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Abstract Topology optimization combined with opti-

mal design of electrodes is used to design piezoelectric

microgrippers. Fabrication at micro-scale presents an

important challenge: due to non-symmetrical lamina-

tion of the structures, out-of-plane bending spoils the

behaviour of the grippers. Suppression of this out-of-
plane deformation is the main novelty introduced in this
work. In addition, a robust approach is used to control

length scale in the whole domain and to reduce sensi-

tivity of the design to small fabrication errors. Geomet-

rically non-linear modelling is used for the in-plane de-

formations whereas out-of-plane motions are modelled

by a linear, un-coupled plate model to save computa-
tional time. Model and resulting designs are validated
by subsequent 3D geometrically non-linear modelling.

Keywords Topology optimization · Unimorph · Large
displacements · Energy interpolation · Piezoelectric

effect · Electrode profile

1 Introduction

The conceptual tool of topology optimization has played
a very important role in the development of structural
design. Nevertheless, its use is not restricted only to this
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field: compliant mechanisms ([Sigmund, 1997],[Frecker

et al., 1997],[Jonsmann et al., 1999]), dynamics ([Dı́az

and Kikuchi, 1992],[Pedersen, 2000]), extremal mate-

rials ([Sigmund and Torquato, 1997]) and band gaps

([Sigmund and Jensen, 2003,Jensen and Sigmund, 2011]),

amongst others, are fields where its contribution has

been crucial.

The topology optimization method has been widely

used in the optimal design of MEMS (micro-electro-

mechanical systems), where the size of the devices typ-

ically is smaller than 1mm. [Sigmund, 1997] presented
optimal design of compliant mechanisms topologies based
on the topology optimization method, where optimized
mechanisms were fabricated at macro and micro-scale.

Concerning piezoelectric effects, [Silva et al., 1997] pre-

sented a procedure based on topology optimization and

homogenization methods to optimize unit cells for piezo-

composites. [Sigmund, 2001a] and [Sigmund, 2001b] op-

timized thermal and electrothermal microactuators com-

posed of one and two materials, respectively. [Maute

and Frangopol, 2003] suggested a methodology for the

design of MEMS under stochastic loads and boundary

conditions. Recently, [Donoso and Sigmund, 2016] de-

veloped a systematic method where a passive gap-phase

was included in the optimization process of modal filters

for fixed host structure in order to ensure manufactura-

bility and realizability.

The nature of the actuation of the mechanisms in

this study is the piezoelectric effect. In the last decades

there has been a big development in the subject of

topology optimization in piezoelectric materials. The

first work where the topology optimization method was

used to optimize piezoelectric structures was [Sigmund

et al., 1998], that optimized the unit cell of structures

for improving piezoelectric features. Regarding piezo-

electric actuators, [Silva and Kikuchi, 1999] presented

a method to design in-plane actuators by optimizing

the host structure, but fixing the piezoelectric material

layer. [Kögl and Silva, 2005] presented optimization of

piezoelectric layers with a three-layer model, with two

piezoelectric films symmetrically bonded to the host

structure. [Carbonari et al., 2007] and [Luo et al., 2010]

optimized the host structure and the piezoelectric dis-

tribution simultaneously. The inclusion of a third vari-

able, the spatial distribution of the control voltage (re-
lated to the polarization of the piezoelectric layers) in
the optimization problem, was presented in [Kang and

Tong, 2008a] and improved in [Kang and Tong, 2008b]

by introducing an interpolation scheme in the tri-level

actuation voltage term. Further results were presented

in [Kang et al., 2011] and [Kang et al., 2012] for in-plane

and out-of-plane piezoelectric transducers, respectively.
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In prior works ([Ruiz et al., 2016b],[Ruiz et al., 2016a])

some of the authors have presented a systematic pro-
cedure to design static microtransducers and modal fil-
ters, respectively. In both works the host structure (in-

cluding the piezoelectric layer) and polarization profile

of the electrodes are optimized simultaneously, consid-

ering that both piezoelectric films are perfectly bonded

to the top and bottom of the host structure. However,
trying to realize this reveals an important obstacle: it
is hard to fabricate piezoelectric layers symmetrically

in the micro scale ([Kucera et al., 2014]), hence only

one piezoelectric film can be deposited on the top of

the host structure. This fact is not a problem when the

transducer is working as a sensor, since the deformation

is produced by an external force. However, when the de-

vice is working as actuator it moves in-plane, but also

out-of-plane deformation appears, making it challeng-

ing to design a genuine microgripper-type actuator. The

objective of the present work is to design a piezoelec-

trically actuated microgripper including constraints on

the out-of-plane bending of the structure in some points

of interest. In addition, and having manufacturability

in mind, the so-called robust formulation ([Sigmund,

2009,Wang et al., 2011]) is applied to the problem with

two purposes: first to control the minimum length scale

in both solid and void regions; and second to minimize

sensitivity to fabrication errors.

Concerning the physical behaviour of the device,
we make the assumption that the out-of-plane bend-

ing is small but not negligible, meaning that it can
be treated by classical linear elasticity plate theory.
However, the in-plane displacements are expected to be
large and a non-linear model is mandatory. Geometrical

non-linearities in topology optimization were first dealt

with in [Buhl et al., 2000] using the total Lagrangian

formulation. This was soon after extended to compliant

mechanism design in [Bruns and Tortorelli, 2001] and
[Pedersen et al., 2001]. The robust design of large dis-
placement compliant mechanisms is shown in [Lazarov

et al., 2011], where the goal is achieved by adding ran-

dom variations that model possible geometry errors.

Geometrically non-linear topology optimization is

prone to numerical instabilities produced by excessive

distortions in low stiffness regions. [Wang et al., 2014]

suggested an interpolation scheme that uses linear mod-

elling in the (fictitious) void domain. This scheme is also
applied here. In early works ([Buhl et al., 2000] and
[Pedersen et al., 2001]) authors avoided the numerical

instability by ignoring nodes surrounded by low density

elements in the Newton-Raphson convergence criterion.

[Bruns and Tortorelli, 2001] circumvented the issue by

removing and reintroducing low density elements dur-

ing the optimization procedure. Removal of low density

elements may come at the risk of hindering structure

to grow in low density regions and hence may be better
suited for more shape oriented topology optimization
approaches like [Zhang et al., 2017].

The paper is organized as follows. In Section 2 the

nature of the problem is briefly described and the dis-
crete formulation is shown. Section 3 is devoted to the

robust formulation. In Section 4 we present the nu-
merical implementation of the problem, where the al-
gorithm used to get the optimal designs is described.

The optimized microgrippers obtained by solving the

discrete problem are shown and validated in Comsol

Multiphysics in Section 5. Finally, in Section 6 the con-

clusions of this work are presented.

2 Topology optimization of large displacement

piezoelectric microgripper

As design domain Ω we consider a rectangular plate

clamped at its left side. On the top surface, the host

structure is perfectly bonded with a piezoelectric layer

(that is sandwiched between two electrodes) of negligi-

ble stiffness compared to the plate.

The polarization of the piezoelectric layer is ob-
tained through the application of an input voltage over

the electrodes. This voltage generates an electric field

that produces a mechanical stress over the piezoelec-

tric material, which in turn deforms the host structure.

The unsymmetrical configuration of the layers of the

plate causes bending of the structure, that disturbs the

in-plane behaviour and needs to be suppressed. The
multilayered structure is shown in Fig.1. Three passive
areas are defined in the design domain. Two of these
areas are solid regions (black colour) that belong to the

jaws. The third one is a void region (white colour) and

represents an empty gap between the jaws. The output

of the gripper is modelled by a spring of stiffness kout
(that depends on the application). The 3d depiction of

design domain and the dimensions are shown in Fig.2.

The aim of the problem is the maximization of the
in-plane deformation along the y-axis u1 while the de-

formations over the z-axis u2 and u3 must be sup-

pressed. The bending is cancelled in two points in or-

der to avoid the rotation of the jaws over the y-axis.
This suppression is controlled by adding two constraints

which relate the optimized and the cancelled displace-

ments. In addition, a volume constraint is used to con-

trol the amount of material used.

The optimization problem involves two design vari-

able fields. χs is a characteristic function, χs ∈ {0, 1},

that represents the structure layout (χs = 1) and void

(χs = 0), as usual. χp is also a characteristic function
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Fig. 2 Design domain.

such that χp ∈ {−1, 0, 1}, meaning negative, null or

positive polarity. Since the topology optimization prob-

lem lacks classical solutions, the characteristic functions

χs and χp need to be relaxed into density variables

ρs ∈ [0, 1] and ρp ∈ [−1, 1]. As usual, after the re-
laxation of the variables, the domain is discretized in

ne finite elements with two variables per element. The

role of the electrode is crucial here, only the parts of

the structure that are being covered by electrode, i.e.

χp = −1 or χp = 1, are electrically affected and there-

fore subjected to piezoelectric forces.

Since the out-of-plane deformation is expected to be

small, it can be studied separately from the in-plane one

(the problems are decoupled), and then the optimiza-

tion problem involves two equilibrium equations. The

in-plane displacements are modelled using a geometri-

cally non-linear model. The out-of-plane displacements

are modelled using classical linear elasticity. The formu-

lation of the problem written as a topology optimization

problem becomes:

max
ρs,ρp

: u1(ρs,ρp)

s.t. : Rip(ρs,ρp,Uip) = 0

Rop(ρs,ρp,Uop) = 0

u1 = LT
1
Uip

u2 = LT
2
Uop

u3 = LT
3
Uop

(

u2

u1

)2

− ε2d ≤ 0

(

u3

u1

)2

− ε2d ≤ 0

1Tρs

V
− 1 ≤ 0

ρs ∈ [0,1]

ρp ∈ [−1,1],

(1)

where ρs and ρp represent the structure layout and

the polarization profile respectively, u1 is the in-plane

displacement to be maximized, u2 and u3 are the out-

of-plane displacements to be suppressed, L1, L2 and
L3 are vectors of zeros with 1 in the output degree

of freedom of interest, V is the maximum volume, εd
is a small value that relates the displacements to be

suppressed and the ones to be optimized, and Rip and

Rop are the global residual vectors of the structural

equilibrium equations for the in-plane and out-of-plane

cases, respectively. For the sake of brevity, from now

on the subscripts “ip” and “op” refer to the in-plane

and the out-of-plane cases, respectively. The residual
vectors are defined as follows:

Rip = F
piezo
ip − Fint

ip = 0

Rop = Fpiezo
op − Fint

op = 0,
(2)

where (Fpiezo
ip ,Fpiezo

op ) and (Fint
ip ,Fint

op ) are the global

piezoelectric and internal force vectors, respectively. Cap-

ital letters are used for global vectors and matrices, that

are obtained by assembling the elemental contributions

represented with lowercase letters. The expressions of

the different terms in equation (2) are further elabo-

rated in the next subsection.



4 D. Ruiz, O. Sigmund

2.1 Continuous material approach and finite element

model

The original formulation of the problem involves inte-
ger variables which need to be relaxed into density vari-
ables. The well-known SIMP approach (Solid Isotropic
Material with Penalization, [Bendsøe and Sigmund, 1999]

and [Bendsøe and Sigmund, 2003]) is used for this pur-

pose. The Young’s modulus of each element depends on

the element density as follows:

Ee = (ρ̄se)
p(E0 − Emin) + Emin, (3)

where E0 is the Young’s modulus of the base material,
Emin > 0 is a small value used to avoid singularities in

the stiffness matrix and p is the penalization exponent

(typically p = 3).

The discrete formulation of the problem has been
presented in Section 2. For the in-plane case bilinear el-

ements with 8 degrees of freedom are used and for the
out-of-plane case, Kirchhoff elements with 12 degrees
of freedom per element are used. The in-plane displace-

ments are expected to be large in comparison with the

size of the domain. [Pedersen et al., 2001] showed that

displacements over 2% of the domain size require geo-

metrical non-linearity to model the deformation field.

In order to model the in-plane deformation, the to-

tal Lagrangian finite element formulation is used. The

Green-Lagrange strain tensor can be expressed as:

E =
1

2
(FFT − I),

where I is the unit tensor and F is the deformation

gradient, defined by a 2× 2 matrix:

F = ∂u/∂y =







∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y







The expression for the work conjugate stress tensor
(the second Piola-Kirchhoff stress tensor) is:

S =
∂φ(Uip)

∂E
,

where φ(Uip) is the in-plane stored elastic energy den-

sity that will be defined in the next subsection.

The expression for the element internal force f intip

presented in equation (2) is:

f intip =
∂
∫

Ω
φedΩ

∂uip

,

where uip is the element displacement vector for the

in-plane case.

Due to the non-symmetrical laminate, the piezoelec-

tric force generates a moment that makes the plate bend
and an initial strain that extends or contracts the plate.
All expressions for the computations of both the flex-

ural and the extensional components, can be found in

[Gibbs and Fuller, 1992]. In addition, the same power-

law dependence Re = ρpse as used for the Young’s mod-

ulus interpolation equation (3) is used for the piezo-
electric force generation. It is easy to see that the value
of the interpolation Re is very small in void regions

and takes the value Re = 1 in the solid ones. This is a

realistic way to model the force produced in these el-
ements, since there is no electrode in the void regions
[Ruiz et al., 2016b].

In the equilibrium configuration, the residual vec-

tor for each case must be 0, this means that the global

vectors of internal forces must be equal to the piezo-

electric forces. We can rewrite the equilibrium equation

for each motion case as follows:

Rip = F
piezo
ip − Fint

ip = F
piezo
ip −

∫

Ω

Bip(Uip)S dΩ

Rop = Fpiezo
op − Fint

op = Fpiezo
op −KopUop,

where Kop is the global out-of-plane stiffness matrix

obtained by assembling the element stiffness matrices

and Bip is the in-plane non-linear strain displacement

matrix. The Newton-Raphson method is used to solve

the non-linear system:

Kt∆Uip = Rip,

where Kt is the tangent stiffness matrix defined as:

Kt = −
∂Rip

∂Uip

and the nodal displacement vector is updated by Uip =

Uip+∆Uip. The detailed computations of the tangent
matrix and the nodal force vectors can be found on

[Zienkiewicz et al., 2014] and are not stated here.

2.2 Energy interpolation scheme

The Saint-Venant-Kichhoff model is used to represent
the behaviour of the hyperelastic material. The stored
elastic energy density is expressed as follows:

φ =
1

2
λE2

kk + µEijEij =

1

8
λ(Ic − 3)2 +

µ

4
(I2c − 2IIc − 2Ic + 3),

where Eij are the components of the non-linear strain

tensor, λ and µ are the Lamé parameter, Ic = tr(C)

is the first invariant of C = FTF and IIc =
(

tr(C)2 −
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tr(C2)
)

/2 is the second invariant of C. The Lamé pa-

rameters can be expressed in function of the Young’s
modulus and the Poisson’s ratio: λ = νE(1 − ν2) and

ν = E/
(

2(1 + ν)
)

.

In [Wang et al., 2014] an energy interpolation scheme

is used to alleviate the issue of distorted and ill-converged
void region mesh. The paper suggests basing the anal-

ysis in the solid region on the non-linear stored energy

and the analysis in the void regions on linear stored en-

ergy, thereby eliminating mesh distortion and ill-convergence

issues in the low density domain. The energy interpo-

lation form for element e is

Φe(ue) = [Φ(γeue)− ΦL(γeue) + ΦL(ue)]Ee,

where Ee is the Young’s modulus for element e, ue is

the elemental displacement vector for the element, Φ(·)

is the stored elastic energy density, ΦL(·) is the stored
elastic energy density under small deformation, both

with unit Young’s modulus. Finally, γe is the interpola-

tion factor that takes the value γe = 1 if the element is

solid and γe = 0 if it is void. This interpolation scheme

assumes that the Young’s modulus is separable from

the energy functional. In order to differ between void

and solid regions a smoothed Heaviside projection is

used:

γe =
tanh(β1ρ0) + tanh

(

β1(ρ̄
p
se − ρ0)

)

tanh(β1ρ0) + tanh
(

β1(1− ρ0)
) ,

where ρ̄se is the physical density, which will be intro-

duced in the next section, β1 models the smoothness

of the projection and ρ0 is a low-density threshold. For

non-void domains ρ̄pse > ρ0 the element is hence mod-
elled as a standard non-linear element with geometri-

cally non-linear contribution.

3 Robust topology optimization formulation

This section is devoted to the robust formulation of

the problem. This approach, that was presented in [Sig-

mund, 2009,Wang et al., 2011], consists in the use of

three different projections with two goals. The first one

is controlling the minimum length scale in both, solid

and void regions hence avoiding the appearance of hinges.
The second is the robustness towards small manufactur-
ing errors, that are very common in the fabrication at
micro-scale.

The robust approach proposes the use of three dif-

ferent projections: eroded, intermediate and dilated. The
expression for a smoothed threshold projection based

on the tanh function is

ρ̄se =
tanh(β0η) + tanh

(

β0(ρ̃se − η)
)

tanh(β0η) + tanh
(

β0(1− η)
) ,

where β0 is a tuning parameter representing the smooth-

ness of the projection and η is the threshold which can
take values between 0 and 1. The filtered densities ρ̃se
are projected to 1 if these values are bigger than the

threshold and to 0 if not. The filtered densities ρ̃ are

expressed as:

ρ̃se =

∑

j∈Ne
w(xj)vjρsj

∑

j∈Ne
w(xj)vj

,

where xj is the center of element j, vj is the volume

of the element j, Ne is the neighbourhood of element

e within a certain filter radius r specified by Ne =
{j| ||xj − xe|| ≤ r}, and w(xj) = r − ||xj − xe||.

The use of three different physical realizations re-
quires the solution of three sets of equilibrium equa-

tions. Followingly, each realization presents three dif-

ferent in-plane and out-of-plane displacements which

all must be included in the optimization problem. From

now on, for the sake of simplicity, we introduce the su-

perscript q for indicating projection, with e meaning

erode, i intermediate and d dilate. The robust topology
optimization formulation is written:

max
ρs,ρp

: min
q=e,i,d

{uq
1
(ρ̄q

s,ρp)}

s.t.:

R
q
ip(ρ̄

q
s,ρp,U

q
ip) = 0

uq
1
= LT

1
U

q
ip

Rq
op(ρ̄

q
s,ρp,U

q
op) = 0

uq
2
= LT

2
Uq

op

uq
3
= LT

3
Uq

op
(

uq
2

uq
1

)2

− ε2d ≤ 0

(

uq
3

uq
1

)2

− ε2d ≤ 0

1T ρ̄d
s

V ∗

d

− 1 ≤ 0

ρs ∈ [0,1]

ρp ∈ [−1,1]

q ≡ e, i, d;

where V ∗

d is the maximum volume bound over the di-

lated design. This value is computed at the beginning

of the optimization and is then updated every 20 iter-

ations. The expression for this constraint is

V ∗

d =
V ∗

Vi

Vd,

with Vi and Vd being the volume for the intermedi-

ate and dilated designs and V ∗ the maximum volume
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prescribed for the intermediate design. Unlike the equi-

librium equations and the rest of the constraints, the

volume constraint is only enforced on the dilated de-

sign, according to the method proposed by [Wang et al.,

2011].

The max-min objective function proposed above is
not differentiable. In order to alleviate this issue the

problem is reformulated using the so-called bound for-
mulation:

min
ρs,ρp

: β

s.t.:

−uq
1
≤ β

R
q
ip(ρ̄

q
s,ρp,U

q
ip) = 0

uq
1
= LT

1
U

q
ip

Rq
op(ρ̄

q
s,ρp,U

q
op) = 0

uq
2
= LT

2
Uq

op

uq
3
= LT

3
Uq

op
(

uq
2

uq
1

)2

− ε2d ≤ 0

(

uq
3

uq
1

)2

− ε2d ≤ 0

1T ρ̄d
s

V ∗

d

− 1 ≤ 0

ρs ∈ [0,1]

ρp ∈ [−1,1]

q ≡ e, i, d;

where β is an additional bound variable that does not

depend on the design variables ρs and ρp and resolves
non-differentiability issue with the max-min function.

4 Numerical implementation

A gradient-based method, the MMA (Method of Mov-
ing Asymptotes [Svanberg, 1987]), has been used to

solve the optimization problem. This method requires
information about the objective function, the constraints
and the sensitivities of both. The adjoint method is used

to compute the sensitivities of the objective function

with respect to the structure density vector ρs and the

polarization profile vector ρp. First the derivative with

respect to the structural density of element e are found
using adjoint sensitivity analysis as

∂uq
1

∂ρse
= λT

∂Rq
ip

∂ρse

with

Ktλ =

(

∂uq
1
(Uq

ip,ρs,ρp)

∂Uq
ip

)

= L1, (4)

where the tangent matrix Kt is computed at the con-
verged solution. The right term in equation (4) is the

constant vector L1. The chain rule must be used to

compute the derivatives of the equilibrium equation:

∂Rq
ip

∂ρse
=

∂rqip
∂ρse

= −
∑

j∈Ne

(

∂
(

f
int,q
ip,j − f

piezo,q
ip,j

)

∂ρ̄qsj

+
∂
(

f
int,q
ip,j − f

piezo,q
ip,j

)

∂γq
j

∂γq
j

∂ρ̄qsj

)

∂ρ̄qsj
∂ρ̃sj

∂ρ̃sj
∂ρse

.

Due to the many load cases and realizations in-

volved, indexing above has become quite involved. In-

formation about the nature of the force (internal or
piezoelectric) and the threshold (eroded, intermediate
or dilated) is indicated as superscripts, separated by a
comma. Information about the motion case (in-plane or

out-of-plane) and the element number (j) is shown in

the subscript, also separated by a comma.

In the same way, the derivative of the cost with re-

spect to the polarization profile is:

∂uq
1

∂ρpe
= λT

∂Rq
ip

∂ρpe

with the adjoint vector λ again coming from the solu-
tion of (4).

Finally, the derivative of the residual vector is

∂Rq
ip

∂ρpe
=

∂rqip
∂ρpe

= −
∂(f int,qip − f

piezo,q
ip )

∂ρpe

The sensitivities of uq
2
and uq

3
are also computed us-

ing the adjoint method. However, since the out-of-plane

problem is linear, these computations are straight for-

ward and are not stated here. Similarly, the volume

fraction depends linearly on the physical structure den-

sity, and the derivatives are computed using the chain

rule.

The complete process algorithm looks like:

1. Selection of the dimensions of the plate and the

properties of the materials that will be used. Bound-

ary conditions and the parameters εd and kout must

be chosen.

2. Initialize the design variables ρs and ρp.

3. Compute the physical densities ρ̄q
s by filtering the

structural density and then projecting with three
different thresholds.

4. Solve the finite element problem for the three dif-

ferent physical densities.

(a) For the linear out-of-plane case.

(b) For the non-linear in-plane case.

5. Extract the displacements uq
1
, uq

2
and uq

3
and com-

pute the constraints.
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6. Compute the sensitivities of the objective function

and the constraints.
7. Update design variables based on MMA.

8. Until convergence update the parameters β0 and V ∗

d

and go back to step 3.

At this point it is important to remark that thanks

to the symmetry of the problem only half of the domain
needs to be simulated and optimized.

5 Examples

The multilayered structure, whose dimensions are shown

in Fig.1, is formed in a host layer of silicon with thick-

ness t = 5µm and a piezoelectric layer of PZT-5H with

thickness tp = 500nm. The Young’s modulus is E0 =

130GPa for silicon, the stiffness of the piezoelectric layer

is neglected. In order to avoid singularities in the stiff-

ness matrix, we fix Emin = 10−9E0. The Poisson’s ra-

tio is ν = 0.28 for both materials. The piezoelectric

constant for PZT-5A is d31 = 190pm/V and the in-

put voltage is Vin = 500V. We fix the relationship be-

tween the suppressed and optimized displacement to

εd = 0.05. The stiffness of the spring that models the
output is kout = 1× 103N/m. Concerning the filter and

the projection, the radius filter is set to r = 8µm and

δη = 0.30, ensuring a minimum length scale of 7.2µm

([Wang et al., 2011] and [Qian and Sigmund, 2013]) for

the intermediate design. Threshold projection values of

η = 0.7, 0.5 and 0.3 are hence assigned to the eroded

ρ̄e
s, intermediate ρ̄i

s and dilated ρ̄d
s designs, respectively.

The value of the sharpness parameter β0 is increased

during the iterative process, starting with β0 = 1 and

doubling each 20 iterations until it reaches β0 = 16. Fi-

nally, we fix the parameters of the energy interpolation

scheme to β1 = 500 and ρ0 = 0.01 ([Wang et al., 2014]).

The optimized designs for the first example are given

in Fig. 3. Three different thresholds are shown: the in-

termediate (top), also called the blueprint design which

is the one that will be fabricated, the eroded (mid-

dle) and the dilated (bottom). The structural layout
ρ̄s is shown in Fig. 3 (left), where black and white

means solid and void areas, respectively. There is no

microstructure (gray), which means that the projection

method is working properly. Fig. 3 (right) shows the

electrode profile ρp. Orange and cyan represent the sign
of the polarization profile, positive or negative respec-

tively. The whole structure, except for the jaws, is being

covered by electrode. The value of the in-plane displace-

ment in the blueprint design is u1 = 13.9µm. The values

of the out-of-plane displacements are u2 = 0.44µm and

u3 = 0.69µm.

(a) Intermediate projection.

(b) Erode projection.

(c) Dilate projection.

Fig. 3 Structure variable ρ̄s (left) and electrode profile ρp

(right) for the three different projections. kout = 1×103N/m.

In Fig.4 the stiffness of the spring is changed to
kout = 5×102N/m while the rest of the parameters stay

fixed. The value of the displacement in the blueprint

design is u1 = 18µm.

Finally, in Fig.5, the stiffness of the spring is set
to kout = 5 × 103N/m and the value of the optimized

displacement is u1 = 6µm.

In Fig. 6 and Fig. 7 the response of the three opti-

mized grippers depending on the output stiffness kout
is shown. In both figures the in-plane equilibrium equa-
tion is solved for different values of the stiffness of the
spring. In the first case the values of u1 versus kout
are plotted for the blueprint design. When the stiff-
ness takes the value kout = 0N/m, the displacement ob-

tained is the so-called free displacement. As expected,

the device designed for the lowest stiffness (red colour)

shows the biggest free displacement, and vice versa.

In the second case, the values of force applied at the

end of the jaws versus kout are plotted. When the stiff-

ness takes a big value, the displacement at this point

tends to zero and the resulting force is called blocking

force. The device designed for the biggest stiffness (blue

colour) presents the biggest blocking force. These two

parameters, free displacement and blocking force, de-
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(a) Intermediate projection.

(b) Erode projection.

(c) Dilate projection.

Fig. 4 Structure variable ρ̄s (left) and electrode profile ρp

(right) for the three different projections. kout = 5×102N/m.

fine the behaviour of the gripper. Notice that the best
design (the highest displacement in the first case, and

the force applied in the second one) for the three differ-
ent stiffness’s, is the one corresponding to the designed
spring.

In order to further illustrate the potential of our ap-

proach, Fig. 8 presents two other optimized microgrip-
pers. Fig. 8 (left) shows the one optimized for kout =

1 × 103N/m and Fig. 8 (right) shows the same exam-
ple but removing the constraints over the out-of-plane
displacements. The topologies are quite similar, actu-

ally the in-plane displacement u1 is 13.9µm for the first

case and 15µm for the second one, but the out-of-plane

displacements u2 and u3 are very different. When these

displacements are constrained their values in the opti-

mized design are u2 = 0.44µm and u3 = 0.69µm. When
both constraints are removed from the optimization

problem, the two displacements change to u2 = 8.4µm

and u3 = 12.8. In such a case, and taking into account

the size of the plate, the in-plane and out-of-plane prob-

lems are not decoupled. In this simulation the model

used is not the most appropriate, but anyway, the ob-

jective of the present work is showing that the opti-

(a) Intermediate projection.

(b) Erode projection.

(c) Dilate projection.

Fig. 5 Structure variable ρ̄s (left) and electrode profile ρp

(right) for the three different projections. kout = 5×103N/m.

101 102 103 104 105 106

uout( m)

20

15

10

5

Kout(N/m)

Fig. 6 Evolution of the output displacement with the output
stiffness for the blueprint design.
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101 102 103 104 105 106

F(N)

Kout(N/m)

0.050

0.025

Fig. 7 Evolution of the output force with the output stiffness
for the blueprint design.

Fig. 8 Optimized microgripper for kout = 1× 103N/m with
constraints over the bending at the jaws (left) and without
the constraint (right).

mization problem proposed is able to suppress the out-

of-plane bending produced at the jaws.

Fig. 9 presents the deformation of the grippers com-

mented on above. The device optimized with out-of-

plane constraints is shown in Fig. 9 (a). In this exam-

ple it is easy to check that the out-of-plane deformation

is in general small, which is represented with yellow
colour. Fig. 9 (b) shows the deformation of the gripper
without the constraints. In this case the jaws are blue

coloured, which means that this part of the structure is

the one with the biggest out-of-plane deformation.

5.1 Verification with Comsol Multiphysics

Arguably, the validity of the simplifying linearity as-
sumption for the out-of-plane deformation can be ques-
tion and the optimization could potentially take adavn-

tage of flaws in the model. Hence, this subsection presents

a corroboration of the model using the commercial soft-

ware Comsol Multiphysics. The gripper is modelled with

a fully geometrically non-linear, three-dimensional fi-

nite element model using no simplifying assumptions.

0

100 m

10

-10

-20
100 m 0

Out-of-plane

displacement ( m)

0

-10

-20

3D View

Side view

0

m

0

m

10

0

-10

-20

(a) Deformation of the optimized gripper with out-of-
plane constraints.

0

1000 m

0

m 0

Out-of-plane

displacement ( m)3D View

Side view

10

0

-10

-20

100μm

100μm

10

0

-10

-20

0

-10

-20

(b) Deformation of the optimized gripper without out-
of-plane constraints.

Fig. 9 Comparison of deformations between the grippers
presented in Fig. 8.

The domain is discretized with 42202 quadratic tetrahe-

dral elements and 247424 degrees of freedom, as shown

in Fig. 10. The mesh of the piezoelectric layer is finer

due to the smaller thickness.

The deformed gripper is shown in Fig. 11. Resulting

displacements are shown in Table 1 which also shows

the corresponding displacements obtained from the sim-

plified finite element model used in the optimization. As

can be seen from the table, the differences between us-

ing full three-dimensional modelling and two-dimensional

decoupled plate modelling (with in-plane and out-of-
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Fig. 10 Meshed 3D realization of the optimized gripper.

u1 u2 u3

Comsol 13.80µm 0.34µm 0.96µm
Matlab 13.93µm 0.44µm 0.69µm

Table 1 Comparison of displacements obtained with Comsol
Multiphysics and Matlab for the optimized gripper from Fig.
8 (left).

Out-of-plane 

displacements
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10
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μm

μm

Fig. 11 Deformation of the optimized gripper shown in Fig.
8 (left) modelled using Comsol Multiphysics.

plane motion cases decoupled and linear out-of-plane

modelling) are small enough to consider the latter ac-

curate enough.

For comparison, Fig. 12 depicts the deformation of

the gripper optimized without out-of-plane deformation

constraints from Fig. 8 (right). The displacement val-

ues obtained with Comsol Multiphysics and Matlab are

shown is Table 2. For this case, remarkably larger dis-

crepancies between the two models are observed. This

partly shows that the suggested simplified linear out-

of-plane modelling is inadequate and partly that in-

plane and out-of-plane displacements couple when con-

sidering large out-of-plane motions. On the other hand,

Out-of-plane 

displacements
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μ

μm
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10
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Fig. 12 Deformation of the gripper optimized without out-
of-plane deformation constraints from Fig. 8 (right) modelled
using Comsol Multiphysics.

u1 u2 u3

Comsol 16.10µm 10.10µm 15.70µm
Matlab 15.00µm 8.40µm 12.80µm

Table 2 Comparison of displacements with Comsol Multi-
physics and Matlab for the gripper optimized without out-of-
plane deformation constraints from Fig. 8 (right).

the two verification examples confirm that for cases

with small out-of-plane motions, as dictated by the im-

posed out-of-plane motion constraints, the simplified

and much cheaper and more efficient approach is fully

justified.

6 Conclusions

In this work piezoelectric microgripper-type actuators

are designed by topology optimization. The main nov-

elty introduced is the suppression of out-of-plane bend-

ing caused by unsymmetrical lamination of the piezo-

electric actuator. This goal is achieved by adding a con-

straint for each point where the out-of-plane deforma-

tion needs to be cancelled. The difficulty arising by only
placing one film of piezoelectric material is a real limita-
tion when fabricating at the micro-scale. If the suppres-

sion of the out-of-plane deformation is not taken into

account, the bending of the gripper jeopardizes func-

tionality. From an optimization point of view it is not

possible to suppress the bending in the whole domain.

This problem is overcome by suppressing the bending
only in four points of interest, placed at the jaws.

The modelling of the in-plane and out-of-plane de-

formation is different. For the former, the displacements
are large compared to the size of the gripper and a
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geometrically non-linear model (we assume large dis-

placements but small strains) is used. For the latter,

displacements are small and hence it is not necessary

to use a non-linear model and the linear one is used

instead to save computational time. An elastic energy

interpolation scheme is used to alleviate convergence

problems due to excessively distorted low density ele-

ments. The validity of the modelling simplifications is
confirmed by full three-dimensional and gometrically
non-linear modelling of the post-processed design.

A robust formulation provides full length-scale con-
trol, avoidance of fragile hinges as well as insensitivity
to e.g. under- and over-etching.
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