
Optimal Design of JPEG Hardware
Under the Approximate Computing Paradigm

Farhana Sharmin Snigdha1, Deepashree Sengupta1, Jiang Hu2 and Sachin S. Sapatnekar1,
1Department of ECE, University of Minnesota∗

2Department of ECE, Texas A&M University
{sharm304,sengu026,sachin}@umn.edu, jianghu@ece.tamu.edu

ABSTRACT

JPEG compression based on the discrete cosine transform
(DCT) is a key building block in low-power multimedia ap-
plications. We use approximate computing to exploit the
error tolerance of JPEG and formulate a novel optimiza-
tion problem that maximizes power savings under an error
budget. We analyze the error propagation sensitivity in the
DCT network and use this information to model the impact
of introduced errors on the output quality. Simulations show
up to 15% reduction in area and delay which corresponds to
40% power savings at iso-delay.

Keywords

Approximate computing; Low-power design; JPEG; Image
compression; Nonlinear optimization

1. INTRODUCTION
Energy-efficiency demands have driven interest in designs
that leverage the inherent error resilience of many multime-
dia applications [1–4]. In this context, approximate comput-
ing uses simplified, lower power hardware operations with
controlled errors, using logic or architecture modification [1,
2], through voltage overscaling [4], time starvation [5], etc.

A typical target for this optimization is in the domain of
digital signal processing (DSP), which is a key functional-
ity in multimedia processors. Typical DSP operations used
in image and video processing units include image compres-
sion, filtering, and reconstruction. This paper develops an
optimized approximate computing solution for image com-
pression using widely-used JPEG compression scheme.

A core building block for JPEG compression is the discrete
cosine transform (DCT). Several algorithms for implement-
ing the DCT have been proposed, and they largely aim to re-
duce the number of computations without approximations by
altering the architecture or/and logic simplifications [6–8].
These exploit the periodic symmetries of cosine terms in the

∗This work was supported in part by the NSF under award
CCF-1525925.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

http://dx.doi.org/10.1145/2897937.2898057

DCT flow graph. However, even for a moderate-size image,
the number of computations is large [9].

A few prior methods have explored approximations in
JPEG compression, but largely perform optimizations in an
ad hoc style. Some approaches use truncation, such as dy-
namic bit width [10] and dynamic range reduction [3], while
others uniformly approximate all adders in the DCT [1].
Other related approaches [11, 12] target general RTL struc-
tures and do not exploit the structure of JPEG.

We address the problem of building optimized JPEG com-
pression hardware by optimally approximate arithmetic units
within the hardware to reduce the power consumption un-
der a user-specified error budget. JPEG compression is so
widely used that it is worthwhile to build a very specific opti-
mization technique for this hardware. At the same time, we
develop optimization principles that we believe will be appli-
cable for optimizing widely-used general DSP blocks, such
as those that implement FFTs or correction algorithms. Our
formulation finds the sensitivity of error at the output node
to an error introduced at an internal node, and proposes
a novel technique for error variance propagation within the
graph. Finally, we propagate the error budget at the output
to internal nodes and use the notion of sensitivity to build
a design that meets this budget.

2. JPEG DECOMPOSITION
The JPEG compression scheme is based on a 2-dimensional
(2D) frequency-domain DCT, followed by a quantization
step, as illustrated in Figure 1. The method operates by
dividing an image, Iimage, into 8× 8 pixel blocks and com-
pressing each block separately. Each such block constitutes
the 8 × 8 initial matrix, I, which will be referred to as one
frame. For example, a typical image of size 512× 512 pixel
consists of 4096 frames. Each element of the matrix, I, has
a value in the range of 0 to 255, but the DCT operation is
performed on a shifted matrix, M , obtained from I by sub-
tracting 128 from each entry in I. The result of compressing
M is an 8× 8 matrix, C. The JPEG compression sequence
has two major steps, described in the rest of this section.

Figure 1: JPEG encoder block diagram.

2.1 The DCT Stage

2.1.1 Functionality
Each frame, represented by M , undergoes an 8-point 2D
DCT. The DCT coefficient matrix, D, is given by

D(i, j) =
1

4
U(i)U(j)

7
∑

x=0

7
∑

y=0

M(x, y)× cos

(

(2x+ 1)iπ

16

)

× cos

(

(2y + 1)jπ

16

)

, 0 ≤ i, j ≤ 7 (1)

where i [j] represent the horizontal [vertical] spatial frequen-
cies. The scaling factor, U(k), is given by

U(k) =

{

1√
2

, if k = 0

1 , if k > 0
(2)

2.1.2 Hardware Implementation
The separable property of the DCT allows the 2D opera-
tion to be decomposed in two sequential 1D DCT operations
along the row and column of M , as shown in Figure 2. We
denote the first and second sets of 1D DCT blocks as Layer 1
and Layer 2, respectively. Each layer contains eight individ-
ual 1D DCT blocks, so that over the two layers, 16 such
1D DCT blocks are required. For each block, i, in the first
layer, its input comes from the ith column of M , denoted by
Mi, i ∈ {0, · · · , 7}. The outputs of the first layer are fed as
inputs to the second layer after a transpose operation.

Figure 2: Decomposition of 2D DCT architecture
into 1D DCT structures.

The periodic structure of cosine terms in (1) can be ex-
ploited to efficiently implement fast DCT operations by com-
bining several additions and multiplications, and a number
of fast 1D DCT algorithms have been proposed [6–8]. Of
these, the Loeffler 1D DCT algorithm [8], which requires
11 multiplications and 29 additions, achieves the theoreti-
cal lower bound for multiplications in 8-point DCT, and we
have used it as a basis for our work. The output Zi of each
1D DCT block using Loeffler’s algorithm is

Zi =
√
2

7
∑

x=0

U (i)Mi cos
(2x+ 1) iπ

16
(3)

where Mi is as defined above. An extra
√
2 term is incor-

porated to obtain Z0 and Z4 without any multiplication.
When this implementation is used for the 1D DCT in each
layer in Figure 2, a final divide-by-8 stage is required, as
shown in the figure, in order to translate the output D′ of
Layer 2 to an output D consistent with (1). Algorithm 1
shows the process of computing JPEG compressed matrix
for a single frame using the Loeffler fast DCT technique,
and compression corresponds to steps 1 through 8.

The Loeffler 1D DCT has four primary stages and can be
represented by a butterfly diagram shown in Figure 3(a),
where the internal nodes of the butterfly are as described in
Figure 3(b). It is important to note that all multipliers per-
form constant multiplications, where the constant input is
either

√
2, an, (bn−an), or (an+ bn). These values are frac-

tions, but practically, these are stored as fixed-bit integers

(a)

(b)

Figure 3: (a) Butterfly network for an 8-point 1D
DCT. (b) Computations at internal nodes.

by multiplying them by 27, and this scaling is accounted for
in the final output through appropriate shift operations.

Based on the equations shown in Figure 3(b), it can be
shown that the 1D butterfly shown in Figure 3(a) requires
total 29 additions and 11 multiplications [8]. Thus, for each
frame, the net computation over Layers 1 and 2 involves 16×
11 = 176 multiplications and 16 × 29 = 464 additions. All
calculations are performed using 32-bit signed arithmetic.
The divide-by-8 step is achieved using shift operations.

Algorithm 1 Finding the JPEG Compression Matrix, C

INPUT: 8× 8 Image pixel matrix, M
OUTPUT: 8× 8 JPEG compressed matrix, C.
METHOD:

1: for i← 1 to 8 do ⊲ Row operation
2: Z(i, :) = f1D,DCT (Mi)
3: end for
4: transpose
5: for i← 1 to 8 do ⊲ Column operation
6: D(i, :) = f1D,DCT (Zi)
7: end for
8: D(i, j) >> 3 ⊲ Divide by 8

9: return C(i, j) = round
[

D(i,j)
QF (i,j)

]

⊲ Quantization step

2.2 The Quantization Stage
As illustrated in Algorithm 1, the DCT coefficient matrix,
D, undergoes a lossy compression step in the final step in
line 9 as it performs the operation,

C(i, j) = round

[

D(i, j)

QF (i, j)

]

(4)

i.e., each element in the DCT coefficient matrix, D(i, j), is
individually divided by the corresponding element of a quan-
tization matrix, QF (i, j), and rounded to the nearest integer
to form the quantized result, C(i, j), of JPEG compression.

The subscript F of the quantization matrix, QF , is a qual-
ity factor ranging from 1 to 100, where 1 corresponds to the
lowest quality. Commonly-used values of F are 50 and 90.
The rounding of the results is a key step where some infor-
mation of the image is discarded. At a lower quality factor,

F , the divisors are higher, implying that higher compression
ratio is achieved [13]. Further, the key DCT coefficients are
close to D(0, 0), and the elements of QF progressively in-
crease as we move further away from the (0, 0) element.

3. APPROXIMATE COMPUTING IN JPEG
The amount of computation and power dissipation in a DCT
is significant: for a moderate-sized 512× 512 (256K) image
with 4096 frames, the fast DCT requires nearly 106 multi-
plications and 2× 106 additions. The large number of oper-
ations, along with the error resilience of JPEG to approxi-
mation, motivates us to explore approximate computing.

We represent the structure of the Loeffler 1D DCT in
Figure 3(a) as a directed acyclic graph (DAG), where each
node in the graph represents arithmetic operations such as
add/subtract or multiply. Along with the four primary stages
in Loeffler 1D DCT in Figure 3(a), we show the compu-
tations of Figure 3(b) to illustrate a total of eight stages,
s(i), i = 1, · · · , 8, between the input and output in Figure 4.

Figure 4: A DAG model of the Loeffler DCT.

Adders and multipliers are simply arrays of full adders
(FA). Multiplication is implemented using a 4 : 2 compressed
carry save adder (CSA) based multiplier with m least sig-
nificant bits (LSB) approximated for each node in the DAG.
Addition is implemented using 32-bit ripple carry adders.
We have implemented the five transistor level full adder de-
signs proposed in [1] in a 32-bit multiplier and concluded
that the “Approximate 5” adder (henceforth abbreviated as
appx5) provides the best area and one of the lowest errors,
and hence we use this structure in our implementation.

4. PROPOSED APPROXIMATE SCHEME
The total error in the JPEG compression scheme is a func-
tion of the approximation scheme used at each node. In
this section, we develop an algorithm for finding the most
effective approximation by developing error models and in-
corporating them into an optimization framework. The op-
timization is carried out over the two layers in Figure 2, each
containing eight 1D Loeffler DCT structures shown in Fig-
ure 5, each of which processes one column of the M matrix.

However, optimizing the number of approximate bits at
the granularity level of an individual 1D DCT block implies
that each block could have a different structure, and this sur-
renders the major advantage of regularity that is exploited
in layout optimization of DSP blocks. Therefore, we choose
to restrict the optimization so that within each layer, all
eight 1D DCT blocks are identical, allowing for easier de-
sign and layout. Optimization variables in layer l ∈ {1, 2}
are the number of approximate bits in

• adder i, i = 1, · · · , 29, denoted as al
i.

• multiplier j, j = 1, · · · , 11, denoted as ml
j .

Thus, the total number of variables is 2 × (29 + 11) = 80.
In fact, we find that doubling the optimization variables,
i.e. two sets of variables for each layer only result in very
small changes in pre-layout estimates of power as shown in
Section 5, vindicating our choice.

Figure 5: The 2D DCT using 16 1D DCT blocks.

The errors introduced due to approximating some bits in
these adders and multipliers accumulate at the output of
the JPEG compression engine and affect the quality of the
resultant image. The error at each node within the DAG has
a different contribution to the total error at the final output.
We propose a scheme based on the sensitivity of each node
to the total output error to optimize the hardware, subject
to a user-specified error budget that is typically application-
dependent. Our methodology can be broadly divided into:
• Computing the error statistics of each unit mod-

ule: Characterization of the error mean and variance for
the unit arithmetic units (adders and multipliers).
• Sensitivity analysis of the DCT block: Calculation

of the sensitivity of each node in a 1D DCT block to the
error at the output stage.
• Nonlinear optimization: Formulation of the problem

as a nonlinear optimization to obtain al
i and ml

j .

4.1 Computing Error Statistics
Errors in Adders: For the approximate FA design appx5,
the error x from approximating α LSBs can take on 2α differ-
ent values from the set {0,±1,±2, · · · ,±

(

2α−1 − 1
)

,−2α−1}.
The approximation scheme in the adder is concentrated in
the lower LSBs. Over the large number of frames processed
by an adder, it can be reasonably assumed that the lower
LSBs of the input have equal probability of ones and ze-
ros. Using this uniform distribution of error values, i.e.,
px = 1/2α, we find the error mean and variance:

µadd (α) = −0.5 (5)

σ2
add (α) =

4α − 1

12
(6)

Note that the error mean for adder is independent of number
of approximated bits, and for all practical purposes it is zero:
even for a 1 LSB approximation, the variance is 1 unit, so
that 3σ is much greater than the mean; this effect is even
stronger when more LSBs are approximated.
Errors in Multipliers: Each multiplier has one constant
node and one variable node, as described in Section 2.1.2.

Assuming a uniform input distribution, the error statistics
of multipliers are analytically modelled using the MATLAB
curve fitting toolbox as a function of the α approximated
LSBs. The similarity of the coefficients of all the equations
led us to choose one single equation shown below:

σ2
mul (α) = 0.6135 e1.38α (7)

As before, the error mean is virtually zero.

4.2 Sensitivity Analysis of the DCT Block
The computation at each node of a 1D DCT block is a linear
combination of the results of its immediate predecessor stage
node. If we denote the result at node n of stage s, as ηn,s,

ηn,s =

8
∑

k=1

Wk,n,(s−1) × ηk,(s−1), 1 ≤ n, s ≤ 8 (8)

where Wk,n,(s−1) is the weight of node k of the previous
stage, (s−1) for node, n, of stage s. The value of Wk,n,(s−1)

can be obtained from the structure of the network, shown
in Figure 4. We use ζn,s,k to denote the sensitivity of node
k of stage (s− 1), at node n of stage s. From (8),

ζn,s,k =
∂ηn,s

∂ηk,(s−1)

= Wk,n,(s−1) ∀n, s, k ∈ {1, · · · , 8} (9)

Given the variances of nodes at predecessor stages, the er-
ror variance at a node can be obtained by weighting these
variances by the sensitivity, plus the error generated at the
node due to the use of an approximate operator. The error
variance, σ2

n,s,b,l, for node n, stage s, block b, layer l is

σ2
n,s,b,l =

8
∑

k=1

ζ2n,s,k × σ2
k,(s−1),t,l + σ2

op,nsl (10)

where

σ2
op,nsl = Generated error variance for operation

at node, n, at stage, s, for layer, l

σ2
n,0,b,l = Input error variance for block, b, of layer, l

The values of σ2
op,nsl can be obtained from (6) and (7).

Based on the application requirement, a maximum error,
δe = µbudget+3σbudget, is specified by the user at the output
of the compression stage, corresponding to the allowable er-
ror in each pixel of the compressed image, C, where µbudget

and σbudget are the mean and standard deviation of the max-
imum error budget, respectively. Using similar arguments as
before, the mean of δe is close to zero. Therefore, the rela-
tion between output error variance budget, σ2

budget, and the
maximum error budget, δe, is shown below

σ2
budget =

(

δe
3

)2

(11)

4.3 The Nonlinear Optimization Formulation
The number of FAs associated with k approximate output
LSBs in an array multiplier, for reasonable k, is quadratic
in k. For an adder, each approximate output bit translates
to one approximate FA. Let the number of approximate FAs
in an adder and multiplier be denoted by fa(k) and fm(k),
respectively. Then

fa(k) = k ; fm(k) =
k(k − 1)

2
(12)

Thereferfore, the total number of FAs that are approximated
can be represented as a function of the number of approx-
imated bits associated with each adder or multiplier. Over

both layers, this is represented as:

λappx = 8×
(

2
∑

l=1

29
∑

i=1

fa(â
l
i) +

2
∑

l=1

11
∑

j=1

fm(m̂l
j)

)

(13)

where double summations are used to incorporate total num-
bers of adders and multipliers in single 1D DCT block for
each layer, l. The multiplying factor of 8 captures the notion
that the same approximation is used within each of the 8 1D
DCT blocks in layer, l, to preserve layout regularity. We de-
fine a metric, “Percentage FA savings” (PFA), to quantify
the percentage of the total FAs, which is defined as:

PFA =

(

λappx

λtotal

)

× 100 (14)

To obtain λtotal, we see that the DCT hardware requires 464
adders and 176 multipliers, so that for a 32-bit computation,

λtotal = 464× fa(32) + 176× fm(32) = 102, 144(15)

Based on the relations in Sections 4.1 and 4.2, we formulate
an optimization problem that maximizes the savings due to
approximation, subject to a specified bound on the error
introduced in the compressed image.

The precise formulation of the optimization problem is:

max

2
∑

l=1

29
∑

i=1

al
i +

2
∑

l=1

11
∑

j=1

ml
j

(

ml
j − 1

)

2
(16)

s. t. (a) ∀n, s, b ∈ {1, · · · , 8}, l ∈ {1, 2},

σ2
n,s,b,l =

8
∑

k=1

ζ2n,s,k × σ2
k,(s−1),t,1 + σ2

op,nsl

(b) σ2
n,0,b,1 = 0 ∀n, b ∈ {1, · · · , 8}

(c) σ2
n,0,b,2 = σ2

n,8,b,1 ∀n, b ∈ {1, · · · , 8}

(d) σ2
n,8,b,2 ≤

(

8δe
3

)2

∀n, b ∈ {1, · · · , 8}

The objective function corresponds to maximizing λappx,
which represents the total hardware savings in the system.
The constraints correspond to the error variances, and are
represented stage by stage. Constraint (a) represents the
relationship (10) between the error variance from one stage
to the next in each layer of the DCT network. Constraints
(b) and (c), respectively, state that there is no error at the
input of layer 1 of the DCT on the compression side when
M is presented, and that the error of stage 8 of layer 1 is
passed on to layer 2. The variance constraint (d) at the
output corresponds to (11), and the new factor of 8 in this
inequality accounts for the divide-by-8 stage after Layer 2.

Since the error variance equations of adder and multiplier
are nonlinear, as shown in (6) and (7), both the objective and
constraints are nonlinear. The decision variables, al

i and ml
j ,

for this optimization are integer-valued. Although a mixed
integer linear programming problem is generally computa-
tionally expensive, there are two factors in our favor. First,
the number of variables is small enough that a solution is
realistic. Second, since this is a one-time solution at design
time, computation time is not critical. In practice, we find
that the problem is solved in about 1 hour for our test cases.

5. RESULTS
We synthesized the RTL of the JPEG hardware using the
45nm Nangate library in Synopsys Design Vision and all
simulations have been performed at the typical process cor-
ner with Vdd = 1.1V and temperature, T = 25oC. We have

used benchmark images [14] such as Lena, Pepper gray, Boat,
Arctichare, and Gray21.512, to exercise our algorithm.

We used the mixed integer nonlinear problem solver, KNI-
TRO [15] to solve (16). The CPU times for optimization
were of the order of 1 hour in a 2.6 GHz Intel Core i5 CPU
with 8Gb RAM and 64-bit OS X. The optimal âl

i and m̂l
j

values obtained from KNITRO for the JPEG hardware were
hard-coded into the RTL and synthesized to obtain the area,
power and delay of the resulting approximate hardware.

We evaluate the PSNR after compression and reconstruc-
tion of the image to reflect the true impact on JPEG accu-
racy. The reconstruction of the compressed image follows
a procedure analogous to compression, except that the in-
verse DCT (IDCT) technique is used instead of the DCT to
reconstruct the image matrix, R. The IDCT can also be im-
plemented using a butterfly, and incurs similar computation
as the compression step, but we use only exact computations
during this step to evaluate the quality of our algorithm.

The difference between the initial image, I, and the re-
constructed image, R, determines the compression quality,
measured in terms its peak signal to noise ratio (PSNR).
The PSNR of the JPEG compressed image largely depends
on the quantization matrix, QF . If Ix and Rx are the xth

frame of the original and reconstructed image matrices, re-
spectively, then in an image with N frames, the PSNR is:

PSNR = 10 log

(

max
(

I2image

)

MSE

)

(17)

where MSE = 1
N

∑N

x=1 (Ix −Rx)
2. We obtained the PSNR

of the JPEG compressed images using a MATLAB simula-
tion. The base case for PSNR uses quality factor, F = 90
with no approximation. Relative to the base case, we com-
pared the PSNR difference, ∆PSNR, for several images, for
various F , with or without approximations.

We plot the PFA as mentioned in (14), power and area
savings obtained from a synthesized hardware implemen-
tation along with ∆PSNR vs. the error variance budget,
σ2
budget, for two values of quality factors, F = 90 and F = 50

in Fig. 6(a) and 6(b), respectively. The ∆PSNR values are
plotted on the left axis using bars while the percentage sav-
ings for various quantities (area, power and PFA) are plotted
on the right axis using points in each graph. The graphs of
percentage area savings and PFA correlate well due to the
strong correspondence between FA savings and area savings.
A good estimation for percentage change in switching capac-
itance, Csw, can also be obtained from PFA.

At σ2
budget = 0, no PSNR degradation is observed for

F = 90, as this is the base case criteria, where as for F = 50,
∆PSNR is nearly 4 dB. This means that a significant
amount of error is incorporated in the image without any
approximations to achieve higher compression ratio. We can
use this PSNR degradation of σ2

budget = 0 for various qual-
ity factors, F , as an advantage for achieving power savings
with some increased memory. Appropriate F and σ2

budget are
typically provided as inputs based on the application. For
example, if F = 50 and the acceptable degradation is 4-dB,
we cannot approximate any further as 4 dB error is already
incorporated due to the quality degradation factor, F . As
seen from Figure 6(b), the variance budget for this criteria
will be zero and there will be no area and power savings. For
F = 90, ∆PSNR budget for 4 dB and the σ2

budget will be
5,000. The corresponding area and power savings are 12.0%
an 16.2%, respectively as shown in Figure 6(a). This implies
higher area and power savings are possible using higher F .

Qualitatively, high precision applications should choose
higher quality factor, F , with very smaller error budget,

(a)

(b)

Figure 6: PSNR degradation, ∆PSNR, PFA, area
and power savings vs. σ

2

budget, for quality factor, (a)
F = 90 and (b) F = 50.

σ2
budget, which will still provide around 12 − 14% savings

in both area and power. On the other hand, error tolerant
applications should choose higher F with higher error budget
and save up to 20% in area and power.

We observe 15% delay improvement for the approximate
hardware which can be translated to reduced supply voltage,
V ′
dd. The reduced power, P ′, for such a voltage-scaled system

depends on the global Vdd, global clock period, Tc as well as
reduced switching capacitance, C′

sw as,

P ′ =
C′

swV
′2
dd

2Tc

(18)

where C′
sw = Csw (1− PFA), V ′

dd = Vdd

(

1− ∆T
Tc

)

and ∆T

is the delay change (slack) due to the approximate hardware.
From (18), we infer that ∼ 40% power reduction is achiev-
able with voltage scaling with our approximation scheme.

To provide a visual illustration, compressed images with
F = 90 for four different specified σ2

budget are shown in Fig-
ure 7. The PSNR for the base case, shown in Figure 7(a), is
35.29 dB. Image qualities with three different error variances
are shown in the figure. In spite of the significant approxi-
mation very little difference in image quality is visible.

The scatter points in Figure 8 represent the maximum
pixel error generated for different images incorporating dif-
ferent σ2

budget. For comparison, the relation between σ2
budget

and maximum allowable pixel error, δe, shown in (11), is also
represented in the figure with a line. It is observed that, the
maximum error generally remains below the maximum er-
ror budget. The error generated at σ2

budget = 0 (without
any approximations) is the lossy JPEG compression error,
which is not captured in (11).

Finally, we compare the benefit of our approximation scheme,

(a) (b)

(c) (d)

Figure 7: Image quality for peppers gray
(F = 90) with (a) σ

2

budget=0, PSNR=35.29dB

(b) σ
2

budget=1.e4, PSNR=30.76dB (c) σ
2

budget=3.e4,

PSNR=28.11dB (d) σ
2

budget=6.e4, PSNR=25.70dB.

Figure 8: Error budget line, δe, and the maximum
pixel error for different images for F = 90.

where 80 nodes in the 1D DCT are allowed to have inde-
pendent approximation levels, versus the case where a fixed
number of bits are approximated for all nodes in the DCT.
The latter case incorporates higher amount of error than
approximating variable bit size error generation, i.e., the
optimization uses only one variable.

As shown in Figure 6, PFA provides a good estimation
of area and power savings, and therefore we use this met-
ric to compare the 80-variable and 160-variable optimiza-
tion with the single-variable optimization in Figure 9. We
find that our scheme provides 10% more savings, while the
simpler scheme only provides marginal benefits. This is be-
cause the sensitivity of many addition and subtraction op-
erations in the DAG is high, and approximation errors are
magnified. Our sensitivity-based scheme captures this ef-
fect and chooses a lower number of approximate LSBs for
high-sensitivity nodes, and more approximate LSBs for low-
sensitivity nodes. The result for the 160-variable optimiza-
tion problem only provides a feasible solution after iterating
over 200,000 steps for about three hours. The results of both
the 80-variable and 160-variable optimizations provide sim-

Figure 9: Comparison among proposed method, 160
variables and single variable method.

ilar improvements in PFA. Increasing the problem space in
non-linear optimization leads the solution further away from
the optimal point and also increases the CPU time.

6. CONCLUSION
We have presented an approach that solves a small inte-
ger nonlinear program to optimize the power dissipation of
a JPEG compression unit. We formulate the problem us-
ing the sensitivity of nodes in the DAG that represents the
computation and enable a solution that approximates more
(fewer) LSBs at low (high)-sensitivity nodes.

7. REFERENCES
[1] V. Gupta, et al., “Low-Power Digital Signal Processing Using

Approximate Adders,” IEEE T. Comput. Aid. D., vol. 32,
no. 1, pp. 124–137, 2013.

[2] G. Varatkar and N. Shanbhag, “Energy-Efficient Motion
Estimation using Error-Tolerance,” in Proc. ISLPED,
pp. 113–118, 2006.

[3] Y. Emre and C. Chakrabarti, “Energy and Quality-Aware
Multimedia Signal Processing,” IEEE T. Multimedia, vol. 15,
no. 7, pp. 1579–1593, 2013.

[4] L. N. Chakrapani, et al., “Highly Energy and Performance
Efficient Embedded Computing Through Approximately
Correct Arithmetic: A Mathematical Foundation and
Preliminary Experimental Validation,” in Proc. CASES,
pp. 187–196, 2008.

[5] J. Miao, et al., “Modeling and Synthesis of Quality-Energy
Optimal Approximate Adders,” in Proc. ICCAD, pp. 728–735,
2012.

[6] W. Chen, et al., “A Fast Computational Algorithm for the
Discrete Cosine Transform,” IEEE T. Commun., vol. 25,
no. 9, pp. 1004–1009, 1977.

[7] B. Lee, “A New Algorithm to Compute the Discrete Cosine
Transform,” IEEE T. Acoust. Speech, vol. 32, no. 6,
pp. 1243–12457, 1984.

[8] C. Loeffler, et al., “Practical Fast 1-D DCT Algorithms with 11
Multiplications,” in Proc. ICASSP, vol. 2, pp. 988–991, 1989.

[9] A. Mammeri, et al., “Modeling and Adapting JPEG to the
Energy Requirements of VSN,” in Proc. ICCCN, pp. 1–6, 2008.

[10] J. Park, et al., “Dynamic Bit-Width Adaptation in DCT: An
Approach to Trade Off Image Quality and Computation
Energy,” IEEE T. VLSI Syst, vol. 18, no. 5, pp. 787–793, 2010.

[11] K. Nepal, et al., “ABACUS: A Technique for Automated
Behavioral Synthesis of Approximate Computing Circuits,” in
Proc. DATE, pp. 361:1–361:6, 2014.

[12] C. Li, et al., “Joint Precision Optimization and High Level
Synthesis for Approximate Computing,” in Proc. DAC,
pp. 1–6, 2015.

[13] “JPEG — Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/wiki/JPEG [Online; accessed
04-April-2016].

[14] “Standard Image Database.” http://sipi.usc.edu/database/.
[15] “KNITRO User Manual.”

http://www.ziena.com/docs/Knitro90 UserManual.pdf.

