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Abstract A robust design optimization (RDO)

approach for minimum weight and safe shell compos-

ite structures with minimal variability into design

constraints under uncertainties is proposed. A new

concept of feasibility robustness associated to the

variability of design constraints is considered. So, the

feasibility robustness is defined through the determi-

nant of variance–covariance matrix of constraint

functions introducing in this way the joint effects of

the uncertainty propagations on structural response. A

new framework considering aleatory uncertainty into

RDO of composite structures is proposed. So, three

classes of variables and parameters are identified:

deterministic design variables, random design vari-

ables and random parameters. The bi-objective opti-

mization search is performed using on a new approach

based on two levels of dominance denoted by Co-

Dominance-based Genetic Algorithm (CoDGA). The

use of evolutionary concepts together sensitivity

analysis based on adjoint variable method is a new

proposal. The examples with different sources of

uncertainty show that the Pareto front definition

depends on random design variables and/or random

parameters considered in RDO. Furthermore, the

importance to control the uncertainties on the feasi-

bility of constraints is demonstrated. CoDGA

approach is a powerfully tool to help designers to

make decision establishing the priorities between

performance and robustness.

Keywords Bi-objective optimization � Composite

structures � Feasibility robustness � Uncertainty

sources � Sensitivity � Co-dominance

1 Introduction

The robust design optimization (RDO) of composite

structures is currently a very important area of

research. Indeed, the principal objective of robust

design is to improve product quality by minimising the

uncertainty effects or stabilising variations in struc-

tural response without eliminating their causes. RDO

applied to composite structures under probabilistic

constraints is a very important field due to uncertain-

ties associated with physical properties of fibre-

reinforced composites. Adali et al. (2003) developed

a model aimed at the optimal design of composite

laminates under buckling load uncertainty. In this

model loads belong to a given uncertainty domain.

Walker and Hamilton (2005) described a procedure to

design symmetric laminates for maximum buckling

load under manufacturing uncertainty in ply angle
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zero order information considered in the fitness

definition avoiding in this way the calculation of

derivatives. In this approach the use of gradients are

necessary to define the components of variance–

covariance matrix. However, since the adjoint variable

method is preferred when the number of design

variables or parameters is greater than the number of

functions, the additional computational cost is not

dramatically increased. Indeed, in the proposed

approach only two functionals, the critical displace-

ment and the critical Tsai number are considered.

In the proposed multi-objective optimization

approach the weight and the determinant of the

variance–covariance matrix of the response of com-

posite structures are considered as performance and

robustness functions, respectively. The Pareto front is

built using a genetic algorithm with co-evolution of

two populations denoted by Co-Dominance-based

Genetic Algorithm (CoDGA). The idea of co-evolu-

tion of populations is generalized in the literature on

genetic algorithms. However, this concept has not

been applied to multi-objective optimization of com-

posite structures. In this approach the concept of co-

evolution enables to use the elitism and dominance at

short population and to use only dominance at

enlarged population. The paper is organized as

follows: the measures of uncertainty for composite

structures are introduced in Sect. 2, the RDO of

composites is formulated and the proposed approach

are presented in Sect. 3, the results and the discussion

are presented in Sect. 4 and the conclusions are

established in Sect. 5.

2 Uncertainty analysis for robustness definition

The important parts of the RDO are the uncertainty

and sensitivity analysis in studying complex systems

such as composite laminated structures, for robustness

assessment. Specifically, uncertainty analysis refers to

the determination of the uncertainty in the response as

a result of uncertainties in random variables, and

sensitivity analysis refers to the evaluation of the

contributions of individual uncertainties of random

variables to the uncertainty in response results.

The uncertainty can be classified as epistemic or

aleatory. The epistemic uncertainty comes from a lack

of knowledge of the appropriate value to consider for a

quantity that is assumed to have a fixed value used in a

design variable. Gumbert and Newman (2005) anal-
ysed the effect of geometric uncertainty in shape 
parameters in a 3-D flexible wing. Choi et al. (2008) 
proposed an approach based on searching the stacking 
sequence of laminated composite structures which, 
corresponds to the less sensitive performance proper-
ties relatively to uncertainties in the input parameters. 
This perspective follows RDO concepts where the 
objective is to minimize the effects of uncertainty on 
optimal design. The same strategy based on consid-
ering the statistical data in objective and constraint 
functions is also used by António and Hoffbauer 
(2009, 2010) combining reliability and robustness.

Other perspective of RDO used in structural 
applications but not applied in composite structures 
is based on the optimization of mean performance 
commonly known as optimality, and the minimization 
of the variability of the performance function known 
as robustness (Huang and Du 2007; Zaman et al. 2011; 
Ragavajhala and Mahadevan 2013). Nevertheless, 
another concept of robustness can be defined as the 
maximization size of the deviations from the target 
design that can be tolerated, whereby the product 
satisfies all requirements (Salazar and Rocco 2007). 
This design rule is based on the concept such as the 
response variability does not necessarily have to be 
minimised but rather that it be bounded. So, the design 
with largest tolerance to the input uncertainty is 
considered as the robust design.

In this paper, the proposed approach introduces a 
new concept of RDO based on feasibility robustness 
together performance optimization. The feasibility 
robustness is associated to design constraints instead 
on the variability of the performance function as 
suggested previously. In particular, the feasibility 
robustness is associated to the variability of critical 
displacement and to the variability of critical Tsai 
number for stress integrity analysis. Furthermore, a 
new framework aiming to consider the aleatory 
uncertainty into RDO of composite structures is 
proposed. So, three classes of variables and parameters 
identified in robust design of composite structures are 
considered in the approach: the deterministic design 
variables, the random design variables and the random 
parameters.

The use of evolutionary concepts together sensitiv-
ity analysis based on adjoint variable method is a new 
concept used in proposed RDO approach. In general 
evolutionary methods as genetic algorithms only use



particular analysis. Epistemic uncertainty is related to

imprecise probabilistic information (fuzzy) and is

generally taken to be distinct from aleatory uncertainty

under the conceptual and modeling point of view.

Aleatory uncertainty arises from inherent randomness

in the behavior of the system under study. RDO of

composite structures is commonly based on aleatory

uncertainty (Adali et al. 2003; Rais-Rohani and Singh

2004; Carbillet et al. 2009).

In this work the quantification of response uncer-

tainties of composite structures due to uncertainty in

the mechanical properties and loads of the structural

model is implemented based on linear statistical

analysis. This methodology uses a Taylor’s series

expansion to obtain a linear relationship between the

response random variables—displacements and stres-

ses, and the random structural input parameters

(Cacuci 2003; Helton and Davis 2006; Saltelli et al.

2006; Rocquigny et al. 2008; António and Hoffbauer

2008). The adjoint variable method is used to obtain

the sensitivity matrix (António 1995). This method is

appropriated for composite structures due to the large

number of random input parameters.

The almost totality of sensitivity analyses in

applications with composite structures used local

importance measures of uncertainty on design param-

eters (Rais-Rohani and Singh 2004; Carbillet et al.

2009). António and Hoffbauer (2008, 2010) studied

the dominant effects on the stochastic characteristics

and analyze the influence of different random param-

eters using a global analysis based on an Artificial

Neural Network and a Monte Carlo Simulation

approach. In particular in António and Hoffbauer

(2008), the uncertainty propagation on structural

response of composite laminated structures are anal-

ysed using three different approaches: a first-order

local method, a Global Sensitivity Analysis supported

by a variance-based method and an extension of local

variance to estimate the global variance over the

domain of inputs. The needs for global variance

methods are discussed by comparing the results

obtained from proposed methodologies. The results

show that a first order local method is acceptable to

analyse the uncertainty propagation on response for

angle-ply laminates. An obvious advantage of local

methods in robustness assessment is the reduced

computational costs of the associated uncertainty

analysis.

2.1 Propagation of uncertainties

Lets consider the system response w to be a real-

valued function of n system parameters denoted as

x ¼ ðx1; . . .; xnÞ. The true values of these parameters

are not known and so, only the nominal values x0 ¼

ðx01; . . .; x
0
nÞ and their uncertainties dx ¼ ðdx1; . . .; dxkÞ

are available. Assuming the system parameters as

random variables, the nominal values are taken to be

the expected values and the associated uncertainties

are given by the corresponding standard deviations.

Commonly, the relative uncertainties dxi=x
0
i are

symmetrically distributed in the neighborhood of x0i
and they are smaller than unity. The true parameter

value is defined in vector form as

x ¼ x0 þ dx ¼ ðx01 þ dx1; . . .; x
0
n þ dxnÞ ð1Þ

The response is related to the parameters using the

equation of the computational model written in close

form as

w ¼ wðx1; . . .; xnÞ ¼ wðx01 þ d x1; . . .; x
0
n þ dxnÞ ð2Þ

In the above functional relationship w is used in

both senses as random function and as its numerical

realization. The expansion in Taylor’s series of

functional in Eq. (2) around the nominal value x0 ¼

ðx01; . . .; x
0
nÞ considering only up to the first order terms

is the following:

wðx1; . . .; xnÞ ¼ wðx0Þ þ
X

n

i¼1

ow

oxi

� �

x0
dxi

¼ w0 þ
X

n

i¼1

Sidxi ð3Þ

being w0 � wð x0Þ and Si ¼ ow=oxið Þx0 the response

sensitivity to parameter xi. The mean value and the

variance of the response is obtained respectively from

Eq. (3) as

EðwÞ � w0 ð4Þ

var(wÞ � E w� w0
� �2

� �

¼
X

n

i¼1

S2i var(xiÞ þ 2
X

n

i6¼j¼1

SiSj cov(xi; xjÞ ð5Þ

The last equation can be written in matrix form as

var(wÞ ¼ SCxS
T ð6Þ



where the superscript ‘‘T’’ denotes the transposition,

Cx is the covariance matrix for parameters ðx1; . . .; xnÞ

with components defined as

Cxð Þij¼

cov xi; xj
� �

¼ qijrirj; i 6¼ j; qij � correlation coefficient

var xið Þ ¼ r2; i ¼ j

(

ð7Þ

and the column vector S ¼ ðS1; . . .; SnÞ has compo-

nents Si ¼ ow=oxið Þx0 .

If the system parameters ðx1; . . .; xnÞ are uncorre-

lated then Eq. (5) can be reduced to

var(wÞ ¼
X

n

i¼1

S2i var(xiÞ ¼
X

n

i¼1

S2i r
2
i ð8Þ

The previous concepts can be extended to the case

of m response functions all of them depending on

parameters ðx1; . . .; xnÞ. Firstly, considering vector

notation the m responses can be presented as

u ¼ ðu1; . . .;umÞ ð9Þ

and the corresponding equivalent equations to Eq. (3)

are the following first order Taylor expansion of uðxÞ:

u x0 þ dx
� �

¼ u x0
� �

þ du ffi u x0
� �

þ Sdx ð10Þ

where S is a rectangular matrix of order m� n with

components representing the sensitivity of the j-th

response to the i-th system parameter such as

Sð Þji ¼ ouj

�

oxi ð11Þ

The expectation EðuÞ of u is obtained using the

same procedure adapted to Eq. (4):

EðuÞ ¼ u0 ð12Þ

Finally the covariance matrix Cu for u is obtained

by a similar procedure applied to Eq. (6) and this is

Cu ¼ E Sdx Sdxð ÞT
� �

¼ SE dxdxT
� �

ST ¼ SCxS
T

are evaluated using the adjoint variable method

(António 1995).

2.2 Sensitivity analysis using adjoint variable

method

The objective of sensitivity analysis is to analyze the

behavior of the response of the system and to evaluate

the sensitivities of the system response to variations in

the system input parameters around their nominal

values. The methodology presented here is based on

the adjoint variable method. The methodology was

developed in connection with structural analysis of

composite structures (António 1995). The structural

analysis of laminated composite structures is based on

a displacement formulation of the Finite Element

Method (FEM), in particular using the shell finite

element model developed by Ahmad (1969) and

further improvements (Figueiras 1983). This shell

element is obtained from a 3-D finite element using a

degenerative procedure. It is an isoparametric element

with eight nodes and five freedom degrees per node

based on theMindlin shell theory. The shell consists of

a number of perfectly bonded plies. Each individual

ply is assumed homogeneous and anisotropic. A

shortly description of Ahmad element can be found

in paper published by António and Hoffbauer (2008).

In this work it is considered the linear behavior of

structural systems with the equilibrium equation set

established as

KðxÞ u ¼ F ð14Þ

where K is the stiffness matrix, u is the displacement

vector, x is the vector of the system parameters and

F are the applied external loads.

In the adjoint variable method, an augmented

Lagrangian is defined in terms of adjoint variable

fields in order to eliminate the implicit derivatives.

Following the method proposed by Arora and Cardoso

(1992), considering a given functional u ¼

uðx1; . . .; xnÞ and writing the response equation of

the system in the following form

Wðu; xÞ ¼ KðxÞu� F ð15Þ

the augmented functional can be written as

Lðu; x;/Þ ¼ uðu; xÞ � /TWðu; xÞ ð16Þ

ð13Þ

Equations for the propagation of higher-order 
moments become very complex and are avoided in 
practice (Cacuci 2003; Helton and Davis 2006; Saltelli 
et al. 2006; Rocquigny et al. 2008). From Eq. (13) for 
the propagation of uncertainties it is observed the 
dependence of the covariance matrix Cu relatively to 
the sensitivity matrix S. The components of this matrix



The vector of adjoint variables u is assumed as

Lagrange multipliers selected to make stationary the

functional L relatively to the displacement vector u.

This condition can be formulated as

oL

ou
¼

ouðu; xÞ

ou
� /T oWðu; xÞ

ou
¼ 0 ð17Þ

Considering the independence of F to the displace-

ments u and Eq. (15), the adjoint set of equations is

obtained

KðxÞ/ ¼
ouðu; xÞ

ou
ð18Þ

being the tangent stiffness matrix defined for the

equilibrium solution

Wðu; xÞ ¼ KðxÞu� F ¼ 0 ð19Þ

On the other hand taking into account that in an

equilibrium situation the functional in Eq. (15) is

stationary, it proofs (Arora and Cardoso 1992) that

d/

dx
¼

oL

ox
ð20Þ

Differentiating Eq. (16) to variables x it is obtained

oL

ox
¼

ouðu; xÞ

ox
þ
ouðu; xÞ

ou

ou

ox

� /T oWðu; xÞ

ox
þ
oWðu; xÞ

ou

ou

ox

	 


ð21Þ

that can be simplified using equality in Eq. (17)

yielding to

oL

ox
¼

ouðu; xÞ

ox
� /T oWðu; xÞ

ox
ð22Þ

Considering the independence of F to variables x

and using Eq. (15) it gives

du

dx
¼

oL

ox
¼

ouðu; xÞ

ox
� /T oKðxÞ

ox
u ð23Þ

The adopted methodology for sensitivity analysis is

twofold (António 1995; Arora and Cardoso 1992):

1st: Solve the adjoint set of equations, defined in

Eq. (18);

2nd: Get the sensitivities from Eq. (23).

Using the Eq. (23), the components of the matrix S

in Eq. (13) can be calculated and further to obtain the

variance–covariance matrix Cu associated with the

variability of the structural response.

2.3 Response functions for composite structures

Two functional are considered in the sensitivity-

uncertainty analysis, one related with the maximum

displacement on the composite structure,

�u ¼ Max u1; . . .; urð Þ; r ¼ 1; . . .;Ndis ð24Þ

and the second one related with the most critical Tsai

number,

�R ¼ Max R1; . . .;Rj

� �

; j ¼ 1; . . .;Nstr ð25Þ

being Ndis the total number of displacements and Nstr

the total number of points where the stress vector is

evaluated on the composite structure.

The stress analysis is performed using the strength

parameter Rj known as Tsai number and calculated as

the ratio between the failure (or maximum allowable)

stress and the actual stress at the j-th point of the

structure where the stress vector is evaluated (Tsai

1987). The Tsai number Rj is a function of the actual

stresses and it is obtained by solving the interactive

quadratic failure criterion of Tsai-Wu (Tsai 1987) as

follows

Fiksiskð ÞR2
j þ Fisið ÞRj ¼ 1 i; k ¼ 1; 2; 6 ð26Þ

where si is the i-th component of the stress vector, Fik

and Fi are strength parameters associated with unidi-

rectional reinforced laminate defined from the macro-

mechanical point of view (Tsai 1987). The vector

response can be presented as u ¼ u;R
� �

depending on

input random parameters ðx1; . . .; xnÞ.

2.4 Joint effects of uncertainties

The above analysis was performed considering an

independent analysis for each input parameters in the

Eq. (13) of propagation of uncertainties. This analysis

is important in order to evaluate the individual

influence of each input parameter. However, the joint

effects of the propagation of uncertainties on the

response play an important role in structural reliability

analysis. The Eq. (13) of propagation of uncertainties

is

Cu ¼ SCxS
T ð27Þ

where each component of matrix Cx denoted by Cxð Þij
is defined in Eq. (7) and the each component of

sensitivity matrix, Sð Þji¼ ouj

�

oxi is referring to the



sensitivity of the j-th response functional relatively to

the i-th system parameter such as defined in Eq. (11).

If the input parameters are uncorrelated then matrixCx

is diagonal and the above equation gives

Cu ¼
var ð�uÞ cov(�u; �RÞ
cov(�u; �RÞ varð�RÞ

	 


ð28Þ

The evaluation of the response uncertainty is done

in a simple and systematic way using the variance–

covariance matrix Cu of structural response defined in

Eq. (28).

In the mathematical formulation of the RDO

problem, the design constraints define the design

space to be considered along the optimization process.

The feasibility of the solutions during the optimization

is continuously checked through the design constraints

analysis. However, the entities defining the design

constraints are not determinist values due to the

uncertainties propagation from input parameters or

design variables to structural response. So, the vari-

ability of design constraints is associated with feasi-

bility robustness. In the proposed approach the

feasibility robustness is defined through the determi-

nant of variance–covariance matrix of constraint

functions introducing in this way the joint effects of

the uncertainty propagations on structural response of

composite structures.

The variance–covariance matrix Cu represents the

joint effects of the propagation of uncertainties

(Salazar and Rocco 2007; Ragavajhala and Mahade-

van 2013). Its components are associated with the

variability on critical values of displacement and stress

fields of structural response of composite structures in

the proposed approach. Since the constraints of RDO

problem depend on those critical values it can be

concluded that the feasibility robustness can be

represented trough the determinant of the variance–

covariance matrix Cu.

3 Robust design optimization of composite shells

3.1 Bi-objective optimization based on robustness

feasibility

the propagation of uncertainties. Although some

formulations are proposed in the literature for RDO,

their advantages applied to composite structures, in

terms of accuracy and efficiency, are not yet fully

known. Those formulations are based on the robust-

ness of a performance associated with the dispersion

around its mean (Adali et al. 2003; Walker and

Hamilton 2005; Gumbert and Newman 2005; Choi

et al. 2008; António and Hoffbauer 2009, 2010).

However, in composite plate/shell structures the

variability of both the maximum displacement in

Eq. (24) and of the most critical Tsai number in

Eq. (25), both of them included in the vector

u ¼ u; R
� �

, are measures of the structural response

variability. Since the displacement and stress con-

straints must be considered on optimal design formu-

lation defining the feasibility of design space, the

variability of both the critical values u and R are

measures of feasibility robustness. So, in this work the

evaluation of the response uncertainty is done in a

simple and systematic way using the determinant of

variance–covariance matrix Cu of structural response

defined in Eq. (28).

In the proposed approach for RDO of composite

structures, the feasibility robustness of the system is

searched together the minimization process of perfor-

mance/cost. The goal is to minimise the sensitivity of

the optimal performance/cost of the system associated

with the response to the uncertainty on the feasibility

of constraints. A bi-objective optimization is per-

formed by considering the following objective func-

tions: (a) a function describing the performance/cost

of the structural composite structure and (b) a function

describing the feasibility robustness of constraints

related to the variability of the structural response.

The design and uncertainty rules of the proposed

RDO approach are controlled by following classes of

variables and parameters: the vector of deterministic

design variables, d 2 Rk, the vector of random design

variables, z 2 Rm, and the vector of random param-

eters, p 2 Rp. The nominal values of random design

and random parameters are taken to be the expected

values lz and lp, respectively, and the associated

uncertainties are given by the corresponding standard

deviations. No probability distribution functions are

considered in the present analysis.

The design variables intervening in the optimiza-

tion procedure are the deterministic design variables,

The fundamental objective of robust design is to 
improve the structural performance and to stabilise 
response performances by minimising the effects of



d, and the nominal/expected values lz of the random

design variables, z. The standard deviation of z is kept

constant during the optimization procedure. The

performance/cost of the composite structure is given

by its weight Wðd; lzÞ. The functional Vðd; lz;

varðuÞ; varðRÞ; covðu;RÞÞ is a measure of feasibility

robustness, which is concerned with ensuring that the

constraints are adequately satisfied under uncertainty.

The bi-objective optimization problem can then be

established as

Minimise
over d; lz

OBJ d; lz;Cu

� �

¼ f1; f2ð Þ ð29Þ

with

f1 ¼ Wðd; lzÞ and

f2 ¼ Vðd; lz; varðuÞ; varðRÞ; covðu;RÞÞ ¼ detCu

subject to g1ðd; lzÞ ¼
uðd; lzÞ

ua
� 1� 0

g2ðd; lzÞ ¼ 1�
Rðd; lzÞ

Ra

� 0;

ð30Þ

and

dlj � dj � duj ; j ¼ 1; . . .; �Nd

llzj � lzj � luzj ; j ¼ 1; . . . �Nz

ð31Þ

being u and R the critical displacement and critical

Tsai number both of them defined by Eqs. (24) and

(25), respectively. These critical values are compared

with the allowable values ua and Ra for displacement

and Tsai number, respectively. In this approach the

feasibility robustness of composite structures is asso-

ciated with the variability of the structural response, V

defined as the determinant of variance–covariance

matrix Cu of the system defined on Eq. (28) of

propagation of uncertainties. In the inequalities (30)
�Nd and �Nz are the number of deterministic and random

design variables, respectively.

The performance/cost Wðd; lzÞ depends on deter-

ministic design variables and/or random design vari-

ables (throughout their nominal/expected values). The

feasibility robustness associated with the variability of

the structural response, Vðd; lz; varðuÞ; varðRÞ;

covðu; RÞÞ depends on both deterministic/random

design variables and also on random parameters of

the system.

Uncertainties in different groups of random vari-

ables and/or random parameters show distinct beha-

viours and importance on structural response

variability duringRDO search (António andHoffbauer

2009, 2010). In particular, the definition of feasibility

robustness depends on the groups of random design

variables and/or random parameters considered on

optimization process loop. This aspect will be studied

for different random variables/parameters used for

feasibility robustness definition. At the end of the RDO

optimization process, the Pareto front representing the

frontier of the trade-off between the ‘‘performance’’

and the ‘‘robustness’’ functions is obtained.

3.2 Multi-objective evolutionary algorithm

The use of multiple objective evolutionary algorithms

(MOEAs) in robust design of systems has been

reported by few publications found in literature

(Konak et al. 2006; Salazar and Rocco 2007; Taboada

et al. 2007). Most of the referred approaches are based

on dominance concepts to build the Pareto front

proposed by Deb (2001). In the proposed approach the

multi-objective optimization search is performed

using on a new proposed approach based on domi-

nance concepts applied in two populations exchanging

data during the evolutionary process. The Pareto front

is built by this co-evolutionary procedure denoted by

Co-Dominance-based Genetic Algorithm (CoDGA).

A self-adaptive genetic search incorporating Pareto

dominance and an elitist strategy storing the non-

dominated solutions found during the evolutionary

process is considered (António 2009, 2013).

The problem of stacking sequence design of

composite structures is well known for having many

local optima, and so, dominated solutions are

expected. The approach proposed in this work uses a

mixture of developed techniques (António 2013) and

new techniques in order to find multiple Pareto-

optimal solutions in parallel using two populations

(short and enlarged). The principal aspects are: (1) the

use of the concept of Pareto dominance in order to

assign scalar fitness values to individuals; (2) the

clustering through the co-evolution of a short popu-

lation (SP) to reduce the number of non-dominated

solutions stored without destroying the characteristics

of the Pareto-optimal front; and (3) the storage of the

obtained Pareto-optimal solutions in an enlarged



population (EP); (4) exchange of information between

short and enlarged populations through the crossover

operator.

The proposed CoDGA performs according to the

flow diagram presented in Fig. 1. The algorithm

performs using the concept of local dominance at

short population (SP) and storing the new generated

non-dominated individuals/solutions (rank 1) from SP

sorting, into an enlarged population (EP). The

enlarged population is continuously updated based

on global dominance concepts and has two principal

functionalities: to build the global Pareto front and to

transmit its best member’s genetic properties to the

next populations of the evolutionary process.

Three important aspects must be considered for the

proposed approach CoDGA: 1. Local dominance

definition; 2. Fitness assignment based on local

dominance; and 3. Building of global Pareto front at

enlarged population.

1. Local dominance definition At isolation stage of

SP defined here as set Q � <n the individuals are

sorted and ranked according to local non-constrained

dominance. Following the definition by Deb (2001),

an individual vi 2 Q is said to constrain-dominate an

individual vj 2 Q, if any of the following conditions

are verified:

(1) vi and vj are feasible, with

(i) vi is no worse than vj for all objectives,

and

(ii) vi is strictly better than vj in at least one

objective,

(2) vi is feasible while individual vj is not,

(3) vi and vj are both infeasible, but vi has smaller

constraint violation.

The constraint violation of an individual v is defined

to be equal to the sum of the violated constraint

function values in the multi-objective optimization

problem formulated from Eqs. (29) to (31):

nðd; lzÞ ¼
X

2

i¼1

Ciðd; lzÞ ð32Þ

with

Ci giðd; lzÞ½ 	 ¼
0 if giðd; lzÞ� 0

giðu; pÞ if giðd; lzÞ[ 0

�

ð33Þ

Theconstraintviolationdefined inEq. (32)are referred

to u and R the critical displacement and critical Tsai

number. The side constraints defined in Eq. (31) are

considered when the phenotype of design variables

(deterministic or random) are converted to genotype

using the binary code format. The concept of con-

strain-domination enables to compare two individuals

in problems having multiple objectives and con-

straints, since if vi constrain-dominates vj, then vi
is better than vj. If none of the three conditions

referred above are verified, then vi does not constrain-

dominate vj.
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2. Fitness assignment based on local dominance

The dominance concept is applied only to the

restricted set of individuals of SP being so denoted

by local dominance. The definition of the fitness of

each individual no longer depends on an absolute

value related to the individual’s fitness but on the

concept of dominance. The individual fitness is

calculated according to the niche occupied by the

individual in the short population and also depending

on the number of individuals with the same level of

dominance in its neighbourhood. So, the concept of

shared fitness is adopted (Deb 2001; António 2013).

This aims to obtain a balanced distribution of solutions

along the constructed local Pareto front and updated

during evolutionary process. The elitist strategy

adopted at that stage is based on fitness as also on

the concept of dominance albeit implicitly (António

2013). The Fig. 1 describes briefly the procedure to

assign the fitness at SP level. A sharing function is

used to improve the distribution of rank’s 1 solutions

(non-dominated) along the Pareto front at SP level.

More details can be found in references (Deb 2001;

António 2013).

3. Building of global Pareto front The enlarged

population (EP) is used to store the best ranked

solutions (rank 1) from sorting of individuals at short

population. The EP is organized based on the concept

of global dominance applied in each generation of the

evolutionary process. To do this the same concepts of

dominance previously described are applied to indi-

viduals stored at enlarged population. Given the size

and history of this population, the dominance is

applied in the global sense, allowing the progressive

construction of global Pareto front. As the process is

continuously applied at every generation, it is possible

that an individual with non-dominated status will be

subsequently dominated and consequently does not

will intervene in the evolutionary process. This leads

to an increased historical record of global rank 1

individuals/non-dominated solutions in the course of

the evolutionary process obtaining finally the global

Pareto front. The enlarged population is continuously

updated during the evolutionary process.

The evolutionary process of CoDGA is performed

by four genetic operators: mutation, crossover,

replacement due to genetic similarity and selection

as shown in Fig. 1. The binary code format is used to

encoding the phenotype of design variables. The

stopping criterion is based on reaching the minimum

number of generations without improvement of Pareto

front of enlarged population.

3.3 Genetic operators of CoDGA

The genetic operators used in CoDGA are applied

according the scheme shown in Fig. 2. The linkage

between short population (SP) and enlarged popula-

tion (EP) is made through the crossover operator.

Three mechanisms of recombination are identified in

this operator (Herrera et al. 2003; António 2009):

Mating selection mechanism (MSM), Offspring gen-

eration mechanism (OGM) and Offspring selection

mechanism (OSM).

The MSM of proposed crossover is described in

Fig. 2 and is composed by two schemes applied in

alternative way from t-th to (t ? 2)-th generations:

First scheme of MSM: The short population is

divided in two groups, the first one having best

assigned fitness denoted by eliteU and the other one

grouping the set L with the worst assigned fitness.

The couple of parents (p1,p2) is obtained using two

independent selection processes in U and L sets.

Second scheme of MSM: One parent of the couple,

denoted by p1, comes from the elite group of short

population. The other parent, denoted by p2, having

ranking score less than ‘‘rank 3’’ of dominance

comes from enlarged population sorting (non-

dominated solutions = rank 1) after dominance

updating.

The MSM process is repeated until the necessary

couples (p1,p2) (one per each offspring) are found.

Both above MSM schemes applied in alternative way

are elitist.

Production of new chromosomes from a set of

parents selected by MSM is carried out by an

appropriate recombination scheme denoted by off-

spring generation mechanism (OGM). This mecha-

nism enables the genetic material to be transferred

from parents to offspring and performs a multipoint

combination of genes from both parents’ chromo-

somes. The genetic material exchange of OGM is

based on the technique ‘‘Parameterised Uniform

Crossover’’ proposed by Spears and DeJong and

following the version presented by António (2002,

2009).

Departing from the offspring generated for each set

of parents the offspring selection mechanism (OSM)



considered as shown in Fig. 3. Nine vertical loads of

mean value Pk ¼ 7 kN are applied along the free linear

side (AB) of the structure. This free linear side (AB) is

constrained in the y-axis direction. The structure is

divided into four macro-elements, grouping all ele-

ments, and there is one laminate per each macro-

element. The laminate distribution of the structure is

shown in Fig. 3. The balanced angle-ply laminates

with five layers and the stacking sequence

þa=þa=�a=�a½ 	 s are considered in the symmetric

composite construction. Ply angle, a, is a design

variable and is referenced to the x-axis of the reference

axis, as detailed in Fig. 3. The design variable hi,

denotes the laminate thickness and four laminates are

considered in this example. A smoothing procedure is

followed at the boundary of laminates to guarantee the

continuity of structure.

The structural analysis of laminated composite

structures is based on the shell finite element model as

previously referred in Sect. 2.2. A composite material

built with the carbon/epoxy system denoted by T300/

N5208 (Tsai 1987), is used in the presented analysis.

This is a unidirectional carbon long fibres aggregated

in a epoxy matrix. The macro mechanics mean values

of the elastic and strength properties of the ply

material used in the symmetric laminate construction

of the composite structure are presented in Table 1.

The elastic constants of the orthotropic ply are the

longitudinal elastic modulus E1, the transversal elastic

modulus E2, the in-plane shear modulus G12, and the

in-plane Poisson’s ratio m12. The ply strength proper-

ties are the longitudinal strength in tensile, X, and in
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Fig. 2 Concurrent

recombination schemes

between short population

(SP) and the enlarged

population (EP) used for

CoDGA

of crossover operator chooses the individuals that will 
become SP members at next generation. In this case 
OSM chooses a core of best offspring to form the next 
short population (António 2009).

The implicit mutation operator (António 2002, 
2009, 2013) is considered in genetic search as shown 
in Fig. 2. In this kind of mutation a set of new 
chromosomes generated randomly is inserted into the 
sub-population. In general since these new individuals 
have fair fitness their influence is neither explicit nor 
immediate in the current generation. However, their 
effects are widely shown in future generations as they 
provoke a refreshing of the genetic material of the 
population through the combination with other older 
chromosomes.

The genetic similarity control operator is imple-

mented during the evolutionary process taking the most 
representative bits of each design variable for all 
individuals/solutions belonging to short population 
(SP). This is followed by elimination of solutions with 
similar genetic properties and their replacement with new 
solutions/chromosomes with genes randomly generated. 
This ensures the genetic diversity of the population.

4 Applications to composite structures

4.1 Problem definition

To study the capability of the proposed approach for 
bi-objective optimization based on feasibility robust-
ness, a clamped cylindrical shell laminated structure is



compression, X’, the transversal strength in tensile, Y,

and in compression, Y’, and the shear strength, S.

To investigate the influence of uncertainty analysis

on the proposed multi-objective design optimization

of composite structures four case studies are consid-

ered. The uncertainty of the system is considered

through the vector of random design variables,

z 2 Rm, and the vector of random parameters,

p 2 Rp. The nominal values of random design vari-

ables and random parameters are taken to be the

expected values lz and lp, respectively. The corre-

sponding standard deviations are considered in robust-

ness feasibility definition as established in Sect. 2.

The design variables intervening in the optimization

procedure are the deterministic design variables,d, and

the nominal/expected values lz of the random design

variables, z. The standard deviation of z is kept

constant during the optimization procedure. The

design variables are encoded using a binary code

format with different number of digits. The genetic

parameters used at short population evolution and the

design variables constraint intervals are defined in

Table 2.

The RDO problem based on weight minimization

and feasibility robustness maximization formulated

from Eqs. (29) to (31) is solved using the CoDGA

approach proposed in Sect. 3. The optimization pro-

cess evolves along 300 generations. The allowable

values in the constraints on displacement and Tsai

number are ua ¼ 8:0� 10�2 m and Ra ¼ 1,

respectively.

The use of joint feasibility robustness through the

determinant of variance–covariance matrix does not

show the partial effects of the variability of u and R

the critical displacement and critical Tsai number

defined by Eqs. (24) and (25), respectively. The

coefficient of variation of each structural response

parameters u and R, weighted by prescribed values ua
and Ra are used to analyse the partial effects of the

variability on the obtained optimal Pareto front. These

weighted coefficients of variation are defined as

follows:

CV
ðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var R
� �

q

Ra

� 100 ð%Þ ð34Þ

z
AB side: 

constrained in  

y–axis direction 

(translation, vk

and rotation, 2k)
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Fig. 3 Geometric

definition of the cylindrical

shell structure and

composite laminates

distribution

Table 1 Mean values of mechanical properties of composite layers

Material E1 (GPa) E2 (GPa) G12 (GPa) m12

T300/N5208 181.00 10.30 7.17 0.28

X; X0 (MPa) Y; Y0 (MPa) S (MPa) q (kg/m3)

T300/N5208 1500; 1500 40; 246 68 1600



CV
ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

var uð Þ
p

ua
� 100 ð%Þ ð35Þ

4.2 Case study 1: RDO based on mixed

randomness properties

In this studied case, the variance properties of the

response of composite plate/shell structures are asso-

ciated with two sources of uncertainty: on random

design variables and on random parameters of the

structural system. They are organized in following

four groups with allowable tested variations:

Group 1 of the mechanical properties (m), defined

as random parameters;

Group 2 of the ply angle (a) on laminates, defined as

random design variable;

Group 3 of the laminate thicknesses ðhÞ, defined as

random design variable;

Group 4 of the point loads (P), defined as random

parameters.

z ¼ a; h1; . . .; h4ð Þ ð36Þ

The variability is referred to the expected values lz
corresponding to the design solution value obtained at

each generation of the optimization procedure. How-

ever, a prescribed and fixed standard deviation is

allowed for these random design variables. Since the

expected values lz are not fixed during the optimiza-

tion process, prescribed fixed standard deviations are

used to consider the uncertainty in random design

variables z. On contrary, the coefficients of variation

CV(pÞ are used to prescribe the uncertainty of the

random parameters p having means and standard

deviations fixed at the beginning of the optimization

process. Thus, the variability in input variables/pa-

rameters are prescribed as follows:

• Group 1: The mechanical properties group (m),

with the prescribed coefficient of variation,

CV(miÞ ¼ 6 %; i ¼ 1; . . .16;

• Group 2: The ply angle group (a), with the

prescribed standard deviation, rðaÞ ¼ 5�;

• Group 3 The laminate thickness group ðhÞ, with

the prescribed standard deviation,

rðhiÞ ¼ 5� 10�4 m; i ¼ 1; . . .; 4;

• Group 4: The point load group (P), with the

prescribed coefficient of variation,

CV(PkÞ ¼ 6 %; k ¼ 1; . . .; 9

The RDO problem formulated from Eqs. (29) to

(31) is solved using the proposed CoDGA approach. In

this case the RDO problem is formulated as:

Minimise
over lz

OBJ lz;Cu

� �

¼ f1; f2ð Þ ð37Þ

with

f1 ¼ WðlzÞ and

f2 ¼ Vðlz; varðuÞ; varðRÞ; covðu;RÞÞ ¼ detCu

subject to g1ðlzÞ ¼
uðlzÞ

ua
� 1� 0

g2ðlzÞ ¼ 1�
RðlzÞ

Ra

� 0

ð38Þ

and

llzj � lzj � luzj ; j ¼ 1; . . .; �Nz ð39Þ

From the Eq. (13) of propagation of uncertainties,

the robustness feasibility functional depends on the

expected values of random design variables vector lz,

Table 2 Genetic parameters and design variables constraint

intervals

Population size 30

Elite group size (%) 33.33

Mutation group size (%) 20

Number of generations 300

Code format (digits nr.)/size constraint

interval, for ply angle a

4/[0�, 90�]

Code format (digits nr.)/size constraint

interval, for laminate thickness,

hi; i ¼ 1; . . .; 4

5/[0.005 m,

0.040 m]

The mechanical properties group, m, includes the 
following random parameters: longitudinal Young’s 
modulus E1;j, transversal modulus E2;j, transversal 
tensile strength Yj, and shear strength Sj, where 
subscript j denotes the laminate number. Sixteen 
mechanical properties are considered as random 
parameters with uncertainty in this analysis: E1;j, 
E2;j, Yj, Sj, j  = 1, …, 4. This random parameters are 
aggregated in vector p.

Five random design variables are considered in 
vector z for this case study: one ply angle a for all 
symmetric laminates with the stacking sequence 
þa=þa=�a=�a½ 	 s, and the laminate thicknesses 
hi; i ¼ 1; . . .; 4. So, it can be written,



and on the derivatives of u ¼ u; R
� �

in order to

random design variables and random parameters also

calculated at expected value vector lz, as follows:

detCu ¼ det SCxS
T

� �

¼

f2 lz; ou=ozjlz ; oR
�

oz




lz
; ou=opjlz ; oR

�

op




lz

� �

ð40Þ

Figure 4 shows the evolution of the construction of

optimal Pareto front showing rank1 solutions on three

generations of CoDGA procedure application. The bi-

objective optimization problem based on minimiza-

tions of weight and variability appears to have

contradictory objectives. Also it is evident the influ-

ence of the sharing function applied in fitness assign-

ments as referred in Sect. 3.2, on the good distribution

of solutions along the Pareto front at the end of

optimization process (300th generation).

The weighted coefficients of variation CV
ðRÞ and
CV
ðuÞ are used to analyse the partial components of

variability of the solutions located on optimal Pareto

front as shown in Fig. 5. The weighted coefficient of

variation for critical displacement, CV
ðuÞ follows the

same behaviour of the system variance measured by

detCu, with same increasing order. Although the

coefficient CV
ðRÞ is large it shows few changes for

most of the optimal points along Pareto front. So, it can

be concluded that the partial effects of the variability

of critical displacement u are greater than the effects of

the variability of critical Tsai number R on the

feasibility robustness measured by detCu.

The establishment of a preference function could be

formulated using the results compared in Fig. 5

together the analysis of the solutions belonging to

optimal Pareto front. Since the changes on variability

of the critical Tsai number are not relevant the

decision can be associated with the changes on

variability of critical displacement measured by

CV
ðuÞ.
The random design variable ply angle a, has the

same value a = 90� for all solutions along the Pareto

front. However, the random design variables laminate

thickness hi with i ¼ 1; . . .; 4, take the optimal solu-

tions shown in Fig. 6. The solutions for the random

design variable h4 have a similar shape profile of

Pareto front. The remaining random design variables

have values around the lower limit of the design

interval defined in Table 2. These solutions obtained

for Pareto optima front of RDO problem are equiva-

lent to minimum structural weight with reinforcement

of the laminate number 4 of the shell composite

structure defined in Fig. 3.

4.3 Case study 2: RDO based on mechanical

properties uncertainty

In this case study the vector of deterministic design

variables d, and the vector of random parameters p, are

considered in RDO problem. Five deterministic design

variables are considered in vector d for this case study:

one ply angle a for all symmetric laminates with the

stacking sequence þa=þa=�a=�a½ 	 s, and four lam-

inate thicknesses hi; i ¼ 1; . . .; 4. Only mechanical

properties group (m) are considered as random

parameters with the coefficient of variation,

CVðmiÞ ¼ 6%; i ¼ 1; . . . 16. These mechanical

properties are the same considered in previously

studied case and are aggregated in vector p.

The mathematical formulation of RDO problem for

this second case is

Minimise
over d

OBJ d;Cu

� �

¼ f1; f2ð Þ ð41Þ

with

f1 ¼ WðdÞ and

f2 ¼ Vðd; varðuÞ; varðRÞ; covðu;RÞÞ ¼ detCu

subject to g1ðdÞ ¼
uðdÞ

ua
� 1� 0

g2ðdÞ ¼ 1�
RðdÞ

Ra

� 0;

ð42Þ

and

dlj � dj � duj ; j ¼ 1; . . .; �Nd; ð43Þ

The robustness feasibility functional depends on

the current values of deterministic design variables d

and on the derivatives of u ¼ u; R
� �

in order to

random parameters p calculated at the current values

of d, as follows:

detCu ¼ det SCxS
T

� �

¼ f2 d; ou=opjd; oR
�

op




d

� �

ð44Þ

Figure 7 shows the evolution of the Pareto along

the optimization process. From the analysis of this



and lower for the remaining. So, it can be concluded

that the partial effects of the variability of the critical

Tsai number R influences the feasibility robustness for

solutions with larger structural weight. On other hand,

analysing CV
ðuÞ it is demonstrated that the effects of

variability of the critical displacement u are more

important on solutions of Pareto front with smaller

structural weight.

A comparison of CV
ðRÞ represented in Figs. 5 and

8 shows that the uncertainty response effects due to

mechanical properties is two (left side of Pareto front)
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figure it can be conclude on the efficiency of proposed 
CoDGA approach to obtain shared solutions along 
Pareto front.

In Fig. 8 the weighted coefficients of variation 
CV
ðRÞ and CV
ðuÞ of solutions located on optimal 
Pareto front are compared. The weighted coefficient of 
variation for critical displacement CV
ðuÞ increases 
such as the variance measured by det Cu, when the 
structural weight are decreasing. The weighted coef-
ficient of variation for critical Tsai number CV
ðRÞ is 
larger for solutions located on left side of Pareto front



times until five times (right side of Pareto front) lower

than the values considering system variance. The

similar comparison for CV
ðuÞ shows that the uncer-

tainty response effects due to mechanical properties

variance are five times less than the uncertainty

response effects due to system variance (all groups

of mixed randomness properties).

The deterministic design variables laminate thick-

ness hi (with i ¼ 1; . . .; 4), take the optimal solutions

on Pareto front presented in Fig. 9a). The solutions for

the design variable h4 have a similar profile of Pareto

front as the results shown in first studied case. The

remaining deterministic design variables of laminate

thicknesses have values around the lower limit of the

design interval defined in Table 2. Although assuming

different magnitudes for this case, the optimal design

values for laminate thicknesses hi (with i ¼ 1; . . .; 4),
have similar shape profiles when compared with

previous studied case considering system variance in

Fig. 6. The deterministic design variable ply angle a,

has the solutions along the Pareto front presented in

Fig. 9b). The distributions of solutions along the

optimal Pareto front are very different of the ones in

previous studied case.
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4.4 Case study 3: RDO based on ply angle

uncertainty

Only the uncertainty in ply angle a is considered in the

third case study shown in Fig. 10. In this case, the ply

angle a is a random design variable with the standard

deviation, rðaÞ ¼ 5�. The variability is referred to the

design expected values for ply angle la obtained at

each generation of the bi-objective optimization

process. Furthermore, four deterministic design vari-

ables are considered in vector d for this case study: the

laminate thickness variables hi; i ¼ 1; . . .; 4.

In this case the RDO problem is formulated as

Minimise
over d;la

OBJ d; la;Cu

� �

¼ f1; f2ð Þ ð45Þ

with

f1 ¼ WðdÞ and

f2 ¼ Vðd; la; varðuÞ; varðRÞ; covðu;RÞÞ ¼ detCu

subject to g1ðd; laÞ ¼
uðd; laÞ

ua
� 1� 0

g2ðd; laÞ ¼ 1�
Rðd; laÞ

Ra

� 0

ð46Þ

and
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dlj � dj � duj ; j ¼ 1; . . .; �Nd;

lla � la � lua
ð47Þ

In particular, the robustness feasibility functional

depends on the current values of deterministic design

variables vector d, on the design expected values of

ply angle la, and on the derivatives of u ¼ u;R
� �

in

order to ply angle a, calculated at the current values of

d and at the expected value la, as follows:

detCu ¼ det SCxS
T

� �

¼ f2 d; la; ou=oajd; la ; oR
�

oa




d; la

� �

ð48Þ

The proposed CoDGA approach considering

weight minimization and feasibility robustness
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4.5 Case study 4: RDO based on laminate

thickness uncertainty

Only the uncertainty in laminate thickness group ðhÞ is
considered in the fourth case study. In this case, the

laminate thicknesses aggregated in vector

z ¼ h1; . . .; h4ð Þ ð49Þ

are random design variables with fixed standard

deviations, rðhiÞ ¼ 5� 10�4 m; i ¼ 1; . . .; 4. This

variability is referred to the expected value vector lz,

obtained at each generation of the bi-objective
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Fig. 8 Structural response

variability of both critical

Tsai number and critical

displacement considering

only mechanical properties

variance

maximization (minimum variability) show again its 
effectiveness, with the solutions shared along the 
Pareto front as shown in Fig. 10.

Assuming the weighted coefficient of variations 
CV
ðRÞ and CV
ðuÞ as variability measures, it can be 
conclude from analysis of Fig. 10 that those coeffi-
cients follow the same profile of the structural 
response variance measured by det Cu for all solutions 
located on the Pareto front. The variability of 
the critical displacement response is low when 
only ply angle uncertainty is considered with 
CV
ðuÞ 2 ½0; 2	 ð%Þ.



optimization process. Furthermore, the ply angle a is a

deterministic design variable. In this case the RDO

problem is formulated as

Minimise
over a; lz

OBJ a; lz;Cu

� �

¼ f1; f2ð Þ ð50Þ

with

f1 ¼ WðlzÞ and

f2 ¼ Vða; lz varðuÞ; varðRÞ; covðu;RÞÞ ¼ detCu

subject to g1ða; lzÞ ¼
uða; lzÞ

ua
� 1� 0

g2ða; lzÞ ¼ 1�
Rða; lzÞ

Ra

� 0

ð51Þ

and

al � a� au;

llzj � lzj � luzj ; j ¼ 1; . . .; �Nz

ð52Þ

In particular, the robustness feasibility functional

depends on the current values of deterministic design

variables d, on the expected values of ply angle la, and

on the derivatives of u ¼ u;R
� �

in order to ply angle

a, calculated at a and la, as follows:

detCu ¼ det SCxS
T

� �

¼ f2 a; lz; ou=ozja;lz ; oR
�

oz




a; lz

� �

ð53Þ

From analysis of RDO results presented in Fig. 11

it can be concluded that the weighted coefficient of

variance CV
ðuÞ for critical displacement increases

when the structural weight decreases while the
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4.6 Comparison of RDO studied cases: final

remarks

Since feasibility robustness is a new concept applied

specifically to composite structures there are impor-

tant challenges behind the study of the influence of

different groups of random variables and/or random

parameters on RDO. This aspect is very important in

aeronautical and industrial applications of composite

structures. Pareto front depends on random design

variables and/or random parameters considered in the

uncertainty analysis for the same design variables used
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Fig. 10 Optimal Pareto

front and structural response

variability of both critical

Tsai number and critical

displacement considering

only ply angle variance

weighted coefficient of variance CV
ðRÞ for critical 
Tsai number does not change very much for the most 
of points located along Pareto front although their 
variance values are high. A comparison magnitude of 
weighted coefficients of variation CV
ðRÞ and CV
ðuÞ 
represented in Figs. 5 and 11 show that the most 
uncertainty effects in structural response measured 
considering all random variable groups (first case 
studied) are due to laminate thickness variance. Thus, 
the uncertainties in laminate thicknesses of composite 
structures are very important for RDO based on 
feasibility robustness.



in RDO procedure. The optimal Pareto fronts of the

four studied cases are shown in Fig. 12. So, it is

possible to compare the effects of different sources of

uncertainties and their influence onto structural

response variability. Since, the design variables are

the same in the four studied cases the differences come

from the feasibility robustness measures.

The synergetic effects are important as is shown

when the results of first case study are compared with

the other cases. The combination of uncertainty

sources is very important for design rules established

from optimal Pareto front as shown in Fig. 12. In

particular, for a fixed weight/cost the best minimum

system variability measured by detCu can increases

around times 1000. The uncertainty on laminate

thickness plays the most important role on the

structural shell composite structures. In real scenarios

this uncertainty source is related to dimensional

stability of composites shown the importance to

control the uncertainty influence on the feasibility of

constraints. So, this can be reached through the RDO

based on feasibility robustness.
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safe structural systems with minimal variability in the

response defined as feasibility robustness, when

subjected to uncertainties at the input design variables

and/or input parameters. The multi-objective opti-

mization search is based on the proposed Co-Domi-

nance-based Genetic Algorithm (CoDGA), which uses

two levels of dominance concepts and two populations

with exchange of data. At the end of the optimization

process the Pareto front representing the frontier of the

trade-off between the ‘‘performance’’ and the
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Fig. 12 Comparison of

optimal Pareto fronts for

different groups of random

design variables and/or

random parameters used in

uncertainty analysis

5 Conclusions

The evaluation of the response uncertainty is done in a 
simple and systematic way using the variance–

covariance matrix of structural response of composite 
shell structures. Uncertainties in different groups of 
random design variables and/or random parameters 
show distinct behaviours and importance on structural 
response during RDO search of composite structures. 
RDO searches for minimum weight (performance) and



‘‘feasibility robustness’’ functions is obtained. The

most important innovative aspects of the CoDGA

supported by the proposed approach are:

• Fitness assessment based on dominance concepts;

• Fitness definition depending on zero order infor-

mation (weight objective) and first-order informa-

tion (feasibility robustness objective by

determinant of variance–covariance matrix);

• Co-evolution of a short population with overlap-

ping of elitism and of local dominance together an

enlarged population structured according global

dominance;

• The enlarged population only receives rank 1

individuals/solutions (non-dominated) from short

population and only dominance concepts are

applied in this enlarged population;

• Continuous updating of enlarged population based

on only dominance concepts;

• One crossover operator linking evolution of both

populations with selective mating selection of

parents considering the dominance (rank\ 3) at

enlarged population (MSM). Furthermore, the elite

group survives into next generation (OSM);

• The Pareto front is built inside the enlarged

population during the evolutionary process. Here

the updating process is only controlled by domi-

nance concept.

The numerical tests with different sources of

uncertainty show that the Pareto front definition

depends on random design variables and/or random

parameters considered in the uncertainty analysis for

the same design variables used in RDO procedure. The

synergetic effects are important as is shown when the

results of first case study considering all uncertainty

sources are compared with the other cases of partial

uncertainty contribution. The combination of uncer-

tainty sources is very important for design rules

established from optimal Pareto front. In particular,

for a fixed weight/cost the best minimum system

variability can increases in several orders of magni-

tude when combining the uncertainty sources. The

uncertainty on laminate thickness plays the most

important role on the structural shell composite

structures. The relationship between uncertainty in

laminate thickness and the dimensional stability of

composites showed the importance to control the

uncertainty influence on the feasibility of constraints.

Finally, the analysis shows that the proposed CoDGA

approach is a powerfully tool to help designers to

make decision establishing the priorities between

performance and robustness.

Acknowledgments The authors acknowledge the financial

support provided by the Fundação para a Ciência e a Tecnologia

(FCT), Portugal, through the funding of LAETA/INEGI.

References

Adali, S., Lene, F., Duvaut, G., Chiaruttini, V.: Optimization of

laminated composites subject to uncertain buckling loads.

Compos. Struct. 62, 261–269 (2003)

Ahmad, S.: Curved finite elements in the analysis of solid, shell

and plate structures. Ph.D. Thesis, University College of

Swansea, UK (1969)

António, C.A.C.: Optimization of structures using composite

materials made of polymeric matrix (in Portuguese). Ph.D.

Thesis, Faculty of Engineering, University of Porto, Por-

tugal (1995)

António, C.A.C.: A multilevel genetic algorithm for optimiza-

tion of geometrically non-linear stiffened composite

structures. Struct. Multidiscip. Optim. 24, 372–386 (2002)

António, C.C., Hoffbauer, L.N.: From local to global impor-

tance measures of uncertainty propagation in composite

structures. Compos. Struct. 85, 213–225 (2008)

António, C.C.: Self-adaptation procedures in genetic algorithms

applied to the ptimal design of composite structures. Int.

J. Mech. Mater. Des. 5, 289–302 (2009)

António, C.A.C., Hoffbauer, L.N.: An approach for reliability-

based robust design optimization of angle-ply composites.

Compos. Struct. 90, 53–59 (2009)

António, C.C., Hoffbauer, L.N.: Uncertainty propagation in

inverse reliability-based design of composite structures.

Int. J. Mech. Mater. Des. 6, 89–102 (2010)

António, C.A.C.: Local and global Pareto dominance applied to

optimal design and material selection of composite struc-

tures. Struct. Multidiscip. Optim. 48, 73–94 (2013)

Arora, J.S., Cardoso, J.B.: Variational principle for shape design

sensitivity analysis. AIAA J. 30, 538–547 (1992)

Cacuci, D.G.: Sensitivity and uncertainty analysis, I. Theory,

vol. 1. Chapman & Hall/CRC Press, Boca Raton. (2003)

Carbillet, S., Richard, F., Boubakar, L.: Reliability indicator for

layered composites with strongly non-linear behaviour.

Compos. Sci. Technol. 69, 81–87 (2009)

Choi, J.H., Lee, W.H., Park, J.J., Youn, B.D.: A study on robust

design optimization of layered plate bonding process

considering uncertainties. Struct. Multidiscip. Optim. 35,

531–540 (2008)

Deb, K.: Multi-objective optimization using evolutionary

algorithms. Wiley, Chichester (2001)

Figueiras, J.A.: Ultimate load analysis of anisotropic and rein-

forced concrete plates and shells. Ph.D. Thesis, University

College of Swansea, UK (1983)

Gumbert, C.R., Newman, P.A.: High-fidelity computational

optimization for 3-D flexible wings: part II-effect of ran-

dom geometric uncertainty on design. Optim. Eng. 6,

139–156 (2005)



Helton, J.C., Davis, F.J.: Survey of sampling-based methods for

uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf.

91, 1175–1209 (2006)

Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the

crossover operator for real-coded genetic algorithms. Int.

J. Intell. Syst. 18, 309–338 (2003)

Huang, B., Du, X.: Analytical robustness assessment for robust

design. Struct. Multidiscip. Optim. 34, 123–137 (2007)

Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimiza-

tion using genetic algorithms: a tutorial. Reliab. Eng. Syst.

Saf. 91, 992–1007 (2006)

Ragavajhala, S., Mahadevan, S.: Design optimization for

robustness in multiple performance functions. Struct.

Multidiscip. Optim. 47, 523–538 (2013)

Rais-Rohani, M., Singh, M.N.: Comparison of global and local

response surface techniques in reliability-based optimiza-

tion of composite structures. Struct. Multidiscip. Optim.

26, 333–345 (2004)

Rocquigny, E., Devictor, N., Tarantola, S.: Uncertainty in

Industrial Practice: A guide to Quantitative Uncertainty

Management. Wiley, Chichester (2008)

Salazar, A.D.E., Rocco, S.C.M.: Solving advanced multi-ob-

jective robust designs by means of multiple objective

evolutionary algorithms (MOEA): a reliability analysis.

Reliab. Eng. Syst. Saf. 92, 697–706 (2007)

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensi-

tivity analysis practices: strategies for model-based infer-

ence. Reliab. Eng. Syst. Saf. 91, 1109–1125 (2006)

Taboada, H., Baheranwala, F., Coit, D.W., Wattanapongsakorn,

N.: Practical solutions for multi-objective optimization: an

application to system reliability design problems. Reliab.

Eng. Syst. Saf. 92, 314–322 (2007)

Tsai, S.W.: Composites Design. Think Composites, Dayton

(1987)

Walker, M., Hamilton, R.: A technique for optimally designing

fibre-reinforced laminated plates with manufacturing

uncertainties for maximum buckling strength. Eng. Optim.

37(2), 135–144 (2005)

Zaman, K., McDonald, M., Mahadevan, S., Green, L.: Robust-

ness-based design optimization under data uncertainty.

Struct. Multidiscip. Optim. 44, 183–197 (2011)


	Optimal design of composite shells based on minimum weight and maximum feasibility robustness
	Abstract
	Introduction
	Uncertainty analysis for robustness definition
	Propagation of uncertainties
	Sensitivity analysis using adjoint variable method
	Response functions for composite structures
	Joint effects of uncertainties

	Robust design optimization of composite shells
	Bi-objective optimization based on robustness feasibility
	Multi-objective evolutionary algorithm
	Genetic operators of CoDGA

	Applications to composite structures
	Problem definition
	Case study 1: RDO based on mixed randomness properties
	Case study 2: RDO based on mechanical properties uncertainty
	Case study 3: RDO based on ply angle uncertainty
	Case study 4: RDO based on laminate thickness uncertainty
	Comparison of RDO studied cases: final remarks

	Conclusions
	Acknowledgments
	References


