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1. Abstract  

Mechanical systems subject to vibration are prevalent across many industries.  Although potentially different in 

application, they sometimes share the need to minimize aspects of flexural deformation given harmonic loading 

and the need to consider a variety of design variable and response-based constraints in the process.  Practical 

design efforts also sometimes include the need for consideration of the optimal response of a platform-style 

product, including responses of multiple design variants supported by a common base structure.  Harmonic 

problems can be especially challenging to optimize due to the likelihood that the response will be multi-modal; 

influenced by system natural frequencies throughout the design space.  Further, analysis of these systems often 

involves large and complex computer models which require significant resources to execute.   A harmonically 

loaded, platform-style parallel beam system with multiple family variants is used as an example in this work to 

demonstrate a proposed method for identifying an optimum in a constrained, multi-modal response environment 

with consideration for Expensive Black Box Functions (EBBF).   

The presented method leverages benefits of a combined approach where the domain is first surveyed for potential 

areas of optimal response using a method of Steepest Feasible Descent (SFD), followed by a search in the optimal 

region using direct search methods.  The method of SFD is a modification of the classical method of Steepest 

Descent, made useful for constrained models by a penalty system including both deterministic and programmatic 

methods.  A sensitivity-based search vector method also helps to manage situations where significant difference in 

magnitude exists among the design variables.  Evidentiary support for these key program elements is provided 

using standardized test functions.  The effectiveness of the method is demonstrated by seeking a minimum flexural 

response for a parallel beam system subject to elastic support and response constraints. 
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3. Introduction 

Figure 1 illustrates the problem under study; a harmonically loaded parallel beam system with elastic supports and 

three (3) family variants, subject to harmonic loading through a range of frequencies.  The objective of the study is 

to minimize flexural deformation of the tip mass ‘m’ subject to location constraints of the elastic supports as well 

as a maximum allowable static deformation of the tip masses ‘m’.  A total of ten (10) design variables are 

considered. 

 
Figure 1: Elastically supported parallel beam structure with 3 family variants 

 

The family variants differ in upper-beam definition only, each constrained with a specified and differing length, tip 
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mass and cross-sectional geometry.  As shown, the location of intermediate supports (L3 and L4) are fixed and 

represent a design constraint often encountered in platform-style products; the need for common interface design.  

The objective function (flexural response) is multi-objective; being comprised of the summed effect of all family 

variants (upper beams) upon the integrated response across the prescribed frequency range as well as the 

maximum range of response across the frequency range.     

A common approach in the design of vibrating systems is to stiffen the structure such that the fundamental natural 

frequency is higher than the operating range.  As is demonstrated later with this example, such a philosophy is not 

always possible given the design constraints and an alternate method is needed.  In his text on the subject, Den 

Hartog [1] discusses the use of a damped dynamic vibration absorber (DDVA) as a means to reduce the magnitude 

of the response near to the natural frequencies.  The DDVA is illustrated in Figure 2 and the Equation of Motion 

given in Eq.(1) below. 

 

 
 

Figure 2: Damped dynamic vibration absorber 
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Also illustrated in Figure 2 is the frequency response plot for the DDVA, illustrating the effect of damping 

coefficient upon the system.  As described by Den Hartog [1], an optimal response exists for some finite value of 

damping coefficient whereby the response is minimized; the slope of which becomes horizontal at frequency 

points ‘P’ and ‘Q’.  It is this type of system behaviour that is sought for the parallel beam system in order to 

minimize flexural response among the family variants given that some resonant conditions may exist within the 

frequency range of interest.  Since the parallel beam system is complex relative to the DDVA of Figure 2, a 

numerical optimization approach is needed to identify the optimal values. 

Multiple strategies exist for optimization of such a system.  Among the simplest are ‘First-Order’ methods, 

including the method of Steep Descent (SD) [2].  These gradient-based methods are known to be initially 

productive, but overall inefficient as the solution nears the optimal result.  In addition, they are useful for single 

objective and unconstrained searches; neither of which applies to the parallel beam problem at hand.  Fliege and 

Svaiter [3] however, propose using the method of SD for multicriteria optimization as well as adaptation of 

Zoutendijk’s [4] method of feasible directions for use in constrained cases.  They conclude though that since the 

result is a first-order method, it should be considered only as a ‘first step’ toward an overall efficient method rather 

than an efficient method unto itself.  ‘Second-Order’ methods improve upon first-order methods by incorporating 

Hessian matrix information and result in a more efficient process [2].   This information however is not readily 

available for Black Box methods [5].  Since a goal of this effort is to find a method suitable to Expensive Black 

Box Functions (EBBF’s), second-order methods are not considered further. 

Direct methods including Genetic Algorithm (GA) [6], Particle Swarm Optimization (PSO) [5] and Sequential 

Quadratic Programming (SQP) [2] are advantageous in that they are suitable for constrained functions, but are 

known to potentially require a high number of function evaluations, particularly for multi-modal responses [2], 

making them undesirable for EBBF’s.  In addition, although SQP, is known as a more efficient method than 

first-order methods, it is primarily a ‘local’ search tool with respect to multimodal response in that it has the 

potential to be ‘constrained’ by local maxima.[2]  Laskari et al. [5], compare the use of PSO as a means of 

optimizing minimax problems to SQP.  They conclude that for Black Box functions where gradient information is 

not available (as with EBBF’s) that PSO may be a good alternative as an initial search tool with continued 

optimization performed by more efficient methods such as SQP.   
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Laskari et al.’s conclusion [5], together with Fliege and Svaiter’s similar conclusion regarding SD [3] is the basis 

for the proposed method here.  That is, that the best overall method may be to initially investigate the design space 

using a first-order method and then, from the region of most promising minimum response, continue the search 

using SQP.  A first order method, when limited to a few jumps and modified for use with constraints, is theorized 

to be more efficient for the initial search than direct methods.  In addition, the use of a polynomial approximation 

during the steepest descent’s 1-D search is theorized to be effective in identifying ‘global’ minima in a 

multi-modal environment.   

 

4. Development and validation of proposed optimization method 

The proposed optimization method uses a derivative of the first-order method of SD as the initial search method in 

order to make it effective for constrained searches.  The derivative, termed Steepest Feasible Descent (SFD), 

features a deterministic penalty system as well as programmatic considerations to assure feasibility of the result 

from the 1-D line search.  Also, consideration is given to orientation of the search vector to assure that only feasible 

space is searched.  Finally, weighting is given to the search vector with respect to differences in order of magnitude 

among the design variables in order to improve effectiveness of the search. 

 

4.1. Steepest Feasible Descent as a constrained search tool 

Feasibility is considered during the execution of the 1-D line search in multiple ways.  First, the length of the line 

search is limited by design variable constraint bounds (both side bounds and other).  Secondly, as proposed by 

Vanderplaats [2], an external penalty term is combined with the function value to form a penalized function value 

to be used in the objective function.  This is shown in Eq.(2) below.  

 

 

(2) 

 

 

 

By Eq.(2), a penalty is assessed to the function value only if constraints are violated (and scaled by the multiplier 

αp), which is intended to aid the 1-D line search in identifying only those minima that are in feasible space.  

However, as illustrated in Figure 3 below, it remains possible that a local minimum of the penalized function value 

could be infeasible; particularly with a multi-modal response. This is due to the effect of the squared term in Eq.(2) 

which minimizes the penalty near the constraint bounds.   

 

 

Figure 3: Identification of constraint boundaries 

 

It is recognized that this effect could be limited by converting the penalty term in Eq.(2) to a linear function.  

However that would potentially cause a more abrupt transition in the resulting penalized function value at the 

transition from feasible to infeasible space, leading to numeric difficulties in the optimization which could be 

problematic.  Therefore, a programmatic element is incorporated in the event that a minimum (fpen) is identified 

within infeasible space to search the 1-D vector for a minimum penalized function value that is feasible.  

In addition to considerations during the 1-D line search, feasibility is considered in the determination of the 

descent vector by a programmatic implementation of the Method of Feasible Directions (MFD) [2].  One common 

implementation of MFD is to incorporate an offset or ‘push-off factor’ [2] to the search vector in order to avoid a 
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constraint bound. In the case of a nonlinear constraint bound however, an additional ‘optimization exercise’ is 

needed within the larger optimization effort [2] to avoid infeasible space.  Given consideration to use of this tool 

for cases where multiple, highly non-linear constraints may exist; a programmatic implementation of the method 

of feasible directions is selected to avoid a potentially large subproblem.  A minimum length for the 1-D search 

vector is established (as a percentage of the bounded design space).  If the distance from starting point of the search 

vector (X0) to the nearest constraint bound (along the search vector) is measured to be below this limit, then the 

vector direction is programmatically modified by eliminating the coordinate term which points most directly to the 

nearby bound.  In so doing, the resulting search vector is redirected to a trajectory ‘approximately parallel’ to the 

subject constraint bound.  In this way, the new descent vector is guaranteed to provide at least a minimum search 

length within feasible space.  

 

4.2. Sensitivity-based search vector 

As experienced with the parallel beam problem, design variables may have significantly different orders of 

magnitude (length vs. spring stiffness vs. damping coefficient).  If the gradient for the search vector is determined 

via a finite difference approach, as may be typical for Black Box functions, then an error in vector sensitivity could 

occur.  That is, if a common step size were used for the finite difference calculation that is appropriate to the 

smaller variable, then it could be so small as to have an insignificant effect upon a larger variable’s effect.  By 

scaling the finite difference step size (in the direction of each given design variable) to the magnitude of the given 

variable, then the likelihood is increased that the descent vector will be sensitive to the impact of each variable.  

Eq.(3) below illustrates one method of determining such a scale effect upon the finite difference step size in a given 

design variable direction. 

 

 
(2) 

 

 

 

4.3. Confirmation of optimization method 

It is proposed that a ‘combined’ search methodology of SFD followed by SQP is an efficient overall search tool by 

leveraging the strengths of each individual method.  To challenge this theory and determine if the combined 

method is truly better than either of the methods used individually, a test was conducted using four (4) standard test 

functions [7] where theoretical global optimums are known; De Jong, Rosenbrock, Rastrigin and Schwefel.  For 

each test function, the proposed ‘combined’ search methodology as well as each of the component methods were 

run from an array of 75 starting points across the 2-dimensional design space, determined using MATLAB’s 

‘haltonset’ quasi-random method.  For each case, the coordinate location of the global optimum, optimal function 

value and number of function evaluations was recorded.  Results are shown in Table 1 below.   

 

Table 1: Unconstrained test results 

 

 De Jong’s Rosenbrock’s Rastrigin’s Schwefel’s 

Coordinate Location of Overall Minimum 

Theoretical (0,0) (1,1) (0,0) (420.969,420.969) 

SFD (4.2e-4, -4.5e-4) (1.0067, 1.0135) (-0.0070, 0.0117) (421.109, 419.456) 

SQP (7.4e-6,1.0e-3) (0.9793, 0.9597) (4.7e-5, 1.0e-3) (-296.88, 438.27) 

Combined (3.9e-4, -1.4e-3) (1.0065, 1.0135) (6.3e-4, 7.7e-4) (421.109, 419.458) 

Function Value of Overall Minimum 

Theoretical 0 0 0 0 

Steep Descent 0 0 4.6e-4 2.0e-4 

Direct (SQP) 2.03e-8 1.55e-7 2.7e-6 0.107 

Combined 4.3e-8 1.7e-8 2.5e-6 1.9e-4 

Number of Function Evaluations 

Steep Descent 1131 1190 2233 1869 

Direct (SQP) 1344 4863 2118 450 
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Combined 1137 1194 2250 1875 

 

With consideration for EBBF’s, a minimum Design Variable step size was established as a stopping criterion, the 

order of magnitude of which might be considered meaningful with respect to practical design (0.001% of design 

variable magnitude).  The error of the individual SQP solution for the Schwefel function is attributed to this fact, 

proof of which is not presented here due to brevity.  However, a reduced value resulted in a result of similar 

accuracy to SFD or the Combined, but at the expense of significantly greater function evaluations.   

For the multi-modal responses of Rosenbrock and Schwefel then, the proposed ‘combined’ search method yielded 

the most accurate result of either of the two (2) individual methods, while also utilizing approximately the fewest 

of the function evaluations of the individual methods.  No practical benefit is demonstrated for De Jong’s unimodal 

function and the proposed method is slightly less efficient (5.8%) for Rastrigin.  Together, these results confirm 

that the combined method leverages the ‘best’ qualities of either of the individual methods for some multi-modal 

responses (with consideration for use with EBBF’s), without significant consequence for the other functions. 

Constrained response of the proposed method was evaluated similarly using the same test functions [7], with the 

addition of a circular region of infeasibility centered at the location of theoretical global optimum. Results for De 

Jong’s and Rosenbrock’s functions are shown in Figure 4 below.  For each test, the location of the (same) 75 start 

points is identified as are the optimization path and optimum solution for each start point’s search.  The location of 

the global optimum is also identified.  As shown, the modifications incorporated to the SFD approach, as well as 

use of the follow-on SQP method successfully prevent solutions from being identified in the infeasible region. 

 

 
 

Figure 4: Constrained test results 

 

5. Parallel beam optimization 

The parallel beam problem was solved using the proposed ‘combined’ method with multiple start points.  A 

‘single’ objective function was defined for multi-objective use by summing combined responses of tip deflection 

across frequencies and for each family variant as well as the range across both frequency and model.  In addition to 

side-bound constraints, location constraints were established for each of the supports to address the practical need 

that a minimum spacing must be allowed for the physical attachment structures.  A response-based constraint was 

also considered for the static deflection of the upper beam in order to assure a minimum stiffness to the structure; to 

prevent the optimal harmonic design from being so flexible as to be impractical.   

As indicated previously, the global SFD search was conducted from multiple start points, resulting in many areas 

of potential optimum throughout the design space.  The best result from the among these multiple SFD results was 

used as the start point for the subsequent SQP search, resulting in an optimal design with relative positioning of the 

supports as shown in Figure 1.  That is, L1<L3 and L3<L2<L4.  For purposes of comparison, frequency response 

plots for the ‘worst’ of the global SFD searches as well as the global optimal result are shown in Figure 5.  Note 

that these data include response for each of the family variants. 
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Figure 5: Parallel Beam Results 

 

As shown, the global optimal solution results in an approximate 99.2% reduction in peak amplitude as compared to 

the ‘worst’ starting point.  However, natural frequencies remain within the range of interest for two (2) of the 

family variants.  Although not shown for brevity, these resonant responses are the fundamental frequency of the 

upper beam(s).  Given the design constraints on upper beam specification, these frequencies could not be 

significantly altered.  However, the resonant responses were significantly modified as predicted by Den Hartog’s 

[1] explanation of the DDVA in Figure 2.  The optimal solution is also shown to be a ‘compromise’ in that, 

although significant reductions were made in the resonant responses, the third (stiffest) family variant worsened 

slightly in the process.  This highlights an important aspect of platform-style design, that ‘compromise’ solutions 

must be considered and managed in the optimization process.   

 

6. Conclusions 

A proposed ‘combined’ optimization method utilizing the method of Steepest Feasible Descent as an initial search 

tool, followed by a use of the more efficient SQP method for ‘local’ refinement was demonstrated to be effective 

on both classical test functions and a parallel beam problem.  Key conclusions are as follows: 

•   The combined method is shown to leverage the ‘best’ of the component methods for an improved result 

on some multi-modal responses, without consequence to other test surfaces used. 

•   The proposed method of SFD is shown to be effective as a constrained search tool, incorporating both 

deterministic and programmatic feasibility elements as well as a sensitivity-based search vector. 

•   The proposed method is shown to be more tolerant of a coarse design variable step size as a stopping 

criterion than SQP implemented individually.  This is an important benefit with respect to use with 

EBBF’s.  

•   The platform-style parallel beam structure was successfully optimized for harmonic loading, with 

significant improvements to peak response amplitudes, even though natural frequencies remained in the 

frequency range of interest due to design constraints of the system.    
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