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ABSTRACT: The surface precipitation network in Canada suffers from large data gaps due to the challenge of cov-
ering a large country with a low population density. A proof-of-concept for an optimal network design is proposed
to more efficiently estimate precipitation in Canada with the design goal of minimizing the interpolation uncertainty.
The network design is based on a statistical model of precipitation that accounts for intermittency and non-
Gaussianity of precipitation. Our results indicate that the greatest needs for new stations are in British Columbia,
where coastal and mountain climate leads to more uncertainty in precipitation amounts, while the Prairie Provinces
(Alberta, Saskatchewan, and Manitoba) could gain efficiencies by reducing their network size. Despite the current
low density of stations in the territories north of Canada, these drier and colder regions only have a moderate need
for more stations, mostly in the mountainous regions of Yukon. However, from a spatially varying wind undercatch
measurement error model, it is shown that these northern regions have greatest need for higher-accuracy

measurements.

SIGNIFICANCE STATEMENT: The proposed methodology can guide in the optimal placement of precipitation
gauges across a large country such as Canada, which will provide value for money in how rain and snow are monitored.

KEYWORDS: North America; Precipitation; Gauges; Interpolation schemes; Uncertainty; Experimental design

1. Introduction

Precipitation observations are an integral part of hydrometeo-
rological analysis and forecast systems. Precipitation observations
can either be obtained from in situ measurements or derived
from remote sensing. While in situ measurements generally pro-
vide the best estimates for the ground truth, they can only pro-
vide direct information for a very localized area with a potential
lack of representativity for the surrounding area. Remote sensing
techniques generally offer better spatial coverage but at the cost
of lower accuracy. Moreover, satellite- and radar-based quantita-
tive precipitation estimation (QPE) techniques (see Huffman
et al. 2019; Boodoo et al. 2015; Zhang et al. 2016; Seo 1998; Seo
and Breidenbach 2002; Seo et al. 2014) rely on surface measure-
ments for validation and calibration. A good network of surface
precipitation stations is thus an essential requirement for estimat-
ing precipitation falling within a given area of interest.

Optimal network design (OND), also called observation tar-
geting by Ancell and Hakim (2007), seeks to find the best pos-
sible configuration of a network of sensors according to some
network performance metric (Chacon-Hurtado et al. 2017,
Mishra and Coulibaly 2009). An optimal network can provide
cost savings by reducing redundant measurements within a
network or enhancing quality of measurements by extracting
the maximal information content for each measurement given
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a fixed budget. Efficient measurement of each meteorological
field is particularly needed for a spatially large country like
Canada, since for a given budget per capita it is not feasible to
achieve the same network density as more densely populated
countries.

The current network of networks for surface precipitation
sensors in Canada has a variable density, with higher density
in more populated areas in southern Canada and south-central
Alberta, and a very low density north of 55°N. Although needs
for better precipitation measurements are in part linked to
population density, the global nature of meteorological pro-
cesses also requires measurements even in less populated
areas in order to predict weather and flooding accurately.
With investments to install new sensors and financial pressures
to reduce the number of sensors maintained, there is an oppor-
tunity and need to reexamine the current network design.

In this paper, we propose a new method for OND based on
the minimization of the interpolation uncertainty as estimated
by a spatial statistical model. Starting from the current network,
modifications by addition, removal, or relocation of stations can
be optimized according to the design goal of the network. As a
proof-of-concept, several network design experiments are car-
ried out over a large domain in Canada, demonstrating how
small practical changes of adding or moving a few gauges can
make a huge difference.

The proposed solution takes advantage of statistical model-
ing of precipitation to provide a quantification of uncertainty
in probabilistic QPE, with minimization of the uncertainty as
the network design goal. Specifically, precipitation is statisti-
cally modeled from a modification of Gaussian processes (GP)
(see Rasmussen and Williams 2006) that accounts for intermit-
tency and non-Gaussianity, while introducing an anisotropic
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and nonstationary covariance structure estimated directly
from reanalysis. GP are closely linked to kriging (see Cressie
1990), optimal interpolation (see Gandin 1965; Daley 1993),
and ensemble Kalman filter (see Hamill and Snyder 2002).
However, instead of focusing on the deterministic estimation
of the expected precipitation, the estimated variance of the in-
terpolated precipitation is used as a measure of uncertainty.
As such, the proposed OND method is more closely related to
a probabilistic QPE system like the Ensemble Meteorological
Dataset for North America (EMDNA) of Tang et al. (2021)
than to a deterministic QPE system such as the Canadian Pre-
cipitation Analysis (CaPA) of Fortin et al. (2018). A greedy
search approach is taken to select stations to add or remove.
Network design experiments then compare the design of a net-
work from a blank slate to a modification of the current net-
work of networks by adding, removing, or moving a number
of stations.

We distinguish between four possible OND goals: (i) build-
ing an OND from scratch (or blank slate), (ii) augmenting a
current network by optimally adding more stations, (iii) reduc-
ing a current network by optimally removing redundant sta-
tions, and (iv) modifying a current network by selecting and
relocating a number of stations. For each of these OND goals,
specialized techniques have been developed. For example,
Soares et al. (2018) applied hierarchical clustering methods to
identify redundant air quality monitoring stations or to design a
network using numerical model outputs for the oil sands region
in northern Alberta while Kalini¢ et al. (2021) selected poten-
tial wind buoy locations over the Adriatic Sea by K-means clus-
tering of model reanalysis data. Observation system experiment
(OSE) or data denial experiments compare analysis or forecasts
with and without a subset of observations assimilated. They are
computationally expensive to run, but provide a direct estima-
tion of the impact of a subset of observations, thus providing
guidance for reducing networks. For example, in a small case
study, Seo et al. (2015) analyzed the impact of removing rain
gauges on the variance of precipitation areal average theoreti-
cally estimated from a geostatistic model fitted on radar obser-
vations. The impact of reduction of a precipitation network on
hydrological forecasts was studied in particular by Ahnert et al.
(2014).

On the other hand, observing system simulation experiments
(OSSE) from Hoffman and Atlas (2016) go one step further
than OSE by allowing the simulation of observation systems be-
fore deployment. OSSE starts with a free run (called the nature
run) of a numerical weather prediction (NWP) model without
any data assimilated and use it as reference. Observations are
then simulated with forward operators and the potential impact
of a new observing system can be assessed by comparing NWP
with or without assimilating the simulated observations. OSSEs
are very expensive and challenging to run, but are much cheaper
(in terms of monetary cost) than deploying a new satellite.

The forecast sensitivity to observation impacts (FSOI) method
(see Ancell and Hakim 2007) uses a linearization of the data
assimilation system to estimate sensitivity of NWP to all ob-
servations. FSOI is computationally cheaper to run than
OSE or OSSE, but only work for a single performance met-
ric. The linearization can either be done explicitly through
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the adjoint operator like in Baker and Daley (2000) or im-
plicitly through ensemble sensitivity like in Torn and Hakim
(2008).

In fact, pioneering work by Gandin (1970) already had the
fundamental insight of the relationship between optimal inter-
polation and optimal network design. Another important early
work from Huff (1970) quantified the impact of network den-
sity reduction on precipitation areal average. The method of
Hamill and Snyder (2002) is closely related to our approach as
the only major theoretical difference is in the different statisti-
cal model for precipitation (non-Gaussian in our case). An
analysis of the most important factors to consider for network
design of rain gauges has been developed by Bradley et al.
(2002) for a small case study using radar data as reference. Spa-
tial variability of precipitation is found to be the most important
factor, which further justifies our extension of stochastic precip-
itation model to a spatially nonstationary correlation structure.
More recently, Mauger et al. (2013) applied ensemble sensitiv-
ity analysis for the optimal design of a climatological network
for temperature and precipitation over the northwestern
United States, while Hakim et al. (2020) applied ensemble sen-
sitivity analysis for optimal network design from blank slate as
well as from the current network in the Antarctica for analysis
and 1-day forecast of surface temperature. Key differences
between these previous works and our proposed method are
(i) our statistical model has a component to handle intermit-
tent and non-Gaussian precipitation events; (ii) our covari-
ance estimates are based on the climatology derived from
reanalysis, not on ensemble data assimilation; (iii) our method
is applied at a larger scale on a large domain with several thou-
sands of stations; (iv) our experiments focus on precipitation
analysis, not on forecast; and (v) our method optionally takes
into account the spatially and seasonally varying observation
uncertainty related to wind undercatch.

The remainder of the paper is organized as follows. In the
next section, the statistical model used for probabilistic QPE,
the network design goal and the network design experiments
are described. Experimental results follow in section 3. Section 4
discusses on the interpretation of the results and on the various
caveats of the method. Conclusions are found in section 5.

2. Data and method
a. Network design goal

It is important to define the scope of the proposed solution
since an OND crucially depends on what performance metric
is selected. For this study, the following assumptions are made:
(i) the total life cycle cost for an individual sensor is the same
for any location and sensor type; (ii) the accuracy of interpo-
lated QPE is the only network design goal; (iii) the need for
accurate precipitation measurements is uniform across the
country; (iv) the fine-scale representativeness error for each
sensor is uniform across the country; (v) all locations are avail-
able for the addition of new stations and all stations from the
network of networks are potential candidates for removal. Of
course, the reality is far more complex with (i) cost depending
on both location and sensor types, (ii) multiple network design
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F1G. 1. Surface precipitation stations in Canada and the northern United States from several networks: Environ-
ment and Climate Change Canada (ECCC), Global Historical Climatology Network (GHCN), and Global Surface
Summary of the Day (GSOD). Multiple indicates that the station is included in more than one of these networks.
Provinces and territories in Canada are indicated by their initials: YK for Yukon, NWT for Northwest Territories, BC
for British Columbia, AB for Alberta, SK for Saskatchewan, MB for Manitoba, ON for Ontario, QC for Quebec, NL
for Newfoundland and Labrador, NB for New Brunswick, PEI for Prince Edward Island, and NS for Nova Scotia.
Northern Canada suffers from many gaps in station coverage.

objectives to meet various stakeholders need, (iii) spatially
variable needs with higher needs in densely populated areas,
(iv) fine-scale representativeness error depending on the sen-
sor location and the local topography, and (v) site selection de-
pends both on the accessibility of the site and on an agreement
to use a specific site. However, these simplifying assumptions
provide a useful approximation of reality from which prelimi-
nary results can more easily be obtained. The proposed solu-
tion can thus be considered as useful guidance on which
locations have the greatest needs for new sensors. For a truly
optimal solution, these assumptions should be revisited (see
section 4).

b. Data
1) STATION NETWORK

The most straightforward way to improve a precipitation
analysis is to add more observational data to fill data-sparse
gaps. Only considering a single network of station data will
therefore be necessarily inferior to the option of integrating a
“network of networks.” In Canada, and more generally in
North America, there is currently no easily accessible inte-
grated station data source combining nationally operated sta-
tions (e.g., by the Meteorological Service of Canada) with
provincial/state and territory networks, including specialized
networks for hydroelectric power, flood, or forest fire monitor-
ing. The Environment and Climate Change Canada (ECCC)
Climate Data Archive (Environment and Climate Change
Canada 2018) does integrate provincial stations in Alberta as
well as airport stations operated by Nav Canada, but more

efforts are ongoing to include more data sources. Global
archive of station data such as the Global Surface Summary
of the Day (GSOD) from National Centers for Environmental
Information (NCEI 2018b) or the Global Historical Climatol-
ogy Network daily (GHCNd) from the National Centers for
Environmental Information (NCEI 2018a) do integrate many
sources, but they only contain a fraction of all existing stations.
Moreover, existing stations do not always report frequently
depending on the length of deployment or because of mainte-
nance issues.

The Serially Complete Dataset for North America (SCDNA)
of Tang et al. (2020) provides an interim solution as it integrates
daily precipitation data from ECCC stations with GSOD and
GHCNd, as well as with Mexico data. SCDNA contains more
than 20000 precipitation stations reporting for at least 8 years
in North America, with 2327 of these stations in Canada. A
combination of various gap filling techniques has been used
to ensure that the data are serially complete. We employ the
station coordinates of this dataset as of 2018 as the assumed
current station network. Unfortunately, station metadata
(such as sensor and shielding types) are not readily available
for SCDNA.

Figure 1 shows a map of the station coordinates over
North America, with a close-up over subdomains around
the three major metropolitan areas in Canada: Vancouver,
British Columbia (BC); Toronto, Ontario; and Montreal,
Quebec. Stations are color-coded by source. Only a fraction of
the stations was merged from multiple sources, but for several
instances, one station from ECCC was located close to a
GSOD station. However, at closer inspection the time series
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data appear to be distinct, indicating pairs of closely located sta-
tions. We see that at a continent scale, the contiguous United
States (CONUS) is almost completely covered with stations.
The only visible gaps in CONUS are over the Great Lakes, for-
ested areas in the Maine, and some mountainous areas in west-
ern United States. However, large gaps can be seen in northern
Canada and parts of Alaska. Zooming in over the Vancouver
region (left inset), we see gaps mainly in mountainous regions.
In the Toronto region (lower-left inset), we see gaps over large
bodies of water (Lake Erie and Lake Ontario). In the Montreal
region (upper-right inset), we see a lower station density as we
move north. This lowering of station density away from the
Canada-U.S. border is also observed all across Canada, with a
higher density across the Prairie provinces (Alberta, Saskatche-
wan, and Manitoba) and in the Quebec City—Windsor corridor
(Ontario-Quebec), but a low station density in northern
Ontario and northern Quebec.

2) PRECIPITATION REANALYSIS

The enhanced land component of the fifth generation of
the ECMWEF reanalysis (ERA5-Land) from Mufioz-Sabater
et al. (2021) is an hourly global land surface reanalysis which
is downscaled from Hersbach et al’s (2020) ERAS. The
ERAS5-Land dataset is selected as the reference data to build
the statistical model for the proof-of-concept due to its ease
of data access, its relatively high spatial resolution (0.1°), its
reasonable accuracy (see, e.g., Tarek et al. 2020), its global
spatial coverage over land, and its temporal coverage over
more than 20 years. The total precipitation field is not assimi-
lated directly in ERAS-Land, but it is instead interpolated
from the lowest level of ERAS (see Muifioz-Sabater et al.
2021). Precipitation observations from radar-gauge compo-
sites in the United States (Nelson et al. 2016) are assimilated
in ERAS from 2010 onward. No postprocessing adjustments
are applied, but these limitations are mitigated by the im-
proved quality of the precipitation fields in ERAS compared
to previous versions (see Hersbach et al. 2020).

Daily averaged wind speed at 10 m and temperature at 2 m
from ERAS5-Land are used as ancillary data for a spatially
variable measurement error model and wind undercatch cor-
rection. To be consistent with a network design carried on
measured precipitation records, we apply a wind under-
catch correction to the ERAS-Land reanalysis data. We as-
sume that the exact sensor and shielding type is part of
epistemic uncertainty (i.e., uncertainty in not knowing the sen-
sor metadata) and thus we lump all sensor and shield types into
a wind undercatch correction function. Moreover, for cases
with no or small measured precipitation amounts, a probability
of precipitation is computed (see appendix D for derivation
and Table D1 for parameters). Expected corrected precipita-
tion amounts when no precipitation is measured are also de-
rived. See appendix D for derivation details and Table D1 for
fitted parameters. The correction functions are then applied
daily over the whole dataset. Input data for the network design
experiments are thus in the form of corrected precipitation
amounts and of probability of precipitation occurrence.
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Figure 2a shows a map of the expected daily total precipita-
tion over Canada according to ERAS5-Land for the 2012-21
period. There is more precipitation in the west coast and in
the Canadian Rockies while there is less precipitation in the
Prairies and in the north. The map of the standard deviation
of daily total precipitation in Fig. 2b looks very similar. In
fact, the joint scatterplot (not shown) reveals a strong correla-
tion between the expected total daily precipitation and its
standard deviation.

Figures 2c and 2d summarize temperature data into a pre-
cipitation phase index and a wind speed index, respectively.
For each day, the predicted snow fraction is computed accord-
ing to the following threshold: below —1°C for snow (100%
snow fraction), between —1° and 3°C for mixed precipitation
(50% snow fraction), and above 3°C for rain (0% snow frac-
tion). The precipitation phase index is the average snow frac-
tion over all days. Similarly, a wind speed index is computed
by first binning wind speed into three daily average wind
speed categories: low (0) for below 3 m s~ !, medium (1) for
between 3 and 6 m s, and high (2) for above 6 m s~'. Once
again, the wind speed index is the average over all the daily
wind speed category values.

c. Statistical model of precipitation
1) PRIOR MARGINAL DISTRIBUTION

We consider the following statistical model for precipitation
at a particular time and location. The total precipitation (water
equivalent) is X = AO, where A is the random variable for con-
ditional precipitation amount given a precipitation event and O
is binary (i.e., Bernoulli) variable for precipitation occurrence
(1 for precipitation occurrence, 0 for no precipitation). The
marginal probability of the precipitation amount is assumed to
follow a log-normal distribution:

A ~ log-normal(p ,, 0,), 1)

with mean p4 and variance ¢%. Other transformations have
also been used in the literature such as cubic root, gamma,
or Gumbel distributions in, respectively, Fortin et al. (2018),
Zolina et al. (2009), and Koutsoyiannis (2004). We choose
the lognormal for convenience as it allows analytical deriva-
tion of the expected variance in our statistical model. The
lognormal distribution is a generally good statistical model
for moderate precipitation amounts, but it is known to
perform more poorly for extreme precipitation (see, e.g.,
Cho et al. 2004).

The probability of precipitation (PoP) occurrence is denoted
by p. To later allow a smoothly spatially varying PoP, a hidden
(or latent) normal distribution P with mean pp and variance %
is used to generate O. A probability threshold is selected such
that the probability of P = 0 is exactly the probability of precip-
itation p. That is, once the unobserved parameters pp and 0%
are estimated, the sampling of precipitation occurrence is done
by comparing a sample from the normal distribution with the
probability threshold.

From the statistical models for O and A, we can analytically
derive the expectation E and variance V for precipitation
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FIG. 2. Climatology from ERAS-Land for 2012-21 over all seasons over Canada and the northern United States.
(a) Expected daily precipitation amount. (b) Variability (standard deviation) of daily precipitation amount.
(c) Precipitation phase index. Liquid indicates predominant daily temperature average over 3°C while solid indi-
cates predominant daily temperature average under —1°C. (d) Wind speed index. High wind indicates predominant

daily wind speed average over 6 m s~ ' while low wind indicates predominant daily wind speed average under 3 m s .

1

(e) Measurement uncertainty (standard deviation) of daily precipitation according to the wind undercatch error model.
Note high measurement uncertainty in the East Coast, over the Great Lakes, and in Northern Quebec. (f) Total uncer-
tainty in daily measured precipitation amount accounting for both daily precipitation variability and measurement un-

certainty due to wind undercatch.

occurrence O, conditional precipitation amount A. Assuming
independence between O and A, we can then derive the vari-
ance of the total precipitation X:

VIX] = pVIA] + p(1 = p)(E[A])® @

(see appendix B for details). Once the parameters p, w4, and
o4 are estimated for a particular location, the expectation and
variance of total precipitation at that location can be computed.

The method of moments is used for the initial estimation of
parameters, as reproducing the expectation and the variance
are more important than approximating the full distribution ac-
curately. That is, given the sample mean and sample variance
of precipitation amount, we solve for u4 and o4 according to
the lognormal model (see appendix B). The estimated probabil-
ity of precipitation occurrence p is simply the sample frequency
of precipitation events, using a threshold of 7= 0.04 mm day
to discriminate between precipitation and no precipitation in
ERAS-Land. This threshold is used to alleviate modeling errors
for small precipitation amounts (see Hewson 2022). We use
o3 =p(1 - p)and

pp = —V2aperf (1 - 2p), 3)

where erf is the error function, to initialize the parameters of
the hidden normal distribution P.

2) SPATIAL MODEL

For the spatial field of precipitation occurrence and precipi-
tation amount, Gaussian processes are used, which is equiva-
lent to a multivariate normal model between all observed
locations and a finite number of point locations of interest. As
shown in appendix A, both ensemble sensitivity techniques
and optimal interpolation (or kriging) are closely related to
GP as they both provide an optimal linear approximation un-
der Gaussianity assumption.

The correlation matrices Rp and R4 can be estimated be-
tween pairs of locations with station observations, as well as
between stations observations and potential new sensor loca-
tions. Since what follows apply for both A and O, in order to
simplify the notation, we consider the general case. The co-
variance between locations i and j is
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2[i, j] = oliIR[i, jlolj], “4)

where o] is the standard deviation at location i.

Let y be an N X T array representing observations at N
locations for T days. Let x be an M X T array representing
interpolated observations at M locations for T days. We de-
note by X, 2,,, and %, respectively, the covariance matri-
ces between interpolated locations, between interpolated
and observed locations, and between observed locations.
Note that no particular assumptions, such as isotropic and
homogeneous, are made on the correlation structure.

After applying appropriate transformations to the prior mar-
ginal distributions, the conditional probability P(X = x|Y = y)
is assumed to follow a multivariate normal distribution with
parameters ), and X, The update rule for these parameters
according to multivariate statistics is

Py = T2 300y — ) (5)
2x\y = Exx - Exyz;ylz;ry' (6)

For fast computation of the update rule, we follow algorithm
2.1 of Rasmussen and Williams (2006). Since the correlation
matrix X, is semipositive definite, it can be decomposed as
LL" via Cholesky decomposition, where L is a lower triangu-
lar matrix. Some of the computed matrices can be reused after
addition of an extra station in the optimal network design ex-
periments (see appendix C for details).

For ensemble sampling of total precipitation, the full covari-
ance matrix 3, is required. For a gridded field of M locations,
this matrix has M? entries, which can become prohibitive for
larger domains. A sparse version could be implemented by set-
ting to zero any pair of location which are beyond some geo-
graphic distance. Alternatively, a coarse-to-fine multiscale
approach could be investigated. For OND, since only the diag-
onal elements "fly of the covariance matrix X.,), are needed, it
is not required to compute the full covariance matrix 3.

Covariance matrices are estimated from the climatology of
ERAS-Land reanalysis with two options: 1) without considering
seasonal variability, 2) by stratifying the data for warm (May-
September) and cool (October—April) months. Since new ob-
servations must be simulated at locations without station data,
the closest reanalysis point is used as a proxy to current and ad-
ditional observations. For conditional precipitation amount, we
only use samples when the pair of locations both have precipi-
tation occurring.

3) MEASUREMENT ERROR MODEL

To account for the possibility of observational error, the ex-
act observation covariance matrix X.,, is replaced by an obser-
vation plus error covariance matrix X, + X, where X, is the
observation error covariance matrix. As is often done, it is as-
sumed that the observation error is uncorrelated, hence 3, is
a diagonal matrix.

We consider two measurement error models: 1) a spatially
homogeneous measurement error across the country for both
precipitation amount and occurrence and 2) a spatially

JOURNAL OF HYDROMETEOROLOGY

VOLUME 24

varying measurement error for precipitation amount and oc-
currence, where the measurement error depends on the clima-
tology of temperature, wind speed, and precipitation amount.

For the homogeneous error model, we take 0.05 as the log-
arithmic error of the precipitation amount. This measurement
error corresponds approximately to an error of plus or minus
5% in measured precipitation.

For the spatially varying error model, we first estimate daily
measurement errors from the fitting of residual errors in the
wind undercatch correction (see appendix D and Table D1 for
fitted parameters). We then estimate the root-mean-square log-
arithmic error for precipitation amount by aggregating daily
measurement errors either for warm and cool months or over
the whole year.

The measurement error for the probability of precipitation
occurrence is assumed to be 1% everywhere. That is, we do
not attempt to quantify the uncertainty in estimating parame-
ters for the logarithmic error of precipitation amount or for
the probability of precipitation occurrence.

Given a measurement error of o[i] for a given station, we
empirically choose

0, = 2 i ™)

il s
AR

=
=

as the error of the areal precipitation average when # stations
are available. For a homogeneous error oy[i] = oy, the areal
precipitation error will thus be o, = o,/y/n. This error model
assumes that all station observations within a grid cell are in-
dependent, thus reducing the variance by y/n when averaged.
In practice, we can expect a higher observation error by using
more realistic assumptions than what is selected for the proof-
of-concept.

The measurement errors o, will affect the estimation of the
parameters of the lognormal precipitation amount model. In-
deed, the expectation E[A,,] and variance V[A,,] of the cor-
rected precipitation amount (i.e., after applying wind undercatch
bias correction) will be inflated compared to the true expecta-
tion E[A] and variance V[A] of error-free observations. Apply-
ing the law of total expectation and the law of total variance
allows to derive the expectation and variance of the error-free
precipitation amounts, which can in turn be used to estimate the
prior parameters 4 and o for the lognormal precipitation
amount model (see appendix B for derivations).

d. Network design strategy

The general principle adopted for optimal network design
is to select station locations that minimize total uncertainty
averaged over time. That is, representing uncertainty as the
posterior variance of the probabilistic QPE, we find the loca-
tion for which the sum of posterior variances over T days is
the largest as the next selected location.

Network design from a blank slate allows the assessment of
the potential efficiency of a network if no constraints were put
on the station locations. The network efficiency for a number
of stations can then be compared with the efficiency of the ac-
tual network or of proposed modifications to the network.
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FI1G. 3. Network design and uncertainty maps for the province of British Columbia for (a) current precipitation net-
work and (b) optimal network designed from blank slate with the same number of stations as the current network.

The design strategy is to add one station at the time until
the desired number of stations is reached, choosing at each
step the location minimizing the total uncertainty given the
previously added stations. The first station location is solely
based on the prior uncertainty as derived from the statistical
model.

For removing stations from a network, we would need to
compute the interpolation uncertainty for all the N possible
removal candidates and iterate. This strategy would require
NK — K(K — 1)/2 updates to remove K stations. It is actu-
ally more efficient to start from a blank slate and add up to
N — K stations with the constraint that each added stations
have to be at current station locations. If some of the K re-
moved stations are allowed to be instead moved somewhere
else, then we can start with the N — K stations as before and
then add back more stations without constraints on their
locations.

3. Results
a. Network design experiments

We divide the Canadian domain by province and territory
and perform OND experiments independently for each prov-
ince and territory. This is done because computationally it is
necessary to reduce the size of the domain to manage the
memory required to store the covariance matrices. In addi-
tion, this division is practical since networks are often man-
aged by provinces or territories.

1) CURRENT VS OPTIMAL NETWORK FROM
BLANK SLATE

We first consider an OND experiment from a blank slate,
using the statistical model with homogeneous measurement
error and no seasonal stratification. The optimal location for

10

Total Precipitation Uncertainty [mm/day]

110°W 120°W

120°wW

110°W

(a) (b) (c) (d)

FIG. 4. Network design and uncertainty maps for the province of Alberta with uncertainty computed assuming homogeneous measure-
ment error. (a) Current network. (b) Optimal network designed from blank slate according to homogeneous measurement error model.
(c) Optimal network designed from blank slate according to spatially varying measurement error model. (d) Optimal network designed
from blank slate according to spatially varying measurement error with different statistical model parameters for warm and cool months.
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the first station is given by the location with maximum prior
variance of the total precipitation. Stations are then added it-
eratively, updating the uncertainty map at each step before se-
lecting a new location until the same number of stations as
the current network is reached. Examples of resulting net-
works with the same number of stations than the current net-
works are shown in Fig. 3 for BC and Figs. 4a and 4b for
Alberta.

For BC the optimal network is very dense in the coastal and
mountainous region on the west of the province, and in partic-
ular for Vancouver Island, while the network has a very low
density in the BC interior. This is an example where an objec-
tive method leads to counterintuitive results with a very vari-
able network density.

For Alberta, we can see that OND is not uniformly spaced,
but that a higher density of stations can be found close to the
Rocky Mountains (southwest portion of the province). A
lower network density is also observed in northern Alberta
compared to the southeast. As expected, the resulting uncer-
tainty map is nearly constant, with low interpolation uncer-
tainty at all locations.

b. Network efficiency analysis

A second OND experiment is carried out for each province
or territory, starting with the current network and adding up
to 50 more stations within that domain.

The network uncertainty, as measured by the maximum
standard deviation over the domain, is plotted against the net-
work size (i.e., the number of stations) for several provinces
and territories. This plot allows comparison between provinces
and territories and to better visualize the effect of the OND
method. We employ either the OND from blank slate strategy
or the OND from the current network. Figure 5 shows the re-
sults in particular for two provinces: BC and Alberta.

The first striking observation that can be made from these
results is how dramatic the drop of uncertainty is after adding
only a few stations (i.e., two or three stations) to the current
network design. Just as striking is the possibility to achieve
the same interpolation uncertainty with only a small fraction
of stations if the network design is started from a blank slate.
For example, optimally placing 100 stations could reduce
more the interpolation uncertainty than adding 50 stations to
the current network design of Newfoundland and Labrador
(not shown). This result indicates that the optimal course of
action is neither to simply add more stations or to only re-
move redundant stations, but instead a redeployment of some
of the stations.

The network efficiency, computed as the uncertainty of the
current network over the uncertainty of the optimal network
with the same number of stations, is summarized in Table 1 for
all Canadian provinces and territories. The question arises as to
where to add or remove stations. Given a fixed budget of 2327
stations, we assigned a number of stations in each province so
that the overall interpolation uncertainty is optimally reduced
when performing OND from blank slate. Table 1 summarizes
the results, comparing the number of stations from the current
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FIG. 5. Network uncertainty vs network size for stations added
greedily (locally optimal) from current state or blank slate for the
provinces of (a) Alberta and (b) British Columbia.

network to the number of stations for a network with an opti-
mally allocated number of stations.

Currently, smaller Atlantic provinces have the most effi-
cient network, with the smallest of all the provinces, Prince
Edward Island (PEI), having the most efficient network. This
is not very surprising given that smaller provinces tend to have
more uniform networks. Yukon is the territory with the least
efficient network design. Although the current network design
spreads stations across the territory, it fails to properly mea-
sure precipitation in the mountainous region in the southwest.
On the other hand, the optimal network design (not shown)
clusters most of the stations in the mountainous region in or-
der to reduce the uncertainty. The case is similar for BC with
very different configurations between the current and the opti-
mal network. For Newfoundland and Labrador, we can see
that the network is reasonably good over Newfoundland, but a
higher network density is required in Labrador in order to reduce
uncertainty. Overall, we can observe that the network efficiency
in Canadian provinces and territories is not very high, with only
two Atlantic provinces exceeding the 50% efficiency mark.

BC is the province with the greatest need for an enhanced
network, requiring 1374 stations to reduce the interpolation
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TABLE 1. Current size of networks for each province and
territory, as well as optimally allocated size of networks for an
optimal network design from blank slate. Provinces and territories
are ranked by efficiency of the current network from less
(Yukon) to more (Prince Edward Island) efficient.

Province/territory Current  Optimal  Efficiency
Yukon (YK) 38 104 5%
British Columbia (BC) 398 1374 9%
Newfoundland and 98 168 14%

Labrador (NL)
Quebec (QC) 370 162 16%
Nunavut (NU) 35 53 23%
Alberta (AB) 408 52 24%
Northwest Territories 44 35 29%
(NWT)
Manitoba (MB) 203 69 33%
Ontario (ON) 332 120 34%
Saskatchewan (SK) 246 42 42%
Nova Scotia (NS) 70 82 49%
New Brunswick (NB) 68 55 57%
Prince Edward Island (PEI) 17 11 83%

uncertainty to a comparable level than other provinces and
territories. This is more than half of the country’s assigned
station budget and more than 3 times the current number of
stations. Newfoundland and Labrador is another province
that would require a larger network to balance the interpola-
tion uncertainty. Other Atlantic provinces are in the middle
of the pack, where a slight relative increase of stations in
Nova Scotia and a slight relative decrease in the number of
stations in New Brunswick would reduce overall interpolation
uncertainty. The territories of Yukon and Nunavut will also
benefit from enhanced networks, which is not surprising given
their very sparse current network. What is surprising in fact is
that they do not require as many new stations as expected
given their size. Also surprising is the fact that Northwest Ter-
ritories already have a more than sufficient number of stations
according to the OND experiment. The two central provinces,
Ontario and Quebec, could remove more than half their sta-
tions and still reach a level of interpolation uncertainty similar
to what BC would attain with a network triple the size of the
current network. It is even more dramatic for the Prairie
provinces which would require only between 40 (Saskatche-
wan) and 70 (Manitoba) stations. The relatively smaller num-
ber of stations required in the Prairies can be explained by
the drier climate in (part of) that region.

c. Sensitivity analysis

A sensitivity analysis was carried on by comparing the optimal
network design according to the statistical model with homoge-
neous measurement error with the statistical model with spa-
tially variable measurement error as well as a statistical model
with parameters fitted over two seasons: warm and cool months.

The main results are presented in Fig. 4. The first observa-
tion is that there is a general agreement between the optimal
network design methods (see Figs. 4b—d) to allocate a higher
station density in the southwest of the province where are the
Canadian Rocky Mountains, followed with a slightly lower

BRUNET AND MILBRANDT

735

density in the southeast part of the province and the lowest
density in the north of the province. All three variations of the
method agree on the general pattern of stations and would lead
to a dramatic improvement in network quality compared to the
current network shown in Fig. 4a. As the uncertainty maps are
shown according to the statistical model with homogeneous er-
ror model, necessarily the optimal network according to the
same statistical model will perform better than any other net-
work that are optimal according to a different criterion. This
fact is confirmed by comparing the maximum total uncertainty
for each network design and is seen as a lower maximum value
in the uncertainty map shown in Fig. 4b. Optimal design ac-
cording to a statistical model with variable error tends to con-
centrate even more the stations in the mountainous area at the
expense of an even lower density in the north of the province.
The statistical model with a spatially varying measurement er-
ror and a seasonal component is very similar to the one with no
seasonality, but the concentration of stations in the mountain-
ous area is the highest when seasonality of covariance statistics
and measurement errors is considered.

For northern territories, adding the spatially variable mea-
surement error (both with or without seasonality) leads to
counterintuitive results where all the stations are clustered
around the same areas in coastal or mountainous regions. For
example, for Nunavut (figure not shown) the network design al-
locates all stations in the eastern part of the domain close to
Igaluit, while in Yukon (figure not shown) they are all allocated
in the southwest part of the domain around Mount Logan. By
contrast, although the optimal network design with homoge-
neous error model tends to allocate the majority of stations in
the same areas of high precipitation variability, this latter statis-
tical model also allocates some stations across the domain. For
this reason, the statistical model with a homogeneous measure-
ment error is preferred over the more complex statistical mod-
els with spatially varying measurement errors and seasonality.

4. Discussion

The proposed optimal network design strategy relies on
specific assumptions which may or may not be valid in prac-
tice. Here, we discuss some caveats and potential extensions
of the network design methodology.

The essential problem in optimal interpolation is to esti-
mate the covariance between locations without observations.
Necessarily, any approach will introduce a source of error as
we can only compute the correct covariance if we already
have observations at locations where we want to interpolate,
but in which case we do not need to do any optimal interpola-
tion. What is proposed in this proof-of-concept is to take re-
analysis as a proxy for observations. Other alternatives would
be to use radar data or do assume spatial stationarity in the
covariance structure, but these alternatives would not work in
Canada with a large and heterogeneous domain with only par-
tial radar coverage. Some source of uncertainty will be intro-
duced by the use of reanalysis, but at the same time reanalysis
should be in general the best possible data we have integrat-
ing all sources of information from observations and physical
knowledge. In the case of ERAS-Land, the reanalysis could
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certainly be improved by integrating surface station, radar,
and satellite precipitation observations to ERAS5-Land. How-
ever, we quickly run into a circular argument where we need
to assume a correlation structure in order to interpolate ob-
servation error, but we need the best possible analysis to esti-
mate the correlation structure. Taking ERAS5-Land directly is
the simplest approach and illustrates well the concept of intro-
ducing a nonstationary correlation structure in the optimal
interpolation.

The proposed network design framework can be applied for
spatial and temporal scales that are no greater than the spatial
scale of the underlying reanalysis data (0.1° resolution for
ERAS5-Land). We assumed that current and additional sta-
tions are representative at the grid scale and did not consider
explicitly subgrid variability. A way to incorporate the subgrid
variability would be to include an explicit subgrid model using
ancillary data such as topography and land usage/cover.

Climate level monitoring, characterized by interpolation at
lower temporal and spatial scales but for a longer time period,
might require a very different set of assumptions for the net-
work goals. A simple and elegant solution to satisfy both
weather and climate monitoring needs would be to protect
specific stations with long-term records from being moved or
removed. That is, a network design could be done starting with
the current climate monitoring network, gradually adding
more stations to fulfill other needs.

Although the network density is very low in the north, the
variability of interpolated precipitation remains generally low
given the dry conditions which leads to a smaller variability in
the absolute precipitation amount. On the contrary, the mea-
surement errors are generally high as conditions above the
tree line are windy and snowy, leading to large wind under-
catch errors. However, adding more stations cannot reduce
measurement errors and will only slightly reduce interpola-
tion error. This issue explains the results where an optimal
network design considering variable measurement errors will
allocate the vast majority of stations in areas with high total
precipitation uncertainty (i.e., in coastal and mountainous
areas), but without significantly reducing the total uncertainty
in precipitation. The solution is not intuitively satisfying, as
large portions of the domain will be left with a very low net-
work density. Even with a uniform measurement error model
this phenomenon is seen, but to a lesser extent, with for exam-
ple the coastal and mountainous area of BC requiring a very
high network density to lower total precipitation uncertainty.
Similar results can be found in Mauger et al. (2013) for the
northwestern United States. This issue highlights the need to
reduce measurement errors as much as possible with better
sensors and shielding, particularly in areas of higher measure-
ment uncertainty (yellow to red in Fig. 2a). An optimal net-
work design considering the trade-off between installing more
stations with lower cost and fewer stations with higher cost
would be an important extension of this work.

Practical considerations on cost, access and land use
agreement will certainly influence the final decision on the
exact location of a new station, but considerations on site
representativeness (not addressed here) and optimality to
reduce interpolation uncertainty should be considered. In
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fact, we envision the OND as providing an optimal loca-
tion within a 0.1° grid cell (about 100-km? area). Once this
area is identified, representative sites, that is locations for
which the observations correlate well with the grid cell av-
erage, should be assessed given logistical constraints.

OND techniques offer flexibility in selecting optimal loca-
tions. For example, sites over water, over steep slopes, or
otherwise inaccessible could be excluded when choosing the
next optimal location. Similarly, if a list of candidate sites is
already known, then OND can be restricted to only these
potential sites. Note, however, that more constraints on po-
tential locations will necessarily reduce the capacity of the
network to effectively interpolate total precipitation.

Measurement errors have been assumed to be either constant
or to depend on the climatology of temperature, wind speed,
and precipitation amount, but with either the same error over
the whole year or two different error models for cool and warm
months. A refined OND system could instead use different ob-
servation uncertainty estimates by sensors (e.g., Pluvio, Geonor,
or tipping bucket), by precipitation phase (solid, mixed, or lig-
uid) and by environmental conditions (such as local wind and
temperature) while accounting for representativeness using the
local topography as predictor. However, several challenges
need to be addressed before getting there. First, an up-to-date
metadata repository must be collected for each current sensor.
Second, a precipitation phase model (with its own uncertainty)
must be included. This model will potentially require other
ancillary data such as surface temperature and wind speed
at sensor height, which might also need to be estimated sep-
arately with their own uncertainty (we instead assumed that
the ERA5-Land provided perfect observations).

Locations where OND identified the greatest need for new
stations (such as mountainous BC) are generally locations which
are the most difficult to access. As such, before installing new
stations, the first consideration should be if other networks not
considered in the OND could be integrated in order to reduce
uncertainty. OND can thus not only guide where new stations
should be installed, but also help prioritize efforts to integrate
other networks.

OND depends heavily on the goals of the network design.
For example, the proposed network configurations demon-
strated in this study minimized the maximum interpolation
uncertainty over an area. A criterion to minimize the average
interpolation uncertainty might lead to network which are
slightly more uniform in density. If the goal is to detect precip-
itation events, then the uncertainty on precipitation occurrence
should be minimized instead, and similarly, if we want to detect
extreme precipitation events, we would minimize the uncer-
tainty in the probability of detection of extreme events. In addi-
tion, if the relative uncertainty is minimized instead of the
absolute uncertainty in total precipitation amount, then we can
expect a lower network density in mountainous BC and a
higher network density in the Arctic. The weighting of the net-
work uncertainty could also be considered by putting more
weight for populated areas or important infrastructures.

Sensitivity of the results to both the choice of statistical model
and to the underlying data used to fit the statistical model could
be further investigated. For example, if consistency in the
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correlation structure coming from different data can be estab-
lished (e.g., radar-derived precipitation, satellite-derived precipi-
tation, and reanalysis), then we could further gain confidence in
the results. In addition, the choice of marginal distribution to
model precipitation amount as well as the way to compute the
covariance structure (stationary versus spatially and/or tempo-
rally varying) could all be compared. The greedy optimization
method itself could be assessed on small examples where exhaus-
tive search is computationally feasible. A more complete evalua-
tion of the statistical model using radar-based QPE techniques as
reference is planned as future work. This evaluation will also in-
clude comparison with random or uniform network density as
well as network design with isotropic and stationary correlation
structure.

In summary, the assumptions made in this study could be
revisited as follows:

(i) If two or more options of sensors with different costs
are considered, then the optimization procedure be-
comes a kind of snap-pack resource allocation problem.

(i) Multiple network design objectives can be optimized using

a multicriteria optimization procedure. A nested strategy

could be used where network design objectives at coarser

resolution (e.g., for climate studies) are first answered with
an allocated percentage of stations, before optimally an-
swering needs requiring higher network density.

Spatial variable socioeconomic needs could be consid-

ered by multiplying the interpolation uncertainty by a

need index representing the relative importance of accu-

rately measuring precipitation at each location.

Measurements errors could be explicitly modeled by

sensor and shielding type (assuming the appropriate

metadata is available), whereas representativeness error
could be addressed by explicitly modeling subgrid
variability.

(v) Site selection can be easily constrained to only include
accessible locations. Similarly, stations from external
networks or from long-term climate network can be eas-
ily protected from removal during network reduction.

(iif)

(iv)

5. Conclusions

A proof-of-concept of a network design methodology is
demonstrated over domains covering the whole Canada. As-
suming homogeneous measurement error provides reasonable
results, whereas statistical models with spatially and seasonally
varying measurement errors point out to the need to reduce
measurement uncertainty in snowy and windy conditions.

As decisions are taken on where to add new stations or on
which station to decommission, objective OND methods can of-
fer useful guidance on the size of the network required and the
locations of stations to add and remove. While the most egre-
gious cases of redundant stations or of large gaps in the net-
work can and should easily be dealt with subjectively, more
difficult decisions on how to optimally allocate resources across
the country can be informed by OND. Moreover, less obvious
network design configuration can be found by the objective
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method, providing quantitative recommendations for dramatic
improvements in the network design quality at a minimal cost.

The optimal network design experiments reveal that the cur-
rent network designs for most of the provinces and territories
are rather poor. Funding to install more stations in mountainous
areas, coastal areas and in the northern portions of Canadian
provinces is urgently needed. The greatest needs for additional
stations can be found around Mount Logan in Yukon, in the
coastal areas of BC and of Newfoundland and Labrador, in
northern Quebec, and in the southern portion of Baffin Island
in the Everett Mountains around Iqaluit in Nunavut. The opti-
mization of the current networks by moving or removing redun-
dant stations could partially provide the necessary funding to
install stations in harder to access locations. Indeed, small
changes by adding a few stations at critical locations can have a
dramatic impact in reducing interpolation uncertainty. More-
over, as optimal locations for stations within a province or terri-
tory tends to be on their boundaries, greater collaboration
between provinces and territories (and between network opera-
tors in general) could provide further efficiencies.

We conclude that the proposed objective OND techniques
are powerful decision-making tools for monitoring networks.
The techniques developed could be readily adapted for other
variables of interest such as wind speed, wind direction, maxi-
mum or minimum daily temperature or snow amount. The
promises are more efficient network design at lower cost, but
with better accuracy.
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APPENDIX A

Gaussian Processes, Optimal Interpolation, and
Ensemble Kalman Filter

Gaussian processes are a type of stochastic process where
the probability distribution of any combination of N points fol-
low a multivariate Gaussian distribution. Optimal interpolation
starts with different assumptions, but the practical implementa-
tion is exactly the same. Note that the conditional multivariate
Gaussian approach is also equivalent to the Kalman update
rule used in data assimilation. Indeed, if we assume that the
observations are a linear function of interpolated value, i.e.,
y = Hx where H is a linear observation operator, e.g., a bilin-
ear interpolator, then the covariance matrices can be written
as X, = H2, HT and 3y = 3 HT. Similarly, by using the
climatological averages p, as background field x; (general ob-
tained from a previous NWP run in data assimilation), we
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obtain m, = Hu, by the linear relationship between x and y.

Renaming 3, as P, and X, as R and substituting in the multi-

variate Gaussian update rule formula, we obtain the familiar no-
tation for the Kalman gain

-1

K=P,H'(HP,H" + R)™". (A1)

Note, however, that by directly using covariance matrices

between observations and interpolated values, we can han-

dle observations located outside the interpolated domain as

well as observations that are not a linear function of the in-

terpolated values, while avoiding the need to estimate the
full covariance matrix X ,.

APPENDIX B

Mathematical Derivations for Marginal Distributions

a. Analytical expression for expectation and variance of
total precipitation

Recall that the precipitation model is X = OA, where O fol-
lows a Bernoulli distribution with probability p and A follows a
lognormal distribution with mean E[log(A)] = w4 and variance
V[log(A)] = ¢%. The expectation and variance of O are thus

E[O]=p and (B1)
V[O] = E[O](1 — E[O]) = p(1 = p), (B2)
while the expectation and variance of A are
E[A] = exp(p, + d%/2) and (B3)
VIA] = [exp(07)) — 1lexp(2u, + 7). (B4)

Since we assume that O and A are independent, the expec-
tation of X is

E[X] = E[O]E[A] = pE[A], (BS)

while the variance of X is
V[X] = V[O]V[[A] + V[O](E[A])® + V[A](E[O])*;
= p(1 — p)V[A] + p(1 — p)(E[A])® + V[A]p*;

= pVIA] + p(1 — p)(E[A])’. (B6)

The measured precipitation amount Ay, (after bias correction) is
assumed to have a multiplicative error so that log(A,,) — log(A)
follows a normal distribution with zero mean and variance o2. By
the law of total expectation the expectation of the reference precip-
itation is
E[A,] = E{E[A,|A]}
= E{exp[log(4) + o2/2]}

— exp(0?/2)E[A] (B7)

and by the law of total variance, the variance of the refer-
ence precipitation is
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V[A,] = E{V[A|A]} + V{E[A4|A]}
= E{[exp(a?) — 1]exp[2log(A) + 071}
+ V{expllog(A) + o2/2]}

= [exp(a?) — 1]exp(o2)(E[A])* + exp(20?)V[A]
(B8)

To compute the variance of the measured total precipita-
tion Xy, = OpAyy, we simply substitute E[A] by E[A,,] and
V[A] by V[Ay] in Eq. (B6) (the estimation of the probabil-
ity of precipitation p is assumed to be exact).

b. Method of moments for estimating parameters of prior
distribution

Using the method of moments to solve for u, and o3
from E[A] and V[A], we find

0% = log(V[AJ{E[A]Y + 1);

(B9)
iy = log(E[A]) — 0312

The mean E[A] and the variance V[A] of the reference precipi-
tation can be derived from the mean and variance of the mea-
sured precipitation given in Egs. (B7) and (B8). We obtain

E[A] = E[AM]/exp(of/Z) and (B10)

V(A) = V[A,,]/exp(202)

—[exp(a2) — 1)/exp2a2)(E[A 1) (31D

APPENDIX C

Implementation Details of Update Rule in
Gaussian Processes

The algorithm 2.1 of Rasmussen and Williams (2006) can
be rewritten as follows:

1) Compute Cholesky factorization LLT = 3,,, + 3, where
L is a lower triangular matrix.

2) Solve LL'v =3

3) Compute posterior mean Ly, = gy + V' (y — ).

4) Compute a = LTv.

5) Compute posterior variance o, = o3 — &' a.

The previously computed lower triangular matrix Ly can
be recuperated from the previous iteration when computing
L. Indeed, let sy and 1y be the vectors of the first N ele-
ments of the last row of, respectively, 3, + 2, and L, and
let s; and /; be the last element of same corresponding ma-
trices. The (N + 1) X (N + 1) matrix L is thus decomposed
into a N X N block Ly, plus an extra row [ly, /;] and an ex-
tra column of N zeros before the last element /. Similarly,
the (N + 1) X (N + 1) matrix X%,, + 3, is decomposed
into the previously computed N X N matrix with an extra
row [sy, s;] and an extra columnl[s}, s,]. In the Cholesky fac-
torization of ¥,, + X, the block Ly will remain the same
as before. What remains to be solved is

Unauthenticated | Downloaded 09/19/23 07:52 PM UTC



APRIL 2023 BRUNET AND MILBRANDT 739

TABLE D1. Parameters for the wind undercatch uncertainty model for different precipitation phase (rain, mixed, or snow), wind
speed (low, medium, or high), and measured precipitation amount (none, trace, low, or high) categories. The parameters a and b are
for the bias-correcting function; the parameters «, 8, and vy are for the precipitation amount measurement error; and PoP is for the

probability of precipitation occurrence (see text for details). Parameters for high and low measured precipitation amount are the

same, except for PoP which is always 100% for high precipitation amount (as indicated in the parentheses).

Precipitation phase Wind speed Precipitation amount a b «a B Y PoP
Snow Low None 0.13 0 0.66 33.7
Snow Low Trace 0.15 0 0.47 66.1
Snow Low Low (high) 0.43 0.73 0.17 0.12 0.72 91.2 (100)
Snow Medium None 0.21 0 0.89 29.8
Snow Medium Trace 0.25 0 0.82 71.8
Snow Medium Low (high) 0.80 0.73 1.28 0.00 0.74 97.6 (100)
Snow High None 0.47 0 1.34 49.5
Snow High Trace 0.58 0 0.90 92.6
Snow High Low (high) 2.98 0.70 3.63 1.33 0.92 98.7 (100)
Mixed Low None 0.15 0 0.78 9.8
Mixed Low Trace 0.26 0 0.99 55.6
Mixed Low Low (high) 0.34 0.27 0.24 0.00 0.61 100 (100)
Mixed Medium None 0.47 0 0.68 11.6
Mixed Medium Trace 0.47 0 0.68 57.1
Mixed Medium Low (high) 0.47 0.53 1.47 0.00 0.68 97.8 (100)
Mixed High None 0.32 0 1.06 253
Mixed High Trace 0.3 0 1.29 86.7
Mixed High Low (high) 1.09 0.62 0.90 7.47 1.10 100 (100)
Rain Low None 0.11 0 0.22 1.1

Rain Low Trace 0.16 0 0.22 83.3

Rain Low Low (high) 0.10 0.21 0.00 0.04 0.40 85.7 (100)
Rain Medium None 0.13 0 1.34 4.9

Rain Medium Trace 0.20 0 0.69 46.4

Rain Medium Low (high) 0.00 1.00 0.01 0.43 0.80 96.2 (100)
Rain High None 0.12 0 0.60 4.7

Rain High Trace 0.11 0 0.58 41.7

Rain High Low (high) 0.14 0.75 0.12 0.61 0.39 90.9 (100)

1) the lower triangular system LNI% =s} and
2) the last element 2 = s, — 1,1,

which can be computed efficiently.

APPENDIX D

Error Characteristic Model for Wind Undercatch

Precipitation gauges suffer from various sources of measure-
ment errors such as capping, wetting and evaporation loss and
wind undercatch (see, e.g., Mekis et al. 2018). Undercatch from
solid precipitation in windy conditions is particularly severe for
unshielded gauges. The catch efficiency, the ratio between mea-
sured and true precipitation falling, is generally believed to
depend on wind speed, air temperature, precipitation phase and
type, precipitation amount, particle size distribution, climatic con-
ditions, sensor type, and sensor shielding. Air temperature at the
gauge location can be a reasonable proxy for precipitation phase
(solid, liquid, or mixed) and type (e.g., fine snowflakes or heavy
and wet snow), whereas precipitation amount can provide some
indication on the particle size distribution (see Colli et al. 2020).

Several attempts have been made to design universal
transfer functions, that is, catch efficiency for a given wind
speed and other parameters that is applicable at any location

(Kochendorfer et al. 2017, 2018, 2022; Smith et al. 2020).
These transfer functions are generally designed from reference
sites (or supersites) such as those in the Solid Precipitation
Intercomparison Experiment (SPICE) summarized in WMO
(2018). These sites use a double-fence intercomparison refer-
ence (DFAR) to estimate the true precipitation without wind
undercatch and compare these reference measurements with
collocated sensors which are either unshielded or with various
type of wind shield. Results from these experiments cannot
apply directly to provide an error characteristic for a large
mixed network of daily precipitation measurements with un-
known sensor and shield type.

We design daily wind undercatch bias correction and estimate
the residual error after correction using Smith et al.’s (2019) quality
controlled post-SPICE data from Bratt’s Lake (Canada), Caribou
Creek (Canada), Centre for Atmospheric Research Experiments
(Canada), Marshall (United States), Haukeliseter (Norway),
Formigal (Spain), Sodylanka (Finland), and Weissflyhjoch
(Switzerland) sites. The data are aggregated to daily measure-
ments by accumulating precipitation and taking the daily average
wind speed and temperature. Outliers for which the reference
precipitation is significantly lower than the measured precipita-
tion were removed.

Daily averaged wind is binned into low (0-3 m s~ '), medium
(3-6 m s'), and high (6+ m s™!) wind speed categories, while
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precipitation phase is binned into solid/snow (7 < —1°C),
mixed (—1°C = T < 3°C), or liquid/rain (T = 3°C). The
threshold for determining precipitation phase differs slightly
from previous study, but they follow more closely the precipita-
tion phase as determined by the snow fraction in ERAS-Land
reanalysis.

For each of the nine binned category (i.e., the combination of
wind speed and precipitation phase), a nonlinear regression is fit-
ted between measured and reference daily precipitation with the
following formula:

E(x) = x + ax’, (D1)
where a = 0 and b = 1. The intuition for this regression for-
mula is as follows. For perfect measurements, we would have
E(x) = x, but the error from wind undercatch error is as-
sumed to follow a power law a concave shape (since b = 1).
The advantage of using this formula compared to a more
complex function is that no global optimization routine is re-
quired to be called, thus mitigating the risk to fail to find a
minimizer or to be stuck in a bad local minimum. The fitting
procedure goes exactly as the intuition laid it out. First, the
coefficients of the power law are found by linear least squares
between the log of the precipitation error and the log of the
measured precipitation. The coefficients a and b are then set
to, respectively, 0 and 1 if outside the expected range. Second,
the linear regression between the residual error after applying
the power law correction and the measured precipitation is
again found by least squares.
The residual error is then fitted with a linear function

Vix) = ax + B, (D2)
where «, B = 0. This error model can be interpreted as fol-
lows. The total precipitation amount (A) can be considered
as the sum of N smaller precipitation amount A so that,

N
A=NA= QA

i=1

(D3)

The variance of the total precipitation is the sum of vari-
ance of the smaller precipitation amounts (plus a covariance
term which we neglect here):

Var(A) = N Var(A) = A Var(A)/A

with @ = Var(A)/A. Other measurement errors which are in-
dependent to the precipitation amount are lumped in the ab-
solute error term (B). For small absolute errors, we thus have
that the variance of precipitation is proportional to the precip-
itation amount, or that the standard deviation (or error) in
measured daily precipitation increases as the square root of
the daily precipitation amount. For extra robustness in the es-
timation of the parameters, we exclude the 1% greatest resid-
ual errors as outliers before estimating the parameters. For
small precipitation amounts, we assume a constant logarithmic
error y which is estimated as the root-mean-square logarith-
mic error between reference R and corrected C precipitation
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F1G. D1. Example of fit for the bias-correcting function and mea-
surement error model for wind undercatch in the case of snow
(temperature below 1°C) with high wind conditions (wind speed
above 6 m s !). (a) Scatterplot of measured precipitation (for
all sensors and shielding types) against reference precipitation
from double fenced intercomparison gauge. The full gray line
represents the wind undercatch bias correction function.
The fitted 95% confidence interval is shown between the
dashed lines. (b) Scatterplot of the residual logarithmic error
log(R) — log(C) against corrected precipitation amount C. The
dashed lines represent the fitted 95% confidence interval ac-
cording to the measurement error model.
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amounts. The final measurement error model combines both
errors for small and large precipitation amount:
R ~ log-normal[log(C), min(y, /aC + B/C)]. (D4)
For our statistical model of precipitation, we also need to deter-
mine the probability of no precipitation when precipitation is
measured as well as the probability of precipitation when no
precipitation is measured. To do so, we simply count the num-
ber of cases for which the reference precipitation is 0 while the
measured precipitation is greater than 0 and vice versa. Once
again, we bin the results by wind speed and precipitation phase.
Given that reference precipitation is always strictly positive
when the measured daily precipitation is greater than 3 mm,
we assume that the probability of precipitation is 100% in this
case. If the measured daily precipitation is either none or trace
(below 0.2 mm), the statistical model for precipitation amount
is computed from the statistical distribution of strictly positive
reference precipitation amount corresponding to these cases.
Table D1 shows the fitted parameters for wind undercatch
bias correction, residual error variance and probability of pre-
cipitation for all the nine cases of wind speed and precipitation
phase. An example of fitted curves and confidence intervals is
shown for the snow cases with different wind speed categories
in Fig. D1.
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