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Supports for Flexible Rotors

Assuming central preloading operation below the second bending critical speed and
full film lubrication, this paper presents a theoretical model which allows one, with
minimum computation, to design squeeze film damped rotors under conditions of
high unbalance loading. Closed form expressions are derived for the maximum
vibration amplitudes pertaining to optimally damped conditions. The resulting
vibration amplitude and transmissibility data of design interest are presented for a
wide range of practical operating conditions on a single chart. It can be seen that for
a given rotor, the lighter the bearing the more easily one can satisfy design con-
straints relating to allowable rotor vibration levels and lubricant supply pressure
requirements. The data presented are shown to be applicable to a wide variety of
rotors, and a recommended procedure for optimal design is outlined.

NOMENCLATURE

a	speed parameter = w/w c

a 1 -a 6 unique speeds, defined in Table 1

B	bearing parameter = 2	(L/C)3
r

C	radial clearance of bearing

C 1	equivalent damping coefficient = F t/(we)

C 2	non-dimensional damping coefficient = C 1 /(Mv. r )

e	journal eccentricity

f	frequency ratio = mr/wc

Fr ,Ft fluid film force on journal in radial and trans-

verse directions = 
uRL'w
C2 gr,t

g	displacement of rotor geometric centre with

respect to static deflection

gr	
( 1 2 )

2 or 0 for unpressurized or pressurized
-E

bearings

gt	2 1 _ s 2 3 z or 1 - EZ 3 2 for unpressurized or

pressurized bearings

G	non-dimensional rotor orbit radius at midspan

= g/C

GR	non-dimensional rotor orbit radius at midspan of

a rigidly supported rotor assuming a damping

ratio of 0.02

Kr	retainer spring stiffness per bearing station

2K5 rotor stiffness

K 1	equivalent stiffness coefficient = K r + Fr/e

K 2	non-dimensional stiffness coefficient

= K1/(Mwr 2 ) = K s /Kr

L	axial width of bearing

2M	rotor mass

p	minimum supply pressure for full film

P pressure parameter = pLR/(K sC)

R journal radius

T transmissibility = Fr + Kre	+ Ft z/[(l - a )Mw 2 p]

TR transmissibility of a rigidly supported rotor

U unbalance parameter = (l- a)p/C

a mass ratio = fraction of the total mass lumped at

the bearing

a non-dimensional journal orbit radius (eccentri-

city ratio) = e/C

.i absolute viscosity of lubricant at the mean lub-

ricant temperature

p	unbalance eccentricity

w	rotor speed
Ks

we	first pin-pin critical speed of rotor = 
-1 - a M

wr	natural frequency of retainer spring with respect

to rotor mass =

INTRODUCTION

In recent years, sophisticated computer programs
have been developed for analyzing bearing systems.
Ref. (1) summarizes the capability of such programs to
evaluaCe the effect of damped flexible supports on

Contributed by the Gas Turbine Division of the ASME.	 critical speed location, on unbalance response and on
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stability. Linear theory techniques are used in most
of these programs, and linear support damping and
stiffness coefficients are needed as input. For those
squeeze film dampers where the journal centre rotates
in a circular orbit about the bearing centre (e.g.
vertical rotors or centrally preloaded rotors), these
linear coefficients have been evaluated both theore-
tically (2-4) and experimentally (5-9). However,
owing to their non-linearity, apart from small un-
balance loading situations, a knowledge of their
value is of use more for stability rather than un-
balance response investigations.

The unbalance response of even the simplest
flexibly supported rotor, the so-called 'Jeffcott'
rotor, is already dependent on a daunting array of
system parameters, making parametric response studies
tedious and difficult to present in a form useful
for design (10). Actually, since the flexibly sup-
ported symmetric flexible rotor has two degrees of
freedom, a logical design strategy has been to uti-
lize the tuning capabilities of such systems as
originally reported in (11) and later extended to
flexibly supported 'Jeffcott rotors (12) and in par-
ticular, to squeeze film supported flexible rotors
(13,14).

More recently, an approach for optimally damping
rotors at any critical speed has been proposed (15)
and tested (16). These methods implicitly assume
constant support stiffness and damping, and for squeeze
film supports, would appear to be restricted to small
unbalance loadings. An alternative approach to
support design has been suggested in (17), though it
is not clear how easily this method can be simply
extended to cater for non-linear support forces.

However, unbalance loading, while small initially
can increase markedly in service owing to corrosion,
blade failure and thermal effects. Since the stiffness
and the damping of squeeze film bearings can be highly
non-linear, the unbalance response of a system using
them can be markedly dependent on rotor unbalance,
and can result in bistable operation, characterized
by high unbalance transmissibilities and extremely
high rotor amplitudes.

The design information in (10) does cater for
large unbalance loading but owing to the non-linearity
of the system and the large number of parameters affec-
ting the system response, the data is for discrete
parameter values only, requiring interpolation for
optimal system design. It is the aim of this paper
to show how, by making use of frequency response
intersection points pertaining to two degree of free-
dom systems, but also present in response data for
non-linear squeeze film supports (10), the design
optimization process can be significantly simplified.
Indeed, it will be shown that over a wide range of
practical conditions, it is feasible to present rele-
vant design data on a single design chart.

THEORETICAL MODEL

Fig. 1 depicts schematically a flexible rotor
running in a rolling element bearing, whose outer race
forms the non-rotating journal of a centrally pre-
loaded squeeze film damper support. The following
assumptions, justified in (18) pertain to the analysis
(a) the rotor is symmetric; (b) part of the mass may
be lumped at the rotor centre with the remainder at
the bearing stations; (c) gyroscopic effects are
negligible; (d) excitation forces due to rolling

SQUEEZE FILM	 ROTOR
BEARING	 MASS (1-0)2M

STIFFNESS 2K 5

MASS a•N

RETAINER
SPRING

STIFFNESS K r

(a)

STATIC DEFLECTION
CENTRES —

ROTOR

T

f	JOURNAL	p
°	ENTRE

ROTOR
KS(e -2 )	 GEOMETRIC

Ks (9 -9 CENTRE

(b)

Fig. 1 (a) Schematic diagram of squeeze film mounted
single-disc flexible rotor;

(b) Vectorial representation of displacements
and forces

element bearings are negligible; (e) the Reynolds
equation for constant lubricant properties is
applicable; (f) the short bearing approximation is
valid; (g) the pressures at the end of the bearings
are either atmospheric or sufficiently above atmos-
pheric to ensure full film lubrication; (h) only
positive pressures contribute to the fluid film forces;
(i) the rotor is centrally preloaded with constant
radial support stiffness; (j) all unbalance in the
rotor may be concentrated in the lumped mass at the
rotor midspan; (k) operation is sufficiently below
the second bending pin-pin critical speed to enable
its effect to be ignored; (1) any damping or flexi-
bility in the rolling element bearings may be ignored.

Referring to Fig. 1, the equation of motion for
the mass oJS lumped at each bearing station is given by

aMe+C e4Ks(e_g)+Kle = 0,	 (1)

where C 1 and K 1 are equivalent damping and stiffness
coefficients respectively.

Similarly, for the mass 2(l - a)M lumped at the
rotor midspan, the equation of motion is given by

(1-0)M(g+f-^)+Ks(g-e) = 0.	 (2)

Assuming that steady state conditions have been
reached, with the rotor and journal centres describing
synchronous circular orbits about the static deflection
line, Eqns. (1) and (2) may be nondimensionalized and
solved for the journal orbit radius e, the rotor orbit
radius G and the unbalance transmissibility T as
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explained in (10). An alternative derivation which
leads to expressions for e, G and T in a form more
suited to this paper, is given in Appendix 1, where
it is shown that

UazE = 
[K z fz 1-a 2 +az aa 2 -1 1z + C za2f2 1 -a2 )2}z,(3)

z	z

Ua z	[K2 - afi + 1f2 a1 + C2a
z /f z

G = (l-a 1-a2)	r	az (aa 2 -1 l 2	

z/fzJ

	,(4)

LK2+ f 2 1 1- a' 1 +C2a 

T =	1	K2f2/a2+C2	 /2	 (5)l -a2
	[K2f/a + f l ? a z ] z + Cz

In general, both the nondimensional stiffness coef-
ficient K 2 and the nondimensional damping coefficient
C 2 are themselves functions of the journal orbit
radius e and the bearing parameter B. Hence, given
the relevant system parameters, viz: the unbalance
parameter U, the mass ratio a, the speed paramater a,
the frequency ratio f and the bearing parameter B,
Eqn. (3) can be solved iteratively for e, whereupon
the corresponding solutions for the rotor orbit radius
G and the transmissibility T follow. Since Eqn. (3)
is non-linear, more than one solution for e in the
acceptable range 0<a<1  may result, depending on the
actual values of the system parameters. Equilibrium
solutions for Eqns. (3), (4) and (5) over a wide range
of the system parameters have been presented in (4,10)
where the stability of these solutions has also been
investigated. Note that in the case of pressurized
supports (i.e. sufficiently high lubricant pressure
to ensure a continuous lubricant film throughout the
bearing), the fluid film force has no radial com-
ponent, i.e. Fr = 0, so that K 2 = 1.

Fig. 2 (Fig. 5(b) in (10)) shows the rotor
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Fig. 2 Amplitude ratio frequency responses for range
of B and U: pressurized mount, a= 0.25,
f=0.2  and 0.5 (from Ref. (10) )

amplitude ratio G/U frequency responses for a range
of bearing parameter B and unbalance parameter U, for
pressurized mounts, mass ratio a=0.25  and frequency
ratios f=0.2  and 0.5. As may be seen from Fig. 2
and from Figs. 2 to 7 in (10) for pressurized bearing

mounts, for 0a0.5 and for 0.1<f<0.5, unique
points exist on the frequency response plots where all
the rotor amplitude ratio frequency response curves
intersect.

Also, it may be seen from Figs. 3 to 11 in (4)
and Figs. 8 to 10 in (10), that similar unique points
exist for the journal amplitude ratio e/U frequency
response plots for unpressurized mounts and for the
transmissibility frequency response plots. These
points are for a wide range of bearing parameter of
0.1<B<1 and unbalance parameter 0.05<U<0.40. At
the unique speeds defining these points, the system
response is independent of the bearing parameter B,
and so is independent of the support damping and in
some cases, of the support stiffness.

As is shown in Appendix 2, Eqns. (3) to (5)
yield six such unique speeds, viz: a l to a 6 . These
speeds tend to depend on the mass ratio a and the
frequency ratio f and are summarized in Table 1, to-
gether with the corresponding constant response exp-
ressions and an indication as to whether the results
are applicable to unpressurized in addition to pres-
surized bearing supports.

Tuned Systems
For linear stiffness and damping, the existence

of the unique speeds a l and a 2 has been long documented
for two degree of freedom systems (11). For pressuri-
zed bearing supports, where the support stiffness is
linear, even though the damping is not, one can apply
a similar approach to (19) to minimize rotor amplitudes.
Thus, for systems operating at a speed above both
unique speeds it may be possible to minimize the maximum
rotor amplitude ratio G/Umax, encountered in attaining
the operating speed by suitable choice of the frequency
ratio f and the damping C 2 . Such a system constitutes
an optimally damped system.

Regardless of the damping C 2 , G/Umax can never be
less than the larger of G/U 1 and G/U 2 . Now since
a,< 1 and a2> 1 (see Appendix 2), G/U 1 increases as a,
increases and G/U 2 decreases as a 2 increases. Further,
since both a l and a 2 increase as f increases (see
Appendix 2), G/Umax will be minimal for that value of
f for which

G/U1 = G/U2 .	(6)

Substituting for a l and a z into Eqn. (6) one obtains

f = /.	 (7)

Such a choice of f defines a tuned system, whereupon

l+aZG/Umax > G/U 1 = G/U 2 = [(1a ] ,	(8)

and

a(9)Kr = 1 _ a Ks .

Though these results are valid for pressurized
bearing systems regardless of unbalance loading, they
may also be applied to unpressurized systems provided
the unbalance load is sufficiently small. The results
are in agreement with (12), which investigates a
similar rotor bearing system but assumes linear stiff-
ness and damping supports.

As an illustration of the above, one can see in
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UNIQUE SPEEDS RESPONSES UNPRESSURIZED ?

G/U
(f 2
f2+1 +	f2+1)2	f 2 	1-a1½)½[ia1,2	=	 J	_  =	ai	2 ONLY IFG /Ui2a	2a	a	2a j 2	1-a	I1 -ai	2 I U<0.05

a 3 =a z T3 = 1 a a YES

T

(l+2f 2	+2f 2 ) 2	2f 2 1 1a	=	 _ 1T	= ONLY IF+	[[l
,5	2a	Ll	2a	J	a 1	J ,5	lag	-1 U<0.05v,5

a 6 = 1 e6 = l U a 	P YES

Table 1 Speed and response at the unique points

Fig. 2 for a= 0.25 and f= 0.5 (i.e. a tuned system)
that G/U 1 = G/U 2 = 1.72. However, G/Umax is generally
much greater than 1.72, being apparently dependent on
the value of the unbalance parameter U and bearing
parameter B. Note that the curve for U= 0.4 and
B= 0.1 suggests that G/Umax can be lowered significan-
tly to approach 1.72 by appropriately selecting B for
a given unbalance; and that the appropriate value of
B is that which satisfies the requirement that at a,
and a 2

a(G/U) = 0	(10)
3a

This approach, originally suggested in (11), has
been used successfully in (12,19) for linear systems
where analytical expressions for the optimal damping
were obtained. Unfortunately, no such expressions
are available for non-linear damping, and Eqn. (10)
needs to be satisfied numerically. Should appropriate
damping be available to satisfy Eqn. (10) at a, and
a 2 , one has an optimally damped system, in that G/Umax
has been minimized to equal G/U 1 or G/U2.

OPTIMIZED DESIGN CHART

Scope of Design Chart
The paramount design considerations in flexibly

supported rotor bearing systems are that for the likely
rotor unbalance (i) the unbalance transmissibility at
operating speed be low to achieve maximum bearing life
and to minimize vibrations and stresses in the support
structure, and (ii) the maximum rotor amplitude in
attaining the operating speed be minimal to enable
tight blade tip clearances to be maintained. The
optimized design chart in Fig. 3 is presented to enable
preloaded squeeze film dampers to be utilized as
flexible supports to ensure minimum rotor vibration
amplitudes. The design chart covers a wide range of
operating conditions, viz: a mass ratio a < 0.5, for
an unbalance parameter U O.4 and a speed parameter
a < 5. The chart assumes in addition to the assump-
tions pertaining to the theoretical model, that the
bearings are pressurized and the rotor bearing system
is tuned. It provides design information on (i) how
to ensure that optimal damping can be assured over
the speed range, (ii) what the corresponding unbalance
transmissibility frequency response will be, (iii)
what supply pressures are needed to ensure pressuri-
zation, (iv) what the maximum rotor amplitude ratio
will be and (v) what the maximum amplitude ratio would
be in the absence of flexible damped supports(assuming
a damping ratio for the rotor of 0.02).

Optimal Damping
As noted in the above section for tuned systems, a

low value of G/Umax requires careful consideration of
the support damping C 2 which, for squeeze film supports,
depends in a complicated manner on the bearing para-
meter B, the unbalance parameter U, the mass ratio a
and the speed parameter a. In no sense can a constant
C 2 be maintained while coming up to operating speed.
To further complicate matters, the value of U is not
strictly defined, as significant deterioration in the
level of unbalance over the life of the machine is a
definite possibility. Also, without some form of
lubricant temperature control, it is often impossible
to properly fix the bearing parameter B, which, by
virtue of its dependence on the lubricant viscosity,
is markedly temperature-dependent.

In view of this, the design strategy proposed
here is to admit of possible variations in U and to
utilize the temperature dependency of B to ensure that
G/Umax is minimized. A perusal of the rotor amplitude
frequency responses for pressurized bearings in (10)
shows that in all cases presented there, G/U decreases
as B decreases and as U decreases in the speed range
a l < a< a 2 . For a< a, or a> a., this pattern is
reversed. Hence, minimum G/U may be assured by main-
taining a sufficiently low bearing parameter while
running between the unique speeds, i.e. for a l < a < a 2 ,
and by increasing the bearing parameter above
prescribed limits for a a, and for a a 2 . The result
is given in Fig. 3 wherein B 1 and B 3 are the minimum
bearing parameters recommended for the speed ranges
a< a l and a> a 2 respectively (obtained by satisfying
Eqn. (9) for an assumed unbalance parameter U= 0.05);
and B 2 is the maximum bearing parameter for the speed
range a l < a a 2 (obtained by ensuring that for U = 0. L,,
the maximum value of G/U in the speed range a l  a a 2

is less than G/U 1 or G/U 2 ). Also shown are the unique
speeds a l and a 2 which determine the switch from B,
to B 2 and from B 2 to B 3 .

Hence, provided B 1 , B 2 and B 3 are practically
realisable, G/Umax will be minimal for all unbalance
parameters U 0.4 (noting that for U < 0.05, the sys-
tem behaves almost linearly in that G/U tends to be
independent of U). Though the strategy has the appa-
rent disadvantage that lubricant temperature control
has to be provided while running up to or down from
the operating speed, it is expected that some form of
temperature control would normally be advisable to
control B anyway; and by specifying B 1 , B 2 and B 3 as
limiting values of B, rather than actual values to be
attained, the lubricant temperature control would be
simple.
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Fig. 3 Optimized design chart for pressurized mount 

Also shown in Fig. 3 are the maximum rotor amp-
litudes G/Uman should the optimized damping strategy
be adhered to, and the corresponding rigid support
maximum amplitude ratio GR/U. It can be seen that
reductions in amplitude ratio by factors of 14 or more
are possible for mass ratio a<0.5.

Unbalance Transmissibilities
Five transmissibility values are shown for speeds

in the range v25a<5. In addition to the transmis-
sibilities T 3 and T5 at the unique speeds a 3 and a 4 ,
the transmissibilities at a = 3, a = 4 and a = 5 are also
included. These last three transmissibilities were
also found to be insensitive to variation in U for
0.05< U 0.4. The unique speed a 5 falls outside the
speed range of interest, so T 5 is not included. The
transmissibility T at the unique speed a 6 = 1, i.e.
at the rotor pin-pin critical speed, is unbalance and
damping dependent and is best calculated from

✓ lKre) z+F _	 (2TrB)2 ^°	(11)T=	UMCw2	1-a a+ [1- p C z] 3

where e=p. These six values of transmissibility over
the speed range l< a 5 should be adequate to approxi-
mate the transmissibility frequency response and there-
by, to determine the unbalance transmissibility at
operating speed. As an aid, the unique speeds a 3 and
a 5 are also given in Fig. 3.

Supply Pressure
Implicit to the applicability of the design chart

is that the bearing be pressurized. Should the bear-
ing be pressurized at both ends, the minimum required
pressure parameter P is given by (21)

P = 48Baf [2(1 + 2452)½_- 8e 2 - 21½
(l - a)[5 - 1 + 24 52 2 ] 3

One end pressurization would require four times this
value of P.

One can see from Eqn. (12) that for a tuned sys-
tem, P is a function of B, a, a and e (which in turn
is also a function of U). Hence, assuming an unbala-
nce parameter 11= 0.4 and a speed range O< a 5, P was
computed for all values of a in the range O< a 0.5
utilizing the appropriate bearing parameters in Fig. 3
The corresponding values of the journal eccentricity
ratio e may be obtained from the solution of Eqn. (3).
The resultant values of P are given in Fig. 3.

Regardless of pressurization, bistable operation
is not predicted to occur above the first pin-pin
critical speed. Thus, should it be desired to remove
pressurization once a> 1, the required pressure para-
meter P which assumed a speed range up to a = 5 is un-
duly conservative. Hence, the required pressure para-
meter P for the more limited speed range of O< a < 1
has been similarly evaluated and is also given in Fig.
3. Note that in such a case, once pressurization has
been removed, the information obtainable from Fig. 3
becomes approximate only. Further, whereas the
pressurized system is always stable, the stability of
the unpressurized system is not globally guaranteed
and needs to be investigated (4).

APPLICABILITY

Mass Ratio Considerations
As may be seen from Fig. 3, the lower the mass

ratio a, the lower the maximum amplitude G/Umax, the
transmissibility T, the required pressure parameter P
and the bearing parameter ratio B 2 /B 1 . The smaller
the B 2 /B 1 ratio, the smaller the required variation of
the lubricant temperature for optimal damping and hence
the shorter the delay in heating or cooling the lub-
ricant while coming up to or down from the operating
speed.

For heavy rotors, say M> 20 kg, it is reasonable
to assume that a low mass ratio is attainable. In
this case, the unique speed a 2 may be designed to

(12)
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CASE
FROM REF. (22)

(1 - a)M [kg]	we	[rad/s]
ESTIMATED
aM [kg]

a
P	[MPa]

ul
Pa s x 10-3

p2

Pa s x 10 -3

1 2.7 1257 0.45 0.14 0.53 14.1 7.0

2 9.1 943 0.9 0.09 0.89 29.7 15.6

3 318 388 1.4 0.004 0.12 43.1 23.5

4 295 388 1.4 0.005 0.17 44.7 24.4

5 239 848 1.4 0.006 0.75 86.8 47.4

6 20.5 785 1.4 0.06 1.20 45.3 24.2

7 0.91 1256 0.37 0.29 0.36 9.4 4.2

8 0.45 3142 0.27 0.38 1.31 11.6 4.4

9 255 293 1.4 0.005 0.08 29.2 15.9

Table 2 Estimated lubricant supply pressure and viscosity requirements
for nine cases discussed in Ref. (22), U= 0.4

occur outside the operating speed range and there will
be only one intersection point of the amplitude ratio
G/U curves. In such a case, it may be beneficial to
forgo a tuned system and select a frequency ratio for
which f < V to obtain a further reduction in the unique
speed a l and hence, in the amplitude ratio G/U 1 . In
such cases, G/Umax and a l may be obtained from Table 1
but Fig. 3 is no longer applicable and the appropriate
bearing parameters B 1 and B 2 to ensure optimal damping,
the corresponding pressure parameter P and the trans-
missibility T, would have to be evaluated from the non-
linear model.

For light rotors, mass ratios as high as a=0.5
are possible. For such a high a, relatively high
transmissibility is predicted at the unique speed a 3 ,

and furthermore, as may be seen from Table 1, this
transmissibility cannot be reduced by removing pres-
surization,	being independent of pressurization.
Since, at a 3 , the transmissibility of the squeeze film
damper is predicted to be the same as that of the
rigidly supported rotor (10), operation in the vicinity
of this speed should be avoided by a careful selection
of a.

Lubricant Viscosity and Supply Pressure Considerations
Basic conditions for the design to be practical

are that: (a) the supply pressure required to ensure
full film is not excessive; (b) the lubricant is an
available Newtonian fluid.

The evaluation of the supply pressure and vis-
cosity requirements necessitates knowledge of the
rotor bearing system. The following approach is based
on data taken from (22) for nine rotors. It is assumed
that U=0.4  and L/R 0.25. L= 10 -2 m is assumed for
the lighter rotors ( (1 -a)M<20.5 kg), whereas
L= 2 x 10-2 m is assumed for the heavier rotors
((1 - a )M > 239 kg ). The supply pressure for two ends
pressurization is then

KcCP	(1-a)Mwc 2	(13)

	p	LR	400 L P '

and the lubricant viscosity is given by

	

Mwc 3 3	Mw 
c B

p _ 22v'= 5 x 10- ' `r L	(14)

Due to lack of information in (22), eM values
are assumed as shown in Table 2. Assuming an optimal-
ly damped system, one can obtain the required limi-
ting values for P, B 1 and B 2 from Fig. 3 and calculate
the corresponding supply pressure p and viscosity u l
and p 2 requirements using Eqns. (13) and (14). The
results are summarized in Table 2 where it can be seen
that the highest pressure, P= 1.31 MPa, is required for
Case 8. This supply pressure does not appear to be
excessive. The lubricants for all these cases are
commercially available (23). Cases 1 to 9 represent
a wide variety of rotor bearing configurations, and
hence, it is concluded that the design information is
practical for a wide range of applications.

Unpressurized Supports
Table 1 shows that at the first bending critical

speed, e =p is predicted regardless of pressurization.
Similarly, the unique speed a 3 for the intersection of
transmissibility curves is independent of pressuri-
zation. Further, it may be seen from Figs. 2(a) to
7(a) in (10) that for unpressurized bearing mounts
and U=0.5, a good approximation to the unique inter-
section-points is obtained in the rotor amplitude and
transmissibility frequency responses. Hence, it is
reasonable to presume that the theoretical treatment
presented here may be used for an optimal design of
an unpressurized rotor bearing system, for which an
unbalance greater than p=0.05C/(1-a) is unlikely to
occur.

Thus for U 0.05, all the unique speeds and res-
ponses for pressurized systems, as summarized in Table
1, are applicable to unpressurized systems. The
optimized design chart of Fig. 3 is also applicable
except for the bearing parameter data for optimal
damping for which further investigation is needed.
However, the bearing parameter data may be

approximated from Figs. 2(a) to 7(a) in (10) and from
Fig. 2.12 in (18). These are summarized in Table 3,
which should be used in conjunction with Fig. 3 to
evaluate the optimal supports design.
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MASS RATIO, a BEARING PARAMETER, B

0 B	-> 0.6

0.25
B 1 > 0.3
B2 < 0.3
B 3 > 0.3

0.5 B	- 0.3

Table 3 Bearing parameter design data for unbalance
parameter 0=0.05, unpressurized mount and
mass ratios a - 0.0, a - 0.25 and a= 0. 5

Comparison between Table 3 and Fig. 3 shows that
the bearing parameters needed for optimal unpressuri-
zed supports are invariably higher than those required
for the pressurized ones. The higher bearing parameter
is needed to increase the damping reserve of the un-
pressurized mounts and to ensure a stable operation

(4).

For unpressurized rotor bearing systems operating
with higher unbalance loading, higher eccentricity
ratios and consequently, larger radial film force com-
ponents are expected in the vicinity of the inter-
section points. Hence, the approximation K 2 1 is no
longer valid, Fig. 3 is not applicable, and detailed
design charts should be used for the selection of
design parameters (4,10).

DESIGN PROCEDURE

This procedure for the design of squeeze film
damped supports is for the usual case where the desig-
ner has no control over the rotor dimensions or the
operating speed a. However, one can find the rotor
stiffness K s , the pin-pin critical speed a c and the
mass of the rotor lumped at the centre span using a
procedure such as outlined in ( 13 , 15 ). Next, the
following steps are suggested:

1 Assess the maximum unbalance eccentricity
likely to be encountered, p.

2 Select radial clearance CMp.
3 Select bearing mean radius 100 C '< R '< 1000 C,

noting that as small an a as practicable is desirable
4 Select bearing land width L R/2.
5 Select rolling element bearing and estimate

the mass ratio a, avoiding a= 1/a 2 if possible, when
a is large.

6 Calculate the retainer spring stiffness, K r

from Eqn. (9).
7 Read the limiting bearing parameters B 1 , B 2

and B 3 from Fig. 3.
8 Calculate the oil viscosity from

}i = 2BMOrC 3 /(RL 3 ).
9 Read the pressure parameter P from Fig. 3 and

calculate the supply pressure required for two end
pressurization from p= K s3P/(LR) For one end pres-
surization, use four times this pressure.

10 Calculate the transmissibility T(a= 1) from
Eqn. (11) and read from Fig. 3 T 3(a=a 3 ), T,,(a=a 4 ),
T(a= 3), T(a 4) and T(a = 5). Using these transmis-
sibilities plot a transmissibility versus speed curve
and estimate the transmissibility at the operating
speed.

11 Check expected life of selected rolling ele-
ment bearing. If unsatisfactory, reselect bearing
and return to Step 5.

DESIGN EXAMPLE

As an illustration of the suggested design
procedure, consider the problem of providing a squeeze
film damper support for Case 8 in (22). The rotor
mass 2(l - a)M is given as 0.90 kg, the first pin-pin
critical speed We as 3142 rad/s and the operating
speed a as 2.0. It is desired to use an optimally
damped support.

1 Assess that at worst p = 0.045 mm
2 Select C = 0.10 mm
3 Select R= 20 mm
4 Select L = 8 rmn
5 Select a ball bearing with 28 mm outer dia-

meter, 12 mm bore diameter and 8mm land width, with
mass of 0.02 kg. Using a 6mm thick sleeve integral
with a squirrel cage type retainer spring, an addit-
ional 0.075 kg mass is lumped at the bearing station.
For an assumed symmetric rotor, half the rotor mass
is 0.45 kg, of which one sixth is assumed to comprise
the shaft portion (0.075 kg) and one third of this
shaft portion is assumed to be lumped at the bearing
station (0.025 kg). Hence, the mass ratio a is estima-
ted as(0.02+0.075+0.025)/(0.45+0.075+0.02 )=0.22.
The unique speed a 3 = l/V= 2.1. This is in the vici-
nity of the operating speed so that the transmissibi-
lity T will be around 0.3 regardless of pressurization.
Should it be desired to reduce a, a ball bearing with
22 mm outer diameter, 8 mm bore diameter and 7 mm land
would have a mass of 0.012 kg and a squirrel cage
type retainer spring with 30 mm outside diameter and
with an estimated mass of 0.035 kg could be selected,
giving o= 0.14 and U = 0.39. From Fig. 3, a t = 0.73,
a 2 =2.76, a 3 =2.67 and a,, - 2.99.

Note that in this case a 2 = 2.76 falls outside
the speed range, simplifying bearing parameter control.

6 The retainer spring stiffness Kr is given by
Eqn. (9) as 6.9x10 5 N/m.

7 From Fig. 3, require that B 1 > 0.205 and
B 2 -- 0.105.

8 The values of B require lubricant viscosities
of p >1 0.046 Pas for a 0.73 and p -< 0.024 Pas for
a%0.73.

9 From Fig. 3, assuming two ends pressurization,
P^ 0.55 so that p= 2.0 MPa. Should pressurization be
removed beyond the pin-pin critical speed, the supply
pressure needed for pressurization up to the critical
speed would be obtained as P 0.15 or p - 0.57 MPa.
Being an optimally damped system, from Fig. 3
G/Umax= 1.34 so the maximum rotor amplitude would be
gmax= 0.052 mm representing a 95% reduction in the
maximum rotor amplitude of a rigidly supported rotor
of damping ratio 0.02 for which OR/U=26.5.

10 From Eqn. (11), T(a= 1) is 0.44. From Fig. 3
T 3 =0.16, T,,=0.13, T(a= 3)=0.l3, T(a=4)=0.065.
T(a= 5) is not needed for interpolation. Using these
values, the transmissibility at operating speed is
obtained by interpolation as 1=0.24  resulting in a
transmitted force amplitude of 182.5N under the worst
unbalance condition.

11 Under this worst unbalance condtiion, the
selected ball bearing would have a life of approximately
210 hours. Whether this is satisfactory depends on
the actual operating requirements. A further reduction
in the transmitted force at operating speed would
actually result if p < 0.024 Pas (B 2 < 0.105) at the
operating speed. Had the original support selection
with a=0.22 been adhered to, there would have resulted
a 19% increase in the maximum rotor amplitude and a
22% increase in the transmitted force, indicating the
desirability of avoiding operation in the vicinity of
the unique speed a3 even for relatively low values of
mass ratio a.	 7
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For the design recommended here, depending on the
operating temperature, a variety of lubricants would
be available, and the required temperature change
upon passage through the unique speed a2 while running
up to or down from operating speed is typically
around 20°C.

CONCLUSIONS

1 A theoretical model has been presented,
allowing for fast design of optimally damped pressuri-
zed rotor bearing systems.

2 All necessary design data for such optimally
damped systems are presented on a single chart for a
wide range of mass ratio and for a relatively high
level of unbalance parameter.

3 The data presented are practical for a wide
variety of rotors operating under the second bending
critical speed. In particular, the design is not
constrained in many practical applications by the
lubricant supply pressure and viscosity.

4 In conjunction with additional bearing para-
meter data, the design chart may also be used for the
design of optimally damped unpressurized support
systems for low unbalance.

5 For operation outside the parameter ranges for
which the design chart. is intended, the analytical
model allows for the desired design data to be obtained

6 The smaller the mass ratio the lower the rotor
amplitude and the supply pressure needed. However,
the lower limit of the mass ratio may be dictated by
rotor mass, and depending on the operating speed, by
transmissibility considerations.
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APPENDIX 1

Under steady state conditions, with the rotor
geometric and mass centres, and the journal centre
describing synchronous circular orbits about the
static deflection line in Fig. 1, one can write

e = e exp(iwt) ,	(Al. l )

whereupon

e = iwe ,	(Al.2)

and

e = we	(Al.3)

Similar expressions pertain to g and p so that
Eqns. (1) and (2) may be written as

-Ksg + (K s +K I - mMw 2 +iC l w)e = 0,	(Al.4)

[Ks -(1-a)w 2M]g-Kse = (1-a)Mw z p .	(Al.5)
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Elimination of g from Eqns. (Al.4) and (A1.5)
gives

Differentiation of Eqn. (A2.5) with respect to a1,2
gives

(l-a)Mw2Ksp( A1.6 )e a t-a M2w 4 - 1-a MK 1 w 2 -MKsw 2 +K 1Ks -i l-a MC,w 2

df	a 'l 2(1-a)
2f dal' z = 2aa 1 2 + (1	

2
(A2.6)

From this equation the magnitude of  e may be
easily obtained, and upon appropriate nondimensionali-
zation, one obtains Eqn. (3) for e.

Similarly, one can eliminate e from Eqns. (Al.4)
and (Al.5) to yield Eqn. (4) for G Finally, subs-
titution for e in the expression for transmissibility
and nondimensionalizing yields, after some algebraic
manipulation, Eqn. (5) for T.

APPENDIX 2

Rotor Amplitude Ratio
From Eqn. (4) G U is independent of the support

damping when

2	 I 2
	LK2

(1
+ 1

J
= 	+ f2 1 1 al 1l l
	

.	(12.1)

Note that since O< a < 1 and f is assumed to be non-
zero, this condition cannot be satisfied at a = 1. Nor
can it be satisfied if K2 is not constant except for
a=l.  However, for pressurized bearing supports, i.e.
with K 2 = 1, Eqn. (A2.1) is satisfied at the two speeds,
a, and a 2 , where

_	_ 5 f 2 +1	f`+IA2	f 2	i-a Z

a 1 , 2	l 2a	+ [l 2a J	a	2a ] J	(12.2)

The corresponding constant rotor amplitude ratios at
these speeds are then given by

z
	G/U 1 2 = (l a) a l ,z a ,	(A2.3)

2

Eqns. (A2.2) and (A2.3) may also be used to
predict the unique points for unpressurized bearing

supports provided the unbalance parameter is sufficie-
ntly small so that K 2  1.

It may be noted that for all O< a < 1, Eqn. (A2.2)
requires that a l and a 2 be on either side of the pin-
pin critical speed, i.e. that a,< 1 and a2> 1. Thus,
a,> 1 would require that

1 < fz+l _	f2+ f2l 2 	1-a 'Z
2a	R_--fa- )	a	2a I ,	( A2.4)

This inequality can only be satisfied if a>1.  Simi-
larly, it may be shown that a 2 < 1 requires a> 1.
Hence, G/U 1 increases as a l increases and G/U 2 in-
creases as a 2 decreases. Further, a rearrangement of
Eqn. (A2.2) yields

f2 = aai 2 -ai 2+(1 - a)/2
a l 2 -1 (12.5)

Hence, for 0<a<l, df
d

	>0 so that both a l and a 2

increase as f increase z

Unbalance Transmissibility
From Eqn. (5) it can be seen that T is indepen-

dent of the support stiffness and damping whenever

aa 2 - 1 = 0. (A2.7)

Eqn. (A2.7) is satisfied at the unique speed a 4 given
by

	

a3 = 1/v,	(A2.8)

and the corresponding constant transmissibility is
given by

	

13	a
	3 	1-a

	(A2.9)

For pressurized bearings, T will also be indepen-
dent of support damping at the two speeds
a 4 and a 5 where

a	= j 1 + 2f 2 + f (1+2f2 2 - 2f 2 j 212	
(A2.10)s 	2a	(l 2a J	a	)

The corresponding constant transmissibilities at these
speeds are then given by

	

T 4 5 =	Z 1	(A2.11)I a4, 5 _ l

Again, Eqns. (A2.10) and (A2.11) may also be used to
predict unique points for unpressurized bearings pro-
vided the unbalance parameter is sufficiently small so
that K 2 1.

Journal Amplitude Ratio
From Eqn. 3 , e/U is independent of the support

stiffness and damping when a= 1; i.e. the pin-pin
critical speed corresponds to the unique speed a 6 .

The corresponding constant journal amplitude ratio is
then given by

c/U6 = 1

	

1-a
	(A2.12)

Note that this implies that at the pin-pin critical
speed, e p, i.e. that the journal eccentricitty must
equal the mass eccentricity, as had already been noted
in (20). Physically, this means that squeeze film
dampers necessarily lock up once the mass eccentricity
equals or exceeds the bearing radial clearance.
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