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Abstract— The design of large-scale networked control sys-
tems urges an efficient usage of available resources, such
as communication, energy and computation. Recent results
indicate substantial benefits of event-based control compared
to conventional designs, when these resources are sparse.
This paper considers multiple entities of heterogeneous control
systems that are coupled through a common communication
medium. Each control system may decide upon its available
information, whether a state update shall be transmitted to
the controller over a contention-based medium. The objective
is to design an optimal decentralized control and transmission
scheme that minimizes the aggregate quadratic cost function.
A state aggregation technique is used to derive a decentralized
event-triggering scheme, which is asymptotically optimal as the
number of control units increases. Numerical simulations give
a comparison of the optimal centralized, time-triggered and
event-triggered schemes and corroborate the efficiency of the
proposed design method.

I. INTRODUCTION

Technological advances in embedded systems and digital

communications have led to an increased interest in the

design of networked control systems. A networked control

system can be regarded as an aggregation of sensors, con-

trollers, and actuators that form a network of self-contained

entities exchanging information over a digital communication

medium. In such complex and highly distributed systems,

a successful control design depends highly on the choice

of the communication scheme. There are many examples

showing that common paradigms in the design of commu-

nication schemes do not apply. A prominent example is

given by the fact that time-triggered information acquisi-

tion schemes, which are commonly used for digital control

design, are outperformed by event-triggered exchange of

information [1]–[6] in the presence of resource constraints

in networked control systems. Such observations have been

made in a diversity of problem settings, such as control

over communications [1]–[3], multi-agent systems [4], dis-

tributed optimization algorithms [5] and control design in

embedded real-time systems [6].

While the majority of these results deal with single

feedback loop systems with communication constraints, the

control and communication design for multiple loops shar-

ing a medium is still widely unexplored. Exceptions can

be found in [2], [7]–[10] that analyze the performance
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of event-triggered schemes in contention-based networked

control systems. Depending on the communication model

under consideration, different conclusions are derived. Using

CDMA schemes with priority or randomized arbitration as

proposed in [2], [7], event-triggered scheduling schemes

for data transmission outperform significantly time division

multiple access (TDMA) schemes. Unlike [2], it has been

shown in [8], [9] that time-triggered scheduling outperforms

event-triggered schemes for slotted and unslotted ALOHA

transmission schemes. Under the assumption that collisions

between transmissions can be modelled by a Bernoulli pro-

cess, a condition has been derived in [10], where event-

triggered scheduling yields better performance than its time-

triggered counterpart.

These results majorly consider scalar integrator dynamics

that are modelled by a controlled Brownian motion process.

The control law is predefined by an impulse controller and

the event-trigger is given by a level-triggering policy, where

the event threshold is the design parameter which is to be

set appropriately.

In contrast to the described work, this paper investigates

the optimal synthesis of control and scheduling laws. We

consider N subsystems whose feedback loops are closed

over a contention-based network. The communication model

is adopted to the framework in [2], [7] and assumes the

presence of a randomized arbitration scheme, which can

be implemented in the CAN-bus protocol. The subsystems

may be heterogeneous and are modelled as stochastic linear

discrete-time systems with arbitrary state dimension.

The contribution of this paper is to develop a method-

ology for the joint design of decentralized schedulers and

controllers that share a common communication network.

The design objective is to minimize the aggregate linear

quadratic cost of all subsystems. Inspired by the concept of

state aggregation in mean field theory, the approach assumes

a large number of control loops closed over a contention-

based network. In oder to conduct our analysis, we make

use of recent results for single-loop control systems with

communication constraints given by [11]–[15]. Under mild

assumptions on the admissible policies, it is shown that

the complex behavior of the shared communication system

reduces asymptotically to a deterministic system, when the

number of loops approaches infinity. This observation allows

an efficient design of the optimal decentralized schedulers

and controllers that can be derived by means of convex

optimization and dynamic programming. A numerical com-

parison with TDMA scheduling and the optimal centralized

arbitration mechanism is conducted. Most notably, the sim-
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ulation results show that our approach is close to optimality

even for a moderate number of control loops.

The remaining part of this paper is structured as follows.

In section II, we describe the system model and introduce

the problem statement. Section III derives the asymptot-

ically optimal decentralized event-triggered controller and

section IV illustrates the efficiency of the proposed approach

by numerical simulations.

Notation. In this paper, the operator (·)T denotes the

transpose operator. The Euclidean norm and its induced

matrix norm is denoted by ‖ · ‖2. The variable P denotes the

probability measure on the abstract sample space denoted

by Ω. The expression F,P−a.s. denotes that the event F

occurs almost surely w.r.t. probability measure P. The ex-

pectation operator is denoted by E[·] and the conditional

expectation is denoted by E[·|·]. The relation x ∼ N (0, I)
denotes a Gaussian random variable with zero-mean and

unity covariance. The operator 1{·} denotes the indicator

function.

II. PROBLEM STATEMENT

In this paper, we consider N independent control systems

whose feedback loops are connected through a shared com-

munication network. A control subsystem i consists of a

process Pi, a controller Ci that is implemented at the actuator

and a sensor Si. The complete networked control system

is depicted in Fig. 1. The process Pi is described by the

following time-invariant difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×di . The variables xik and uik
denote the state and the control input and are taking values

in R
ni and R

di , respectively. The system noise wi
k takes

values in R
ni at each k and is i.i.d. with wi

k ∼ N (0, I). The

initial states xi0, i ∈ {1, . . . , N} take an arbitrary distribution,

but symmetric distribution with finite second moment.

Remark 1: It is straightforward to extend all results to

arbitrary noise covariance matrices. The chosen restriction

facilitates the illustration of results without loosing general-

ity.

We assume that the statistics of a subsystem are known

to its corresponding sensor and controller. At each time

step k, the scheduler at the sensor station Si may decide,

whether a state update should be sent to the controller Ci
over the contention-based network. We assume that there

are Nslot transmission slots per time step. If the number of

sensors that have decided to transmit information at time k

exceeds Nslot, then an arbitrator chooses randomly Nslot

sensors that are allowed to transmit. The remaining sensors

are blocked and may try to send information at the next

time instance. The random arbitration mechanism uses no

prioritization of sensors and chooses its sensors according to

a uniform distribution. We define the scheduling variable δik
as follows.

δik =

{

1 update xik is sent

0 otherwise

zi

k

xi

k
ui

k

qi
k−1

shared communication network

Fig. 1. System model of the networked control system with N con-
trol systems closed over a shared communication network with pro-
cesses P1, . . . ,PN , sensors S1, . . . ,SN and controllers C1, . . . , CN .

The random arbitrator is described by the binary random

variable qik defined as

qik =

{

1 allow to transmit

0 block transmission

The conditional probability distribution of [q1k, . . . , q
N
k ] con-

ditioned on the scheduling variables δik, i ∈ {1, . . . , N} is

time-invariant and satisfies

P[qik = 1|δik, i ∈ {1, . . . , N}] =

{

1
∑N

i=1 δ
i
k ≤ Nslot

Nslot∑
N

i=1
δi
k

otherwise

(2)

for subsystems i with δik = 1 and

q1k + · · ·+ qNk = Nslot, P−a. s.

if δ1 + · · · + δNk ≥ Nslot. We consider an instantaneous ac-

knowledgement channel that informs the scheduler, whether

a transmission was successful or blocked. Therefore, the

scheduler at sensor Si knows the preceding variables qim
at time k for m < k. Let zik denote the received data at

controller Ci at time k.

Remark 2: The described arbitration scheme can be im-

plemented in a CAN-bus protocol with time-varying, ran-

domly assigned priorities.

The signal zik can be described by the previously defined

scheduling variable δik and arbitration variable qik

zik =

{

xik, δik = 1 ∧ qik = 1

∅, otherwise
(3)

Each subsystem i ∈ {1, . . . , N} has a cost function Ji
given by the linear quadratic average-cost criterion

Ji = lim
T→∞

1

T
E

[

T−1
∑

k=0

x
i,T
k Qix

i
k + u

i,T
k Siu

i
k

]

. (4)

The weighting matrix Qi is positive definite and Si is positive

semi-definite for each i ∈ {1, . . . , N}. We assume that

the pair (Ai, Bi) is stabilizable and the pair (Ai, Q
1

2

i ) is

detectable with Qi = (Q
1

2

i )
TQ

1

2

i .
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We want to minimize the aggregate cost function V

normed by the number of subsystems. It consists of the sum

of individual costs Ji of each subsystem divided by N , i.e.

V =
1

N

N
∑

i=1

Ji. (5)

The control law γi = {γi0, γ
i
1, . . .} is described by ad-

missible policies γik for each time k. These are defined as

Borel-measurable functions of their past available data

uik = γik(I
C
k ),

where the information available at the controller is given by

ICi

k = {zi0, u
i
0, . . . , z

i
k−1, u

i
k−1}.

The information ISi

k available at the sensor station Si to

decide whether to transmit a state update for the decentral-

ized scheduler is given by

ISi

k = {xi0, δ
i
0, q

i
0, x

i
1, . . . , x

i
k−1, δ

i
k−1, q

i
k−1, x

i
k}.

Unlike the control policies γi, the policy of the sched-

uler may be randomized and is described by a se-

quence πi = {πi
1, π

i
2, . . .}, which is given by the stochastic

kernels πi
k(·|I

Si

k ) on the set {0, 1} conditioned on the

history ISi

k .

Apart from this class of schedulers, we will consider two

other classes in section IV. These are on the one hand

centralized scheduling schemes that globally decide which

subsystems may transmit information and on the other hand

TDMA schemes, where transmission timings are fixed before

runtime for each subsystem.

III. MAIN RESULT

This section develops an algorithm to find approximatively

optimal scheduling policies π and control policies γ that min-

imize the aggregate cost V given by equation (5). Although

the coupling between subsystems in the optimization prob-

lem occurs only in the shared communication network, the

underlying problem is difficult to solve. The reason for that is

secondarily given by the fact that the number of subsystems

might be large, but is rather grounded in the distributed

information pattern. It is shown in [16] that solutions for

optimization problems with a distributed information pattern

are rather hard to obtain. This fact motivates us to search for

a suitable approximation of the problem setting, where we

can apply known results that lead to efficient algorithms. The

idea is to let the number of subsystems grow to infinity and

scale the system accordingly, so that the optimal solution for

system with infinite subsystems will be a good approximation

for the original system with a finite number of subsystems.

A. Approximative system

In the subsequent paragraph, we introduce the approxima-

tive system. A crucial parameter in describing the commu-

nication network is the variable R which is defined as the

ratio between available transmission slots Nslot per time step

and the number of subsystems N , i.e.

R =
Nslot

N

While letting N approach infinity, the ratio R is

kept constant, i.e. Nslot grows uniformly with N . On

the other hand, the subsystems with same system pa-

rameter are replicated with increasing N . We define

the 4-tuple Ki = (Ai, Bi, Qi, Si) to describe a subsystem.

Then, if we double N , the number of subsystems with Ki

is doubled for each i ∈ {1, . . . , N}. Based on such approx-

imative system description, we derive decentralized control

and scheduling laws in the following subsections.

B. Assumptions

We first focus on homogeneous systems, i.e. systems

with identical subsystems. The obtained results will then

be applied to systems with heterogeneous subsystems in

section III-F. In a homogeneous system setup, a subsystem i

is described as the 4-tuple K = (A,B,Q, S), where we

assume that Ai = A, Bi = B, Qi = Q and Si = S for

every i ∈ {1, . . . , N}. Subsequently, we drop the sub- or

superscript i for notational convenience, whenever it is not

needed. We introduce the following assumptions for the ad-

missible control and scheduling polices given a subsystem K.

These assumptions will enable a simplified design approach.

(A1) The scheduling policy and control policy are identical

for every subsystem.

(A2) The control law γ stabilizes the subsystem K in a

bounded moment sense for all dropout probabilities

P[qk = 0] ≤ 1 − R, when assuming δk = 1 for all

k ≥ 0 and qk being i.i.d..

(A3) The scheduling policy and control policy are stationary.

The resulting closed-loop system with qk = 1, k ≥ 1 is

ergodic with

lim
k→∞

P[δk = 1] = R, P−a.s.

and future scheduler outputs δm, m > k are independent

of IS
k in case of δk = 1.

Assumption (A2) will guarantee that the closed-loop pro-

cess converges to a stationary process for every finite N

and ensures that the obtained solution leads to bounded mo-

ment stability. It should be remarked that assumptions (A2)

and (A3) do not need to take into account the complex

behavior between subsystems due to the shared commu-

nication network. Instead, the network is modelled as an

i.i.d. Bernoulli distributed packet dropout process for as-

sumption (A2), which has been studied extensively [17].

With respect to assumption (A3), subsystems can be viewed

as isolated entities having their own dedicated feedback

channel.

The following paragraph is concerned with the question,

how restrictive the taken assumptions are with respect to

optimality. Assumption (A1) can be reasoned by results in

subsection III-F on heterogeneous subsystems that show the
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underlying global optimization problem is a resource allo-

cation problem with concave utility functions. The fairness

property of this optimization problem implies that identical

subsystems attain the same solution. Assumption (A2) may

introduce some conservatism, as it poses additional stability

conditions. On the other hand, the assumption leads to a

robust design with respect to other subsystem that do not

comply to the global design procedure. Assumption (A2)

ensures that all subsystems remain stable, even for an

arbitrary number of subsystems transmitting persistently.

Assumption (A3) states that the average transmission rate

of a subsystem is R, when considered as an isolated control

system with perfect communication. The reasoning behind

this heuristic assumption is that R is the unique rate that

fully utilizes the communication network while avoiding

collisions in the limit k → ∞ for the approximated system

with N → ∞. The assumption that the scheduler does not

take into account the information IS
k in case of δk = 1 for

its future decisions is motivated by the fact that the data of

the scheduler and controller are synchronized for δk = 1 and

therefore the information IS
k is outdated.

C. Design approach for identical subsystems

This subsection proposes a control and scheduling design,

whose optimality and stability properties are derived in the

subsequent subsections III-D and III-E. The control law is

given by a certainty equivalence controller

uk = γCE
k (IC

k ) = −LE[xk|I
C
k ], (6)

where L is the control gain of the linear quadratic prob-

lem, i.e.

L = (BTPB + S)−1BTPA,

P = AT(P − PB(BTPB + S)−1BTP )A+Q.

The least-squares estimate E[xk|I
C
k ] can be computed by a

Kalman-like estimator given by

E[xk|I
C
k ] =

{

xk δk = 1 ∧ qk = 1

(A−BL)E[xk−1|IC
k−1] otherwise

with E[x0|IC
0 ] = 0 for δ0 = 0 or δ0 = 1 and q0 = 0. By

defining the estimation error

ek = xk − E[xk|I
C
k−1, δk = 0],

the optimal scheduling policy is the solution of a constrained

Markov decision process [18] with state ek that evolves by

ek+1 = g(ek, δk, wk) = (1− δk)Aek + wk (7)

with initial condition e0 = x0 − E[x0]. Besides, we define

the average transmission rate as

r = lim
T→∞

1

T
E[

T−1
∑

k=0

δk].

When substituting γCE into Ji defined by (4), the objective

is to find the optimal scheduling law π∗ that minimizes

JS = lim
T→∞

1

T
E

[

T−1
∑

k=0

(1− δk)e
T

kΓek

]

, s.t. r ≤ R, (8)

where Γ = LT(R + BTSB)L. It can be observed that the

optimization problem (8) guarantees that assumption (A3) is

satisfied. Rather than solving (8) directly, we first determine

the Pareto frontier of feasible pairs [JS , r] and then choose

the pair with minimal JS satisfying r ≤ R. The calcula-

tion of the Pareto frontier is performed by a scalarization

approach described in the next subsection.

D. Asymptotic optimality property

Based on the assumptions (A1)-(A3), this subsection

shows that the proposed design approach is optimal for

the approximative system, i.e. it is asymptotically optimal

for N → ∞ for constant R. First, we make the following

observation by considering the ratio of subsystems that

decide to transmit information. The ratio is given by the

term 1
N

∑N
i=1 δ

i
k. Assume that the initial state distribution of

each subsystem is given by the stationary distribution result-

ing from an isolated subsystem fulfilling assumption (A3).

Then, the ratio 1
N

∑N
i=1 δ

i
k is R for the approximative system

for N → ∞ for every time step k. As 1
N

∑N
i=1 δ

i
k is a

random variable with a zero-one law for N → ∞, this result

holds P-almost surely. It also implies that no collisions occur

at any time step, i.e. qik = 1 for δik = 1, P-almost surely.

Assumption (A2) ensures that the aggregate system with

the shared communication network converges to a stationary

distribution for finite N . Further, it is conjectured that the

stationary distribution resulting from the isolated subsystems

is also attained for the approximative system from any

arbitrary initial distribution. As a consequence of the fact

that the limiting transmission rate is R, P-almost surely and

under assumptions (A1)-(A3), we are able to reduce the

initial optimization problem for the approximative system

with N → ∞ to the following local optimization problem

considering only one subsystem.

min
π,γ

J, s.t. r ≤ R. (9)

Above statements for reducing the optimization problem

are also valid for an average transmission rate smaller

than R. Therefore, we have replaced the equality constraint

by an inequality constraint in (9). Based on the ergodicity

assumption in (A3), we can replace P[δk = 1] by r.

Several works [11]–[14] have already addressed opti-

mization problems that are related to (9). Similarly as

in [13], [14], it can be shown that the optimal control

law is given by γCE defined in (6). This is mainly due

to the stationarity assumption of the policies in (A3) and

the nestedness property of the information pattern. The

information pattern is nested, since the information available

at the controller is a subset of the information available at

the scheduler.
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Taking the obtained results into account, the remaining

task is to find the optimal event-triggering law π∗ that

minimizes (8). In order to solve above optimization problem,

we first consider the corresponding vector-valued optimiza-

tion problem, where we drop the inequality constraint and

consider the average transmission rate r as our second

objective besides JS . In order to calculate feasible points

in the cost region [JS , r] ∈ R
2 that are Pareto-optimal with

a corresponding scheduling policy, we use a scalarization

approach. The scalarization approach takes the following

form

min
π
JS + λr, (10)

where λ is a non-negative weighting term penalizing trans-

missions. The unconstrained Markov decision process given

by (10) has been studied in [11]. In the following, we adopt

the following assumption made in [11].

(A4) The scheduling policy is πk(δk = 1|ek) = 1 for

‖ek‖2 > M for some arbitrary M .

Remark 3: This assumption does not put severe restric-

tions on the design, as M may be chosen arbitrarily large.

When Γ is not positive definite, but only non-negative

definite, optimal solutions of (10) generally violate assump-

tion (A4) for any M as is shown in [14]. But as M can be

arbitrarily large, there always exists an ǫ-optimal scheduling

law taking assumption (A4) into account.

Based on assumption (A4), it is shown in [11] that the

optimal scheduling policy is deterministic, stationary and

takes the form of a threshold policy. Due to continuity of

the Pareto points [JS , r] in λ, optimization problem (8)

and (10) correspond to each other for an appropriately

chosen λ. Besides, this result implies that the Pareto frontier

is described by a convex and non-increasing function JS(r).
Summarizing this subsection, we have shown that the design

approach in previous subsection is optimal for the approxi-

mative system. The Pareto frontier for obtaining the optimal

scheduling law π∗ can be calculated efficiently by using a

scalarization approach.

E. Stability

In this subsection we address the question whether the

original system with finite N and the shared network to-

gether with the optimal solution of (9) is stable. Every

closed-loop subsystem can be described by the augmented

state [E[xk|I
C
k ], ek]. This system has a triangular structure

due to (7), i.e. the evolution of the estimation error is

independent of the E[xk|I
C
K ] given the current estimation

error ek. The evolution of E[xk|I
C
k ] can be viewed as a stable

system disturbed by the estimation error ek. Therefore, it

suffices to analyze the stability properties of the estimation

error ek to show stability of the closed-loop system of

a subsystem. The following proposition gives a stability

condition for the overall system taking into account the

shared network.

Proposition 1: Let Assumption (A4) hold and the con-

troller and scheduler be given by (6) and (8). If we can

guarantee that

R > 1−
1

‖A‖22
, (11)

then the overall system with N identical subsystems sharing

a common network is bounded moment stable.

Proof: We use drift criteria to show bounded mo-

ment stability [19]. It is straight forward to prove that the

underlying Markov chain is ψ-irreducible, aperiodic and

the drift of quadratic functions of ek inside the compact

set M = {ek|‖ek‖2 ≤M} is bounded. Thus, it suffices to

consider the set of states ek outside of this compact set [19].

The drift operator is defined as

∆h(ek) = E[h(ek+1)|ek]− h(ek), ek ∈ R
n.

For ek ∈ R
n\M, we have the following difference equation

due to assumption (A4)

ek+1 = (1− qk)Aek + wk,

where qk is distributed as in (2) and depends on the remain-

ing subsystems. In order to have bounded moment stability,

we need to ensure that

∆h(ek) ≤ −ǫ‖ek‖
2
2, ek ∈ R

n\O, (12)

where ǫ > 0 and O ⊃ M is compact. Let us

take h(ek) = ‖ek‖
2
2. Due to statistical independence of wk,

qk and ek for ek ∈ R
n\O and the fact that wk is zero-mean

with unit variance, the drift term can be written as

∆h(ek) = E[1− qk]‖Aek‖
2
2 + 1− ‖ek‖

2
2.

The term E[1 − qk] is the average packet drop probability,

which is upper bounded by 1 − R. On the other hand, we

have ‖Aek‖2 ≤ ‖A‖2‖ek‖. Therefore, the drift is bounded

by

∆h(ek) ≤ ((1−R)‖A‖22 − 1)‖ek‖
2
2 + 1.

Condition (12) ensures that we can find appropriate ǫ and O,

such that the drift criteria given by (12) is satisfied. This

completes our proof.

Remark 4: In case of heterogeneous subsystems, condi-

tion (11) has to be checked for each system matrix Ai.

F. Design approach for heterogeneous subsystems

For identical subsystems, the optimization problem was

reduced into a local optimization problem that finds the op-

timal control and scheduling law in a decentralized way. For

solving the optimization problem, the transmission rate R,

which is equal to the ratio Nslot

N
, is assigned apriori to each

subsystem. We can proceed in the same way for every

subsystem within the heterogeneous system for a particular

transmission rate. However, the optimal transmission rates

for each subsystem are not given in advance. Fortunately,

we have seen in section III-B that the Pareto curve of the

cost J and average transmission rate r is convex in the

cost region. Therefore, the determination of the optimal

transmission rates ri for subsystems i ∈ {1, . . . , N} is a

resource allocation problem with utility function −Ji(ri).
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Fig. 2. Pareto frontier of a subsystem and system parame-
ters K = (1, 1, 1, 0). The vertical line indicates the rate constraint.

This is a well-studied problem in network optimization

and admits interpretations like fairness [20]. The resource

allocation problem can be written as

min
{r1,...,rN}

1

N

N
∑

i=1

Ji(ri), s.t.
1

N

N
∑

i=1

ri ≤ R. (13)

Assumption (A3) is modified by replacing the total transmis-

sion rate by the individual rate ri for each subsystem i.

The design approach for heterogeneous subsystems pro-

ceeds splits up into two different optimization stages. Every

subsystem solves a local optimization problem by calculating

its Pareto frontier of feasible points [Ji, ri]. This is obtained

by solving (10) for different λ ∈ [0,∞). The resulting

function Ji(ri) is used in the global optimization problem al-

locating transmission rates to each subsystem given by (13).

IV. NUMERICAL VALIDATION

The purpose of this section is twofold. First, the efficacy

of the proposed design algorithm is evaluated. This is ac-

complished by comparing it with optimal TDMA scheduling

schemes and the optimal centralized scheme. Second, we

illustrate the design approach for the decentralized event-

triggered design for a homogeneous and heterogeneous

system setup. For sake of illustration, we consider scalar

subsystems in the following.

First, suppose we have identical subsystems with param-

eters K = (1, 1, 1, 0). The communication network allows

a transmission rate R = 0.2. The Pareto optimal cost

region [Ji, ri] for a subsystem with parameters K including

the rate constraint is drawn in Fig. 2. We observe that Ji is

a decreasing and convex function with respect to ri.

The optimal cost point is attained at [J∗
i , R] = [1.54, 0.2]

by an event-triggered scheduling policy π∗ that is given

by δk = 1{|ek|>1.7}. The optimal control law gain L is given

by 1. It should be remarked that the Pareto curve can be

obtained individually for every subsystem before runtime

without considering the underlying communication system.

Fig. 3 compares the cost of the decentralized event-

triggered scheme with the optimal TDMA scheme and the

optimal centralized scheduling shows the cost per subsystem

for various numbers of identical subsystems N with R = 0.2.

The resulting costs for N ∈ {5, 25, 100, 250, 500} is deter-

mined through Monte Carlo simulations with a time horizon

of T = 10 000. The optimal control law for both the

optimal TDMA scheme and the optimal centralized scheme

are given by uk = −LE[xk|IC
k ] with L = 1. In the optimal

TDMA scheme, time slots for transmission are assigned

successively. Subsystems transmit information periodically

with transmission period 1
R

, where we assume that N is a

multiple of 5. In the case of identical subsystems, the optimal

centralized scheduler selects at each time step k the RN

subsystems with maximum magnitude |ek| whose feedback

loop are then closed. It should be noted that this scheduler

can be regarded as a lower bound on the performance that

can be achieved over the communication networks, but which

is not realizable as it needs another communication network

gathering the estimation errors of every subsystem.

We observe in Fig. 3 that the cost of the optimal decen-

tralized scheduling algorithm approximates this lower bound

very closely and outperforms the optimal TDMA scheme

significantly. On the other hand, it can be seen that the costs

converge to the asymptotic costs for N → ∞ very rapidly.

Already for N = 100, the performance gap is less than 1%.
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Fig. 3. Numerical validation of the networked control system with homo-
geneous subsystems and system parameters K = (1, 1, 1, 0) and R = 0.2.

Finally, we consider a heterogeneous system, where we

have two different kinds of subsystems occurring at the

same amount. The system parameters are K1 = (1.25, 1, 1, 0)
and K2 = (0.75, 1, 1, 0) and the communication network has

a transmission rate of R = 0.5. We note that the stability

condition (11) is satisfied for the underlying subsystems.

Having obtained the Pareto curves for both subsystems

sketched in Fig. 4, the resource allocation problem given

by (13) determines the optimal rate pair. The dashed line in

Fig. 4 depicts the mean cost per subsystem V as a function

of r1 for N = 2 without collisions. It can be seen that the

total cost V is convex with respect to r1 and it is minimized

at the rate pair [r1, r2] = [0.6, 0.4] taking a value of 1.07.

The optimal control gain is given by Li = Ai for both
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Fig. 4. Solid lines: Pareto frontiers of two different subsystems with system
parameters K1 = (1.25, 1, 1, 0) and K2 = (0.75, 1, 1, 0). Dashed line: To-
tal cost V (r1) =

1

2
(J1(r1) + J2(r2)) and constraint 1

N
(r1 + r2) ≤ 0.5.

The optimal rate pair is given at [r1, r2] = [0.6, 0.4] with total cost
V = 1.07 for the two subsystems without collisions.

subsystems and the scheduling laws are threshold policies,

where δ1k = 1{|ek|>0.5} for K1 and δ2k = 1{|ek|>0.95} for K2.

Concerning the performance in the presence of the shared

network, we consider the mean costs per subsystem de-

picted in Fig. 5 for N ∈ {2, 10, 50, 100, 250, 500}. The

optimal TDMA scheme involves a brute-force search over

all possible combinations of transmission times. To keep

this combinatorial problem numerically tractable, we re-

stricted the admissible transmission scheme to be period-

ical for subsystems K2. The optimal periodical transmis-

sion scheme is then given by [δ10 , δ
1
1 , δ

1
2 , . . .] = [1, 1, 0, . . .]

and [δ20 , δ
2
1 , δ

2
2 , . . .] = [0, 0, 1, . . .] with period 3. A lower

bound is given by V = 1 assuming no communication

constraints on the feedback channels. As can be regarded

from Fig. 5, this lower bound is approached with a gap of

less than 10% for increasing N and the TDMA scheme is

outperformed for every number of subsystems.
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Fig. 5. Numerical validation of the networked control system with
heterogeneous subsystems of two classes K1 and K2.

V. CONCLUSIONS

This paper shows that decentralized event-triggered

scheduling seems to be very promising to achieve a com-

promise between complexity and performance. The design

approach offers a tractable methodology that circumvents

the need to take into account the complex behavior of

the contention-based network, but guarantees overall stabil-

ity. The decentralized event-triggered scheme outperforms

TDMA scheduling and approaches the optimal centralized

scheduling scheme very closely.

Prospective research investigates the online estimation

of the network parameters and an adaptation mechanism

that adjusts the scheduling law at runtime, as well as the

extension to other communication models.
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