreless stator winding consists of a number

of single-layer trapezoidal-shaped coils. These coils have the

advantages of being easy to make and having relatively short

overhangs. The coils are held together and in position by using

a composite material of epoxy resin and hardener.

So far, most published works regarding design optimization

of AFPM machines have been limited to maximizing (mini-

mizing) an objective function with respect to a single variable

[3], [4], [9], [10], [15] using analytical methods. The finite-ele-

ment method (FEM) is, in many instances, used merely to inves-

tigate certain design aspects. Since FE models give an excellent
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Fig. 1. Basic structure of the AFPM machine with a coreless stator. 1: Stator
winding. 2: Steel rotor. 3: PMs. 4: Frame. 5: Bearing. 6: Shaft.

representation of the magnetic field inside the machine, enabling

nonlinearity to be accounted for with great accuracy, it has been

pointed out in the literature [5], [7], [20] that two-dimensional

(2-D) FEM should be incorporated into design optimization of

AFPM machines. However, there are no published works de-

scribing the implementation of this approach to the design of

AFPM machines in detail.

In this paper, the equivalent circuits of a coreless AFPM gen-

erator are first established (Section II). The calculation of cir-

cuital parameters by using both FEM (Section III) and classical

theory (Section IV) are then described. The performance calcu-

lation of the coreless stator AFPM generator is explained in Sec-

tion V, which is then incorporated into a multidimensional op-

timization procedure to optimally design a large power coreless

stator AFPM generator (Section VI). Some important mechan-

ical design aspects are discussed in Section VII. The measured

performance of the manufactured prototype are compared with

the predicted results in Section IX. It is shown that the proposed

design approach can be applied successfully to optimize the de-

sign of the coreless stator AFPM machine.

II. EQUIVALENT CIRCUITS

To calculate the performance of the AFPM machine, it is es-

sential to consider the equivalent circuits of the machine. The

fundamental per phase equivalent circuit of a coreless AFPM

machine with the same reluctance for the magnetic flux in the

and axis may be represented by the electric circuit shown

in Fig. 2(a). In this circuit, is the stator resistance, is the

stator inductance, is the induced electromotive force (EMF)

due to the fundamental air-gap PM flux linkage, and and
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Fig. 2. Per-phase equivalent circuits of an AFPM machine.

Fig. 3. d- and q-axis equivalent circuits and phasor diagram of the AFPM machine.

are the fundamental instantaneous phase voltage and current,

respectively. The shunt resistance is the stator eddy-current

loss resistance.

The synchronous inductance consists of the armature re-

action (mutual) inductance and the leakage inductance

as shown in Fig. 2(b), where , , and

are leakage inductance, differential leakage inductance about

the radial portion of conductors, and end winding leakage in-

ductance, respectively. Unlike conventional slotted machines,

there is no clear definition for main and leakage inductances

in a coreless or slotless machine [1], [11], [17]. It is generally

difficult to derive accurate analytical expressions for , ,

and . With 2-D FE analysis, both mutual and leakage flux

linkages can be readily taken into account. The only remaining

part is the end-winding leakage flux. The synchronous induc-

tance of the coreless machine may thus be split into two terms:

1) and 2) end connection leakage inductance .

As an approximation, may be shifted to the left of in the

equivalent circuit as shown in Fig. 2(b). In this way, the part of

the equivalent circuit marked by the dotted lines in Fig. 2(b) can

be accurately calculated by directly using FEM instead of ap-

proximate inductance equations.

The corresponding steady-state - and -axis equivalent

circuits of the AFPM machine in the rotor reference frame

are shown in Fig. 3. The flux linkages and are the

- and -axis total stator flux linkage components. These

flux linkages include the flux linkage due to the permanent

magnets, , and the flux linkage due to stator currents,

, but exclude the end-winding flux linkage,

. The parameter is the electrical speed of the rotor

reference frame. In the phasor diagram (unity power factor

was assumed), the space phasors and represent the

stator terminal voltage and current, respectively. Note that

includes the equivalent eddy-current loss component . It has

also been assumed that the eddy-current losses in the PMs

and rotor disks are negligible.
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Fig. 4. 2-D FE model of a coreless stator AFPM machine.

III. CALCULATION OF EQUIVALENT CIRCUIT

PARAMETERS USING FEM

This section describes how the equivalent circuit parameters

of Fig. 3 are calculated by using FEM.

A. Finite-Element Model

The 2-D FE modeling of an AFPM machine is usually carried

out by introducing a radial cutting plane at the average radius,

which is then developed into a 2-D flat model. Owing to the

symmetry of an AFPM machine, each half of the machine from

the center plane mirrors the other half in axial direction. It is

possible to model only half of the machine comprising the rotor

disk, the air-gap clearance, and half of the stator. The air-gap

region is modeled using the Cartesian air-gap element (CAGE),

as described in [27]. By assigning negative periodic boundary

conditions to the left and right boundaries, it is sufficient to

model only one pole-pitch of the machine. Fig. 4 shows an FE

mesh coupled with a CAGE for such a model, which spans one

pole-pitch of the AFPM machine. For an AFPM machine with

coreless stator, there is no tangential field component on the

center plane of the stator so that the Neumann boundary con-

dition can be assigned to the top boundary.

B. Calculation of Flux Linkages

To calculate the flux linkage using the FEM, it is necessary

to specify the phase current of the AFPM machine.

The amplitude of the current space phasor may be determined

from a given copper loss , which is predetermined based on

the thermal analysis of the machine, by using

(1)

in which a current angle of has been assumed for

balanced resistive load. With the and current component

amplitudes known, the instantaneous three-phase currents ,

which need to be put in the FE program according to the rotor

position, can be calculated using the inverse Park transforma-

tion. The defined FE model is solved by using a nonlinear solver

Fig. 5. Flux distribution in a coreless stator AFPM machine.

to obtain the nodal magnetic vector potentials of the model.

Fig. 5 shows the flux plot of a coreless stator AFPM machine.

The total three-phase flux linkages , excluding end-winding

flux linkages, are then computed in the FE program as follows

[18]:

(2)

In (2), is the nodal value of the magnetic vector potential

of the triangular element , or indicates the

direction of integration either into the plane or out of the plane,

is the area of the triangular element , is the total number

of elements of the meshed coil areas of the phase in the pole

region, is the number of parallel circuits (current paths) per

phase, is the total number of elements of the in-going and

out-going areas of the coil, , and are the number of turns,

length, and area of a coil, respectively.

From a machine design perspective, it is of main interest to

find the fundamental components of the total flux linkages. For

a coreless stator AFPM machine, the flux linkage harmonics

due to iron stator slots and magnetic saturation are absent.

Owing to a large air gap, the harmonics caused by stator

winding MMF space distribution are negligible. The most

important flux linkage harmonics needed to account for are

those due to the flat-shaped PMs.

Given these considerations, the flux linkage wave of an

AFPM machine is nearly sinusoidal, though, for a nondis-

tributed winding, an appreciable third and less significant

fifth and seventh harmonics are still present in the total flux

linkage waveform. If the fifth, seventh, and higher harmonics

are ignored, the fundamental total phase flux linkages can be

calculated by using the technique given in [18], i.e.,

(3)

where the co-phasal third-harmonic flux linkage, including the

higher order triple harmonics, can be obtained from

(4)

The use of (3) and (4) is of great importance in the optimiza-

tion process as it enables the fundamental total phase flux link-

ages of the AFPM machine to be determined by using just one
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set of field solutions. The fundamental flux linkages are the basis

of subsequent performance calculation of the machine.

With the fundamental total phase flux linkages and rotor po-

sition known, the flux linkages are calculated using Park’s

transformation as follows [12]:

(5)

where

(6)

From this, the speed dependent voltages and

of the equivalent circuits are determined.

IV. EQUIVALENT CIRCUIT PARAMETERS CALCULATED BY

CLASSICAL THEORY

In this section, the calculation of the remaining equivalent cir-

cuit parameters of Fig. 3 such as winding resistance, eddy-cur-

rent resistance, and end-winding inductance by using classical

theory is described.

A. Stator Winding Resistance

The temperature-dependent stator winding resistance per

phase is calculated as

(7)

where is the number of turns in series per phase, is the

electric conductivity of the wire at temperature , and is the

cross section area of the wire. The skin effect has not been taken

into account in (7) as thin parallel wires (0.42 mm diameter)

were used to minimize this effect in the design.

B. Eddy-Current Resistance

For an AFPM machine with a coreless stator, associated iron

losses are absent. The core losses in the ferromagnetic rotor

disks (back irons) are also negligible due to low flux variation.

However, the eddy-current losses in the stator winding are sig-

nificant due to the high pole number rotor that may spin at rel-

atively high speeds. The shunt resistance may be calculated

in the same way as that of the core loss resistance described in

[16], [18] to account for the eddy-current losses, i.e.,

(8)

where is the rms value of phase EMF (see Figs. 2 and 3) and

is given by

(9)

A detailed treatment of the calculation of eddy-current losses

in AFPM machine has been given in [24]. As an approxima-

tion, one may consider only the eddy-current losses due to the

main flux and fundamental operating frequency of the machine.

The eddy-current losses (for round conductors) are calculated

by using [8]

(10)

where is the conductor length, is the fundamental

frequency, is the diameter of the conductor, is the total

number of conductors in the machine, and and are the pe-

ripheral and axial components (peak values) of the fundamental

flux density wave, respectively. The values of the flux density

components can be obtained from the FE field solution.

C. End-Winding Inductance

The end-winding inductance is calculated by using an

analytical approach based on

(11)

where is the number of pole pairs, is the number of coils

per pole per phase, is the length of the single-sided end con-

nection, and can roughly be estimated from the following

semianalytical equation [14]:

(12)

V. PERFORMANCE CALCULATION

From the current components and the end-winding leakage

inductance , the end-winding leakage flux linkage speed de-

pendent voltages and of Fig. 3 are determined.

The terminal voltage components, and , and the voltage

amplitude are calculated from

(13)

The power factor is easily calculated from the voltage

components, and , and current components, and ,

as follows:

(14)

The generated kVA of the machine is calculated as

(15)

The steady-state electromagnetic torque of the AFPM ma-

chine can be calculated by using the following relation:

(16)

The total input shaft power of the generator can then be cal-

culated by

(17)
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where is the angular speed of the machine, and are the

windage and friction losses, which can be estimated from [23]

(18)

where is the rotation speed in revolutions per second (r/s), is

the friction coefficient, and is the density of cooling medium.

The active output power is calculated by using .

The efficiency is then given by .

This concludes the calculation of the equivalent circuit and

performance parameters of the AFPM machine. This calculation

method is used by the optimization algorithm described in the

next section.

VI. OPTIMIZATION

This section describes the design optimization of the AFPM

machine. The aim of the optimization procedure is to minimize

the amount of PM material used or maximize the efficiency of

the machine, while ensuring a rated output power, acceptable

current density, and desired phase voltage.

A. Optimization Algorithms

Two different optimization algorithms, i.e., Powell’s method

and the population-based incremental learning (PBIL) algo-

rithm, are used in this paper for the unconstrained design

optimization of the AFPM machine. The reasons for using

these methods are:

• to compare the effectiveness of the linear maximization

(minimization) method (Powell’s method) with that of a

stochastic method (PBIL);

• to verify the optimum design results by using two com-

pletely different algorithms.

1) Powell’s Method: Powell’s method is basically an iter-

ative method. Each th iteration of the procedure maximizes

(minimizes) the objective function along linearly independent

directions, . The initial set of vector directions

are the coordinate directions. After each iteration, a new direc-

tion is defined which is used to form the vector directions for the

next iteration. After iterations, a set of mutually conjugate

vector directions are obtained so that the maximum (minimum)

of a quadratic function is found.

To avoid linear dependence and premature termination in the

optimization, specially designed tests have been incorporated

into the algorithm. A detailed explanation of this method is

given in [18] and [22].

2) PBIL Algorithm: PBIL is a method combining genetic al-

gorithms (GA) and competitive learning for function optimiza-

tion [2], [14]. The algorithm attempts to generate a probability

vector, which is then sampled to produce the next generation’s

population. Unlike GAs, operations of PBIL act directly on the

probability vector instead of population. To maintain the most

diversity, each bit position of the probabilities is set to 0.5 at the

beginning. A number of solution vectors are generated based

on the probabilities of the probability vector. The probability

vector moves toward the solution vector with the highest eval-

uation. Each bit of the probability vector is updated based on

update rule of competitive learning, i.e.,

(19)

where is the probability of generating a one in the bit position

, is the th position in the solution vector that the probability

vector is being pushed toward, and is the learning rate, which

is the amount the probability vector is changed after each cycle,

The learning rate has a significant effect on the convergence

speed.

After each update of the probability vector, a new set of so-

lution vectors is created. As the search progresses, the values in

the probability vector start to move toward either 0 or 1 repre-

senting a high evaluation solution vector. The use of mutation

in PBIL is for the same reason as in the GA, i.e., to prevent pre-

mature convergence.

3) Constrained Optimization: To transform constrained op-

timization problems into unconstrained ones, the penalty func-

tion is used together with Powell’s method. The objective func-

tion is modified by adding terms or functions that penalize any

increased constraint violation. The resultant objective function

is then

(20)

where is the function to be minimized, are weighting

factors, and are functions which penalize increased con-

straint violation.

Owing to the nature of the stochastic search, PBIL al-

gorithms do not require the use of penalty functions in the

objective functions.

B. Variables

The geometric layout of an AFPM machine with a coreless

stator is shown in Fig. 6. Only five variables of the machine are

selected. These are the PM thickness , magnet width to pole

pitch ratio , stator winding thickness , rotor disk inner

radius , and the air-gap clearance . For the specific applica-

tion, the rotor outer radius is limited to 360 mm and the typ-

ical operating speed is about 2000 rpm. The number of parallel

circuits per phase and the number of poles are

predefined. The comparison done in previous studies [21] re-

veals that the design of an AFPM machine using purely electro-

magnetic calculations without taking into account mechanical

strength requirements may lead to an unrealistically thin rotor

disk. To rectify this problem, mechanical strength analysis is of

great importance in determining the thickness of the rotor disk

. The FE analysis of the mechanical strength of the rotor disks

is described later.

C. Objective Functions

The copper losses are kept constant in the design optimization

program. An iterative procedure, making use of the thermo-fluid

model established in [25], has been used to determine the max-

imum allowable losses that the machine can handle. The esti-

mated allowable full-load copper loss is about 2.5 kW for a rated
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Fig. 6. Geometric layout of AFPM machine showing design variables: (a) a linearized section of the radial cutting plan, and (b) a rotor disk with PMs.

power of 150 kW [26]. The maximum allowable current density

is set to 10 A/mm in the design program. It has been confirmed

experimentally that the AFPM machine can withstand this cur-

rent density. The performance parameters to be optimized have

been selected as the mass of the PM material and the efficiency.

1) Optimize for Minimal Mass of PM Material: The opti-

mization problem for minimizing the total mass of the PM mate-

rial, , can be expressed as subject to the following

constraints:

(21)

where is the total mass of the PM material used, is the

desired output power, is the maximum allowed current den-

sity, and is the maximum rms phase voltage at rated output

power. This criterion is almost equivalent with the minimization

of cost as PMs are expensive parts in a machine.

2) Optimize for Maximum Efficiency: The optimization

problem for maximizing the machine’s efficiency, , can be

expressed as subject to the constraints

(22)

where is the machine’s efficiency at rated output power, ,

and is the maximum allowable mass of the PM material

used at .

D. Optimization Procedure

The overall design methodology presented in the paper is to

use a combination of the classical circuit model and FE field so-

lutions directly in a multidimensional optimization procedure.

The basic structure of the approach is shown in Fig. 7. The opti-

mization algorithm searches for the machine variables that

minimizes (maximizes) the function value . In each itera-

tion, a new FE mesh is generated according to machine dimen-

sion input , a nonlinear solver is called to find the magnetic

vector potentials. The machine performance parameters

are calculated using flux linkages and circuital equations in post-

processing as described in Section III.

Powell’s method requires an initial value for each of the vari-

ables. If it is too far from the real optimum, then the optimization

may end up being trapped in a local optimum in the vicinity of

the initial value [28], which will lead to the necessity of testing

with different sets of starting values to verify the optimum point.

When the PBIL algorithm is used, it does not really matter

what starting values are used. A total of 30 sample bits, 6 bits per

independent variable, were used in the optimization. The step

sizes for the variables are 0.05 mm for the air-gap , 0.01 mm

for the PM height , 0.1 mm for the stator thickness, 0.5 mm

for the rotor inner radius , and 0.005 for the PM width to pole

pitch ratio. The number of bits and step size per variable were

chosen to ensure the largest feasible range. The stopping rule of

the PBIL algorithm is that the optimization cycles have to reach

a preset number of generations.

During the optimization process, the mesh of the FE model

changes as the optimization progresses. Occasionally, some of

the elements may be badly shaped or ill conditioned resulting

in poor accuracy or even no solution. It is therefore necessary

to check that the model dimensions are reasonable before the

FE mesh is constructed. A thermo-fluid model described in [25]

is also incorporated in the optimization process to predict the

temperature distribution in various parts of the machine and to

thus check the validity of the design.

E. Results of the Optimized AFPM Machine

Starting from the same initial design, the optimization was

done using both Powell’s method and the PBIL algorithm ac-

cording to the two different design objectives, i.e., maximum

efficiency or minimum PM material, respectively. A compar-

ison of the effectiveness between the two methods was also

done. Table I shows the results of a maximum efficiency ma-

chine design of a 150 kW machine. Both optimization algo-

rithms give similar results. For the design of minimum PM ma-

terial (Table II), the PBIL optimization came up with a design

using less PM material. It can be seen that Powell’s method re-

quires a total of 106 field solutions while the PBIL algorithm
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Fig. 7. Basic structure of the optimization procedure.

TABLE I
OPTIMIZATION RESULTS FOR MAXIMUM EFFICIENCY

TABLE II
OPTIMIZATION RESULTS FOR MINIMUM PM MATERIAL

needs 5562 field solutions. Obviously, Powell’s method is a lot

more efficient than the PBIL algorithm as it used only a fraction

of the CPU time that the PBIL required. The design optimization

was carried out on a 1670-MHz Intel PC running RedHat Linux

operating system. On average it takes less than 2 s to solve one

field solution.

TABLE III
PERFORMANCES OF DIFFERENT FE OPTIMIZED DESIGNS

The calculated performances of the above optimized designs

are shown in Table III. It was found that the inner to outer diam-

eter ratio is about 0.68 for the maximum efficiency design

and around 0.7 for minimum PM mass and/or volume design.

By minimizing the PM material, the cost and the mass of the

machine are also reduced.

VII. MECHANICAL STRENGTH ANALYSIS

The deflection of the rotor disks due to the strong magnetic

pull may have undesirable effects on an AFPM machine such

as: 1) closing the running clearance between the rotor disk and

the stator; 2) breaking the permanent magnets due to bending;

3) reducing air-flow discharging area, hence deteriorating the

cooling capacity; and 4) a nonuniform air gap causing a drift in

the electrical performance from the optimum. Besides, the rotor

disks account for roughly 50% of the total active mass of an

AFPM machine. Hence, the optimal design of the rotor disks is
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Fig. 8. Deflection (blown up) and Von Mises stress distribution of a rotor disk.

of great importance to realize a design of high power-to-mass

ratio. All these aspects make the mechanical stress analysis of

the rotor disk a necessity.

A. Mechanical Stress Analysis of Rotor Disk

The structure of the rotor disks of the designed AFPM ma-

chine was analyzed with the aid of an FEM structural program.

The aim was to find a least thickness for the rotor disk, which

satisfies the critical strength requirements of a rotor disk. The

maximum tolerable deflection of the rotor disk was set to be

0.3 mm. This is to ensure that the PMs would not suffer any

excessive forces that have the potential to break the magnets or

peel them off from the steel disk.

By taking into account the symmetry of the machine, only one

sixteenth of the rotor disk was analyzed using 4-node shell-ele-

ments, with symmetrical boundary conditions applied. The axial

magnetic pull between PM disks at zero current state was calcu-

lated as 14.7 kN while the magnetic pull between the PM disk

and stator under load due to tangential flux is rather insignifi-

cant (about 45 N). In the FE program, the magnetic pull-force

is applied in the form of a constant 69.8 kPa pressure load over

the total area that the PMs occupy. The stiffness provided by the

magnets was not included so as to keep the design on the con-

servative side.

Based on the analysis, the rotor disk thickness was chosen as

17 mm with a maximum deflection of 0.145 mm. Fig. 8 shows

the deflection (blown up) and the Von Mises stress distribution

of the laboratory prototype 17 mm disk. The maximum stress of

35.6 MPa is much lower than the typical yield strength of mild

steel that is in the region of 300 MPa. Previous studies [21] show

that the bending of the rotor disk decreases toward its outer pe-

riphery. The rotor disk may be machined in such a way that the

disk becomes thinner toward the outer periphery. As shown in

Table IV, the tapered disk uses approximately 10% less iron than

the straight disk. The maximum deflection increases by only

0.021 mm with the tapered disk, which is negligible. This can

effectively save the active mass of the machine without com-

promising the mechanical strength. However, if manufacturing

TABLE IV
COMPARISON OF DIFFERENT DESIGNS OF ROTOR DISK

costs are taken into account for small production volumes, it

is justifiable to use a steel disk with uniform thickness. The

constructed machine described in the next section uses 17 mm

straight disks.

VIII. PROTOTYPE MACHINE

To verify the optimization design and performance described

in Section VI, an AFPM machine optimized for minimal

PM material (design option C in Table III) has been built.

Fig. 9 shows the constructed air-cooled coreless stator AFPM

machine. The single stator is mounted on one side of the

external frame. There are 20 parallel connected coils per phase,

as shown in Table V. To facilitate making connections, four

circular bus-bars are used as shown in Fig. 9(b). Rare-earth

sintered NdFeB magnets are used, which has a remanent flux

density of 1.18 T and a maximum allowable working tem-

perature around 130 C. The hub structure shown in Fig. 9(c)

serves as both air intake and supporting structure for the rotor

disks. Furthermore, it also acts as a centrifugal fan improving

the air cooling of the AFPM machine.

IX. PERFORMANCE

The performance tests on the prototype AFPM machine were

carried out in the laboratory and were analyzed. The tests fo-

cused on its generation mode. A reconfigurable water-cooled

bank of resistors was configured into a balanced three-phase

load and then connected across the AFPM machine terminals.

An induction machine was used as prime mover. The water

cooling system consists of a water tank, pipe system, and a
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Fig. 9. The designed single-stage synchronous AFPM machine: (a) rotor disk
with surface mounted PM segments, (b) coreless stator with busbars, and (c) the
assembled machine.

TABLE V
DESIGN DATA FOR THE AFPM MACHINE UNDER STUDY

cooling tower of 250 kW capacity. The testing setup is shown

in Fig. 10.

In Fig. 11, the no-load phase voltage of the prototype ma-

chine at rated speed calculated by a FE time-stepped model is

compared with the measured results. The details of the time-step

modeling of AFPM machine is given in [27]. The output power

and phase current were measured at different rotating speeds.

The same conditions were simulated using the FE computer

program. The load resistance value used in the computation

under various load conditions was compensated with an esti-

mated temperature factor. The results are presented and com-

pared in Fig. 12. Agreement between measured and predicted

output power and phase current is shown to be well within the

limits of experimental accuracy.

As shown in Table VI, the rated output power of the AFPM

generator at unity power factor is measured to be 154 kW

at rated speed. Taking into account the mechanical loss

(measured), eddy-current loss (measured), and copper loss

(calculated), the total mechanical input power (ignoring the

losses in PMs and rotor disks) is then 161 kW. This gives a

machine efficiency of 95.7% at that speed. The total losses are

Fig. 10. Testing setup of the designed AFPM machine. 1: 600 kW induction
machine drive. 2: AFPM generator. 3: Water-cooled resistive load. 4: Measuring
equipment.

Fig. 11. Comparison of predicted and measured no-load phase voltages
(2300 rpm).

Fig. 12. Predicted and measured power and phase current for balanced
three-phase operation.

6989.7 W, of which 1732 W are eddy-current losses, 3509 W

are mechanical losses, and 1748.7 W are copper losses. The

stabilized machine winding temperature rise was measured

as 56 C, which is not high and shows the good air cooling
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TABLE VI
MEASURED PERFORMANCE AT RATED OPERATING CONDITION

capacity in an essentially self-cooled AFPM generator. For an

ambient temperature of 30 C–40 C, typical for ICE power

generation applications, the actual temperature of the stator

winding will be in the range of 86 C–96 C. The relatively

high mechanical losses are mainly due to the windage losses.

The power density of the machine is calculated as 4.43 MW/m ,

which is relatively high when compared with that of conven-

tional ac machines (typically 2.2–2.6 MW/m ).

X. CONCLUSION

The overall design methodology presented in the paper is to

use a combination of classical circuit analysis and FE field anal-

ysis in an optimization process. Both Powell’s method and the

PBIL algorithm have been applied in the optimization process

of the AFPM machine. Powell’s method is more efficient than

the PBIL algorithm as it needed only a fraction of the CPU time

that the PBIL required. However, the PBIL optimization found

slightly better solutions in all the case studies. By minimizing

the PM material, an overall better design can be obtained with

lower eddy-current losses, high efficiency, high power-to-mass

ratio, and low cost.

One of the designed AFPM machines was built and tested.

Owing to a very low phase inductance in the coreless stator

AFPM machine, the output voltage varied almost linearly with

the load current. When operated with a balanced three-phase

resistive loading, the waveform of the stator phase voltage and

current were found to be very close to sinusoidal. The measured

performance of the prototype AFPM machine compares favor-

ably with the predicted one.
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