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Abstract— This paper presents an analysis of the application
and optimal design of the repetitive controller for eliminating
harmonic distortion in pulse-width modulation voltage source
inverter systems. A method of analyzing the repetitive control
system from the frequency response viewpoint is introduced.
Based on this method, a systematic way of optimizing the
design of the system is proposed. Specifically, the closed-loop
repetitive controller is modified by including a zero-magnitude-
and-phase compensator and a lead-lag compensator to improve
the stability and tracking accuracy of the inverter system. It is
shown both analytically and by simulations that the harmonics
in the inverter’s output voltage can be effectively eliminated with
the improved repetitive controller.

I. INTRODUCTION

The pulse-width modulation (PWM) voltage source inverter
(VSI) is extensively employed in AC power conditioning
systems. When operated with nonlinear or periodic loads,
the output voltage of these systems contains significant har-
monic distortion if they are not properly controlled. Although
conventional proportional-integral-derivative (PID) controllers
that are widely used in the VSI can reduce such harmonic
distortion, the control effort is still unsatisfactory for many
critical applications. This is expected since in VSI systems
with the PID control, the loop gain of the system’s transfer
function at locations of the fundamental frequency and its
integral multiples, is often too small to effectively eliminate
the periodic errors. Hence, there remains a significant amount
of harmonic distortion, i.e., a high total harmonic distortion
(THD) level in such systems.

Theoretically, the elimination of the THD would mean
that the steady-state tracking of the periodic signal must be
perfectly accurate. To do this, control approaches specialized
for achieving precise tracking of periodic signal have to be
incorporated. One approach commonly chosen for this purpose
is the repetitive control (RC) [1]–[3]. The basic operating
principle of the RC is to observe the system’s periodic signals
for one cycle period, and then to generate in the next cycle
period a corresponding compensating signal to ensure precise
tracking of these signals [3]. From a frequency viewpoint, the
RC performs superior error cancelation for periodic signals
by presenting a large magnitude of the loop gain at the
fundamental frequency and its integral multiples. This can be
recognized as a form of period-based integral control.

Starting from 1980’s, RC has been introduced to address
the problem of large THD in inverter systems [4]. Various
improved repetitive controllers were later explored to enhance
the harmonic performance of the inverters [5]–[7]. Literature
survey concludes that although the effectiveness of RC as
applied to inverter has been demonstrated, thorough analysis
and synthesis of the repetitive controller for the inverter system
have not been reported.

In view of this, in this paper, we present a detailed study of
the RC as applied to the harmonic elimination of the VSI from
a frequency response viewpoint. In the discussion, the working
principle of the RC, its stability constraints, the accuracy of the
periodic error cancelation, and the trade-off between stability
and accuracy are carefully addressed. Detailed analysis and
synthesis of the control system for the VSI are provided. We
also present a systematical design methodology which includes
the proposal of a zero-magnitude-and-phase compensator to
achieve a precise low-frequency compensation while provid-
ing sufficient robustness at high frequencies, and a lead-lag
compensator to balance the stability and tracking accuracy at
low frequencies. The validity of applying repetitive control in
inverters are demonstrated.

II. VOLTAGE SOURCE INVERTER MODEL

A. Analytical Model of the PWM dc/ac VSI
Fig. 1(a) shows a single-phase full bridge inverter with an

LC filter. Assuming a resistive load, the dynamics of the
inverter can be described as[
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where uo is the output voltage; iL is the inductor current; R,
L, C and rc are the values of the load resistance, inductance,
capacitance and the equivalent series resistance (ESR) of the
capacitor, respectively; and ui is the PWM voltage pulses of
magnitude Vdc or −Vdc as shown in Fig. 1(b).

For the amplitude modulation ratio ma = ûc(t)/Ûtri < 1,
the PWM voltage pulses ui can be modeled in the averaged
time-continuous form

ui(t) = Vdc × uc(t)
Ûtri

= Muc(t), (2)
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Fig. 1. Single-phase inverter. (a) Main circuit of inverter. (b) PWM waveform
for ui

where uc(t) is the control signal with amplitude ûc(t); Ûtri

is the amplitude of the triangular carrier; and M = Vdc/Ûtri

is the modulating gain.
By choosing Ûtri = 1 and substituting (2) into (1), the

transfer function of the averaged linearized model of the PWM
inverter can be derived as

Gp(s) =
Uo(s)
Uc(s)

=
b1s + b2

s2 + a1s + a2
, (3)

where
b1 = VdcRrc

RL+rcL , b2 = VdcR
RCL+rcCL ,

a1 = L+RCrc

RCL+rcCL , a2 = R
RCL+rcCL .

(4)

B. Control Problem Formulation

In practical inverters, disturbances from nonlinear loads and
nonlinearities such as dead-time delay will introduce some
low order harmonics, which cannot be removed by a general
LC filter and lead to a high THD level in the waveform. To
achieve a high-quality output voltage, it is necessary to design
a controller that can eliminate the low order harmonics, i.e., to
achieve a low THD, with a satisfactory dynamic performance.
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Fig. 2. Closed-loop control of voltage source inverter.

The closed-loop control of the output voltage of a single-
phase inverter is depicted in Fig. 2, where Ur(s) is the ref-
erence signal, D(s) is the disturbances, Gp(s) is the inverter,
and Gc(s) is the closed-loop controller. The tracking error of
the system due to periodic input Ur(s) and disturbances D(s)
is given by

E0(s) =
Ur(s)−D(s)

1 + Gc(s)Gp(s)
, (5)

and the closed-loop transfer function of the control system is

H(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)
. (6)

Typically, PID controller is adopted to realize the output
voltage control. For higher precision, a specific controller
dealing with harmonics is necessary. Repetitive controller is
one such controller.

III. REPETITIVE CONTROL FUNDAMENTAL
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Fig. 3. Plug-in repetitive control system.

Fig. 3 presents the plug-in type of repetitive control system,
obtained from the PID closed-loop control system described
in Fig. 2 by incorporating a plug-in RC component into the
system. To illustrate the tracking response of the RC scheme,
the system tracking error, in terms of the tracking error E0(s)
of the original system without RC, is given by:

E(s) = E0(s)× 1−Q(s)e−sT

1− [1−Gf (s)H(s)]Q(s)e−sT
. (7)

where T is the period of the reference signal. Assuming that
the system given in equation (6) is asymptotically stable and
the stability condition

∣∣[1−Gf (s)H(s)]Q(s)
∣∣ < 1, s = jω, for all ω (8)

is complied, then equation (7) can be expressed as the sum of
a geometric progression as shown in (9).

Theoretically, by setting 1 − Gf (s)H(s) = 0 and 1 −
Q(jkω0)e−jkω0T = 0, k = 0, 1, 2, · · · , where ω0 = 2π/T ,
we can ensure that the steady-state tracking error converges to
zero at the occurrence of every harmonic. From equation (9),
it can be seen that [1−Gf (s)H(s)]Q(s)e−sT is the common
ratio of the geometric progression. Hence, it can be regarded
as an error convergence index.

However, due to the physical non-idealities of the system,
such an ideal design condition is practically impossible. In-
stead, it is more appropriate to consider the design condition:

1−Gf (s)H(s) ≈ 0 (10)

and
1−Q(jkω0)e−jkω0T ≈ 0, (11)

and for harmonics limited to a certain frequency bandwidth.

IV. ANALYSIS AND DESIGN OF REPETITIVE CONTROLLER
FOR VSI

A. Analysis of Harmonic Elimination

This part of the analysis employs the frequency character-
istic of the control system’s loop gain.



E(s) = E0(s)[1−Q(s)e−sT ]
{
1 + [1−Gf (s)H(s)]Q(s)e−sT + [1−Gf (s)H(s)]2Q2(s)e−2sT + · · ·}

= E0(s)
{
1−Gf (s)H(s)Q(s)e−sT −Gf (s)H(s)[1−Gf (s)H(s)]Q2(s)e−2sT

−Gf (s)H(s)[1−Gf (s)H(s)]2Q3(s)e−3sT + · · ·} (9)

1) Characteristic of the PID control: For the control system
depicted in Fig. 2, which has a loop gain

Tpid(s) = Gc(s)Gp(s), (12)

its PID controller is typically designed in this manner: a low-
frequency inverted zero to be added at fl to enlarge the low-
frequency loop gain; a median-frequency zero to be added
at fz to increase the phase margin in the vicinity of the
crossover frequency fc; a high-frequency pole (or poles) to
be included at fp to provide necessary high-frequency loop-
gain roll off(s) for rejecting system noises and uncertainties in
practical systems. Hence, the transfer function of such a PID
controller can be expressed as

Gc(s) = Gd

(1 + ωl

s )(1 + s
ωz

)
1 + s

ωp

, (13)

where Gd is the DC gain, ωl = 2πfl, ωz = 2πfz , and
ωp = 2πfp. Recall that the reference input signal and external
disturbances of the VSI are typically periodic. This calls for
a high requirement on the system’s loop gain at the periodic
frequencies. However, since it is difficult to design the PID
controller to provide a suitably high gain at these frequencies,
significant errors exist at the fundamental frequency and its
integral multiples, especially in the range below the crossover
frequency fc. This results in a high THD level.

2) Characteristic of the RC: To reduce the level of the
THD, a repetitive controller can be included to the inverter
system (see Fig. 3), and the system’s loop gain is changed to

Trc(s) =
[
1 +

Gf (s)Q(s)e−sT

1−Q(s)e−sT

]
×Gc(s)Gp(s), (14)

The following explanation describes how Gf (s) and Q(s) in
(14) can be designed to perform harmonic elimination in the
system.

First of all, according to (8) and (10), Gf (s) is a zero-
magnitude-and-phase compensator for transfer function H(s).
Thus, the intuitive way of designing this compensator is
to make Gf (s) = 1/H(s). However, as indicated in (14),
Gf (s) should have a limited magnitude at high frequencies
to ensure a low loop gain above the crossover frequency.
Additionally, since there are always some parameter drifts in
the system, such as variation of ESR of filter capacitor etc.,
while the frequency response below the crossover frequency
is relatively stable, it becomes instable at high frequencies.
Therefore, it is necessary to include additional pole(s) to the
compensator Gf (s) to ensure system robustness above the
crossover frequency. Hence, we propose Gf (s) to be designed
in the form:

Gf (s) =
1

H(s)
× p

s + p
, (15)

where p is a pole above crossover frequency, to realize both
zero-magnitude-and-phase tracking in low frequency band and

high frequency stability. Note that the additional pole(s) will
not affect the normal operation of the system in the low
frequency range.

Secondly, careful observation of (11) reveals that Q(s)
should be unity while (8) indicates that Q(s) should be less
than unity at high frequencies because 1 −Gf (s)H(s) tends
to unity as H(s) → 0 at high frequencies. This requirement is
further supported by (14). Since the parameter Q(s) with close
to unity magnitude tends to boost the loop gain to extremely
high magnitude at periodic frequencies, it is necessary to
diminish its value to reduce the overall system loop gain in the
high frequency range. To satisfy the imposing requirements, a
low pass filter:

Q(s) =
eτs

s2

ω2
q

+ 2ξs
ωq

+ 1
, (16)

as given in [8] is adopted. Here, the damping ratio ξ = 0.707
is chosen to ensure a flat magnitude characteristic and a
quasi-linear phase shift characteristic within its bandwidth.
The time advance τ is selected to equal the effective time
delay of the denominator term, i.e., 2ξ/ωq , so that the low
pass filter achieves unity magnitude and zero phase shift at
low frequencies. A larger value of the bandwidth ωq improves
accuracy, but degrades system robustness. The selection of ωq

should ensure that the magnitude of [1−Gf (s)H(s)]Q(s) is
less than 1 (or 0 dB).

Based on the selected parameters for Gf (s) and Q(s), loop
gain (14) and its Bode plot in Fig. 4 indicate that in low
frequency range, the loop gain can be uplifted to very high
values at the desired periodic frequencies kω0, while kept low
at high frequencies. However, the improvement in the loop
gain at kω0 is achieved at the expense of a small degradation
in the loop gain at non-harmonic frequencies. This is reflected
in (14), which shows that the term 1 + Gf (s)Q(s)e−sT

1−Q(s)e−sT will
be less than unity at some intermediate frequencies where the
disturbances of inverter are rare.

As for the transient state performance of the system, this
can be viewed in two parts: the PID controller undertakes
the response to the transient change of the system, which
mainly depends on the bandwidth of the PID control system;
while the response to error cancelation is dependent on the
repetitive controller, denoted by the error convergence index
[1−Gf (s)H(s)]Q(s)e−sT . This can be understood from Fig.
3. It can be seen that with a direct channel from the feedback
comparison point to the input of PID controller, the plug-in
repetitive controller will not hinder the fast response of PID
control to the system’s transience.

B. Further Improvement of the VSI performance

A careful inspection of Fig. 4 shows that there is still an
inherent defect with the present RC system, that is, there
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Fig. 4. Bode plot of the overall system loop gain.

are discontinuous phase changes at locations of the harmonic
frequencies. At the fundamental frequency, the margin be-
tween phase angle and −180◦, known as the phase angle
margin, is rather small and it gets even smaller as the fre-
quency approaches DC. Now, considering that in the VSI,
the fundamental signal is the main component of both the
input and disturbances, and that DC signal exists when the
system is DC biased [7], the aforementioned issues become
a significant problem in the stable control of the output.
Although the stability problem at low frequencies is introduced
by the repetitive controller, a modification of the PID controller
can be performed to achieve stability, without degrading the
tracking accuracy of the system.

From the phase plot in Fig. 4, it can be observed that the
system with the repetitive controller has a maximum ±90◦

phase fluctuation at harmonic frequencies, centered at that
of the PID-inverter system. Hence, at low frequencies, if the
phase of the PID-inverter system can be improved to −45◦,
the overall system’s phase at those points would reach −135◦,
i.e., 45◦ phase angle margin.

Such an improvement can be easily realized by incorpo-
rating a lead-lag compensation into the PID controller, which
modifies the PID controller to

Gcm(s) = Gd

(1 + ωl

s )(1 + s
ωz

)
1 + s

ωp

×
n∏

i=1

1 + αi

ωi
s

1 + ki
αi

ωi
s
, (17)

where
1 + αi

ωi
s

1 + ki
αi

ωi
s

(18)

is a general phase-lead compensator with ki < 1, or phase-lag
compensator with ki > 1. The number of individual compen-
sators n, the compensated frequencies ωi, and parameters ki

and αi, are determined as required.
According to (14), a change in the PID-inverter loop gain

Gc(s)Gp(s) will cause a corresponding variation in Trc(s).
However, since the RC action still tends to make Trc(s) go
infinitely high at kω0, the overall system loop gain with the
modified PID controller will still maintain the same profile
as that in the system in Fig. 4. This is reflected in Fig. 5, in

which a phase angle margin larger than 45◦ at low frequencies
is achieved, with the magnitudes at harmonic frequencies still
remaining very high. Furthermore, with the error convergence
index [1−Gf (s)H(s)]Q(s)e−sT unchanged, the error conver-
gence rate will not be affected by the modification of the PID
controller.
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Fig. 5. Improved system’s loop gain with the modified PID controller.

C. Design of Repetitive Controller for VSI

Based on the analysis and adopted initiatives, a strategy is
proposed for the design of the repetitive controller for the VSI:

Step 1: Optimal design of PID controller. The parameters of
PID controller (13) are selected according to the conventional
PID design principle to achieve optimal control performances.

Step 2: Modifying the PID controller. To ensure the stability
of the RC system at low frequencies, lead-lag compensators
are inserted to the PID controller to introduce at least 135◦

phase angle margin at DC (very close to DC) and 50 Hz.
Step 3: Design of the zero-magnitude-and-phase compen-

sator Gf (s). The selection of p in (15) should make Gf (s)
fully compensate the H(s) within the system bandwidth, and
remain at a limited magnitude above the crossover frequency.

Step 4: Construction of the low pass filter Q(s). The
bandwidth ωq should be as high as possible while complying
the stability margin between [1−Gf (s)H(s)]Q(s) and 0 dB.

V. SIMULATION RESULTS AND DISCUSSION

In this section, the performances of the VSI control system
discussed in Section IV is evaluated. To illustrate the ad-
vantages, the PID controller and the PID-repetitive controller
are applied to the same VSI for comparative purposes. The
tracking performance is tested with both the resistive load and
the nonlinear load (see Fig. 6). The parameters of the system
is given in Table I in the Appendix.

Figs. 7 and 8 show respectively the output voltage and the
output voltage error waveforms of the VSI under the rated
resistive load, with and without the repetitive control. It can
be seen from Fig. 7 that a distinct periodic steady-state error
exists in the inverter with the PID control. This is attributed
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Fig. 6. Rectifier load serving as a nonlinear load.

to the incapability of the PID control in tracking the periodic
reference input signal. On the other hand, Fig. 8 shows that
with the PID-RC, the output voltage error decays rapidly to
a negligible level within the first two cycles of the periodic
signal.

Figs. 9 and 10 show the harmonic spectrums of the output
voltage under a rectifier load with the PID control and the
PID-RC, respectively. Most harmonic components caused by
nonlinear load occurs at the odd multiples of the fundamental
frequency. It is also clearly illustrated that the THD with the
RC (0.65%) in Fig. 10 is much lower than that without the RC
(3.83%) in Fig. 9, and that the fundamental voltage is closer
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Fig. 7. Output voltage uo, reference voltage ur , and output voltage error e
of the VSI under resistive load with PID control.
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Fig. 8. Output voltage uo, reference voltage ur , and output voltage error e
of the VSI under resistive load with PID-RC.
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Fig. 9. Harmonic spectrum of the VSI under rectifier load with PID control.
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Fig. 10. Harmonic spectrum of the VSI under rectifier load with PID-RC.

to the reference. The improvement is credited to the harmonic
elimination function of the RC.

In Fig. 11, it is shown that the RC exhibits a great influence
on the THD history of the output voltage under the rectifier
load. It is found that the THD in the repetitive control system
converges quickly to a low level, resulting in much lower
values than that of the system without the RC in the steady
state. The THD in the RC system declines significantly within
ten cycles.

Fig. 12 shows a comparison of the THD under a rectifier
load with different resistance values, with and without RC.
The characteristic of suppressing THD under the nonlinear
load is examined. Both systems show better THD restraints
under lighter load, and the RC displays a remarkable influence
on THD suppression under each load condition in comparison
with the system without the RC. It is demonstrated that the
RC does improve the THD performance of the system over a
wide load range.

VI. CONCLUSION

This paper gives a detailed analysis of the harmonic elim-
ination features of a repetitive controller and how it can
effectively improve the total harmonic distortion performance
of voltage source inverters. An analysis of the system from
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the frequency response viewpoint shows that there is a trade-
off between the stability and tracking accuracy properties of
the repetitive control system. The proposed zero-magnitude-
and-phase compensator allows optimal compensation in low
frequency range while maintaining good system robustness
at high frequencies. The lead-lag compensator improves the
repetitive control system’s stability without degrading the
tracking accuracy at low frequencies. It is demonstrated both
theoretically and through simulations that the repetitive control
is useful for eliminating harmonic distortion in voltage source
inverters.

APPENDIX

The key parameters of the VSI are summarized in Table I.
The conventional PID controller is

Gc(s) =
(1.409e-6)s2 + (9.097e-3)s + 13.84

(6.139e-6)s2 + s
.

The modified PID controller is

Gcm(s) =
(2.005e-9)s3 + (1.32e-5)s2 + 0.02137s + 2.561

(8.099e-9)s3 + (1.325e-3)s2 + 1.008s + 6
.

TABLE I
SYSTEM PARAMETERS

DC link voltage Vdc 250 V
Switching frequency fs 10 kHz
Reference sine frequency f 50 Hz
Reference voltage Ur(rms) 110 V
Filter inductance L 1 mH
Filter capacitance C 20 µF
ESR of filter capacitor rc 50 mΩ

Resistive load R 25 Ω

Rectifier load capacitance Cr 330 µF
Rectifier load resistance Rr 50 Ω

The zero magnitude and phase compensator is

Gf (s) =
1

H(s)
× 1e6

s + 1e6
.

where H(s) is the closed-loop transfer function with Gcm(s).
The low pass filter is

Q(s) =
e0.0002s × 70702

s2 + 2× 0.707× 7070× s + 70702
.
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