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Abstract. The object of this paper  is the development of efficient 

mathematical and numerical tools to find the optimal shape of a 

minimum-weight thermal diffuser with a priori specifications on the inward 

thermal power flux (TPF) and a bound on the outward TPF. The present 

problem arises in connection with the use of high-power solid state devices in 

future communications satellites. In a Space application the thermal power 

must ultimately be dissipated to the environment by using heatpipes and 

correspondingly large radiating areas. However, heatpipes can accept only a 

limited TPF from a source. Hence we have the requirement of a 

minimum-weight thermal diffuser with a uniform bound on the outward 

TPF. Shape optimal design and finite elements methods are used. Complete 

numerical results are provided. 

1. Introduction 

The object of this paper  is the development of efficient mathematical  and 

numerical tools to find the optimal shape of a minimum-weight thermal diffuser 

with a priori specifications on the input and output thermal power flux. This 

paper  contains a working theory, the necessary computations and numerical 

examples. A similar problem was studied by Ph. Destuynder [5] with the require- 
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ment that the temperature at every point of the diffuser be less than a specified 

critical temperature. 
The present problem arises in connection with the use of high-power solid 

state devices (HPSSD's) in future communication satellites. The specifications for 

this diffuser came from the Center for Research in Communication (CRC) in 
Canada 1 . 

"An HPSSD dissipates a large amount of thermal power (typ. > 50W) over a 

relatively small mounting surface (typ. 1.25cm 2). Yet its junction temperature is 

required to be kept moderately low (typ. 110°C). The thermal resistance from the 
junction to the mounting surface is known for any particular HPSSD (typ. 

I°C/W),  so that the mounting surface is required to be kept at a lower 

temperature than the junction (typ. 60°C). 

In a space application the thermal power must ultimately be dissipated to the 

environment by the mechanism of radiation. However, to radiate large amounts 

of thermal power at moderately low temperatures, correspondingly large radiating 
areas are required. Thus we have the requirement to efficiently spread the high 

thermal power flux (TPF) at the HPSSD source (typ. 40W/cm 2) to a low TPF at 

the radiator ( typ . .04W/cm 2) so that the source temperature is maintained at an 

acceptably low level (typ. < 60°C at mounting surface). The efficient spreading 

task is best accomplished using heatpipes, but the snag in the scheme is that 

heatpipes can accept only a limited maximum TPF from a source (typ. max. 
4W /c m  2 ). 

Hence we are led to the requirement for a thermal diffuser. This device is 

inserted between the HPSSD and the heatpipes, and reduces the TPF at the 
source (typ. > 40W/cm 2) to a level acceptable to the heatpipes (typ. max. 

4W/cm2). The heatpipes then sufficiently spread the heat over large space 

radiators, reducing the TPF from a level at the diffuser (typ. max. 4 W / c m  2) to 

that at the radiator ( typ. .04W/cm2).  This scheme of heat spreading is depicted in 

Fig. 1. 
It is the design of the thermal diffuser which is the problem at hand. We may 

assume that the HPSSD presents a uniform thermal power flux to the diffuser at 

the HPSSD/diffuser  interface. Heatpipes are essentially isothermalizing devices, 

and we may assume that the diffuser/heatpipes interface is indeed isothermal. 

Any other surfaces of the diffuser may be treated as adiabatic." 

Some early results were presented in Delfour-Payre-Zolbsio [4]. 

Notation. R (resp. R +) is the field (resp. semigroup) of all (resp. positive or 

zero) reals. Given an integer n >/1, R n is the n-dimensional Euclidean space. The 

topological dual of a Banach space E will be denoted by E' .  Let ~ be an open 

subset of R". @(a)  is the vector space of all real functions defined on f~ whose 

partial derivatives of all orders exist and are continuous and whose support is 

contained in some compact subset of f~. For k >~ 1 an integer, Hk(f~) denotes the 

vector space of all real functions f on f~ such that f and its distributional 
derivatives D'f of order Isl = Y~=I Isjl ~< k all belong to L2(~). For real k >/O, 

The statement of the problem and Figure 1 have been graciously provided by Dr. V. A. Wehrle 
of CRC. 
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Fig. 1. Heat-spreading scheme for high-power solid state devices. 

H k ( £ )  is defined by interpolation; for negative reals s < 0, HS(£) = (HoS(#))  ' 
where H~(£) is the closure of ® ( £ )  in the H~(£)-topology. 

Given a Banach space E, C°(£;  E)  is the vector space of continuous 

functions defined on £ into E. For k >/1 an integer, Ck(£;  E)  is the vector space 
of all continuous functions defined on £ into E whose partial derivatives are 

continuous up to order k. When E = R we shall write C ° ( £ )  and Ck(£).  

2. Statement of the Problem 

We assume that the thermal diffuser is a volume £ symmetrical about the z-axis 

(cf. Figure 2A) whose boundary surface is made up of three regular pieces: the 

mounting surface Yl (a disk perpendicular to the z-axis with center in (r, z) = 

(0, 0)), the lateral adiabatic surface Z 2 and the interface Y~3 between the diffuser 
and the heatpipes saddle (a disk perpendicular to the z-axis with center in 

(r,  z) = (0, L)). 

The temperature distribution over this volume £ is the solution of the 

stationary heat equation AT= 0 (AT, the Laplacian of T)  with the following 

boundary conditions on the surface E = E 1 u Y~2 u Y~3 (or boundary of £):  

= qin on Z 1 

k 3T 
= 0 on ~2 

T = T 3 on Z3, T3 = constant, 

(2.1) 

where n always denotes the outward normal to the boundary surface E and 
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OT/On is the normal derivative to the boundary surface Z, 

aT 
- v T - n  (v T  = gradient of T).  (2.2) 

On 

The parameters appearing in (2.1) are: 

k = thermal conductivity (typ. 1.8W/cm. × °C) 

qin = uniform inward thermal power flux at the source (positive 
constant). 

The radius R 0 of the mounting surface Y,~ is fixed so that the boundary surface Y'I 
is already given in the design problem. 

For practical considerations, we assume the diffuser to be ,solid without 
interior hollows or cutouts. The class of shapes for the diffuser is characterized by 
the design parameter L >/0 and the positive function R(z) ,  0 <~ z <~ L, with 
R(0) = R 0 > 0. They are volumes of revolution £ about the z-axis generated by 
the surface A between the z-axis and the function R ( z )  (cf. Fig. 2B), that is 

£ = ((x,  y, z)10 <~ z <~ L,  x 2 + y2 <~ R2(z)} .  (2.3) 

So the shape of £ is completely specified by the length L and the function R on 
the interval [0, L]. 

Assuming that the diffuser is made up of a homogeneous material of uniform 
density (no hollows) the design objective is to minimize the volume 

J ( £ )  = ~rf0LR2(z ) dz (2.4) 

subject to a uniform constraint on the outward thermal power flux at the 
interface Y'3 between the diffuser and the heatpipes saddle: 

OT 
Sup - k - - ~ z ( p  ) <~ qout, (2.5) 

p E Z  3 

where qout is a specified positive constant. 

z L A 

Zz I (z) 
0 --y 

B 0 R o 
× 

I 

0 
C 0 

f S 3  

~.SL I 

Fig. 2. (A) Volume £ and its boundary Z; (B) Surface A generating £; (C) Surface D generating (]. 
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It is readily seen that the minimization problem (2.4) subject to the constraint 

(2.5) (where T is the solution of the heat equation with the boundary conditions 

(2.1)) is independent of the fixed temperature on boundary Y'3. In other words the 

optimal shape ~2, if it exists is independent of T 3. As a result, from now on we set 

T 3 equal to O. 

3. Reformulation of the Problem 

In this problem, the shape parameter L and the shape function R are not 
independent of each other since the function R is defined on the interval [0, L]. 

This motivates the following change of variable on the z-axis 

Z 
S" = L '  0 ~ f ~< 1. (3.1) 

The length of the diffuser is now one and it is possible to work on a fixed interval 

[0, 1]. Similarly we can scale the x I and x 2 variables by R0: 

X 1 X 2 
~, = ~2 = w - .  (3.2) 

R 0 ' /x 0 

We shall see that the shape parameter L = L / R  o will become a design parameter 
in the differential equation. The shape of the transformed domain is now 

completely specified by the new shape function ~ defined on the interval [0, 1] with 
the conditions tS(0)= 1 and ~ ( f ) >  0, 0 ~<f~ 1. The former and new shape 

functions are related as follows: 

~ ( f )  = R ( L f ) / R  o. (3.3) 

Denote by ~ and 2, 21, 2 2 ,  2 3 the transformed domain f~ and surfaces 
E, Z~, E 2, Z 3 in the new coordinate system (~1, ~2, f )  through the transformations 

(3.1) and (3.2). The transformed domain ~ is solely dependent on the function t5 
and is generated by the revolution of the surface D, 

D = {(P,f)[  0 < f < 1,0 < p < t~(f)}, (3.4) 

about the f-axis (see Figure 2C). The surface D has four regular boundaries: 

s,=((p,~)lo<p<l,f =o) I 

s2 ((p, f)10 < f < l, p = ~ ( f ) )~  

$3 ((p, ~')10 < p < ~6(1), f = 1) / 

s4 ((p,;)lo<f<l,p=o). } 

(3.5) 
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3.1. Equations for the Scaled Temperature 

Introduce the scaled temperature 

k T(Ro~,  ' Ro~2 ' L~') Y(~,,~2,~) = (3.6) 

in the new variables (~l, ~2, ~) or in cylindrical coordinates 

Y( P, f ) = ~ r(  Rop, Lf  ), P = ~ + ~- (3.6a) 

This scaling of the original temperature is motivated by the fact that we want to 
define y in such a way that 

k 3T( r ,L  ) = - ~ ( p , 1 ) ,  
qin Oz 

0 ~< r = RoP ~< R(L)  = R0tS(1 ). (3.7) 

This quantity appears in the constraint on the outward thermal power flux 

through the boundary surface E 3. 
The solution of the heat equation in ~2 subject to boundary conditions (2.1) 

with T 3 = 0 coincides with the solution of the following variational equation: to 

find T in H 0 (~2) such that 

k Ox 1 3x I + Ox~ 20x~ 2 + O~z df~ = qin vdY'l (3.8) 

for all v in H0(a ), where 

Ho(a) = ( v ~ n ' ( a ) . v , ~  =o) (3.9) 

is a closed linear subspace of H1(~]). 
In the new variables ((1, (2, ~) the variational problem (3.8)-(3.9) becomes: 

to find y in Ho(f~ ) such that 

To o~, o~ + 0~2 0~2 + ~  df~ = vd2, (3.10) 
I 

for all v in H0(~ ) (same definition as in (3.9)). Equivalently, it is easy to show 
that y is the solution of the following boundary value problem: 

[(Lt2(02  0,) o2yl 
A(y)  = - ~ o  ~ { +  0~--~ + ~ ]  = 0 i n O  (3.11) 
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with boundary conditions 

OvAOY ~,, OvAOY ~2 = 1, = 0, YlE, = 0, (3.12) 

where 

Ova RTo v,-~l +V2-~7 2 +vf-~-{ (3.13) 

is the conormal derivative on the boundary Z associated with the operator A and 
the unit outward normal vector v = (vl, v2, v;) in the (~l, ~2, ~) coordinate system. 
The cost function becomes 

J(~2) = R3oJ( L,#), J ( L , ~ )  = LTrfo'fi(~')Zd~, L = L/Ro, (3.14) 

where L is now a dimensionless length; the constraint (2.5) reduces to 

O y qout 
Sup - 0 ~ A ( p )  = Sup - - ~ - ( p )  ~ < - -  

P e E3 P ~ E3 qin 

(3.15) 

which only depends on the dimensionless flux ratio 

q = qout/qin" (3.16) 

3.2. Variational Equations in Cylindrical Coordinates 

In cylindrical coordinates the variational problem (3.8) becomes: to find T in 
V o (A) such that 

rLrR z,I   V R0 
k~o "0 t ~-r ~-r +~ -z  = q i , f  ° vrdr (3.17) 

for all v in Vo(A ), where 

Ov Ov 
Vo(A ) = {v]v~v,Trr~r,V~fffz ~L2(A) andv(r,L)=O,O<~r<~R(L)}. 

(3.18) 

Similarly the variational problem (3.10) for the scaled temperature y becomes: to 
f indy  in Vo(D ) such that 

~f~(~[L~ay av ay av] fo,V(0,0)od ° fo Jo I To a - 7 + ~ - ~  - odpd~" = (3.19) 

for all v in Vo(D ) (same definition as in (3.18), but in new coordiantes (P, f)). 
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3.3. The Constrained Minimization Problem (P) 

Denote by (P )  the constrained minimization problem which consists in minimiz- 

ing J(L, /5)  in (3.14) with respect to the dimensionless design parameter L and 

design function ~ subject to the constraint 

{ oy } 
sup - ~ - ( O , 1 ) : 0 ~ < O < t S ( 1 )  ~< q, (3.20) 

where y is the solution of the variational problem (3.19). 

It is readily seen that the optimal design is only a function of q = qout/qin" The 

parameter  R 0 only appears as a scaling parameter. If L* and/5* are the optimal 

scaled parameter and function, then the optimal parameter  L* and function R* 

for the original problem (2.1)-(2.5) are given by 

L* = RoL*, R*(z )  = RoO*(Z/RoL*).  (3.21a) 

This corresponds to the following coordinate transformation: 

x 1 = Ro l l ,  X 2 = R0(2, z = RoL*f  = L*f.  (3.21b) 

3.4. Angles and Smoothness of the Solution 

In the forthcoming sections of this paper we shall need sufficient smoothness of 

the solution T to the heat equation with boundary conditions (2.1). Since the 

boundary conditions on each piece of boundary is constant, the global smooth- 

ness of the solution will only be affected by the smoothness of the function R(z) 

and the angles O t and 03 between surfaces Z 1 and Z 2 and Z 3 and ~2, respectively 
(cf. Fig. 3) 

In this section we assume that R (resp. 0) is sufficiently regular, so that the 

smoothness of T is solely affected by the angles 01 and 03 between the curve 

(z, R(z)) and the planes z = 0 and z = L, respectively. 

Away from the curves C 1 = Z1 n ~2 and C 3 = Z2 (~ Z3, the solution T is 
infinitely continuously differentiable. So we only need to study the smoothness of 

T in neighborhoods V 1 and V 3 of C 1 and C3, respectively. 

In the special geometry where 81 = ~r/2 (resp. 03 = rr/2), we can use the 

"principle of symmetry" to show that the solution T belongs to C~(V1) (resp. 

C°~(V3)) in a neighborhood V 1 (resp. V3) of the curve C 1 (resp. C3). 

/ f  

o 

tr Zz NEuM~ 
z J  DIRICHL 

~'1 Z~ 1 NEUMANN 

Z3 
ET 

.Z Fig. 3. Angles Oj and 0 3 between the surface 1~ 2 and 
the surfaces Z I and E 3. 
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Fig. 4. Smoothness of the solution in the 

vicinity of a corner as a function of the angle. 

When the angles 01 and 03 are between 0 and qr we can use the following 
results from P. Grisvard [7, 8, 9, 10]. We consider the two cases of Fig. 4. 

In a neighborhood V 1 of the curve C1, the solution belongs to H ~ +(~/0,) ~(V1) 

for all e>  0; in a neighborhood V 3 of the curve C3, the solution belongs to 
H 1 +(~/20~)-~(V3) for all e > 0. Therefore, for the range of angles we are interested 

in, there exist sufficiently small e > 0 and a neighborhood V 1 (resp. V 3) such that 

VOl,O < 0 t < ~r,3e > 0,1 + 0 1 -  e > 2 

(resp. V03, 0 < 03 < ~r, 3e>  0, 1+ ~r/203 - e>  3/2).  Then 

Tlv ' ~ H2+"(V1) fo r0  ~< o < e (3.22) 

and 

Tlv ~ ~ H3/2+o(V2) for0  ~< o < e. (3.23) 

4. Approximation of the Solution to the Constrained Minimization Problem ( P )  

In the absence of existence and uniqueness result, we shall assume the existence of 
at least one solution to problem (P )  and concentrate on the approximation of the 
solution. 

The constraint (3.20) is completely equivalent to the new constraint 

f ( L , ~ )  = 0, (4.1) 

where 

2~r [~(,)[ dy 
f ( L , ~ ) = f 2 ~ [ - ~ + q ]  d o =  Jo [ - ~ ( O , 1 ) + q ]  odo  (4.2) 

with u-  = s u p ( -  u, 0). 

Associate with an arbitrary family (e : e > 0) of small positive numbers the 
penalized cost function 

= (4.3) 

Replace the original constrained minimization problem (P )  specified in section 
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3.3 by the following family of e-indexed unconstrained minimization problems 

(P~)~>0: to find (/~, t~) such that 

J.(/~ , ,6) ~< J~(L,~)  (4.4) 

for all L and t5 such that 

L >~ 0 and V~, tS(~) >~ 0withtS(0) = 1. (4.5) 

It is readily seen that any limit point L, t5 of a sequence (L o, tS~.) as e n goes to 
zero is a global minimum solution to problem (P). This is a consequence of the 
fact that the function f is nonnegative. 

5. Differentiability of the Scaled Temperature with Respect to the Shape 

5.1. The Speed Method 

We make use of the techniques introduced by J. Cea [1, 2] (cf. J.-P. Zol6sio 
[12-15]). Let V be a time-dependent regular vector field defined in a neighbor- 
hood U of D (D, the closure of the domain D in Figure 2C) and for any point x in 
D consider the solution x to the differential equation 

d 
--~x(t, X)  = V(t,  x ( t ,  X)) ,  x(O, X)  = X. (5.1) 

Then there exists a number tt > 0 such that, for all X in D, the solution x(t ,  X)  is 
defined for all t in [0, tt]. Consider the transformation 

Tt(V) : X ~ x ( t ,  X) .  

It changes the domain D into a new domain 

D t = T t (V) (D ), 0 <~ t < t,, (5.2) 

where 

D, = ( x l x  = x ( t ,  X ) ,  X ~ D).  

It can be shown that if V is chosen in C°(0,1; Ck(U;R3)), the transformation 
Tt(V ) is a Ck-diffeomorphism from a neighborhood of D into its ring (cf. J.-P. 
Zol6sio [12, 14]). The field is called the deformation speed. 

5.2. Choice of the Speed V 

The initial three-dimensional problem consists in specifying the domain ~2. But f~ 
is z-axisymmetrical and the scaled domain 

X 1 X 2 Z ) 

~ =  ( ~ , ~ , ~ ) l ~ ,  = Too, ~ = Too ,~=  z ,  (x,, x~, z ) ~ a  
(5.3) 
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is completely specified by its boundary ~2 which is obtained by revolving the 
graph of the function t5 about the ~-axis. 

When ~ is "deformed" into (], by the speed V, the boundary Z:  must remain 
a ~-axisymmetric graph. So we shall only consider speeds V of the following 
special form: 

V(p,~') = (co(P'~'))0 ' P =  ~ +  t;22" (5.4) 

In the deformation the ~-axis and the boundary Z~ both remain fixed, that is, 

~o(0,~) = O, V~'in [0,11 (5.5) 

co (p, O) = O, 3 p in [0, 1]. (5.6) 

5.3. Derivation with Respect to the Shape 

The scaled temperature y = y((]) is defined on the domain ~. In the "deformed" 
or "perturbed" domain (]t, the new scaled temperature Yt = Y(~,) is the solution 
of the following variational problem: to find Yt in H0(f~,) such that 

£[-2fay, a¢ ay, a4~). ay, a¢] 
, [ L { g-~ at;+- at;--: at;--: + T (  - ~  l d t; d'C = f x ~ d S~ l (5.7) 

for all ff in Ho((~,), where 

Ho(~,)  = (~b G H l ( ~ t ) l ~ b = 0 o n ~ 3 ) .  (5.8) 

Assume that the angles 0~ and 0 3 (cf. sec. 3.4) are such that the solution y t of 
(_3.7) is itself smooth in a neighborhood of the curves C I = Z2 A Z1 and C 3 = Z 2 n 
Y'3. Then the smoothness of Yt in the domain (], is given by its smoothness in an 
arbitrarily small neighborhood of the surface Y'2- So further assume that the 
boundary Z2 (that is, the functions t5 and co) is sufficiently smooth in order to 
have the solution 

y ,  = (5.9) 

Any function in H2(Ot) may be extended to a function in H2(R 3) --) Hz(R3). 

So look at y, = Y((~,) as the restriction to t × ~t of a smooth function Y defined on 
[0, t l ]×R 3 (for some t 1 > 0) such that for each t in [0, t,] the map 

x ~ Y ( t , x ) : R  3 ---) R 

belongs to H2(R3). It is known from J.-P. Zol6sio [12, 14], that Y may be chosen 
in such a way that 

t --) Y ( t , ' ) : [ O ,  t l]  --) H l ( ~  3) 
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is differentiable. Introduce the notation 

Y ' =  Y0--~- t . (5.10) 
O, X E ~  t =  

Again from J. -P. Zolesio [12, 14], I" is independent of the choice of the regular 

extension Y and we call Y' the derivative of y = y((]) for the domain (] in the 

direction V. 
We shall now specify the boundary value problem of which Y' is a solution in 

the domain (L This will require the introduction of elements of tangential 

differential calculus on the surface E2. 

5.4. Tangential Calculus 

Let E be the boundary of a smooth bounded domain f~, n be a normal vector field 

defined on E, W be a smooth vector field defined in a neighborhood of E, and 

D W be its Jacobian matrix. 

It is known (cf. J.-P. Zol6sio [12, 14]) that the expression 

d i v W -  <DW. n, n) (5.11) 

only depends on the restriction W[ ~ of the field W to the boundary E. Here " . "  
and " ( , ) "  denote the product of a matrix by a vector and the inner product of 

two vectors, respectively. 

So define the tangential divergence 

divTW = d ivW - (DW. ,  n) on E. (5.12) 

It defines a differential operator on the surface E. This tangential divergence can 
also be defined by transposition in the following way. Given any ¢p in HS(E), 
s > 1, there exists # in Hs+l/2(f~) such that 

~ =cp o n e  

o+ 
7n 0 on E. 

(5.13) 

The gradient XTq~ on E is a tangent vector and is in fact independent of the choice 
of the function ~b. So define the tangential gradient of q0 on the surface E as 

(5.14) 

where cp is a given function only defined on E. 

From J.-P. Zol6sio [12], we have 

£divTW do = - £<W, vT > do - £< H W, n> do, (5.15) 

where H is the "mean curvature" of the surface E (here we pick H = (k 1 + k2)/2, 
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where k 1 and k 2 a r e  the upper and lower bounds of the normal curvatures on Y~, 
see, for instance, Do Carmo [1]). 

5.5 Boundary-value Problem for Y' 

Again from J.-P. Zol6sio [12, 14], the shape derivative Y' of the scaled tempera- 
ture y((]) in the direction V is the solution of the following variational problem: 

to find Y' in Ho((] ) such that 

£[L2(av' a~ aY' 0~) dr' ar]dtd ~ 
0~1 0~1 + O~ 0~2 q Og 0~" 

(5.16) 

for all ~0 in H3/2+°(R3), o > 0 arbitrary, such that qv = 0 on Z3. 

Remark 5.1. It is known from J. -P. Zol6sio [14] that for s > 2 

y e /4 ' (~)  n/-/0(0) = Y'~/-/s-l(~) n/-/0(~). (5.17) 

It follows from (5.16) that Y' is the solution of the following boundary-value 
problem: 

0 io% t 
OY' on 21 ) 
Ov A = 0 

2~va Cpdo = - L 2 + + v) do 
2 O~l O~l at2 C~2 O~ Off ]\--' 

Vcp ~ H3/2+"( (~) ,  such that 3 a neighbourhood V 2 of  ~'2 where 

~ = 0 o n  V2 (") ~ 3 . 

(5.18) 

(5.19) 

For 0 < o < ½, the closure in H3/2+°(~)  of the set of functions 

{~p ~ H3/2+°((~)13 a neighborhood V 2 of 22 such that cp = 0 on V 2 N "2,3} 

(5.20) 

coincides with 

= {~0 ~ H3/2+~((~)lcp = 0 on £e n Z3)- (5.21) 
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Recall that the injection 

H3/2+°((]) ~ C ° ( ~ )  (5.22) 

is continuous and that the evaluation map 

q0 --, ¢Pl~2n~3: C ° ( ~ )  ---' C°(`22 c~ Z3) (5.23) 

is also continuous. For o in [0, ½] there is no condition on the partial derivatives of 
¢p on `22 C3 ̀ 23- As a result (5.19) is true for all ~p in • as defined in (5.21): 

[ OY'q~do=_ f_ L2 Oy Oeg Oy 09~ Oy 09) 
(5.24) 

Vcp ~ H3/2+0((~) such that q0 -= 0 on Z2 C~ "23, 0 < o ~< ½. 

We now show that condition (5.24) is a Neuman condition on the boundary 
`2 2- To see that we introduce the matrix 

° il 
(~=  0 L 2 

0 0 

(5.25) 

and perform the following computation on the expression 

, 04, 04, ~ o~2 o~: o~ ~ -  (v, ~) do. 

By rewriting 

(5.26) 

E = - £ ( ( v ,  ~ )~ .  v y ,  v ~ )  do, 
2 

where (~'Vy is the vector 

(5.27) 

Lz OY L2 Oy Oy ) (5.28) 

Define the field 

w = (v ,  . )ci  . v y  

and rewrite the right-hand side of (5.27) as 

(5.29) 

O~P v)do. (5.30) 
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The second term on the right-hand side of (5.30) can be, rewritten in the form 

(5.31) 
~2 

But (W, v) is zero and the integral (5.31) is also equal to zero: by definition of W 

<w, ~> = <v, ~><~, ca. vy> 

= <v,~><~e .~,vy> = <v, ~>oY = 0 

on 2 2. As for the first term on the right-hand side of (5.30), it can be evaluated 
with the help of identity (5.15): 

f+divrW~do = -~<W, vrq))do-~Hq)<W,v)do (5.32) 

with the vector field W chosen as in (5.29). On 21 t2 23,  Wis zero since (V, v) is 
zero by our choice of the speed V. So we can substitute Y2 for Y in identity (5.32). 

Moreover, the second term in that identity is zero over 22 since we have already 
shown that (W, u) is zero on 22. Finally we obtain the following chain of 
identities: 

~2divrWcgl~,_do = - ~ f W ,  Vrcp) do = -~2<W, Vq))do (5.33) 

for all ep in H3/2+°((~), . Notice that the above identities do not require that ep be 

zero on 23. From identities (5.19) and (5.27) 

~ OY'g~do = - £  (W, Vq))do,V~p ~ Ho(f~)AH3/2+°(e). (5.34) 
2 OVA -2 

Combining identities (5.33) and (5.34) 

~ or' d o =  f divrW¢ P do,Vq0 ~ Ho(~)  (3 H3/2+"(~).  (5.35) 
, OvA ~,_ ~x2 I~, 

For each h in @(22), there exists cp in H0(fa)(~ H3/Z+°(fa) such that 

eD ~ OPAC)~ Z1 O~'AC~I~ ZI = 0 , - g - - -  = h ,  = 0 .  

h do = divrWh do, 
-2 A J~'2 

Vh ~ @(Y'2)- (5.36) 
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But for y in H2+~((~), e>~ 0, W ~ Hl+~((~) and divrW c H-I/2+e(~2) (use the 
fact that y is harmonic to define the trace divrW). So the right-hand side of (5.36) 
is continuous for the HI/2-~(1~z)-topology. By density of 6~(E2) in H 1/z ~(Z2) 
for ~ >/0, identity (5.36) holds for all h in H1/2-e(~2) and necessarily 

OY' 
= divrW = divr(~.Vy(V, ~,)) in H- ' / 2+~(~2) .  (5.37) 

Ov a 

We summarize the following useful relations: 

u A = ~.u (conormal associated with the op- ] 
erator A of (3.11) and the normal 

[ vector u) 

A~ = - div((~.Vrp). 

(5.38) 

If the cotangential divergence (with respect to the operator A) is defined as 

divT~(/~ ) = divT(~./~),  

where/~ is a vector function from I~ into R 3, then (5.37) is equivalent to 

OY' 
= divr. ( Vy(V, ~,)). 

Ou A 

(5.39) 

(5.40) 

6. Eulerian Derivative of the Cost and the Constraint 

Recall from sec. 3.1 that the cost function to be minimized is of the form 

J(L, ~) : LJ((]), (6.1) 

where 

1 2 

J((~) -- ~fo ~(~) d~(= fhd~ld~2d~,thevolumeof(~). (6.2) 

Following J.-P. Zol6sio [12, 14], define (whenever it exists) the Eulerian derivative 
dJ(~]; V) (or shape derivative) at ~ in the direction of the field V as 

dJ(~); V) = lim [ J ( ~ t ) -  J(f~)]/t. (6.3) 
t'~0 
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6.1. Shape Derivative of the Volume 

From J.-P. Zol6sio [12] the shape derivative of J(~)) is 

dJ((]; V) = f~(v ,  v) do, (6.4) 

where (V, v) is the normal component of the field V on 2. It is equal to zero on 
21 and Y'3 and 

(V, u) = ~ov r on 22. (6.5) 

Finally 

aJ(L, ~; v )  = LaJ(~;  v)  = L£~raO 

= Lf0'27rw(tS(~ ), ~')tS(~) d~. (6.6) 

6.2. Shape Derivative of the Constraint Functional f 

Recall that 

= + = 2~r fi'(1)[Oy, 1)+q]-pdo 
f (L , t~)  £ 3 [ ~  ql do Jo [ -~ - tp ,  (6.7) 

and that Y(t, O, ~) is a smooth extension ofy  = y((]). As a result for t > 0, 

= 2~r [~;'O)[J0 [-~-0Y (t; P, 1)+ q] odP. (6.8) f ( L ,  ~,) 

We consider two cases: 
1) the constraint is saturated everywhere on the boundary 2 3, 

-[O-~(p,1)+ql > O, Vp, O~<p < t~(1), (6.9) 

2) the constraint is not saturated on a subset of the boundary 2 3 of non-zero 
measure. 

In both cases we know that 

f~ 0-~A do = 0 ~ --£3ff~YuAdV =f~,ff~YuAdo=¢r. (6.10) 
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As a result 

Oy 
O~,A (O,1) ~ q, 

Oy 
Ov A (p ,1 )  > q, 

The condit ion 

~(1) >/ V/1/q 

M. Delfour, G. Payre, and J.-P. Zol+sio 

V0 ~< p ~< iS(l) ~ tS(1) >~ ~ / i f q  

V0 ~< p < t~(1) = iS(l) < ! f [ / q .  

(6.11) 

(6.12) 

(6.13) 

is necessary in order  to satisfy the constraint  on the boundary 2 3. In case l 

condit ion (6.13) will be violated. In order  to eliminate that situation we make the 

following hypothesis. 

Hypothesis 6.1. The shape function t~ will satisfy the following conditions 

~(0) = 1 and ~(1) > ~ ] / - q .  (6.14) 

Remark 6.1. In case 1 

= ~- (1-q t~(1)  2) 

do = -- f~ ff~fA da -- q~r~(1)2 

(6.15) 

and 

d f ( L ,  t~; V) = - q2rrt~(1)~(t~(1), 1), (6.16) 

where V=  (~0,0) is the speed of the points in the domain.  In this situation the 

gradient says that the point  (1, t~(1)) has to be moved away from the ~'-axis, but it 
does not say what should be done with the remainder,  {(~', ~(~') : 0 ~< f < 1), of the 

boundary  E2. Hypothesis  6.1 will ensure that case 1 and this situation do not 

o c c u r .  

In the second case, we introduce the following hypothesis. 

Hypothesis 6.2. There exists a neighborhood N of the curve C 3 = 2 2 A 2 3 such 
that 

[ ~ ( o )  Ov + q ]  = Vo ~ 2 3 ~ N. 
] 

0, (6.17) 

Under  that hypothesis the integrand of the constraint (6.7) is zero in the 

neighborhood of t~(l). So there will be no boundary  term on C 3 and the 
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directional derivative o f f (L ,  0t; V) at t = 0 will be given by 

d ~0) 1)+q odo t=o' (6.18) df(L, ~; V) = ~ 2,r (t; O, 

where d/dt  denotes the right-hand side derivative. By using general results in 
J.-P. Zol6sio [12, 14], we know that expression (6.13) is equal to 

~rj0 - ~ t 0 , 1 ) X +  (o)odo + 2,r ~<1) ' 

where 

X+(O)(resp. xo(P) ) (1,  if OY(o,1)+q<O(resp.=O) = 0f (6.20) 

0, otherwise. 

We introduce another hypothesis in order to obtain the linearity of the derivative 
df((~; V) with respect to V. 

Hypothesis 6.3. For physical reasons, we shall assume that when 0 < q < 1 the 
subset of all O,0 ~< p ~< ~(1), such that 

Oy (0,1) = q (6.21) 
0pA 

has zero measure. 
So the characteristic function X0 is zero almost everywhere in [0, ~(1)] and the 

second term in (6.19) is zero. Under Hypotheses 6.1, 6.2, and 6.3 

d f (L ,# ;V)  = _z , r j  f~<o oY'+ - ~ -  ~p, 1)x+ (p)odo. (6.22) 

Hypotheses 6.2 and 6.3 can be combined into a single stronger hypothesis. 

Hypothesis 6.4. The function 

Oy 
p ~ ~ - (p ,1 ) : [0 ,~ (1 ) ]  ~ R (6.23) 

is monotone strictly increasing. 

6. 3. Derivative of the Penalized Cost 

Under hypotheses 6.1, 6.2, and 6.3 and in view of (4.3), (6.6) and (6.22), the 
Eulerian derivative of the penalized cost is given by the following expression: 

- , I f ~ < , > O Y '  
~ d J , ( L , t ~ ;  V ) =  Lf0 ~0(O(~),~)O(~)d~- e "to 0f (P ' I )x+  (p)pdp. 

(6.24) 
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7. Derivat ive  with Respect  to the  Parameter /~  

7.1. Derivative of the Cost Function 

Trivially 

°J(L,~) = j(~)= ~fo'~(Wdf 
OL 

(7.1) 

7.2. Derivative of the Scaled Temperature 

Let y be the solution of problem (5.7) for t = 0. By the implicit function theorem 
(cf. J. -P. Zol6sio [14], G. Chavent [3]) we know that the maps L ~ y : R + ~ H2(~)  

is differentiable. So YL = Oy/OL is the solution of the following variational 
problem: to find YL in H0(a ) such that 

£[L2( OYL O+ 3y L a + )  OyL O+]d~df 

=_2L£(  Oy O~/ Oy 3q~)d~d f (7.2) 

for all ~b in H 0 (~). 
We can further specify the boundary-value problem of which YL is a solution: 

~7,~ + ~ ~ +-UI k ~ + ~  
OYL_ L2( OYL 3YL ] OyL 

( oy oy ) 
= - 2 L  p , ~ + 1 , 2 ~  2 o n 2 ,  U 2  2 (7.4) 

Using equations (3.11)-(3.12) for y the two equations (7.3)-(7.4) are equivalent to 

2 O2y 
AyL L Of 2 (7.3a) 

Oyc ~, OyL 2 Oy, yL~ = 0. (7.4a) 

For the condition on El we have used the fact that o n  ~'l 

u = ( 0 , 0 , -  1) ~ ~,, = ~2 = 0. (7 .5)  
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Remark 7.1. In view of the boundary conditions (7.4a), YL has the same 

smoothness as y provided the boundary ~2 is sufficiently smooth. 

7. 3. Derivative of the Constraint Functional 

As in section 6.2 we compute the right-hand side derivative: 

--dLdf (L,o)  = - 2~rfa(')Yo ~ OyL (0, 1)X+ (O)P do 

+ 2~r foa(l'[ ~ ( p ,  l )+ q]- Xo(O )p dp, (7.6) 

where X0 and X+ are as defined in (6.11). For physical reasons we have already 
assumed that X0 is zero almost everywhere (cf. Hypothesis 6.3). As a result 

d 
= -2~rfoa")-~L (0, 1)X+ (o)odo. (7.7) yil~"L, ~) X 

7. 4. Derivative of the Penalized Cost 

In view of (4.3), (7.1) and (7.6) 

10J~.-  2-1 /'1~2(~.) 1 Ca(l)OyL" " 
2 r r - ~  {L '¢5)=  Jo d t - e &  ~-(-(O,1)X+(O)od O. (7.8) 

8. Gradient Computations 

Recall expressions (6.13) for the derivative of the penalized cost with respect to 
the shape of the volume (] and expression (7.8) for the derivative of the penalized 
cost with respect to the parameter L. They both involve a term of the form 

X(~b) = - ~ 3  X+ do = ao ~ - ( O , 1 ) X +  (p)odp (8.1) 

with ~p = Y' and + = YL, respectively. 
Following a standard procedure we shall now introduce the solution p of an 

appropriate adjoint system and express ?t(Y') and X(yL) as a function of y, p and 
the speed V. The following bilinear forms will be useful in the forthcoming 
discussion: 

a(lp, q0) 
o~, 0~ + - -  - -  

(d~ = d~, d~2), 
£( o~ o~ 

b(~p,qo) = - 2 / ,  0~, 0(, 

0¢ o~) o~o~] 
(8.2) 

0~ 0~ ) 
ot~ 0~ dtdf (8.3) 
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and 

0~ 1 0~  
Og' Oeg ) O~/ Oeg](V,u)do (8.4) - - +  

8.1. Adjoint Equation 

Let p be the solution of the system 

32p , 02p 

P = X+ on 2 3 

Op 
= O o n 2 ~ u £  2. 

= 0 i n O  

(8.5) 

The function X+ is the characteristic function of a disk centered in r = 0 on the 
surface E3. So we only have 

X+ ~ H ' /2 -~(E3) ,  Ve > 0. (8.6) 

As a result p belongs to H 1-~((~) and even to D]-~((~), where for 0 < s < 2, 

D~(O) = (v ~ HS((~): Av ~ ZES-2(~) )  

Zs -2 (~ )  = (Z2-~((~)) '(  ' =  topological dual) (8.7) 

and d(x, ~) is the distance from x to the boundary I~ (cf. Lions and Magenes [1 l, 
Vol. 1, pp. 183, 199]). 

We shall express )~(+) as a function of p. For all ~ and q~ in Hz(D) the 
following identity holds 

(AqJ ~)L2(~)+ ( 0q, 0~ 
, "~pA, ~)  L2(~) = (~k, A~) L2(h) + ( ~ ,  ~'~A ) L~(~). (8.8) 

When ~ and ~p are such that 

Acp = 0, aO-~. ~ = 0 o n ~  1 U ~2andqJ],~3 = 0, vJ,~ (8.9) 

the right hand side of identity (8.8) is zero and the following new identity holds 

) 
q~ ~ q°/L2(2, u22) 
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By continuity the right-hand side of (8.10) makes sense for all q~ in H l ~((]), 
e < 1/2, for which identities (8.9) are verified. In particular one can pick ¢p = p, 
the solution of the adjoint system (8.5). Finally 

= p (8 .11)  

for all + in H2((])N Ho(~ ). 
It is interesting that the right-hand side of expression (8.11) is continuous for 

~b in DJ +~(~)N H0((~ ) sincep belongs to H l ~((]) andp]~, u 2~ to H1/2-~(£ l U £2). 
However in that case expression (8.11) must be written with duality products: 

for all } in D~+~(fi)n Ho(fi). 

/o+, \ 
- -  p 

= ( A + , p )  z, ~(fi)+\ Ov A ]H,/a-,(~lUk2 ) 

(8.12) 

It is useful to summarize the above discussion in the following proposition. 

P r o p o s i t i o n  8.1. For all e, 0 < e< ½, and all ~ in DJ+~(f~)NH0(~), expression 
(8.12) holds. I f ,  in addition, ~/ belongs to H2(~) ,  expression (8.12) reduces to 
expression (8.11). 

Remark 8.1. Equation (8.12) suggests that p could be obtained by transposition 
of the linear map 

3q~ 2,u22 
--* A+,  ~ : DI+~(~)  n Ho((~ ) --* E '+~((~) × H1/2+e(~, U ~2) 

(8.13) 

provided that it is an isomorphism and that the various spaces DJ +~, "- l+~ and 
H 1/2+~ are well-defined. This would require an adaptation of a result in Lions 
and Magenes [11, Vol. 1, Thm. 7.4]. With such spaces, the linear map 

( - )  : n G(f ) --" R (8 .14)  

would be continuous. So by the method of transposition one could claim that 
there exists a unique pair 

P0, Pl ~ El-~((~) × H 1/2--e('~ 1 t..) ~2) (8.15) 

such that 

(AqJ,po)z , - , ( f i  I +/,O~-~-~P ,p l  / = X(g,) (8.16) 
\ ouA / t/l/~-~(k, u k2 ~ 
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for all ~b in D]+~(O)NH0(~). Now by comparison of (8.12) and (8.16) and 
uniqueness of the solution to (8.16), we should formally obtain the identities 

P0 = p i n ( ]  and P l  = Pl~,u~:- (8.17) 

Remark 8.2. Whenx+  = 1 on Z3, the solutionp of (8.5) is identically equal to 1 
in ~, the closure of fL 

8.2. Computation of X(Y'). 

Recall from section 5.5 that Y' is the solution of the boundary value problem 

{ AY'=  0 in (~ 

OY' OY' 
Ov A ~, = O, Ov A x2 = diVT(6~-vy(V, v)) ,  Y'I~3=0. 

(818) 

Also from Remark 5.1 the smoothness of Y' is related to the one of y as follows 

y ~ HS((~) = Y ' ~  HS-l((~) ,  s >1 2, 

provided that the boundary ~2 is smooth enough and that the angles 01 and 03 are 
small enough. 

So we assume for the moment that y belongs to H3((~) which means that Y' 
belongs to Hz(O)A H0(O ). Then set ~k = Y' in expression (8.11): 

?~(Y') = (AY' ,p)L2<h)+ ~ Ov A L2<2, u2~) (8.19) 

In view of (8.18), identity (8.19) reduces to 

( OY' 
~ (Y ' )  ova ' P l L2  2, (8.20) 

We have seen in section 5.5 that (cf. (5.31)) 

OY' 
0p A = divrW, W = ~ . v y ( V ,  v) (8.21) 

and that for all ~ i n  H3/2+°(~) (cf. (5.27)) 

~ divrW~l~2 do = - ~ 2 ( W ,  Vep) do. (8.22) 

We would like to set cp = p in (8.22). 
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Consider two cases: 

(i) X+ =1 a.e. on Z3 = P  =1 in ~ ) ~ p  ~ C1(~). 
(ii) X+ = 0 on a subset of Z3 of nonzero measure. 

Case (i) corresponds to complete saturation of the constraint on the boundary 
E3- This cannot occur under Hypothesis 6.1. As for case (ii), we know that under 

Hypothesis 6.2, there exists a neighborhood N of the curve C 3 = E2 f3 "~'3 such that 

P = X+ = 0 on ~V C~ E3 (N, the closure of N). This makes it possible to show that p 
belongs to H3/z+°(V2) in some neighborhood V 2 of Z2. By construction, p 

globally belongs to H 1 ~((~) for all e > 0. However, in order to substitute p into 
(8.22) we only need to show that the restriction o f p  to V 2 belongs to H3/2+°(V2) 
for some neighborhood V 2 of £2. This is precisely what Hypothesis 6.2 provides. 

We can always construct this neighborhood V 2 of Z3 such that E3 c~ V 2 c N. This 

neighborhood does not contain the discontinuity of the characteristic function 
X+; so the solution p belongs to H3/2+°(V2) in that neighborhood of Ez- 

Setting q0 = p in (8.22): 

_ [  L 2 0 y  Op 
2 0~1 C~I 

3y Op ) Oy Op] 

(8.23) 

By combining (8.20) and (8.23) we finally obtain 

)~(Y') = B(y, p), (8.24) 

where B is as defined in (8.4). 

Remark 8.2. In deriving expression (8.24) we have assumed that y at least 

belonged to H3((~). This meant that t5 was sufficiently smooth and that the angles 

01 and 03 were sufficiently small. However, in the end the bilinear form B(y, p) is 
continuous and well-defined for y and p in H3/2+°(V), o > 0, for some neighbor- 

hood V of E2- In view of the discussion at the end of section 3.4, this means that 

we can relax conditions on angles 01 and 03 and keep the following ones: 

0 < O l  <~r ,  0 < 0 3  <~r.  

8.3. Computation of ~(YL) 

Recall that the smoothness of y L (Remark 7.1) is the same as the smoothness of y 

provided that the boundary ~'2 is SUfficiently smooth and that the angles 01 and 03 
are small enough. Assume that y belongs to H2(0) .  Thus YL belongs to H2(f~)n 

H0((~ ) and we can set + = YL in (8.11): 

)t(YL) = (AyL'P)L2(i~)+ ~ OvA 'P 2 + 1 OvA 'p " 
L (21) L2(22) 

(8.25) 

In view of identities (7.3)-(7.4) (resp. (7.3a)-(7.4a)) for YL the above expression 
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reduces to 

X ( y i . )  = + - _ f pd(df+j~2v~vpdo . ( 8 . 2 6 a )  

Remark 8.3. If somehow we "regularize" the characteristic function X+ so that p 
belongs to Hl((~), the right hand side of expressions (8.26) and (8.26a) can be 
integrated by parts to yield 

L(  Oy Op Oy OP )d~d~ = b(y ,p  ) (8.27) 
X(yL) = - 2 L  0~5, 8~1 "~- 0~2 0~2 

(cf. notation (8.3)), 

2 c Oy ap dL (8.27a) X(y,) = -L J ~  o-7 d~ 

Remark 8.4. Expression (8.26) only requires that y belongs to H2((~)n H0((~ ), 
that the boundary Z2 be smooth (say # belongs to C'(0, 1)) and that the angles 0j 
and 03 he such that 

~r 
0 < 01 < W , 0 < 03 ~.~ - ~ .  

When p is "regularized" in such a way that it belongs to HJ(~),  the last 
requirement on 03 can be relaxed to the one 

0 < 03 < ~r. 

8. 4. Final Expressions for Gradients in Cylindrical Coordinates 

Let Assumption 6.1 and 8.1 be verified. In cylindrical coordinates, expressions 
(8.2), (8.3) and (8.4) become 

a(~ q~) fld~f~(~)27 r dp[L=a~ a~w 
' = ~o ~o P 8p 8p + 

Io fo o+o  b(~,cp) = - 2 L  ~df ~(f)27rod 0 O0 O0 

B(#~'eP)= - fo'[L2Oq~ Op 

Recall that 

X(r') = B ( y , p ) ,  

a¢ am ] 
- g T (  

a+ am 1 
+ #],o(#(~),~)2~#(;) d~. 

M. Delfour, G. Payre, and J.-P. Zolesio 

(8.31) 

(8.28) 

(8.29) 

(8.30) 
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where p is the solution of the boundary-value problem (8.5) and y is the solution 
of the variational problem: to find y in H0(~2 ) such that 

a(y, ep) = l(rp), Vcg ~ Ho(~) ,  (8.32) 

where 

l(ep) = 2~rf0'~(0, P)pdP. (8.33) 

Expression (6.24) for the gradient of the penalized cost with respect to the shape 
of the volume ~ can now be rewritten in terms of p: 

1 d j ( L , 0 ; V )  = f o l ( L _  1 [L2~py 3p Oy Op] }#(~.)oa(0(~.),~.)d ~. ; - 

(8.34) 

Remark 8.5. Notice that the boundary conditions 

Op ~, O V ~, 
Ov A = Ov A = 0 

can be used to obtain 

1 dO(~) 2] Op ~ a~(O(f) , f )2~rO(f)df .  

This alternate expression can also be used in (8.34). 
Similarly recall that 

[ 1 dO(~) 8Y fe2p d~ 8~ 4~r f l . u  f~(f) . OZy fo 
)t(y£)-- ~, JOaSJo Pap~TP+ I~:: (8.35) 

(the latter expression for X(yL) is preferred to the equivalent one 

= P I d Oy )~(YL) 4rrL[('dgf°{;ld O-~-(P~O ) - fo ~O(~)3poI~PI~' )" (8.35a) 
La ° % 0a0 

Expression (7.8) for the derivative of the penalized cost with respect to the 
parameter L can also be written in terms of p: 

1 dJ 1 1 . 2+ [ 2 _:~, dO :~, Oy 

+ p;(U)p oq2y p 
:o - ~  dp]} d~. (8.36) 
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variational problem: to find p in Hx((~ ) such that 

a(¢,  p) = 0, v~ ~ Ho(~) 

where 

Hx(~) = ( ¢ ~ w ( ~ ) : + l ~ , = x + " )  

and X+ n is the "regularized" X+. Moreover 

2 /'ld~/~(~)2vr d Oy Op 
X(yL) = b(y,p) = L Jo Jo P p ~  a~ 

Oy Op 
2LJold~Jo f ~p Op 

and 

M. Delfour, G. Payre, and J.-P. Zol~sio 

If p is "regularized" to have it in HI((~). Then p is the solution of the 

2~r dL e---{ Jo -~  S J 

(8.37) 

(8.38) 

(8.39) 

(8.4o) 

9. Solution of the Penalized Problem 

In this section we describe the method which will be used to compute and 
approximate the solution to the minimization problem 

Inf{ J~(L, ~): L > O, ~ satisfying (9.2)}, (9.1) 

where 

~(~') > O, 0 ~< ~ < 1, t~(O) = 1, ~(1) > l ~ q .  (9.2) 

Problem (9.1) is first rewritten in the following equivalent form 

Inf(Inf{ J~(L, t~): ~ satisfying (9.2)): L > 0). (9.3) 

Our original problem (9.1) is then divided into the following two subprob- 
lems: 

I) given L, find ~(L)  satisfying (9.2) such that 

V~ satisfying (9.2), J~(L, ~(L)) <~ J~(L, ~), (9.4) 

II) Find L, > 0 such that 

vL > O, J~(L~,~(L~)) ~< J~(L,~,(L)). (9.5) 
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Problem II will be solved by a one-dimensional search. So we only con- 
centrate on problem I) for a fixed/~. We have seen that expression (8.34) gives the 

"directional derivative" of J j (~)  with respect to the "speed" or "velocity field" 

v ( P ' t )  = " o 
(9.6) 

It is of the form (cf. (8.34)) 

j(  v ) = fo'f°(t )v( t  ) dr, (9.7) 

where 

v ( t )  = w ( f i ( t ) , t )  (9.8) 

and 

fo( t  ) {[, l[L2ay O p 3y Op]} ~ 
= - - 2~rp ( t ) .  

a0 ap + -g( 
(9.9) 

The computation of f0  involves the computation of the state y and the adjoint 

state p. 

9.1. Approximation of y and p 

We use a finite element method to approximate the solution y of problem (8.32) 
and the solution p of problem (8.5). Since both solutions are defined on the same 

domain (], we shall use the same triangulation of the domain D which generates 

the domain ~ by revolution about the ~-axis. 

The triangulation of the domain D will be obtained by deformation of a 

triangulation of the unit square (cf. Fig. 5) 

D O = ( ( p , ~ ) 1 0 < p < l , 0 < ~ < l ) .  (9.10) 

Partition the ~-axis into M >/1 intervals defined by a sequence (~'j" j = 1,2 . . . . .  M 

M÷l=l ~,\\ x\ 
, \x, \ i x  ̀ \ 
I X  ̀ ~ \ \ \ X 

'x,\  ' \ \  ! \ , x \ ~ \ \  ~ \  \ \  

' \ \  X \ \  X  ̀ X`X \ 
\ \ \ \ 

~ 2  \ ' \ ! \  \ ' \ \  x  ̀ \ \  x  ̀
X`N \ X  ̀ \ 

~1 = 0  I I I I I I I b 
0 I 
II II 

P, P2 P3 " '  PN., Fig. 5. Triangulation of the unit square D O . 
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+ 1) of real numbers  such that 

f~ = O, f/+~ > f / ,  j = 1,2 . . . . .  M,  fM+, = 1. (9.11) 

Define the parameters  

k = M a x { f : + , -  f :~  = 1 . . . . .  M}.  (9.12) 

Parti t ion the o-axis into N >/1 intervals defined by the sequence (Oi = (i - 1 ) / N l i  
= 1 . . . . .  N + 1) of real numbers.  Consider  the points  

Pij = ( p i , f j ) ,  i = 1,2 . . . . .  N + I ,  j = l , 2  . . . . .  M + I .  (9.13) 

A tr iangulation of the domain  D 0 is obta ined  by considering the set of all 

triangles with vertices 

(e, ,+,.e,+,.:.e,+,./+,) (9.14) 

for i =  1,2 . . . . .  N + I  a n d j  = 1,2 . . . . .  M + I .  

The boundary  "2 2 of ~ and, a fo r t io r i ,  the boundary  S 2 of D, is complete ly  

specified by the shape function iS. In the finite element approach the boundary  S 2 

has first to be approx imated  by a polygonal  curve. This means  that  the function 

is approx imated  by a cont inuous shape function t5 k which is linear on each 

interval [f~, fj+ ~], j = 1,2 . . . . .  M. Equivalently, Pk is completely  characterized by a 

sequence (iS/It5 / > 0, j = 2 . . . . .  M +  1, t51 = 1) of real numbers  in the following way 

tSk(f) - ~/-~I--~PJ + ~ ? / 0 / + "  f ~ [ f / , f j + l ] ,  (9.15) 

for j = 1 . . . . .  M. This defines a polygonal  domain  

D,  = ( ( p , f ) 1 0 < f < l , 0 < p < t S , ( f ) )  (9.16) 

which is an approx imat ion  of the original domain  D. 

The tr iangulation of the domain  D k is obta ined f rom the tr iangulation of the 

unit square D o by moving each vertex P i / i n  D o to the new posit ion (cf. Fig. 6) 

Pi/ = (P/Os , f j )  = ( ( i - 1 ) ~ j / N ,  f j )  (9.17) 

in the (0, f ) -p lane  f o r j = l , 2  . . . . .  M + I  and i = 1 , 2  . . . . .  N + I .  Notice that  the 

tr iangulation of D o has been chosen in such a way that  the resulting triangles in 

the domain  D k are not too much  distorted. Associate with the tr iangulation of D k 

the pa ramete r  

h = M a x ( k ,  k '},  k '  = M a x { t S J N ,  j = 1 . . . . .  M +  1). (9.18) 
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s t 

F J ,J , / i / z  ,,.o, 
O i 
II I I  

PJ Pz P~ "'"  P~+j Fig. 6. Triangulation of the domain D,. 

Define the finite dimensional subspace Voh(D,) of Vo(D,) as 

V0h(D,) = (v~lv h ~ C ° ( / ) , ) ,  v h linear on each element, 

vh(p,1) = 0,0 ~< p ~< ~,(1)} (9.19) 

(the dimension of this space will be M(N+ 1)). The approximation Yh of y is 
defined as the solution of 

Yh ~ V~ ( D, ) such that for all v h in Vo h ( D, ) 

O0 O0 t- 0~- Of ododf= vh(P,O)pdo. 
(9.20) 

By expressing Yh with respect to a basis of V0h(D k), problem (9.20) yields a linear 
system of algebraic equations and its (unique) solution provides the components 

of Yh" 
The approximation Ph of p is obtained by first regularizing the characteristic 

function X+ in order to put the adjoint variable in the space HI((~). Then Ph is 
computed in a similar way toy h by now using the variational problem (8.37)-(8.38). 
Choose as the regularized function X+ R the function Xh+ which is defined by 

assigning to the points 16 i = PM+ ~Pi, i = 1 . . . . .  N + l, the values 

1, iff ~Yh(pi,1)'~-q)<O 
-- 'l 0° h 

0, if~ Of ( tSi ,1)+q)>~0 

(9.21) 

and letting Xh+ be continuous on the whole interval [0, PN+I]= [0'PM+I] and 
linear on each interval [t~i, 0i+ 1], i =  1,... ,N. 

Associate with Xh+ the function space 

v h ~ cO( / ) ,  ) Vh,linear on each element ) 

Vxh(D*) = vh vh(P'I)=xh+(P)'O<~p<~p*(1) t 
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Define Ph as the solution of the variational problem 

Ph ~ Vx h (Dk) such that for all v h in Vo h (D k) / 

k op 07- + o~- a~ p dp df = 0. 

(9.23) 

9.2. Gradient Computations for the Approximate Problem 

In the discretization process we have restricted our attention to domains ~h which 
are defined by revolution of the surface D k around the f-axis. The surface D k is 
itself completely specified by the function t5 k on [0, 1] which belongs to the 
subspace 

P~= ~L2(0,1) 
is continuous on [0, 1], t~(O) = 1 / .  

f is linear on [fj, fj+l ], J = 1,.. . ,  M 
(9.24) 

We discretize expression (6.24) which gives the Eulerian derivative of the 
penalized cost for the speed V= (Oa,0): 

, ! f~<,>ar '  dJ(L,~;V) = 2~r(Lf0~(f)Oa(~(f) , f )df-e j  ° Of ( P ' l ) x + ( p ) p d P }  " 

(9.25) 

The "discretized speeds" V e = (Oak,0) are chosen in such a way that on Y.~ (the 
lateral boundary of ~]h) 

Oah(P(f) ,f)  = V(f) ,  (9.26) 

where v belongs to the subspace 

v is continuous on [0, 1], v (0) = 0 } 
P ~ =  v ~ L 2 ( O ' l )  v i s l i n e a r o n [ f j , ~ ' j + l ] , j = l  . . . . .  M (9.27) 

The variable Y' (solution of (5.16)) is approximated by Y~ the solution in V~(Dk) 
of the variational problem 

L2 3Y;, 3ep OY;, 
a7 ap + a7 a~ p dp d~ 

= _f,[L2OYaot 0__~_~ + _ ~  ~ ] 2rr~ (~') o~ (~ (~) ,~)  d~ 
a0 a0 j 

(9.28) 

Problem (9.23) also leads to an algebraic system which can be solved in an 
analogous way to problem (9.20). 
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for all cp in Voh(Di,). The normal derivative OY'/&, A on 23 (which is equal to 
(OY'/Of)(O, 1)) is approximated in a weak sense by using Green's formula 

~-p ~do = L20q(10q(,-{- 0(2 ~22 -{'- Oq~" "~  d~ 

+ £ -  A Y'cp d a  (9.29) 

and the characterization (5.18)-(5.24) of Y'. In the end 

O( 10~ 1 4 a( z 042 + Of off 

2 O(1 O(1 "~- 0(2 0(2 "+--~- ~ 
do (9.30) 

for all cp in H3/2+°(~) such that cp = 0 on 2 2 n "~'3. Using the approximation Y~ 

or' (0r' 1 
of Y' and speeds V h, the normal derivative ~ is approximated by ~ Ov A ]h 

defined as 

23)h\ OVA } % do = fh L2 Ol~h + df]h h h 0(1 0(1 "}- 0(2 0(2 Of Of 

x (vh, . )  do (9.31) 

for all % in Vn(Dk), 

Vh( Dk) = { VhlVh ~ C°( Dk ), vh linear on each element} (9.32) 

such that % = 0 on ('~2)h N('23)h. Finally the approximation of the Eulerian 
derivative of the penalized cost for speeds V h is given by the expression 

d l f (L ,~k ;V  h) = 2~{ Lfo'~k(~)%([~k(~),~)d~ 

l[~k(1)[OY'] (p ,1)X + (p )pdp .  (9.33) 

If we assume that X+ is zero on 23 in a neighborhood of 2 2 N 23 and if we 
regularize X+ to Xh+, it is easy to verify that expression (9.32) becomes 

1 0 
dJ f (L 'pk ;vh)  = fo f~ (~)v(~)d~ (9.34) 
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where 

fo(~-) = {/~_ l[L2~ffaPh 8Yh 8Ph] )2rrffk(~- ) (9.35) 

(substitute ~h = Ph, the solution of (9.23), directly into (9.31)). 

9. 3. Choice of the Speed 

Once the domain D k has been fixed by specifying tSk, the state Yh and the adjoint 
state Ph can be computed. Then the gradient of the penalized cost J~h(L, Pk) can 
be obtained by computing f ° ( f )  from equation (9.35). 

The approximate gradient in the direction of the speed v is of the form 

1 0 
~(v) = [ f~ (~)v(~) a~. 

" /o 

(9.36) 

Ideally the speed which defines a direction of steepest descent is 

o ~ f? )/11.11=- (9.37) 

Unfortunately the speeds v are required to belong to the subspace Pd and the 
function fo  is generally discontinuous at the points fj (the partial derivative of Yh 
and Ph are at best piecewise constant on the boundary $2) and f°(0) ~ 0. So the 
best we can do is to project (in the L2-sense) the function f ° onto the subspace P~. 
More precisely we shall choose the speed 

0 0 
v = - ~f~/ll@f~ Ih, (9.38) 

where ~fo is the L2-projection o f f  ° onto Pd (cf. Fig. 7). 

- I 0 0  

- 2 0 0  

- 3 0 0  

- 400 

0 . 2  0 . 4  0 . 6  0 . 8 7  z 
I - - I  - I 

/ 

\ / 
! 

%, 
, ,< 

\ 

f0 ; 

SPEED : . . . .  

Fig. 7. G r a d i e n t f  ° and speed v. First iteration, 

e=  1/50, L = 2.75. 
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9. 4. Method of Descent 

Start with an initial shape function ~0k such that 

- 0  Ok( ) >/ 0, 0 ~< ~ ~< 1, Ok0(0) = 1, >/ X/-1/q (9.39) 

Assume that at step n + 1 the shape function t~ n has been constructed in such a k 
way that conditions (9.38) are verified with t~ n in place of ~0. To construct the new 
shape function ~" + l, we construct the new domain D~ from ~ and compute the 
functions y ;  and p~, on D~'. We compute the function ( f o ) ,  and the speed v n 
given by (9.37) with ( f o ) ,  in place of fo.  Finally we construct the new shape 

function 

~ + ' ( ~ )  = ~ ( ~ )  + t"+'v"(~) (9.40) 

by choosing an appropriate t n+ 1 > 0 which minimizes JE(L, ~ +  l(L)) and verifies 

condition (9.38) with ~,+ ~ in place of ~o. 

9. 5. Numerical Example 

Three optimal shapes will be considered here, corresponding to the parameter 
R 0 = 0.57cm and the three values 1/5, 1/10 and 1/20 of the flux ratio q. 

We shall describe detailed computations for the intermediate case q = 1/10. 
The discretization parameters are the following: 

N = 1 0 ,  M = 1 4  

{~j) = (0.;0.05;0.1;0.175;0.25;0.35;0.45;0.55; 

0.65 ; 0.74; 0.82; 0.88; 0.93 ; 0.97; 1 .). 

A typical triangulation of the domain D k is shown in Fig. 8 with an example of 
isotherms giving the temperature field inside the diffuser. For a fixed value of the 

\ 

~VZMXY 
,NVV A~X// 

Fig. 8. Finite element grid and isotherms. 
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parameter/ , ,  a solution ~,(/_,) of Problem I is found by the descent method of sec. 

6.4. The initial shape ~o is chosen as the linear function 

~o(~)  = 1 + 2 ~ / R  o, 0 ~< ~ ~< 1, R 0 = 0.57cm. (9.41) 

In a first step, the parameter e is set equal to 1/50 in order to let the 

constraint be active during the iterations (cf. Fig. 9). The penalized cost can be 

plotted against the length L = R0L as shown in Fig. 10. From this graph it is 

readily seen that the length L leading to the lightest diffuser is around L = 2.75cm. 

Details of a typical computation are shown on Fig. 11. We obviously see a 

monotoneously decreasing penalized cost, a "dual behavior between the volume 
and the constraint (one increasing and the other decreasing). One of the striking 

features of the optimization search is that a small difference between two shapes 

can result in finding or not a "good" direction of descent. Fig. 11 shows the 

evolution of the shape function during the iteration for a fixed L = L R  o = 2.75. 

Z 

2.5 

2.0 

1.5 

1.0 

0.5 

iter= 8 
i t e r = ~  

I N I T I A k /  

I / I I I I I 

0.5 1.0 1,5 2.0 2.5 r Fig. 9. Evolution of the shape; e = 1/50. 

29.5 

29.0 

28.5 

 LZOCOSTI/:) 
'~"d 

28.0 I I I I I I Fig. 10. Cost of optimal diffuser versus 
2.2 2.4 2.6 2.8 3.0 L L. 
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Fig. 11. Results for one optimization of the 
shape starting from a linear initial shape; e= 

I I i ter 1/50. 

i 

- iter 5 £ = 1 / 2 5 0 - ~  y 

iter I0 £ =1/50 ~ /  

Y 
~ INITIAL SHAPE 

I I I I 

I 2 3 
I 
r Fig. 12. Optimal diffusers for L = 2.775. 
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4 r Fig. 13. Optimal diffusers for different ratios q. 
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In a second step, the parameter ~ is reduced from the value 1 /50  to 1/250.  

The initial shape function is chosen as the one found at the end of the iterations 

of the first step. In so doing we reduce the value of the constraint functional to 

practically zero by slightly enlarging the diffuser near its output surface E3 (see 

Fig. 12). A one-dimensional search is also performed at this stage to determine 

the new value of the parameter L = /~R 0 (L = 2.775) giving the smallest cost. 

The optimal diffusers for the three values of the flux ratio q and R 0 = 0.57 

have been drawn on Fig. 13. 
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