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Functional magnetic resonance imaging (fMRI) is a pioneering tech-
nology for studying brain activity in response to mental stimuli. Although
efficient designs on these fMRI experiments are important for rendering
precise statistical inference on brain functions, they are not systematically
constructed. Design with circulant property is crucial for estimating a hemo-
dynamic response function (HRF) and discussing fMRI experimental opti-
mality. In this paper, we develop a theory that not only successfully explains
the structure of a circulant design, but also provides a method of constructing
efficient fMRI designs systematically. We further provide a class of two-level
circulant designs with good performance (statistically optimal), and they can
be used to estimate the HRF of a stimulus type and study the comparison
of two HRFs. Some efficient three- and four-levels circulant designs are also
provided, and we proved the existence of a class of circulant orthogonal ar-
rays.

1. Introduction. Rapid event-related functional Magnetic Resonance Imag-
ing (ER-fMRI) allows the shape estimation of hemodynamic response function
(HRF) associated with transient brain activation evoked by various mental stimuli.
An ER-fMRI design is a sequence of stimuli to be presented to an experimental
subject, and such design is regarded as a circulant design [16, 17]. In the study
of a fMRI experiment, a design may contain tens to hundreds of stimuli. Each
stimulus evokes cerebral neuronal activity, leading to a rise and fall in the ratio
of oxy- to deoxy-blood in the cerebral blood vessels at a brain voxel (3D image
unit), and a change in the strength of magnetic field is detected by the MR scanner.
This change is described by a function of time called the hemodynamic responses
function (HRF). After the onset of a stimulus, the HRF takes several second to
completely return to its baseline. Statistical inference is made on the brain activity
by an MR scanner that collects data via the repeated scans on a subject’s brain.
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The inference about the HRF is thus of the main interest in most fMRI studies. See
Lazar [20] for more details.

Buračas and Boynton [1] proposed the use of m-sequence to precisely esti-
mate HRF. The good performance of m-sequence is reported in several studies
[14, 25, 26]. A good property of a m-sequence d1d2 . . . dn is every nonzero t-tuple
appears exactly once in the set {(di, . . . , di+t−1)|i = 1, . . . , n} where dn+j = dj .
The length of an m-sequence is often set to n = (Q + 1)l − 1 where Q + 1 is a
prime, Q is the total number of stimulus types and l is a positive nonzero integer,
for example, 11012202 is an m-sequence of length 8. However, the application
is unfortunately limited due to the large gap of run size n, thus an extended m-
sequence [16] is recommended. In specific, an additional 0 is inserted to a (t − 1)-
tuple of zero in an m-sequence, so that a zero t-tuple is included. In the previous
example, the extended m-sequence can be 110012202 or 110122002. In literature
review, m-sequence is widely used since it preserves (nearly) equal frequency of
t-tuple across stimulus types. However, only few effects can be estimated. Highly
efficient designs with flexible run sizes are thus called for.

Recently, Kao [17] proposed the use of Hadamard sequence (H -sequence), ob-
tained by Paley difference set [29], for ER-fMRI experiments with one stimulus
type. For example, 0010111 is an H -sequence. An obvious advantage of using
H -sequence is its run size flexibility, but it only fits for specific n ≡ 3 (mod 4).
Then Craigen et al. [10] introduced the circulant partial Hadamard matrix (CPHM)
for the purpose of solving the problems in stream cypher cryptanalysis. An n × n

matrix A = (ai,j ) is circulant if ai+1,j+1 = ai,j where the subscripts are reduced
modulo n. An r-row-regular circulant partial Hadamard matrix H , denoted by
r-H(k × n), is an k × n circulant (±1)-matrix with each row sum r such that
HHT = nIk . When n ≡ 0 (mod 4), CPHMs with zero row sum are highly effi-
cient designs for fMRI experiments [18]. Although the CPHM is more powerful
and efficient than H -sequence, both of them are still important when different run
sizes are required. In this work, our goal is to propose a unified method to construct
circulant designs for fMRI experiments with any run sizes. Moreover, our method
is also adapted for constructing circulant designs of any s-levels for s ≥ 2.

The optimality of m-sequences, extended m-sequences, H -sequences and
CPHMs are roughly reported as follows. The m-sequences are A-optimal by
computational results in [1, 25]. Extended m-sequences are universally optimal
[16, 18] for studies with two stimuli, and D-optimal for studies with stimulus
type more than two. The H -sequences are φp-optimal for estimating a HRF when
p ∈ [0,1] [8]. In addition, the H -sequences are universally optimal by inserting a
0 to a run of consecutive 0’s, called extended H -sequences, and a CPHM is also
universally optimal [8]. The definitions of the optimal criteria please refer to Ap-
pendix A. In 2015, Cheng and Kao [8] developed a general theory to guide the
selection of fMRI designs for estimating a HRF and for conducting a comparison
of two HRFs. Based on �p-optimality criterion, they provided a strategy to the
selection of fMRI designs under different parameter p when n ≡ 0,1,3 (mod 4).
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However, there are many research challenges such as the case n ≡ 2 (mod 4). In
this work, we introduce a unified structure that can construct not only the above
sequences but also circulant designs with any run sizes.

The present study focuses on a generalized structure of circulant designs for any
level setting. We propose a circulant design called circulant (almost-)orthogonal
array (CAOA) that guarantees the frequency of all t-tuples to be almost equal. In
the next section, we introduce some mathematical terminologies and a statistical
model for estimating HRFs. In Section 3, the concept and properties of CAOAs
are introduced and a class of CAOA is proposed. We then present the study of
two-level CAOAs with various run sizes, and the optimality of these designs are
discussed in Section 4. Furthermore, lists of three- and four-levels CAOAs are
given in Section 5. In addition, we also proved the existence of circulant OAs.
Some discussions on the proposed designs and a conclusion are given in the last
section. For clarity, all proofs are organized in Appendix B.

2. Notation and background.

2.1. Statistical model. In a fMRI experiment, a mental stimulus to be pre-
sented to an experiment subject can possibly occur every τISI seconds, where τISI
is a pre-specified time. An event-related fMRI sequence can be represented as an
ordered sequence d = (d1, . . . , dn), where di ∈ {0, . . . ,Q}, and Q is the total num-
ber of stimulus types. For example, an experiment with q stimulus types (Q = q)

can be viewed as a (q + 1)-ary sequence d. The qth stimulus (e.g., a picture of a
familiar face) occurs at (i − 1)τISI when di = q , and there is no stimulus onset at
(j − 1)τISI if dj = 0. The study of the HRF helps us to understand the effects of
the stimuli to the brain activity [20, 24].

We consider the following model for estimating the HRF (see also [11, 16, 26]):

(2.1) y = Xh + Sγ + ε.

Here, y = (y1, . . . , yn) where yi is the measurement of a brain voxel collected by
an MR scanner at the ith time point, h = (hT

1 , . . . ,hT
K)T represents the unknown

magnitudes of the HRFs, where hi = (h1,i , . . . , hQ,i)
T , hq,i is the ith magnitude

of the HRF from the qth stimulus type; K is determined by the duration of the
HRF, counting from the onset of a stimulus to the HRFs complete return to base-
line. The matrix X = [X(1), . . . ,X(K)] is a n × QK zero-one design matrix, where
X(i) = [x1,i , . . . ,xQ,i] is the design matrix of the ith height of the Q HRFs and
the ith element of the vector xq,i = 1 if di = q and 0 otherwise. The vector Sγ is
the nuisance term with a specified S and an unknown parameter γ . The vector ε
represents the noise with mean 0 and covariance matrix �.

In this work, we assume that the last K − 1 elements of the design d are pre-
sented in the burn-in period before the first valid fMRI measurement. It is neces-
sary to allow the MR scanner to reach a steady state in the burn-in period, and the



2486 Y.-L. LIN, F. K. H. PHOA AND M.-H. KAO

measurements collected in this period are discarded from the subsequent statisti-
cal analysis. Thus, X(k) = Uk−1X(1) where U = (ui,j )n×n is a permutation matrix
with ui,i−1 = u1,n = 1, for i = 2, . . . , n − 1, k = 2, . . . ,K , and 0 otherwise. This
implies that the design matrix X(i) of Model (2.1) must be in circulant setting.
Here, we adopt the statistical model proposed by Kao [16], which is a special case
of Model (2.1), to estimate HRFs. In addition, the circulant property is one of the
model assumptions. Please refer to [17, 18] for more details. The model on the es-
timation of a HRF and the comparison of two HRFs will be discussed in Section 4.

2.2. Circulant designs. In literatures, lots of good designs are applied into
experiments for rending precise statistical inference such as orthogonal arrays. An
orthogonal array (OA) of size n, with k constraints, s symbols and having strength
t , denoted by OA(n, k, s, t), is a k × n matrix A of s symbols such that all the
ordered t-tuples of the symbols occur n/st times as column vectors of any t × n

submatrix of A; see [13] for more details. The advantages of using an OA as an
experimental plan include the orthogonality and projectivity of effect estimates [5,
6, 33]. However, an obvious weakness of OA is its inflexible run size, which must
be a multiple of st .

In the aspect of fMRI experiments, designs with circulant property are required
for estimating HRFs, and such designs have not been studied in literatures. OA is
useful and powerful, but it cannot be utilized in fMRI experiments. A Hadamard
matrix is known to be an OA(n,n − 1,2,2) and it is conjectured to exist for any
n ≡ 0 (mod 4), but a circulant Hadamard matrix of order n > 4 is conjectured to
be nonexistence [34]. A 0-H(k × n) is a two-symbol, n-run, k-factor circulant or-
thogonal array; it could be applied to fMRI experiments [18]. Given n, the study
focuses on the maximum value of k such that an k × n CPHM exists. A computa-
tional result was given in [10, 21, 27] for n ≤ 76. A general theory that connects
the general difference set and CPHM was proposed by Lin et al. [21]. An algo-
rithm was provided to search for CPHMs, and the lower bounds were successfully
improved. Since the CPHMs were first introduced for stream cypher cryptanaly-
sis, two-level designs are the primary consideration. We introduced the circulant
(almost-)orthogonal array (CAOA), which presents a general framework of circu-
lant designs.

DEFINITION 2.1. A circulant k ×n array A with entries from Zs = {0,1, . . . ,

s − 1} is said to be a circulant almost orthogonal array (CAOA) with s levels,
strength t and bandwidth b, if each ordered t-tuple α based on Zs occurs λ(α)

times as column vectors of any t × n submatrix of A such that |λ(α) − λ(β)| ≤ b

for any two t-tuples α and β; such array A is denoted by CAOA(n, k, s, t, b). For
convenience, its first row is called the generating vector.

The entries of a CAOA can be also defined on any s-element set by certain
mapping if the description is clear. It is obvious that a 0-H(K × n) is equivalent



FMRI DESIGNS VIA CAOAS 2487

to an CAOA(n,K,2,2,0) by replacing −1 with 0. When s = 2, the transpose of
a CAOA can be regarded as the design matrix X in Model (2.1). When s ≥ 3, a
CAOA can be transformed to be X by proper mapping. For example, the first row
of a CAOA(n,K,2,2,0) is an event-related fMRI sequence d . If the experimenters
apply this sequence into a fMRI experiment, then they can estimate the HRF via
Model (4.2). In addition, the parameter K is the key of how many time points of
a HRF that can be independently estimated. Therefore, the larger the value of K ,
the greater the power of Model (4.2).

Traditionally, the run size of OA(n, k, s, t) is constrained by n ≡ 0 (mod st ).
We instead introduce the bandwidth of CAOA and guarantee that each t-tuple oc-
curs at least �n/st� number of times when b ≤ 1, where �·� is a floor function.
Two questions arise: (1) What is the maximum value of k such that a CAOA ex-
ists? (2) How to find a good circulant design when n is not a multiple of st? There
is a class of generalized OAs called partially balanced arrays (BA) introduced
by Chakravarti [2]. It tackles the simpler version of our two questions without
the requirements of circulant and bandwidth property. BAs are used as multifacto-
rial designs when efficient designs are not easy to find; for a detailed description,
please refer to [2, 3]. Our CAOA is, by definition, more flexible than BA, and BA
is in fact a special case of CAOA if the frequency of each t-tuple is pre-specified.

For a two-level experiment with 12 runs, one can choose OA(12,11,2,2), but
it fails in a fMRI experiment. Since a circulant OA(12, k,2,2) does not exist
when 6 ≤ k ≤ 11, our CAOA(12,5,2,2,0) becomes the best choice to be applied.
Moreover, if 14 runs are allowed to be performed in a fMRI experiment, then
CAOA(14,7,2,2,1) is better than CAOA(12,5,2,2,0). Even if there are only five
factors of interest in the experiment, one can obtain a good design by deleting the
last two rows of CAOA(14,7,2,2,1). Their generating vectors are listed in Ta-
ble 1. These designs are constructed via general difference set (GDS) introduced
by Lin et al. [21], and it is the first systematic method to construct CPHMs. We
recall the definition of GDS here.

DEFINITION 2.2. A (n, k;λ1, . . . , λn−1) GDS is a set D = {d1, . . . , dk} of
distinct elements of Zn such that the difference l appears λl times in the multi-set
{di − dj (mod n)|di, dj ∈ D, i 	= j} for l = 1, . . . , n − 1.

For example, let D = {1,2,6,8} ⊂ Z8, then the collection of the differ-
ences of any two elements in D is {7,1,3,5,1,7,4,4,2,6,2,6}. Thus D is a
(8,4;2,2,1,2,1,2,2) GDS.

3. Structure and properties of CAOAs. The GDS method is an efficient
tool for searching two-level CAOAs, however, it is not applicable in multi-level
cases. We are going to introduce a new system to describe a circulant structure
of multi-level designs, which can be considered as an extension of GDS. Sup-
pose Xi and Xj are two subsets of Zn. A difference frequency set (DFS) of an
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TABLE 1
The generating vectors of CAOA(n, k,2,2, b), for 6 ≤ n ≤ 50. T2-CAOAs are marked by n∗

n k b Generating vector

6 2 1 000111
6∗ 3 1 001011
7 7 1 0111001
8 3 0 00111010
9 3 1 001011110

10 3 1 0001011110
10∗ 5 1 0001101011
11 11 1 00010110111
12 5 0 001001111010
13 5 1 0010001011111
14 4 1 01001111101000
14∗ 7 1 00010111001011
15 15 1 001111010110010
16 7 0 0001110111010010
17 6 1 01110100001001111
18 6 1 001110111101000001
18∗ 8 1 000011010100110111
19 19 1 0010101111001101100
20 7 0 00010101100111101100
21 8 1 010101101111100110000
22 7 1 0010100111111011000010
22∗ 11 1 0001001011100010110111
23 23 1 00011111010110011001010
24 9 0 011000000110100111011101
25 9 1 0011101011111011000100100
26 9 1 00000010001110101111011011
26∗ 13 1 00001101010110000110111011
27 12 1 000011011011110101000100111
28 9 0 0000001010110011111001101011
29 11 1 00010001001111001111110100101
30 10 1 000000111001101111101011010001
30∗ 11 1 010011011000011110111000100101
31 31 1 0100001110101000111101101110010
32 12 0 00011101111100101101010000011001
33 12 1 000100001111011001111101011010001
34 11 1 0000011001010101101101111110001100
34∗ 17 1 0010111001110100000101110011101001
35 35 1 01001101010000100111011111000111010
36 14 0 011101011111101000011010010001001100
37 13 1 0010000101000100110001111101011011111
38 12 1 00110010110011111110101110000001010010
38∗ 19 1 01100001010111100100110000101011110011
39 15 1 000111010100110010111001111010110110000
40 17 0 0001101101111100011110110001001010100010
41 14 1 01011100001011011101110111100101100010000
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TABLE 1
(Continued)

n k b Generating vector

42 13 1 010100000010111100111011111010011100100100
42∗ 18 1 001011000010101110110011110000100011011101
43 43 1 0110101100010000011101000111110111001010011
44 16 0 00000011100100010010010111110101110011101011
45 16 1 011010110100000101000100110011110011111110100
46 14 1 0110011111111010011110000100010010000110101010
46∗ 23 1 0000101001100110101111000001010011001101011111
47 47 1 00001000011010100011011001001110101001111011111
48 17 0 000000010011011000111011101011000111110010110101
49 17 1 0000000101100100101111010011100111110101011100110
50 16 1 01011011011101101010001110000001100010000011011111
50∗ 11 1 00111010010001110110101111000100000101110011011010

ordered pair (Xi,Xj ) is a multi-set {a − b (mod n)|a ∈ Xi, b ∈ Xj }, denoted

by DFSn(Xi,Xj ). The notation λ
i,j
l is the occurrence frequency of the nonzero

element l ∈ Zn in the DFSn(Xi,Xj ). In general, the difference zero is not con-
sidered, and thus it is omitted in the notation of this paper. If Xi = Xj , then
DFSn(Xi,Xi) shows the frequency of each difference except the element zero in a
Xi . Thus, DFSn(Xi,Xi) describes the structure of the GDS Xi . A partitioned set
V = {V0,V1, . . . , Vs−1} is an equitable partition if ||Vi | − |Vj || ≤ 1 for all i 	= j

where |Vi | is the cardinality of the set Vi . In summary, a GDS presents the differ-
ence structure of any two elements in a group, and a DFS describes the difference
of any two elements in different groups.

We then define complete difference system (CDS) that summarizes the infor-
mation from GDS and DFS, to understand the whole difference structure. Let
V = {V0,V1, . . . , Vs−1} be a partition of Zn. An r-frequency matrix of V is an
s × s matrix �r = (λ

i,j
r ) where λ

i,j
r is the frequency of the nonzero element r ∈ Zn

in DFSn(Vi,Vj ). A CDS of V is an ordered (n − 1)-tuple (�1, . . . ,�n−1) that
describes frequency matrices of V . Let ID(�) be the smallest index k ≥ 2 such
that �1 = · · · = �k−1 = � but �k 	= �. If �i = � for all i, then ID(�) = ∞. If
�1 	= �, then ID(�) = 1. Given a frequency matrix �, we say V = {V0, . . . , Vs−1}
is an (n, k, s,�)-CDS if V is a partition of Zn and ID(�) = k. Its incidence matrix
is defined as follows. Please refer to Example 3.4 for a simple demonstration.

DEFINITION 3.1. Let V be an (n, k, s,�)-CDS. The incidence matrix of V is
an k × n matrix A = (ai,j ) defined by

ai,j = l if j ∈ Vl + (i − 1),

where Vl + (i − 1) = {x + (i − 1)|for all x ∈ Vl} and all elements are reduced
modulo n; i = 1, . . . , k, j = 1, . . . , n and l = 0, . . . , s − 1.
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The r-frequency matrix is crucial for understanding the circulant structure. It
describes the framework between ith and (i + r)th rows. Given a partition V , all
difference compositions can be quickly grasped through CDS. We then show the
equivalence relation between CDS and CAOAs.

THEOREM 3.2. Let V be an (n, k, s,�)-CDS with s, k ≥ 2 and a given fre-
quency matrix �. Each 2 × n subarray, consisting of the ith and j th rows of the
incidence matrix of V , contains each ordered pair exactly λ

x,y
j−i times, where λ

x,y
j−i

is the entry of �j−i , 1 ≤ i < j ≤ n, 0 ≤ x, y ≤ s − 1.

Theorem 3.2 implies that an (n, k, s,�)-CDS is equivalent to a CAOA of
strength two. In addition, the bandwidth of a CAOA is relevant to the fre-
quency matrix �. We denote the bandwidth of a matrix M = (mi,j ) by B(M) =
max{mi,j − mi′,j ′ |for all mi,j ,mi′,j ′ }. Then the following corollary follows.

COROLLARY 3.3. A CAOA(n, k, s,2, b) exists if and only if there exists
an (n, k, s,�)-CDS such that B(�) = b. In addition, the incidence matrix of
(n, k, s,�)-CDS is the required CAOA.

Instead of searching all combinations completely and counting the frequency of
all pairs, the CDS summarizes the information of all differences efficiently. For in-
stance, let V = {V0,V1} where V0 = {1,2,3,5,9,10,12} and V1 = {4,6,7,8,11,

13,14}. It is easy to verify that V is a (14,7,2,�)-CDS with � = 4J2 − I2, where
J2 is a square all-ones matrix of order 2 and I2 is an identity matrix of order 2.
Its incidence matrix is a CAOA(14,7,2,2,1). Assume λi,j is the (i, j)-entry in �,
the λi,j represents the frequency of (i, j) pair in any 2×14 subarray and describes
the frequency of the element r ∈ Z14 in DFS14(Vi,Vj ) for r = 1, . . . ,6. As we
mentioned before, our method CDS is applicable for constructing circulant OAs.
We give an example as follows.

EXAMPLE 3.4. Let n = 18, V0 = {1,2,3,9,14,17}, V1 = {5,8,10,11,12,

18} and V2 = {4,6,7,13,15,16}. By simply counting the differences of GDSs Vi

and DFSn(Vi,Vj ) for i 	= j , it is easy to obtain λ
i,j
r = 2 for r = 1,2,3. Therefore,

V = {V0,V1,V2} is a (18,4,3,2J3)-CDS. By Corollary 3.3, its incidence matrix
is a CAOA(18,4,3,2,0) shown below:

⎛
⎜⎜⎝

0 0 0 2 1 2 2 1 0 1 1 1 2 0 2 2 0 1
1 0 0 0 2 1 2 2 1 0 1 1 1 2 0 2 2 0
0 1 0 0 0 2 1 2 2 1 0 1 1 1 2 0 2 2
2 0 1 0 0 0 2 1 2 2 1 0 1 1 1 2 0 2

⎞
⎟⎟⎠ .

In addition, it is a circulant OA(18,4,3,2).
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A fMRI experiment of n = 18 time points with three stimuli is considered.
Traditionally, an m-sequence with length 33 − 1 = 26 is utilized as the experi-
mental plan. Kao et al. [19] indicated that m-sequences can be suboptimal under
A-optimality. However, due to its large sequence length, the truncated m-sequence
is used in practice even though it often loses its original efficiency. On the other
hand, an extended m-sequence of length 32 is considered as another candidate due
to its D-optimality [16]. However, its length is too short and only two time points
height of each HRF (i.e., k = 2) can be analyzed. Instead of using these variants of
m-sequences, our CAOA(18,4,3,2,0) is a better candidate. Our design can disen-
tangle the aggregate HRFs at the first four time points. It is a circulant orthogonal
array (i.e., b = 0) that allows us to independently estimate four time points height
of each HRF. Theorem 2 of [16] suggests that it is a D-optimal design, and it might
be universally optimal.

Recall that a CAOA(n, k,2,2,0) is a CPHM for n ≡ 0 (mod 4). Lin et al. [21]
proposed an algorithm to search for a specific GDS such that a CAOA(n, k, 2,2,0)

has maximum value of k. Indeed, a CAOA(n, k,2,2,0) can be constructed by a
CDS V = {D,D̄}, where D is a GDS and D̄ is its complement.

In view of foregoing discussion, the existence of a CAOA(n, k, s,2, b) is equiv-
alent to the existence of a specific (n, k, s,�)-CDS with B(�) = b. Next, we focus
on the existence of (n, k, s,�)-CDS. A (n, k, s,�)-CDS is not guaranteed to exist
if we arbitrarily choose a frequency matrix �. For example, a (12,2,3,�)-CDS
does not exist if � = (λi,j )3×3 with λ0,0 = λ1,1 = λ0,2 = 2 and λi,j = 1 otherwise.
We propose some useful properties, based on the CDS, for selecting a suitable �.

PROPOSITION 3.5. Let V = {V0,V1, . . . , Vs−1} be a partition of Zn, and
(�1, . . . ,�n−1) be its CDS. For all r ∈ Zn \ {0}, we have:

(a) λ
i,j
r = λ

j,i
n−r ,

(b)
∑s−1

j=0 λ
i,j
r = |Vi | for any fixed i and

∑s−1
i=0 λ

i,j
r = |Vj | for any fixed j ,

(c)
∑

0≤i,j≤s−1 λ
i,j
r = n.

Using Proposition 3.5(b), our search becomes efficient by avoiding the search
of many nonexistence CDS. The details are discussed in Section 5. Continuing
the previous example, since

∑2
j=0 λ

0,j
r 	= ∑2

i=0 λi,0
r for all r , there is no such

(12,2,3,�)-CDS. According to Proposition 3.5(a), 0 < ID(�) < n
2 or ID(�) =

∞ for any �, so k ≤ �n/2� if k 	= n. Then a simple upper bound is derived by
counting ID(�) of a CDS via Corollary 3.3.

PROPOSITION 3.6. Let s ≥ 3, � = (λi,j )i,j∈Zs be the frequency matrix of a
(n, k, s,�)-CDS and B(�) = b. If a CAOA(n, k, s, t, b) with � exists, then

k ≤ min
{|Vi |(|Vi | − 1

)
/2λi,i |i = 0,1, . . . , s − 1

} + 1.
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The upper bound is general enough that can be treated as a threshold in com-
puter search. The case of s = 2 is slightly different and will be discussed in the
next section and the choice of the frequency matrix � is discussed in Section 5.
We have a class of CAOAs that reach the upper bound. Such CAOAs can be
constructed by an m-sequence of length qm − 1. A well-known property of m-
sequence is that every nonzero t-tuple occurs equal times as we collect all consec-
utive t elements along the sequence. However, another important property is called
two-tuple balance property [12]. In terms of CDS terminology, if we construct a
CAOA by the m-sequence, then its frequency matrix equals to � = (λi,j )q×q ,
where λ0,0 = qm−2 − 1 and λi,j = qm−2 otherwise. Hence, we have the following
lemma.

LEMMA 3.7. If q is a prime power and m ≥ 2, then there exists a CAOA(qm −
1, (qm − 1)/(q − 1), q,2,1).

It can be proven by linear algebra [12], however, it can also be proven by
CDS. Consider an m-dimensional Euclidean geometry on a finite field with q ele-
ments. There are q parallel (m − 1)-flats; they form a partition of all points. One

flat forms a (
qm−1
q−1 ,

qm−1−1
q−1 ,

qm−2−1
q−1 ) Singer’s difference set corresponding to an

(m − 1)-dimensional projective geometry [35]; the others form a GDS individu-
ally [31, 32]. Any two distinct (m−1)-flats also have special difference structures;
it can be proven by shifting one of these two flats and discussing their DFS.

It is not easy to understand the matrix structure of an m-sequence despite that
it has good properties. In coding theory, a code word which is a column vector
of a zero-one matrix. Since the Hamming distance between two code words is
relevant to its correcting ability, the relationship of columns is mainly of inter-
est. For instance, for a binary m-sequence of length 25 − 1, each nonzero t-tuple
occurs 25−t times and the zero t-tuple occurs 25−t − 1 times for 1 ≤ t ≤ 5. If
we use such m-sequence to construct a circulant matrix, then every binary code
word of length 5 is one-to-one corresponding to each of its column. Therefore,
they usually focus on the columns not rows. However, we aim at discussing the
relationship between any two rows. On the other hand, the sequence structure of
m-sequences has been widely studied, but its matrix structure is unclear. In the
above example, its matrix structure is a 31 × 31 circulant matrix of strength two
but not strength three. However, the m-sequence of length 31 corresponds to a
CAOA(31,7,2,3,1), CAOA(31,6,2,4,1) and CAOA(31,5,2,5,1), respectively.

In addition, Liu [25] recommended a truncated m-sequence that is obtained by
leaving out the last l − n elements of an m-sequence of length l > n. Such variant
of m-sequence can suffer efficiency loss, and the reason can be easily explained
through CDS. Roughly speaking, the q parallel (m − 1)-flats guarantee the dif-
ference system of m-sequence; however, the truncated m-sequence destroys such
system. This implies that the frequency of differences of any two points on the
same flat and on different flats are orderless.
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The CDS presents circulant matrix structure in a difference method point of
view; it helps us to understand the matrix structure of a circulant matrix. The con-
struction of CAOAs with high strength is still under investigation.

We now introduce another simple construction method, called the doubling
method, that can obtain large CAOAs from the repetition of some small one.

LEMMA 3.8. For any positive integer, l ≥ 2. If there is a CAOA(n, k, s, t, b),
then there exists a CAOA(ln, k, s, t, lb).

The above method is an easy and quick way to obtain a CAOA of large size, and
it is very useful when b = 0. Its application will be discussed in Sections 4 and 5.

4. Two-level CAOA for estimating HRF. In this section, we concentrate
on the optimal fMRI designs for estimating a HRF of one stimulus type and
comparing the HRFs (or effects) of two stimulus types, and their constructions.
Kao [18] studied optimal fMRI designs by considering the following special case
of Model (2.1):

(4.1) y = γ jn + Xdh + ε,

where jn is an all-ones vector, Xd = [d,Ud, . . . ,UK−1d], d is a fMRI sequence
and U is a permutation matrix. Model (4.1) estimates a HRF of one stimulus type.
The next model compares the HRFs of two stimulus types:

(4.2) yi = γ +
K−1∑
k=0

{x1,i−kh1,k+1 + x2,i−kh2,k+1} + εi, 1 ≤ i ≤ n,

where yi is the fMRI measurement at the ith time point, hq,i is the HRF of the
qth stimulus type at the ith time point, xq,i is an indicator for q = 1,2 such that
xq,i = 1 when di = q and 0 otherwise, the second subscript of x is reduced modulo
n and the remaining terms are as in Model (2.1).

The height difference between two HFRs, say θk = h1,k − h2,k , is of special
interest and Model (4.2) can be rewritten as follows:

(4.3) yi = γ +
K−1∑
k=0

{ai,kζk+1 + bi,kθk+1} + εi, 1 ≤ i ≤ n,

where ai,k = (x1,i−k + x2,i−k)/2, bi,k = (x1,i−k − x2,i−k)/2, ζk = h1,k + h2,k , and
θk = h1,k − h2,k . The studies of these models have been discussed in [8, 16–18,
21].

Let D = (di,j )n×K be the transpose of a CAOA(n,K,2,2, b) with symbols q ∈
{1,2}, and xq,i−k = 1 when di,k = q . Then a fMRI design d = (di,1) is represented
as the first row of a CAOA, and its optimality is equivalent to the optimality of
a CAOA. Recently, Cheng and Kao [8] comprehensively discussed the cases n ≡
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0,1,3 (mod 4) and developed a theory to guide the selection of optimal fMRI
designs. Although the optimality of these designs has already been proven, known
results are still missing. Even in a small range from 4 to 50, many of them are
unknown. The purpose of our study is to search for CAOAs whose K is maximum,
and to fill the gap of the known results in n ≡ 0 (mod 4) (CPHMs) and n ≡ 3
(mod 4) (H -sequences). Our results are discussed in the separate subsections for
n ≡ 0,1,2,3 (mod 4), respectively. For the definition of all optimality criteria,
please refer to Appendix A.

4.1. n ≡ 0 (mod 4). As we mentioned before, a 0-H(K × n) is a CAOA(n,
K,2,2,0). According to Lin et al. [21], each 0-H(K × n) possesses maximum
value of k for n ≤ 52 and lower bounds of K are derived for 56 ≤ n ≤ 76. Evi-
dently, these results are better than extended m-sequences as its K is usually very
small. Another construction of CPHMs proposed by Cheng and Kao [8] inserts a
0 to a run of g 0’s in a H -sequence. For example, one can obtain a H -sequence
of length n = 131 via a Paley difference set, and a 0 is then inserted to obtain a
CAOA(132,9,2,2,0). However, a CAOA(32,12,2,2,0) in Table 1 can precisely
estimate the contrast h1,k − h2,k for k = 1, . . . ,12. The design that we obtain is
shorter (32 
 132), and can accommodate a HRF with a longer duration (12 > 9).

The optimality of a fMRI design of length n ≡ 0 (mod 4) has been proved by
Kao [18]. Let Dn be the collection of all fMRI designs with length n. For any
design d = (d1, . . . , dn) ∈ Dn, let n

(pq)
k = #{i|(di−k, di) = (p, q), i = 1, . . . , n} be

the number of time points when a p is preceded by a q at a time distance k. Here,
di−k = dn+i−k when i ≤ k.We then obtain a lemma below.

LEMMA 4.1. If there exists a CAOA(n,K,2,2,0) with generating vector d∗ ∈
Dn, then d∗ is universally optimal for estimating h in Model (4.2) and inference
on θ = (θ1, . . . , θK)T in Model (4.3).

Table 2 gives the values of K of all known CAOA(n,K,2,2,0). The first
row is the size of n, the second row is the H -sequence with adding one zero

TABLE 2
A list of CAOA(n,K,2,2,0) when n ≤ 200

n 4 8 12 16 20 24 28 32 36 40 44 48 52
H1 2 2 3 na 5 5 na 5 na na 6 5 na
CPHM 2 3 5 7 7 9 9 12 14 17 16 17 20
CAOA 2 3 5 7 7 9 9 12 14 17 16 17 20

n 56 60 64 68 72 76 80 84 88 · · · 200
H1 na 6 na 6 6 na 6 7 na · · · 6
CPHM 20 7 12 na na na na na na · · · na
CAOA 23 14 14 14 14 14 17 13 16 · · · 17
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to H -sequence, the third row is the CPHMs in [10] and the fourth row is our
CAOAs. The value of K is maximum when 4 ≤ n ≤ 52, and it is a lower bound
when n ≥ 56. These designs are universally optimal for estimating the contrast
h1,i −h2,i . If the symbols of a CAOA(n,K,2,2,0) is 0 and 1, then it is an optimal
design for estimating the HRF of one stimulus type. Although known results are
limited to small dimensions, they are useful to obtain a design with large n and cer-
tain k via Lemma 3.8. For instance, if a n = 132 time points experiment is required
and each stimulus appears every 4 seconds, then it is a 9-minute fMRI experi-
ment. The extended H -sequence of length n = 132 can accommodate a typical 32-
second HRF [i.e., K = (32/4)+1 = 9], and it is a CAOA(132,9,2,2,0). However,
we can provide a CAOA(132,16,2,2,0) with generating vector d = (d′,d′,d′) by
Lemma 3.8, where d′ is the generating vector of the CAOA(44,16,2,2,0) in Ta-
ble 1. Instead of using a design with n = 132 from the supplement of [18], our
design can accommodate a HRF with a longer duration, and thus is suggested to
be used.

Furthermore, we prove that there exists a CAOA(4u,14,2,2,0) [i.e., circulant
OA(4u,14,2,2)] when u ≥ 9. This is the first result that guarantees the existence
of circulant OAs for all n ≡ 0 (mod 4). For consistency, we will prove it in next
section. In our supplementary material [22], we provide a list of universally opti-
mal fMRI designs of length n ≤ 600 that accommodate a typical 32-second (i.e.,
K ≤ 9) HRF; a nontypical HRF with a long duration is allowed for many n.

4.2. n ≡ 1,3 (mod 4). Define the information matrices for all the parameters
and let h in Model (4.1) be M(Xd) = XT

d Xd and Mb(Xd) = XT
d (In − n−1Jn)Xd ,

respectively. Let D = (di,j )n×K be the transpose of a CAOA(n,K,2,2,1) where
n ≡ 1,3 (mod 4) and D∗ = 2D − Jn×K . By Corollary 3.3, there exists an
(n,K, s,�)-CDS with B(�) = 1. Suppose that � = (λi,j ); it is easy to verify
that λ0,1 = λ1,0 via Proposition 3.5(b), so |λ0,0 − λ1,1| = 1. Without loss of gener-
ality, we assume λ1,1 = λ0,0 + 1. Since B(�) = 1, λ0,0 = λ1,0 = λ1,0 = �n/4� and
λ1,1 = �n/4� when n ≡ 1 (mod 4); λ0,0 = �n/4� and λ1,1 = λ1,0 = λ1,0 = �n/4�
when n ≡ 3 (mod 4).

Any two columns of D∗ contains λi,j pairs (i, j) as row vectors, so their dot
product is equal to 1. It implies that M(D∗) = (n − 1)IK + JK when n ≡ 1
(mod 4) and M(D∗) = (n + 1)IK − JK when n ≡ 3 (mod 4), respectively. Let
DT JnD = (mi,j )K×K , then mi,j = (

∑K
k=1 di,k)(

∑K
k=1 dj,k) can be derived. We

have (D∗)T JnD∗ = JK . Then Mb(D∗) = (n − 1)[IK + n−1JK ] when n ≡ 1
(mod 4) and Mb(D∗) = (n + 1)[IK − n−1JK ] when n ≡ 3 (mod 4).

According to Theorem 2.1 and Lemma 2.5 of Cheng and Kao [8], the optimality
of our CAOAs can be rewritten as follows.

LEMMA 4.2. Let d be the generating vector of a CAOA(n,K,2,2,1):

(a) If n ≡ 1 (mod 4), then d is optimal for estimating h of Model (4.1) for all
type 1 criteria.
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TABLE 3
A list of CAOA(4u + 1,K,2,2,1) when 4u + 1 < 50

n 5 9 13 17 21 25 29 33 37 41 45 49
H2 na na na na 5 5 na 5 na na 6 5
CAOA 2 3 5 6 8 9 11 12 13 14 16 17

(b) If n ≡ 3 (mod 4), then there exists an N0(K,p0) such that whenever n ≥
N0(K,p0), d is �p-optimal for estimating h of Model (4.1) for any p ∈ [0,p0].

Furthermore, Cheng and Kao [8] developed a theory to guide the selection of
N0(K,1) (i.e., p0 = 1) such that d in Lemma 4.2(b) is A- and D-optimal for
estimating the HRF when n ≥ N0(K,1). Moreover, the optimality of CAOAs for
comparing two HRFs is rewritten as follows.

LEMMA 4.3. Let D∗ = D+Jn×K where D is the transpose of a CAOA(n,K,2,

2,1) and d be the generating vector of D∗:

(a) If n ≡ 1 (mod 4), then d is optimal for estimating θ of Model (4.3) for all
type 1 criteria.

(b) If n ≡ 3 (mod 4), then d is A-optimal and �p-optimal for estimating θ of
Model (4.3) for all p ∈ [0,1] when n ≥ N0(K,1).

Prior to Lin et al. [21], the extended H -sequence is the only systematic way to
construct CAOA(4u + 1,K,2,2,1), but the value of K is small. Using the DVA
algorithm proposed in Lin et al. [21], we successfully found many CAOA(4u +
1,K,2,2,1) and the value of K is larger than that of the extended H -sequence.
Table 3 is a list of known CAOA(4u+1,K,2,2,1) when 4u+1 < 50. The second
row is the results of the extended H -sequence obtained by adding two 0’s to a H -
sequence in [8]. The third row is our CAOA(4u + 1,K,2,2,1). The value of K is
maximum when 4u < 30 by a complete search. Although the maximum value of
K is still uncertain when 4u ≥ 30, it is about (4u + 1)/3 via our empirical study.
Developing systematic constructions for CAOA(4u+ 1,K,2,2,1) with maximum
K is a topic of future research.

According to Lemma 3.7, there exists a square matrix CAOA(2m − 1,2m −
1,2,2,1) for the case of n = 4u + 3. It is interesting that a (4u + 3,4u + 3,2,�)-
CDS with B(�) = 1 can be obtained by a cyclic (4u + 3,2u + 1, u) difference
set and its complement. A (n, k′, λ) difference set is known to be relevant to a
(n, b′, r ′, k′, λ) symmetric balanced incomplete block design if n = b′ and r ′ = k′.
Without loss of generality, assume that 0 appears �n/2� number of times in each
row, then k′ = �n/2�. Since λ(n − 1) = r ′(k′ − 1), λ = u is an integer only if
n = 4u + 3. This implies that a CAOA(n,n,2,2,1) exists only if n ≡ 3 (mod 4),
and it can be obtained by a cyclic (4u + 3,2u + 1, u) difference set. In fact, such
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TABLE 4
A list of CAOA(4u + 3,K,2,2,1) when 4u + 3 < 50

n 7 11 15 19 23 27 31 35 39 43 47
H-seq 7 11 15 19 23 na 31 35 na 43 47
CAOA 7 11 15 19 23 12 31 35 15 43 47
N0(K,1) na 5 6 8 9 11 12 13 15 16 18

CAOA can be easily generated by the Paley, Singer or twin prime power difference
sets ([29, 35, 36]). They are summarized in the corollary below.

COROLLARY 4.4. A CAOA(n,n,2,2,1) exists if:

(1) n ≡ 3 (mod 4) and n is a prime.
(2) n = p(p + 2) where p and p + 2 are both odd prime.
(3) n = 2m − 1 where m ≥ 2.

Even though Corollary 4.4 is powerful, there are still many CAOAs of n ≡ 3
(mod 4) whose K does not attain n, such as 27 and 39. We find both of them
which are all �p-optimal for any p ∈ [0,1]. Table 4 provides a list of known
CAOA(4u + 3,K,2,2,1) when 4u + 3 < 50, where the second and third rows are
the results of the H -sequence and ours, respectively. The fourth row is the maximal
value of K such that n ≤ N0(K,1).

4.3. n ≡ 2 (mod 4). Comparing with the optimal fMRI designs with n ≡
0,1,3 (mod 4), those with n ≡ 2 (mod 4) are not simple to construct. Based
on the discussion in [4, 7, 23], a design D is optimal if M(D) is a 2 by 2
block matrix with two diagonal submatrices (n − 2)IK/2 + 2JK/2 and zero oth-
erwise. Since fMRI designs are circulant, it is impossible to get a circulant de-
sign whose information matrix is a block matrix. Recently, Cheng et al. [9]
proved that a CAOA(4u + 2,K,2,2,1) is �p-optimal if its information matrix is
(n − 2)IK + 2JK . Such CAOA exists in our empirical study and they outperform
other CAOAs when n ≡ 2 (mod 4).

Although such design is known to be optimal when the off-diagonal entries of its
information matrix is +2, but the value of K is usually small (see T1 in Table 5).

TABLE 5
A list of CAOA(4u + 2,K,2,2,1) when 4u + 2 ≤ 50

n 6 10 14 18 22 26 30 34 38 42 46 50
T1 2 3 4 6 7 9 10 11 12 13 14 16
T2 3 5 7 8 11 13 11 17 19 18 23 21
Deff(%) 93 89 89 94 89 90 98 91 91 97 92 97
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In the light of the pattern of near-Hadamard matrices [23], we consider another
design, the off-diagonal entries of its information matrix is −2. Let D be the trans-
pose of a CAOA(n,K,2,2,1), D is called Type1 if M(D) = (n − 2)IK + 2JK and
Type2 if M(D) = (n + 2)IK − 2JK ; we denote them T1-CAOA(n,K,2,2,1) and
T2-CAOA(n,K,2,2,1), respectively. T2-CAOA(n,K,2,2,1) always has a larger
value of K than T1-CAOA(n,K,2,2,1) in our experience. In particular, we find a
series of T2-CAOA(n,K,2,2,1) whose K attains the upper bound n/2. The fol-
lowing key lemma helps us to construct T2-CAOAs.

LEMMA 4.5. Let l > 1 be an integer. If D is a (n, k;λ1, . . . , λn−1) GDS, then⋃l−1
i=0(D + in) is a (ln, lk;λ′

1, . . . , λ
′
ln−1) GDS where λ′

r+in = lλr and λ′
jn = lk

for i = 0,1, . . . , l − 1, j = 1,2, . . . , l − 1.

The above lemma is a simple method to get a larger GDS from a small one. The
following theorem suggests a general class of T2-CAOA whose K = n/2 for all
odd prime n.

THEOREM 4.6. There exists a T2-CAOA(2n,n,2,2,1) for all odd prime n.

To quantify the D-optimality of a design D, we adopt the D-efficiency criterion
of [15, 30]:

de(D,Do) =
( |M(D)|

|M(Do)|
)1/K

,

where the design Do is theoretical optimal, |X| is the determinant of a matrix
X and K is the number of terms in the model that consists of all main effects.
We compare the D-optimality between T2 and T1, so Do is the transpose of
T1-CAOA(n,K,2,2,1). Hence, according to [9], the D-efficiency of T2 is for-
mulated by (

n − 2K + 2

n + 2K − 2

)1/K(
n + 2

n − 2

)(K−1)/K

.

Table 5 shows our first-handed results. The second and third rows correspond
to T1− and T2-CAOA(n,K,2,2,1), respectively, and the fourth row is the D-
efficiency of T2.

It is noteworthy that given a fixed n, the D-efficiency decreases when K is in-
creasing. Since the upper bound of a T2-CAOA(n,K,2,2,1) is K = n/2 where
n ≡ 2 (mod 4), T2 designs obtained by the above theorem guarantee at least 90%
D-efficiency when n ≥ 26. Furthermore, the D-efficiency is easily enhanced by
deleting some rows of T2. For instance, we consider the 9-minute fMRI experi-
ment discussed in Section 4.2, where a CAOA(132,16,2,2,0) is suggested. If a
nontypical 120-second HRF is required, then a T2-CAOA(134,31,2,2,1), whose
generating vector d is the same with T2-CAOA(134,67,2,2,1), is suggested. In
fact, such design d can accommodate a HRF with a long duration up to K = 58
and have 99% D-efficiency.
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TABLE 6
Unfinished �

1 5

2 5

1 5

1 4

5 5 5 4

5. CAOAs with three- and four-levels. The m-sequences are traditionally
used in ER-fMRI experiments [1], and the efficiency of a fMRI design is always an
important issue for researchers. During the last few years, many reports indicated
that the m-sequences may be efficient but not optimal [25, 26, 28]. Recently, Kao
[16] proved that an extended m-sequence is D-optimal but a binary extended m-
sequence is universally optimal [8]. However, these designs always have a large
length but accommodate a HRF with a short duration when Q > 2. For example,
a ternary extended m-sequence of a length 27, 81, 243 and 729 accommodates 3,
4, 5 and 6 duration time points, respectively. If a 24-second HRF is of interest and
the stimulus occurs every 4 seconds, then an experimental subject needs to accept
a 50-minute fMRI experiment, which is an unacceptably long experiment for a
typical subject. Hence, it is an open question on how to construct optimal designs
with a length shorter than the extended m-sequences for Q ≥ 3 [21]. We unmask
a possible solution via finding CAOAs for fMRI experiments with Q = 3 and 4 in
this section.

The existence of CAOAs is always highly interesting and essential. For two-
level CAOAs with a frequency matrix � = (λi,j )i,j∈Z2 , it is known that λ1,0 =
λ0,1. Thus the frequency matrix is unique when λ0,0 or λ1,1 is determined. Hence,
the GDS method is used to efficiently find CPHMs. When the level is more
than two, � is usually not unique even if all λi,is are determined. Furthermore,
CAOAs usually do not exist for the arbitrary frequency matrix. For example,
a CAOA(19,K,4,2,1) with � = (λi,j )i,j∈Z4 does not exist when λ0,0, λ0,2, λ2,0 =
2 and 1 otherwise. By Proposition 3.5, � is relevant to the cardinality of each part
in a partition V = {Vi |i ∈ Zn}. It is obvious that |Vi | equals to the ith column and
the ith row sum of �. Therefore, we propose a square principle for the selection of
the frequency matrix. The square principle is illustrated as the following example.

EXAMPLE 5.1. We demonstrate the choice of the frequency matrix of a
CAOA(19,K,4,2,1). Suppose that each symbol except 3 occurs five times and
the symbol 3 occurs four times in each row. Thus, we consider a partition V =
{V0,V1,V2,V3} with |V3| = 4 and |Vi | = 5 for i = 0,1,2. If the frequency λ1,1 = 2
and λi,i = 1 are of interest, then we first write down � (see Table 6). The num-
bers on the right-hand side and the bottom are the cardinality of Vi , based on the
principle that the sum of the ith row and the ith column equals to |Vi | for all i. If
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TABLE 7
Finished �

1 1 2 1 5

1 2 1 1 5

2 1 1 1 5

1 1 1 1 4

5 5 5 4

B(�) = 1, then the solution is unique in this example (see Table 7). Moreover, we
exploit (19,3,4,�)-CDS and find a CAOA(19,3,4,2,1) that possesses a maxi-
mum number of factors among all possible combinations. The generating vector
of CAOA(19,3,4,2,1) is listed in Table 9.

The square principle only fits to find CAOAs of strength two in this paper, but it
can be extended when the strength is more than two. Although this principle treats
as a simple criterion to determine the frequency matrix of CAOAs, the choices
of the frequency matrix are not unique. For instance, suppose that λi,i = 2 for
i = 0,1,2 and λi,j = 1 otherwise, then � is another choice of the frequency ma-
trix of a CAOA(19,K,4,2,1). However, its maximum value of K is 2, not 3. In
our experience, an equitable partition is always better than an arbitrary partition.
Thus, if n cannot be equally partitioned into all frequencies, we suggest to consider
the increase of the pair λi,j and λj,i before the increase of λi,i . However, this is
just a rule-of-thumb for an efficient search and it is without theoretical justifica-
tion.

From these empirical criteria, we find all CAOA(n,K, s,2, b) that possess the
maximum values of K when n ≤ 32, s = 3 and n ≤ 35, s = 4. Due to the criterion
constraint, the bandwidth is b = 2 when s = 3 and n ≡ 1 (mod 9). Furthermore,
the lower bounds are also provided when 33 ≤ n ≤ 45, s = 3. This implies that K

will increase as n increases. The generating vectors of these CAOAs with band-
width 0,1 and 2 are listed in Tables 8 and 9.

We then focus on the construction of a D-optimal CAOA(n,K,3,2,0) for
estimating h in Model (2.1). If a CAOA(n,K,3,2,0) exists, then n must be
the multiple of 32. Table 8 shows the existence of CAOA(9u,K,3,2,0) when
u = 1, . . . ,4, and the value of K is confirmed via a comprehensive search. Sim-
ilar to CAOA(n,K,2,2,0) in Section 4.1, the value of K increases with an in-
crease of n for CAOA(n,K,3,2,0). However, the difficulty of searching CAOAs
of large n increases. For Q = 2, Kao [18] compiled a table that provided many
optimal designs for fMRI experiments when n ≤ 600. The designs only ex-
ist whenever n − 1 is a prime, because the construction is based on the ex-
tended H -sequences. The value of K is usually small even when n is very large.
On the other hand, the extended m-sequence can be constructed systematically
when Q = 3, but the gap of n is too large. To our best knowledge, there is
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TABLE 8
The generating vectors of CAOA(n, k,3,2, b) for 8 ≤ n ≤ 45

n k b Generating vector

8 4 1 10122021
9 2 0 010211220

10 3 2 0020112122
11 4 1 10200121221
12 3 1 022020111210
13 3 1 0122112002021
14 4 1 00212111201022
15 3 1 012210110212002
16 4 1 0221202210112001
17 4 1 11020122202100121
18 4 0 000102202111012212
19 4 2 2100201120010221212
20 4 1 12022121112201021000
21 5 1 020220111012110212200
22 5 1 0221001212112201102020
23 5 1 11112022001020122100212
24 5 1 010202112201101212002210
25 5 1 0200102220211001212201211
26 13 1 10222001012112011100202122
27 5 0 011021200221222010002011121
28 6 2 0122120102002110020011222121
29 6 1 11221011021212002010001220221
30 6 1 001002111210112012110202002222
31 6 1 0002121101122211022020120012102
32 6 1 00012202210102201202111121102120
33 6 1 120211102202201012100122112000102
34 6 1 2201022212110201212200021011001120
35 6 1 10011102220210212111201012000221220
36 6 0 101101210020002021121220222110011220
37 6 2 0001002201012210221211220200112021211
38 7 1 21011120221211022112010002001021222001
39 7 1 121100121022011121211002022022200010201
40 7 1 2001102021111210221021200002201201012221
41 7 1 22012100112020200200221210100122110211112
42 7 1 001011200112212120200221100102022110121022
43 7 1 0011012010200011201102212121002211210202222
44 7 1 11201220110121102000100212210022220212102011
45 7 0 002101121102011012221220211121000222020120001

no existing method in the literature to construct fMRI designs with Q = 3 [i.e.,
CAOA(n,K,3,2,0)] for any n ≡ 0 (mod 9). Here, we propose a new method to
construct a CAOA(9u,6,3,2,0) for all u ≥ 4, which implies that the lower bound
of K is 6 when n ≥ 36.
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TABLE 9
The generating vectors of CAOA(n, k,4,2, b) for 12 ≤ n ≤ 35

n k b Generating vector

12 2 1 032312130102
13 2 1 0323312130201
14 2 1 03223312130201
15 5 1 013110323302122
16 2 0 0132022331211003
17 3 2 10133230110221203
18 3 1 310023032202011213
19 3 1 1112100133020220323
20 3 1 20020331011321231302
21 3 1 202210113230020331131
22 3 1 2310120213311030220013
23 3 1 32022200313012311010213
24 3 1 312011332100230102232031
25 3 1 1210113223133203110020230
26 3 1 22010012103113213231202330
27 3 1 321201302103032002310111223
28 4 1 0122031321130232100310123302
29 4 1 03213122302320112013331002103
30 4 1 032130333120231011230222132001
31 4 1 1013303021110223220012033132123
32 4 0 00212113103311220013030223233201
33 5 2 223101301022132001110312303332120
34 5 1 0012010311103213102333230212220130
35 5 1 31323023300103112020220032211101213

LEMMA 5.2. Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be the generat-
ing vectors of circulant matrices XK×n and YK×m, respectively. If xn−r =
ym−r for all r = 0, . . . ,K − 2, then DK×(n+m) = (X|Y) is a circulant ma-
trix.

The above lemma provides a simple way to build up a large circulant matrix
from some smaller circulant matrices.

THEOREM 5.3. If n ≡ 0 (mod 9) and n ≥ 36, then there exists a CAOA(n,6,

3,2,0). Furthermore, it is D-optimal for estimating h in Model (4.1).

Similar to the existence of CAOA(n,6,3,2,0), we also prove the existence of
two-level CAOAs. According to Lemma 5.2, Table 10 and the construction in The-
orem 5.3, we have the following results.

THEOREM 5.4. Let n ≡ 0 (mod 4) and n ≥ 36, there is a CAOA(n,14,2,

2,0).
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TABLE 10
A generating vector pair for constructing CAOA(n,14,2,2,0)

Generating vector of CAOA(n1,14,2,2,0)

(n1,n2) Generating vector of CAOA(n2,14,2,2,0)

(36,40) 1110110011100 01010000001011110010110
0001001100 100000111011110101011110010110

(36,44) 1110001010000 00101111001011011101100
0111111001 0100011000101000001011011011101100

(36,48) 1011000100000 01111010011101110101100
0111110010 110101000000010011011000111011101011 00

(36,52) 1010000001010 00111001101110110100111
0110111110 010100000110011000101010000011110110 100111

(36,56) 1111101000011 01001000100110001110101
0110100000 110010000001111101110111001011010011 0001110101

(36,60) 1111010000110 10010001001100011101011
0111000011 110111011001010000010100100000110111 01100011101011

(36,64) 0000101111110 10111000110010001001011
1111101110 011010011110000010111010010101000011 000110010001001011

(36,68) 0111111010111 00011001000100101100001
1110011101 111100101010110010000010111001101111 0100001000100101100001

6. Conclusion and discussion. Research on fMRI experimental designs that
improve the precision of statistical analyses is a new and wide-open study area.
The m-sequences and its variations have been popularly used in fMRI experiments
nowadays. Under the model assumptions proposed by Kao [17], H -sequences and
extended H -sequences have recently been introduced for fMRI experiments. In
order to render precise statistical inference on brain functions, the optimality of
fMRI experimental designs is diffusely studied in [8, 16, 18], but there is no single
and unified method to construct all of them. This paper aims at proposing a unified
method to construct various fMRI designs in a systematic way.

We introduce CAOAs for fMRI experiments, and we propose a new difference
method CDS to construct CAOAs that are listed in the tables. The maximum value
of K is mainly of interest on the estimation of a HRF and the comparison be-
tween the HRFs in an ER-fMRI experiment. Hence, we provide properties and
the upper bound of K , and this verifies the existence of CAOAs. Our CAOAs are
highly efficient such that they attain the upper bound of K , and their size and
near-orthogonality are the same as m-sequences. A simple doubling method is in-
troduced to construct CAOAs with large n via some small known CAOAs.

Following the selection guide of optimal experimental design for fMRI in [8],
we effectively find a series of CAOAs. When n ≡ 0 (mod 4), our CAOAs are
proved to be universally optimal for estimating a HRF and the contrast of two
HRFs. We compare our designs with those found in [8, 10, 18], showing that our
results are complete and guarantee the value K ≥ 14 when n ≥ 36. In addition,
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TABLE 11
T3-CAOA(n,K,2,2,0) for all 6 ≤ n ≤ 34

n K Deff Generating vector

6 3 92.83% 001011
10 5 100% 0001011101
14 7 99.38% 01010000110111
18 9 98.96% 001110101110100001
22 11 99.12% 0000011110111011001010
26 13 100% 00000101011001111101010011
30 15 99.94% 000001010101100111111001010011
34 17 99.32% 0000100010100011011110111001001111

we provide in our supplementary materials [22] a list of universally optimal fMRI
designs of length n ≤ 600 that accommodates a typical 32-second (K ≤ 9) HRF.
These new designs accommodate a typical HRF of at least 32-seconds. We also
show that for n ≤ 50, our CAOAs are optimal for all type 1 criteria when n ≡
1 (mod 4) and �p-optimal when n ≡ 3 (mod 4). In addition, H -sequences and
extended H -sequences are special cases of CAOAs, and our designs possess larger
K than extended H -sequences in general.

The existence of optimal CAOAs is still under investigation for n ≡ 2 (mod 4),
but we suggest two types of CAOAs for fMRI experiments. The T1-CAOAs are
shown to be �p-optimal in [9] but they have small K , and T2-CAOAs have large
K but only nearly-orthogonal. We provide each type of CAOAs for n ≤ 50, and
propose a construction for T2-CAOAs attaining the theoretical upper bound of K ,
and its D-efficiency is at least 90% when n ≥ 26. Besides T1- and T2-CAOAs,
a new class of CAOAs, namely T3-CAOAs, is also under investigation. T3-CAOAs
are found to have large, if not maximum, K and high D-efficiency. Unlike T1-
and T2-CAOAs with only +2 or −2 in the off-diagonal entries of their informa-
tion matrix, respectively, T3-CAOAs possess mixed combinations of ±2 in the
off-diagonal entries. Table 11 provides some T3-CAOAs for 6 ≤ n ≤ 34, which
K = n/2 like T2-CAOAs. However, they are D-optimal in n = 10 and n = 26 like
T1-CAOAs. Notice that this class is found via computer enumeration. Since the
purpose of this paper is to provide a systematic construction for CAOAs, we do
not emphasize T3-CAOAs as a main result.

When the number of stimulus types is more than two, conventional wisdom sug-
gests to use m-sequences and extended m-sequences in fMRI experiments; how-
ever, the gap of their length is too large to implement, while their optimality is
still unknown. Although the extended m-sequences are proven to be D-optimal,
the value of K is usually small. Therefore, we compile a table of CAOAs of
three- and four-level, where most of these designs have larger K even though n

is small with respect to the extended m-sequences. Moreover, we prove the exis-
tence of CAOA(9u,6,3,2,0) when u ≥ 4, which leads to the existence of circulant
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OA(9u,6,3,2), a class of D-optimal designs for estimating the HRFs. To our best
knowledge, there is no construction that can obtain circulant OAs, so our construc-
tion is new and simple.

APPENDIX A: THE CRITERION OF OPTIMALITY

The optimality of fMRI experiments were discussed by Cheng and Kao [8].
Here, we briefly introduce some criteria used in this paper; for the details, please
refer to [8].

The information matrix of all parameters and h in Model (4.2) are M(Xd) =
XT

d Xd and Mb(Xd) = XT
d (In − n−1Jn)Xd , respectively.

DEFINITION A.1. A design d is said to be universally optimal over a design
class if it minimizes �{Mb(Xd)} for all convex functions � such that (i) �(cM) is
nonincreasing in c > 0, and (ii) �(PMPT ) = �(M) for any M and any orthogonal
matrix P.

DEFINITION A.2. A design d is said to be optimal over a design class with re-
spect to all the type 1 criteria if it minimizes �(f ){Mb(Xd)} =∑K

i=1 f (λi(Mb(Xd))) for any real-valued function f defined on [0,∞) such that
(i) f is continuously differentiable in (0,∞) with f ′ < 0, f ′′ > 0, and f ′′′ < 0,
and (ii) limx→0+ f (x) = f (0) = ∞. Here, λi(Mb(Xd)) is the ith greatest eigen-
value of Mb(Xd), i = 1, . . . ,K .

DEFINITION A.3. A design d is said to be �p-optimal over a design class for
a given p ≥ 0 if it minimizes

�
{
Mb(Xd)

} =

⎧⎪⎪⎨
⎪⎪⎩

|Mb(Xd)|1/K for p = 0;[
tr

{
M−p

b (Xd)
}
/K

]1/p for p ∈ (0,∞);
�1

(
M−1

b (Xd)
)

when p = ∞,

where �1(M
−1
b (Xd)) is the largest eigenvalue of M−1

b (Xd).

APPENDIX B: PROOFS

PROOF OF THEOREM 3.2. Given V is a (n, k, s,�)-CDS, we assume V =
{V0, . . . , Vs−1} is a partition of Zn. Let A = (ai′,j ′)s×s be the incidence matrix
of V , A(i,j) be an 2 × n subarray that consists of the ith and j th rows of A and
1 ≤ i < j ≤ s. Suppose that each pair (x, y) appears exactly λ(x, y) times in A(i,j)

as a column, and λ
x,y
j−i is the frequency of the element (j − i) in DFSn(Vx,Vy).

We claim that λ
x,y
j−i = λ(x, y) for all x, y ∈ Zs . Assume λ(x, y) 	= 0. Since each

pair (x, y) appears exactly λ(x, y) times, there exists 1 ≤ c1, c2, . . . , cλ(x,y) ≤ n
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such that ai,cl
= x and aj,cl

= y where l = 1,2, . . . , λ(x, y). From Definition 3.1,
cl ∈ (Vx + (i − 1))∩ (Vy + (j − 1)). Thus, cl − (i − 1) ∈ Vx and cl − (j − 1) ∈ Vy .
Since [cl − (i −1)]−[cl − (j −1)] = j − i for all l = 1,2, . . . , λ(x, y), the element
(j − i) appears totally λ(x, y) number of times in DFSn(Vx,Vy). Hence, we have
λ

x,y
j−i ≥ λ(x, y).

Now, let α ∈ Vx and β ∈ Vy such that α − β = j − i. It follows that α + (i −
1) ∈ Vx + (i − 1), β + (j − 1) ∈ Vy + (j − 1), and α + (i − 1) = β + (j − 1).
Therefore, α + (i − 1) ∈ Vx + (i − 1) and (Vy + (j − 1)). Since ai,α+(i−1) = x

and aj,α+(i−1) = y, λ(x, y) ≥ λ
x,y
j−i . This completes the proof that λ

x,y
j−i = λ(x, y).

Similarly, the equality holds when λ(x, y) = 0. �

PROOF OF PROPOSITION 3.5. (a) By definition, λ
i,j
r = |{x −y ≡ r (mod n) :

x ∈ Vi, y ∈ Vj }|. Then x −y ≡ r (mod n) implies y −x = −(x −y) ≡ −r ≡ n−r

(mod n) for all r ∈ Zn \ {0}. Hence, λ
i,j
r = λ

j,i
n−r .

(b) Since V is a partition of Zn, each element in Zn contained in exactly one
subset Vi ∈ V . For each element x ∈ Vi , there is exactly one element y ∈ Zn \
{x} such that x − y ≡ r (mod n) where r ∈ Zn \ {0} and i is fixed. Therefore,∑s−1

j=0 λ
i,j
r = |Vi | for any fixed i. By (a),

∑s−1
i=0 λ

i,j
r = |Vj | for any fixed j .

(c) From (b), it is clear that
∑s−1

i=0
∑s−1

j=0 λ
i,j
r = ∑s−1

i=0 |Vi | = n. �

PROOF OF LEMMA 3.8. Let A be a CAOA(n, k, s, t, b) and D = (A| · · · |A)

be the composite of l As. Then D is obviously a k × ln circulant matrix. Assume
that � = (λi,j ) is the frequency matrix of A such that B(�) = b. Evidently, l� =
(lλi,j ) is a frequency matrix of A, because each pair (i, j) occurs totally lλi,j times
in any s × n submatrix of D. Trivially, B(l�) = lb, so D is a CAOA(ln, k, s, t, lb).

�

PROOF OF LEMMA 4.1. Let D = (di,j )n×K be the transpose of a CAOA
(n,K,2,2,0) with symbols 1 and 2, so d∗ = (d1,1, . . . , dn,1). Since D is a circulant
matrix, di−k,1 = di,k+1. It implies n

p,q
k = #{i|(di,k+1, di,1) = (p, q), i = 1, . . . , n},

so it counts the occurrence frequency of the pair (p, q) in an n × 2 submatrix that
consists of the 1st and kth columns of D. By definition, n

pq
k = n/4 for p,q = 1,2,

1 ≤ k ≤ K . According to Theorem 1 in [18], d∗ is universally optimal for infer-
ence on θ = (θ1, . . . , θK)T . Furthermore, by replacing 2 with −1, D is a circulant
orthogonal array with DT D = nIK . So d∗ is universally optimal for estimating h
in Model (4.2). �

PROOF OF LEMMA 4.5. Since D is a (n, k;λ1, . . . , λn−1) GDS, there are λr

ordered pairs (x, y) such that x − y ≡ r (mod n) for each 1 ≤ r ≤ n − 1, where
x, y ∈ D. Each pair (x, y) implies the following two equations hold:(

x + (u + i)n
) − (y + un) = in + x − y ≡ in + r (mod ln) and(

x + (
u′ − l + i

)
n
) − (

y + u′n
) = (i − l)n + r ≡ in + r (mod ln),
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where u = 0,1, . . . , l − i −1, u′ = l − i, l − i +1, . . . , l −1 and i = 0,1, . . . , l −1.
For each pair (x, y) that x − y ≡ r (mod n), there exists l pairs (x ′, y′) such that
x′ − y′ ≡ in + r (mod ln). This implies λ′

in+r = lλr . Moreover, each difference
±jn is obtained by replacing y with x in the above two equations; thus, each
element x ∈ D provides l pairs such that the difference ±jn appears l times. The
difference ±jn appears lk times, so λ′

jn = lk for j = 1,2, . . . , l − 1. �

PROOF OF THEOREM 4.6. Let D be a collection of quadratic elements of
Zn \ {n} and D̄ be the nonquadratic elements of Zn \ {n}. For convenience, we
consider n = 4u − 1 and n = 4u + 1 individually. In combinatorial design, it is
well known that D and D̄ are cyclic (4u − 1,2u − 1, u − 1) difference sets when
n ≡ 3 (mod 4) is a prime. In addition, D and D̄ are (4u + 1,2u;λq,λqc) GDS
where λq = u − 1, λqc = u, q ∈ D and qc ∈ D̄ when n ≡ 1 (mod 4) is a prime.
According to Lemma 4.5, if S is a (n, k;λ1, . . . , λn−1) GDS then S ∪ (S + n) is a
(2n,2k;λ′

1, . . . , λ
′
2n−1) GDS where λ′

i = 2λi and λ′
n = 2k for i 	= n:

(i) When n = 4u − 1, D ∪ (D + n) is a (8u − 2,4u − 2;λ1, . . . , λ8u−1) GDS
where λ4u−1 = 4u − 2 and λi = 2u − 2 for all i 	= 4u − 1. Now, consider the
set D ∪ (D + n) ∪ {n}. Since −1 is nonquadratic when n ≡ 3 (mod 4), −q ∈ D̄.
For each q ∈ D, the difference of n and q is either n − q ∈ (D̄ + n) or n + q ∈
(D + n). Similarly, for each q + n ∈ (D + n), we have a difference with q ∈
D and −q ∈ D̄. This implies that each element except n appears once when we
take the difference between n and D ∪ (D + n). Thus, D ∪ (D + n) ∪ {n} is a
(8u−2,4u−2;λ1, . . . , λ8u−1) GDS where λ4u−1 = 4u−2 and λi = 2u−1 for all
i 	= 4u−1. Analogously, D̄∪(D̄+n)∪{n} is also a (8u−2,4u−2;λ1, . . . , λ8u−1)

GDS where λ4u−1 = 4u−2 and λi = 2u−1 for all i 	= 4u−1. Let V0 = D ∪ (D +
n)∪{n} and V1 = D̄∪(D̄+n)∪{2n}. We focus on the occurrence frequency of the
difference r in DFS(Vi,Vj ), denoted by λ

i,j
r . By Proposition 3.5(b) and (c), λ0,1

r =
λ1,0

r and λ0,0
r + λ1,1

r + λ0,1
r + λ1,0

r = 8u − 2 for all r . Therefore, λ0,1
n = λ1,0

n = 1
and λ0,1

r = λ1,0
r = 2u for r 	= n. It follows that V = {V0,V1} is a (2n,n,2,�)-CDS

where � = (2u)J2 − I2. By Corollary 3.3, there exists a T2-CAOA(2n,n,2,2,1).
(ii) When n = 4u+1, D ∪ (D +n) is a (8u+2,4u;λ1, . . . , λ8u+1) GDS where

λi = 2u − 2 for all i ∈ D and λi = 2u for all i ∈ D̄. Since −1 is quadratic when
n ≡ 1 (mod 4), −q ∈ D. Similar to the proof (i), it is easy to show that there exists
a T2-CAOA(2n,n,2,2,1). �

PROOF OF LEMMA 5.2. The matrix D is represented below:⎛
⎜⎜⎜⎜⎜⎜⎝

x1 · · · xn−1 xn

xn · · · xn−2 xn−1
: : : :

xn−K+3 · · · xn−K+1 xn−K+2
xn−K+2 · · · xn−K xn−K+1

y1 y2 · · · ym

ym y1 · · · ym−1
: : : :

ym−K+3 ym−K+4 · · · ym−K+2
ym−K+2 ym−K+3 · · · ym−K+1

⎞
⎟⎟⎟⎟⎟⎟⎠

K×(n+m)

.
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TABLE 12
A generating vector pair for constructing CAOA(n,6,3,2,0)

Generating vector of CAOA(n1,6,3,2,0)

(n1,n2) Generating vector of CAOA(n2,6,3,2,0)

(36,45) 112020002001 210110102211001122202212
221011020112110120010002102022200012111202212

(36,54) 220222110011 220101101210020002021121
011221010100220200001112011002200121102022212212021121

(36,63) 022110011222 022121120200020012101101
110200220 212110120002012221020211221201112222 100012000210101101

Since xn−r = ym−r for all r = 0, . . . ,K − 2, then D is obviously circulant. �

PROOF OF THEOREM 5.3. Suppose that X and Y are the transpose of
CAOA(n1,K, s,2,0) and CAOA(n2, K,s,2,0), respectively. Hence, D = (X|Y)

is a OA(n1 + n2,K, s,2). If D is circulant, then D is a CAOA(n1 + n2,K, s,2,0).
Let n = 9u ≥ 36 where u is a positive integer. When n = 36,45,54 and 63,

the CAOA(n,6,3,2,0) are listed in Table 12 that are found via a computer search.
Thus, there exists a CAOA(9u,6,3,2,0) when u = 4,5,6,7. Notice that any two
of them have at least five consecutively identical digits. Let Dn be the trans-
pose of a CAOA(n,6,3,2,0). For any n = 9(4p + q), p ≥ 1 and q = 0,1,2,3,
we construct a matrix Dn = (D36| · · · |D36|D36+9q) by combining p − 1 copies
of D36 and one copy of D36+9q where q = 0, . . . ,3. By Lemma 5.2, Dn is a
CAOA(n,6,3,2,0). According to Theorem 2 of Kao [16], it is D-optimal for esti-
mating h in Model (4.1). �
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal design of fMRI experiments using circulant
(almost-)orthogonal arrays” (DOI: 10.1214/16-AOS1531SUPP; .pdf). This sup-
plementary material provides the generating vectors of COA(n,K,2,2,0) when
8 ≤ n ≤ 600. These designs are obtained by Lemmas 3.8, 5.2 and Theorem 5.4
when 80 ≤ n ≤ 600, and others are found by a computer search.
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