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Abstract In this paper, the use of a tuned liquid column damper (TLCD) as a cost-effective means to control
the seismic response of a base-isolated structure is studied. A straightforward direct approach for the optimal
design of such a device is proposed, considering a white noise model of the base excitation. On this base, a direct
optimization procedure of the TLCD design parameters is performed and optimal design charts are presented as
a ready-to-use practical design tool. Comparison with the optimal parameters obtained considering a classical
iterative statistical linearization technique proves the reliability of the proposed approach. The performance of
the base-isolated TLCD-controlled structure is examined and compared with that of the simple base-isolated
one (without TLCD), using a set of 44 recorded ground motions as base excitation. Theoretical and numerical
results show that the TLCD is rather effective in reducing the response of base-isolated structures under strong
earthquakes. Therefore, considering its advantageous characteristics and its overall beneficial effects, TLCDs
can be considered as practical and appealing means to control the seismic response of base-isolated structures.

1 Introduction

Seismic base-isolation is one of the most effective and widely used means for protection of relatively stiff
structures against earthquake excitation. Through a base-isolation subsystem, the structure is virtually decou-
pled from the ground. Decoupling is achieved by inserting a layer of low horizontal and high vertical stiffness
between the structure and its foundation, shifting the fundamental natural frequency of the entire structural
system away from the range of frequencies that dominate the earthquake excitation [16]. In this manner, the
structure on the base-isolation system tends to behave like a rigid body, since the majority of the displacement
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occurs within the base-isolation system itself. Hence, structure displacements and accelerations are greatly
reduced, while the base-isolation subsystem undergoes large, and sometimes undesirable, displacements.

Several research efforts have been focused on the reduction in this displacement demand of the base-
isolation subsystem, resorting to many different strategies. One common way, for instance, consists in providing
supplemental damping to the isolation layer, which, however, may lead to an increase in the interstory drifts
and accelerations of the main structure [17].

In this context, some researchers began to consider using passive vibration control devices, such as the
well-known tuned mass damper (TMD), to improve the performance of base-isolation systems. Specifically,
initial studies can be found in [33] and [29], where the effect of the TMD on base-isolated structures and the
choice of the proper TMD parameters have been investigated. Further, in [22] it has been demonstrated that the
TMD is more effective at reducing the structural response for low damping in the base-isolation subsystem,
and in general TMDs can lead to better control performance than providing supplemental damping to the
isolation layer [21], since small interstory drifts typical of base-isolated structures are preserved, while the
displacement demand of the base-isolation subsystem is reduced [2]. As far as the optimal choice of the TMD
parameters attached to base-isolation subsystems is concerned, some analyses in the frequency domain are
presented in [33], while in [27] optimal TMD design parameters are determined considering the case of a white
noise ground excitation. More recently, in [31] the optimization of a non-traditional TMD, with minor stroke
length demand, is discussed. Finally it is worth noting that, apart from the case of a ground excitation, in [15]
the performance of a base-isolated structure equipped with a TMD device has been studied considering a wind
type of excitation, demonstrating that attaching a TMD at the roof or base can reduce the structural response
significantly.

In all the previous investigations, only the case of TMD devices connected to the base-isolated structures
has been analyzed. In this regard, there are very few studies in which other passive control devices have been
considered for reducing the displacement demand of base-isolated structures. Specifically, in [20] the case of
a tuned liquid damper (TLD) device has been examined for wind induced motion of base-isolated buildings.

One interesting control device, which in recent years has attracted the attention of an increasing number
of researchers, is the so-called tuned liquid column damper (TLCD). The TLCD is a passive vibration control
device that dissipates structural vibrations through the motion of a liquid column inside U-shaped containers,
based on the same mechanical principle as the TMD. The liquid column can freely flow inside the U-shaped
container, and the liquid surface in the two vertical columns of the container is under constant atmospheric
pressure. In this manner, the natural frequency of oscillation of the liquid theoretically depends only on the
total length of the liquid column [1,13], thus making TLCDs particularly suitable for systems characterized
by a predominant first mode with very low fundamental natural frequency, as in the case of base-isolated
structures.

To overcome the limitation of applicability to structures with very low fundamental frequencies, Ziegler
and coworkers (see, e.g., [14,24,25,35]) have developed the highly innovative tuned liquid column gas damper
(TLCGD), where in contrast to the TLCD both ends of the U-shaped tube are sealed, and thus, the gas-spring
effect is activated [11,35], pushing the frequency range applicability of such devices up to 5 Hz [14]. Active
control of pressure input into the gas volume (ATLCGD) even allows to reduce the transient structural vibration
peaks, observed in the initial period of the strong motion phase of earthquakes [13,14]. Recently, several general
on-off damping controller for a semi-active TLCD has been implemented [19]. In [35], Ziegler proposed a
novel TLCD for mitigating vertical vibrations. Hochrainer and Ziegler [14] used for the first time a TLCD
to control a base-isolated five-story generic frame structure. More recently, Khalid and Ziegler [18] studied
a novel base-isolation system with effective damping supplied by a TLCGD. For a complete overview on
the application of the TLCD and its passive and active variants in buildings, bridges and dams, the reader is
referred to Hochrainer and Ziegler [12].

The TLCD is generally modeled as a single-degree-of-freedom (SDOF) system rigidly connected to a
vibrating structure [6,8,13], and its effectiveness depends on proper tuning of the natural frequency and
damping ratio, such as in a TMD. However, unlike the traditional TMD, the TLCD response is nonlinear [5,9]
and the optimal damping parameters cannot be established a priori unless the forcing magnitude is known and
numerical optimization methods are required (see [7] and references therein).

Due to some of their beneficial characteristics (such as low cost, easy implementation, lack of required
maintenance, no need to add mass to the structure when using the liquid as water supply), TLCD represents
now an attractive alternative for vibrations mitigation. Readers may refer to Ziegler [34] for a detailed analysis
on the beneficial features of TLCDs among different types of passive vibration control systems.
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Based on the pioneering applications of Ziegler [14,18], and in the context of taking into account these
attractive characteristics, in this paper the control performance of a TLCD on the seismic response of a
base-isolated structure is investigated. Once the nonlinear equations of motion of a TLCD-controlled multi-
degree-of-freedom (MDOF) base-isolated structure are derived, the classical statistical linearization technique
(SLT) is applied to analyze the statistics of the response in case of a Gaussian white noise ground excitation,
and comparison with Monte Carlo simulation data is used to prove the reliability of the results. Since SLT
requires several computationally expensive numerical iterations, a straightforward procedure is proposed that
allows for the direct evaluation of the equivalent linear system parameters and corresponding steady-state
response variances, under some reasonable assumptions regarding base-isolated structures. In order to prove
the reliability of the proposed approach, comparison with the SLT is provided, showing a satisfactory agreement
between the two approaches, even when the aforementioned assumptions are removed. Further, taking full
advantages of this proposed direct evaluation of the equivalent linear system parameters, a direct optimization
procedure of the TLCD design parameters is performed, aiming at maximally control the seismic response
of the base-isolated structure. Optimal design charts are introduced as a ready-to-use practical design tool.
Comparison with the optimal parameters obtained by a rather elaborate numerical optimization procedure,
based on the classical iterative SLT, is carried out leading to very small discrepancies especially in terms of
control performances. It is worth mentioning that a significant reduction in computational effort is achieved with
the proposed straightforward approach. Finally, to show the influence of the non-stationary nature of real ground
motions, the control performances of the TLCD device directly connected to the base-isolation subsystem are
examined employing time-history analyses using the 44 recorded ground motions of the FEMA P-695 far-field
(FEMA P-695-FF) set described in [10]. Specifically, a 20-story benchmark base-isolated building, used in
[33], has been taken into account. It is shown that the TLCD device leads to a 16% reduction in the median of
the relative peak base-isolation subsystem displacement, compared to the case of the base-isolated structure
without TLCD.

2 Problem formulation

Let the equations of motion of a planar frame with lumped mass and n degrees-of-freedom (main structure)
subjected to a horizontal earthquake ground acceleration ẍg (t) be given in classical matrix form as

Mẍ (t) + Cẋ (t) + Kx (t) = −Mrẍg (t) , (1)

where M, C and K are the n × n mass, damping and stiffness matrix, respectively, of the structure, x is the
vector containing the nodal deformations of the structure, r is the location vector and a dot over a variable
stands for derivation with respect to time t . Equation (1) can be rewritten as

Mi ẍi (t) +
n

∑

j=1

Ci, j ẋ j (t) +
n

∑

j=1

Ki, j x j (t) = −Mi ẍg (t) (i = 1, . . . ,n) , (2)

where the terms Mi , Ci, j and Ki, j in Eq. (2) correspond to the entries of the matrices M, C and K, while xi is
the i th nodal deformation of the structure relative to the ground.

Consider now the case in which the structure is separated through a base-isolation subsystem from the
foundation for earthquake protection purposes, as shown in Fig. 1a for the example of a shear-type frame
structure. The response of this base-isolated structure is governed by the following equations [29]:

Mtot ẍb (t) +
n

∑

i=1

Mi ẍi (t) + Cb ẋb (t) + Kbxb (t) = −Mtot ẍg (t) ,

Mi ẍb (t) + Mi ẍi (t) +
n

∑

j=1

Ci, j ẋ j (t) +
n

∑

j=1

Ki, j x j (t) = −Mi ẍg (t) (i = 1, . . . ,n) ,

(3)

where Mb, Cb and Kb are, respectively, mass, damping and stiffness of the base-isolation subsystem (modeled
as a linear system), xb is its displacement relative to the ground and Mtot = Mb +

∑n
i=1 Mi . Here, the nodal

structural deformations xi are measured relative to xb, compare with Fig. 1b.
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Fig. 1 Base-isolated structures: a MDOF shear-type frame without TLCD; b hybrid-controlled MDOF shear-type frame with
TLCD; c hybrid-controlled SDOF shear frame with TLCD

When dealing with a SDOF main structure (i.e., n = 1), Eq. (3) reverts to

ẍb (t) + μ1 ẍ1 (t) + 2ζbωb ẋb (t) + ω2
bxb (t) = −ẍg (t) ,

ẍb (t) + ẍ1 (t) + 2ζ1ω1 ẋ1 (t) + ω2
1x1 (t) = −ẍg (t) ,

(4)

where μ1 = M1/Mtot, ωb =
√

Kb/Mtot and ζb = Cb/(2Mtotωb) are the natural frequency and damping
ratio of the base-isolation system, respectively, while ω1 =

√
K1/M1 and ζ1 = C1/(2M1ω1) are the natural

frequency and damping ratio of the SDOF main structure.
Aiming at reducing the displacement demand xb of the isolation subsystem, consider now the case of the

above-described base-isolated multi-story structure in which a TLCD device with constant tubular cross section
is rigidly attached to the base plate of the base-isolation subsystem, as shown in Fig. 1b. Denoting with g the
gravitational acceleration, Lv and Lh the vertical and horizontal liquid length, respectively, L = Lh + 2Lv

the total length of the liquid inside the TLCD, the corresponding equations of motion of this n + 2 degrees-
of-freedom system can be written as

(Mtot + ml) ẍb (t) + mh ÿ +
n

∑

i=1

Mi ẍi (t) + Cb ẋb (t) + Kbxb (t) = − (Mtot + ml) ẍg (t) ,

mh ẍb (t) + ml ÿ (t) +
ml

2L
ξ |ẏ (t)| ẏ (t) + 2

ml

L
g y (t) = −mh ẍg (t) , (5)

Mi ẍb (t) + Mi ẍi (t) +
n

∑

j=1

Ci, j ẋ j (t) +
n

∑

j=1

Ki, j x j (t) = −Mi ẍg (t) (i = 1, . . . ,n) ,

where ml is the total liquid mass inside the TLCD device, mh = αml is the horizontal liquid mass, being
α = Lh/L the so-called length ratio, y(t) is the displacement of the liquid surface and ξ is the head loss
coefficient. Note that Eq. (5) represents a set of n + 2 differential equations, the second of which is nonlinear.
Specifically, the nonlinear term is generally used to model head losses caused by the presence of an orifice
inside the TLCD and viscous interaction between the liquid and rigid container wall [6].

For an SDOF main structure (n = 1) as depicted in Fig. 1c, the equations of motion (5) are particularized
as

(1 + μl) ẍb (t) + αμl ÿ + μ1 ẍ1 (t) + 2ζbωb ẋb (t) + ω2
bxb (t) = − (1 + μl) ẍg (t) ,

α ẍb (t) + ÿ (t) +
1

2L
ξ |ẏ (t)| ẏ (t) + ω2

l y (t) = −α ẍg (t) , (6)

ẍb (t) + ẍ1 (t) + 2ζ1ω1 ẋ1 (t) + ω2
1x1 (t) = −ẍg (t) ,

where μl = ml/Mtot is the liquid mass ratio and ωl =
√

2g/L is the natural frequency of oscillation of the
liquid column inside the TLCD [13]. Since the damping term in Eq. (6b) is nonlinear, even assuming that
the base-isolation subsystem and the main structure behave linearly, the whole system experiences inherent
nonlinear properties. Therefore, some difficulties may arise for the optimal design of the damper device in
order to obtain the maximum reduction in the displacement demand of the isolation subsystem.
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In the following section, a procedure based on statistical linearization will be introduced to overcome these
difficulties.

2.1 Statistical linearization of base-isolated structure equipped with TLCD

Suppose that the latter base-isolated SDOF structure equipped with a TLCD (Fig. 1c) is driven by random base
excitation, such as earthquake ground accelerations, that can be modeled as a zero-mean Gaussian white noise
process. It follows that the displacements of the liquid column and the base-isolation subsystem, nodal structural
deformations and their derivatives are stochastic processes too (denoted by capital letters, as customary).
Moreover, due to the presence of the nonlinear damping term, responses are non-Gaussian processes.

However, taking full advantage of the powerful tool of the Statistical Linearization Technique (SLT), the
original nonlinear system (6) can be replaced by a linear equivalent one as

(1 + μl) Ẍb (t) + αμl Ÿ + μ1 Ẍ1 (t) + 2ζbωb Ẋb (t) + ω2
b Xb (t) = − (1 + μl) Ẍg (t) ,

α Ẍb (t) + Ÿ (t) + 2ζlωl Ẏ (t) + ω2
l Y (t) = −α Ẍg (t) , (7)

Ẍb (t) + Ẍ1 (t) + 2ζ1ω1 Ẋ1 (t) + ω2
1 X1 (t) = −Ẍg (t) ,

where ζl is the equivalent damping ratio of the TLCD, obtained by minimizing the mean square with respect
to ξ . Specifically, following the analysis in [4,26], the expression for the equivalent damping ratio becomes

ζl =
ξ

2L ωl

√

2

π
σẎ , (8)

where σẎ is the standard deviation of the velocity of the liquid column. As shown in [4], the application of
Eq. (8) for design purposes is not straightforward since σẎ is still unknown and implicitly depends on the
equivalent damping ratio ζl . Therefore, generally an iterative procedure is necessary. Specifically, firstly the
standard deviation of the liquid column velocity σẎ is evaluated by fixing an arbitrary value of ζl , as

σ 2
Ẏ

=
∞

∫

0

ω2|HY (ω)|2G0 dω, (9)

in which HY (ω) is the liquid column displacement transfer function of the equivalent linear system (7) (see
Appendix A for further details) and G0 is the one-sided power spectral density (PSD) of the white noise ground
excitation. Further, substituting σẎ evaluated by Eq. (9) into Eq. (8) yields a new value of ζl . This procedure
is repeated iteratively until no significant differences on ζl emerge in two consecutive iterations.

Clearly, once convergence is reached, the complete statistics of the response processes can be computed.
In particular, defining Hb (ω) as the base-isolation subsystem displacement transfer function and HX1 (ω) the
main structure nodal deformation transfer function of the equivalent linear system (7) (see Appendix A for
details), response variances are obtained as

σ 2
Xb

=
∞

∫

0

|Hb (ω)|2G0 dω, σ 2
X1

=
∞

∫

0

∣

∣HX1 (ω)
∣

∣

2
G0 dω, σ 2

Y =
∞

∫

0

|HY (ω)|2G0 dω. (10)

It should be noted that closed-form expression for these transfer functions can be easily computed, as
reported in Appendix A. In this manner, all the response statistics can be immediately determined numerically
solving Eq. (10).

In order to demonstrate the accuracy of the above-described iterative SLT, Fig. 2 shows the response steady-
state variances of the original nonlinear equations of motion, Eq. (6), additionally to variances computed via
Eq. (10) through the iterative procedure, for different values of the input PSD G0. Note that statistics of the
original nonlinear system (6) have been evaluated through a Monte Carlo simulation (MCS) procedure, using
for each analysis 2000 samples of ground accelerations and directly integrating the equations of motion. In
this respect, parameters similar to those used in [31] have been here adopted for the numerical simulations.
Specifically: ωb = π/2, ζb = 0.05, μ1 = 0.95, ω1 = 4ωb, ζ1 = 0.02, μl = 0.05, α = 0.6, ωl = 0.98ωb and
ξ = 10. As it can be observed in this figure, base-isolation subsystem displacement variance σ 2

Xb
(Fig. 2a)

and main structure displacement variance σ 2
X1

(Fig. 2b), predicted with the iterative SLT, are in very good
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Fig. 2 Steady-state response variances versus input PSD: black circles—Monte Carlo simulation, red line—iterative standard
linearization technique; a variance of the base-isolation subsystem displacements; b variance of the main structure displacements;
c variance of the fluid displacements (color figure online)

agreement with those obtained by MCS on the nonlinear system (6), for a wide range of input PSD G0, thus
proving the reliability of the method. On the other hand, as depicted in Fig. 2c, since the nonlinear term in
Eq. (6) involves the fluid velocity, less accurate agreement is reached for the fluid displacement variances σ 2

Y ,
at increasing values of the input PSD.

It is worth underscoring that, although the iterative procedure above described is well established in the
literature [3,26,30] and leads to very accurate results in terms of statistics, the equivalent linear system must be
found through several numerical evaluations. Hence, this procedure may not be suitable if one is interested in
the assessment of the optimal design parameters of the TLCD, which are necessary to gather the highest control
performances. Therefore, a direct procedure for the evaluation of the equivalent linear damping ratio ζl of the
TLCD device should be sought. In this respect, in order to find a simplified straight relationship between the
input PSD G0 and the estimated value for ζl , a closed-form solution in terms of steady-state response statistic
σ 2

Y is proposed, as detailed in the following. This proposed procedure is based on the approach reported in
[4,7], for TLCD-controlled systems, and here applied to deal with base-isolated TLCD hybrid-controlled
SDOF structures, as those shown in Fig. 1c.

3 Direct evaluation of the equivalent linear system

It is well known that in well-designed base-isolated building the majority of the displacements occur within
the base-isolation subsystem, while the main structure behaves virtually like a rigid body, with displacements
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Fig. 3 Base-isolated rigid structure equipped with TLCD

orders of magnitude lower than those of the base-isolation subsystem itself [20,31]. It is therefore reasonable
to further reduce the system, assuming that the entire base-isolated structure can be modeled as a SDOF linear
system, as shown in Fig. 3. Thus, the original linear system (7) can be rewritten as

(1 + μl) Ẍb (t) + αμl Ÿ + 2ζbωb Ẋb (t) + ω2
b Xb (t) = − (1 + μl) Ẍg (t) ,

α Ẍb (t) + Ÿ (t) + 2ζlωl Ẏ (t) + ω2
l Y (t) = −α Ẍg (t) ,

(11)

which is now simply a set of two linear differential equations. In this way, the approach described in [7] can
now be easily applied.

Specifically, expressing Eq. (11) in compact matrix form yields

M̃Z̈ + C̃Ż + K̃Z = −M̃r̃ẍg, (12)

where Z =
[

Xb (t) Y (t)
]T

, r̃ =
[

1 0
]T

and

M̃ =
[

1 + μl αμl

α 1

]

, C̃ =
[

2ζbωb 0

0 2ζlωl

]

, K̃ =
[

ω2
b 0

0 ω2
l

]

. (13)

Since the input is modeled as a zero-mean stationary Gaussian white noise process, the corresponding
Lyapunov equation of the evolution of the covariance matrix [4] can be written as

Σ̇Q (t) = DSΣQ (t)+ΣQ (t) DT
s +GSGT

S πG0, (14)

where Q =
[

Z Ż
]T

is the vector of the state variables, ΣQ (t) represents the covariance matrix given as

ΣQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ 2
Xb

σ 2
XbY σ 2

Xb Ẋb
σ 2

XbẎ

σ 2
Y σ 2

Y Ẋb
σ 2

Y Ẏ

sym σ 2

Ẋ2
b

σ 2
ẊbẎ

σ 2
Ẏ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (15)

while DS and GS are given as

DS =
[

0 I2

−M̃−1K̃ −M̃−1C̃

]

, GS =
[

0

r̃

]

(16)

with I2 a 2 × 2 identity matrix.
Solution of Eq. (14) yields the evolution of all the response statistics of the system described by Eq. (11).

However, since only the steady-state variance must be computed, Σ̇Q can be equated to zero. In this way,
after some algebra, the base-isolation subsystem displacement and the fluid column velocity variances can be
expressed as

σ 2
Xb

=
πG0

4zXb
ω3

b

, σ 2
Ẏ

=
πG0

4zY ωl

, (17)

in which zXb
and zY have the following expression

zXb
=

NZ

DZ Xb

, zY =
NZ

DZY

, (18)
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where

NZ = ζbζl + ζ 2
2

(

4ζ 2
b + α2μl

)

ν + 2ζbζl

[

2ζ 2
b + α2μl +

(

2ζ 2
l − 1

)

(1 + μl)
]

ν2

+ ζ 2
b

[

α2μl + 4ζ 2
l (1 + μl)

]

ν3 + ζbζl(1 + μl)
2ν4,

DZ Xb
= ζl

(

1 + μl − α2μl

)2

+ ζb

[

α4μ2
l + 4ζ 2

l (1 + μl)
2
]

ν + ζl(1 + μl)
2
[

4ζ 2
b + 3α2μl +

(

4ζ 2
l − 2

)

(1 + μl)
]

ν2

+ ζb(1 + μl)
2
[

α2μl + 4ζ 2
l (1 + μl)

]

ν3 + ζl(1 + μl)
4ν4,

DZY = α2
[

ζb + ζl

(

1 + μl + 4ζ 2
b

)

ν + 4ζ 3
b ν2

]

,

(19)

and the so-called frequency tuning ratio ν = ωl/ωb has been introduced.
By application of the procedure described in [4,7], in order to obtain a less cumbersome expression for the

fluid velocity variance, Eq. (19b) can be expanded in Taylor’s series with respect to ζl , retaining only the first
two terms of the expansion. Further, assuming that higher powers of ζb can be neglected

(

ζ 2
b = ζ 3

b ≈ 0
)

, and
considering that generally ν ≈ 1, yields

zY ≈ (ζb + γ ζl) μl , (20)

where γ = 1 − μl + μl/α
2. Substitution of Eq. (20) into Eq. (17b) leads to an approximate expression for the

fluid velocity variance,

σ 2
Ẏ

=
πG0

4 (ζb + γ ζl) μlωl

. (21)

Finally, recalling Eq. (8), a direct relationship that provides the equivalent damping ratio ζl as a function of
the input PSD G0 can be obtained as

ζ 2
l (ζb + γ ζl) =

ξ2G0

8L2 μl νω3
b

, (22)

in which ωl has been replaced by the term νωb. This third order algebraic equation, which can be solved either
numerically or in closed form, admits only one real solution in the parameters range of practical applications
[4]. Therefore, if the base-isolation subsystem and TLCD parameters are known, Eq. (22) can be directly
used to evaluate ζl instead of applying the computationally more expensive iterative SLT procedure previously
described.

On the other hand, recalling that ω2
l = 2g/L [34], an expression relating the head loss coefficient ξ to the

equivalent damping ratio ζl can be obtained recasting Eq. (22) as

ξ =
ξ0 (ν, ζl)√

G0ωb

, (23)

where

ξ0 (ν, ζl) = 4gζl

√

2μl (ζb + γ ζl)

ν
. (24)

Note that Eqs. (23) and (24) are rather useful for a straightforward evaluation of the optimal TLCD design
parameters, as it will be shown in the following.

3.1 Investigation on parameter sensitivity

In order to prove the reliability of the proposed direct approach for the evaluation of equivalent TLCD damping
parameter ζl , it will be shown how the variation of the involved parameters affects the proposed formulation.
To aim at this objective, a reference set of parameters, used also in [31], has been selected, and in turn one of
them has been varied in a wide range of values. Specifically, the following reference set of parameters is used:
ωb = π/2, ζb = 0.05, μ1 = 0.95, ω1 = 4ωb, ζ1 = 0.02, μl = 0.05, α = 0.6, ξ = 10, and G0 = 5 × 10−4.

In the following figures, results in terms of normalized base-isolation displacement variance εXb
= σ 2

Xb
/σ 2

X0

are displayed, being σ 2
X0

the base-isolation displacement variance of the system without TLCD (see Eq. (4)).
In particular, results obtained by the iterative SLT previously described (symbols) are compared with those
obtained by the proposed direct approach (solid lines), for tuning ratio ν = ωl/ωb ranging from 0.8 to 1.2.



Optimal design of tuned liquid column dampers in base-isolated structures 445

0.2

0.4

0.6

0.8

1.0

1.2

ε X
b

(a)

µl = 0.07

µl = 0.05

µl = 0.03

µl = 0.10

0.2

0.4

0.6

0.8

1.0

1.2

ε X
b

(b)

α = 0.5

α = 0.6

α = 0.7

α = 0.8

0.2

0.4

0.6

0.8

1.0

1.2

0.8 0.9 1.0 1.1 1.2

ε X
b

ν

(c)

ξ = 5

ξ = 10

ξ = 20

ξ = 30
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as a function of frequency tuning ratio ν: markers—

iterative standard linearization technique; lines—proposed direct approach; a variation of the mass ratio μl ; b variation of the
length ratio α; c variation of the head loss coefficient ξ

In Fig. 4, the effects of the variation of mass ratio μl , length ratio α and the head loss coefficient ξ on the
proposed formulation are shown. As it can be observed, better agreement between iterative SLT and proposed
approach is attained for values of the tuning ratio ν lower than one, otherwise higher deviations can be detected.
Further, as shown in Figs. 4a, b, the proposed procedure is slightly influenced by the variation of μl and α,
while the accuracy of the results significantly decreases for higher values of ξ (see Fig. 4c).

In Fig. 5, similar results are reported for the variation of the base-isolation subsystem damping ratio ζb, the
main structure damping ratio ζ1 and the input PSD G0. As for the previous cases, better agreement is obtained
for values of the tuning ratio ν lower than one. In this case, however, the accuracy of the results decreases for
higher values of ζb (see Fig. 5a) and G0 (see Fig. 5c). On the other hand, as shown in Fig. 5b, no significant
influence of the main structure damping ratio ζ1 on ǫXb

can be observed.
Moreover, as shown in Fig. 5a, the normalized base-isolation displacement variance ǫXb

is greatly influenced
by parameter ζb, meaning that highest control performance can be reached for low-damped base-isolation
subsystems, as expected.

It should be emphasized that, while the iterative SLT procedure takes into account the main structure
damping ratio ζ1, being developed on the complete equivalent linear system described by Eq. (7), the proposed
direct approach is developed on the reduced system in Eq. (11), which is therefore independent of ζ1. The
latter is a remarkable result that makes the proposed procedure valid for hybrid-controlled MDOF structures
as well.
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Finally, it should be underscored that, although some discrepancies between the iterative SLT and the
proposed direct approach have been evidenced from the above analyses, the main purpose of the proposed
procedure is to quickly derive the optimal design parameters of the TLCD device, as it will be shown in the
following.

4 Optimal design parameters of TLCD systems

Once the expression directly linking ζl to the excitation PSD G0 has been introduced, the optimal design
of TLCD devices for base-isolated structures can be effectively performed using the proposed approximate
formulation. As customary, there is no need for an optimization procedure that includes all the TLCD involved
parameters, since μl and α are generally given by structural constraints. Therefore, the only parameters
requested are the frequency tuning ratio ν and the head loss coefficient ξ , or similarly the equivalent damping
ratio ζl . Clearly, the real optimal parameters should be evaluated on the original nonlinear system (6), or
more easily on the equivalent linear equation (7), with ζl estimated through the iterative procedure previously
described. It is worth noting that both these approaches are rather laborious and cannot be pursued in practical
application. In fact, the evaluation of the optimal parameters on the original nonlinear system (6) requires a
computationally demanding MCS, necessary to compute the statistics of the system for different values of
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Fig. 6 Sample of the smooth function φ (ν, ζl)

the design parameters, until a minimum of σ 2
Xb

is reached for a certain set of values of (ν, ξ). Further, the

evaluation of the optimal parameters on the equivalent linear system (7) requires a rather cumbersome numerical
optimization, which must take into account the iterative procedure necessary to estimate the equivalent damping
ratio ζl . On the other hand, Eq. (17a) directly expresses the base-isolation subsystem displacement variance σ 2

Xb

of the reduced equivalent linear system in Eq. (11), as function of the input PSD G0 and the system parameters.
Therefore, a more practical and straightforward approach is to look for the minimum of the smooth function

φ (ν, ζl) =
1

zXb

, (25)

which is independent of G0 and the natural base-isolation system frequency ωb. In Fig. 6, a sample of the
function φ (ν, ζl) is shown.

Note that an analytical expression for the minimum of φ (ν, ζl) could be obtained, considering the nonlinear
system of algebraic equations

∂φ (ν, ζl)

∂ν
= 0 ,

∂φ (ν, ζl)

∂ζl

= 0 (26)

However, this approach would lead to a rather complex expression, and thus, it is here omitted.
A more simple procedure is to directly find numerically the minimum of φ (ν, ζl) in Eq. (25), through

numerical minimization procedure, such as those already implemented in many software packages (see, for
instance, FindMinimum in Mathematica or fminsearch in MATLAB environment). In this way, Eq. (25) provides
the optimal design parameter values νopt and ζl,opt, which can be then used to compute the optimal head loss

coefficient ξopt through Eq. (23) with ξ0

(

νopt, ζl,opt

)

given by Eq. (24).
As it will be shown in the following, application of the above- described procedure results in a significant

reduction in computational effort, leading to optimized values that have almost the same performances as those
obtained through the computationally demanding iterative procedure.

4.1 Investigation on the optimal design parameters

The main advantage of the proposed approach lies in the straightforward evaluation of the optimal values νopt

and ζl,opt, which are independent of input PSD G0 and natural base-isolation frequency ωb. Therefore, this
procedure can be used to create immediately useful design charts, in which optimal parameters can be directly
determined. Specifically, the charts depicted in Fig. 7 show optimal values in terms of ξ0

(

νopt, ζl,opt

)

and νopt,
for different values of α. Further, several values of the base-isolation damping ratio ζb (black lines) and mass
ratio μl (red lines) are depicted. The here proposed charts render the optimization procedure particularly easy.
For instance, suppose that a length ratio α = 0.6 is taken into account, the damping ratio of the base-isolated
system is ζb = 0.02 and the mass ratio, given by structural constraints, is μl = 4%, thus identifying the point A
in Fig. 7b. This design chart directly provides the optimal parameters νopt = 0.964 and ξ0

(

νopt, ζl,opt

)

= 0.192,
which can then be substituted into Eq. (23) to find the optimal head loss coefficient ξopt, once the input PSD
G0 is known.
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At this stage, it is worth noting that the above-described procedure can be still applied even for generic
earthquake excitation, defined in the specific seismic code in terms of spectral acceleration response spectrum,
as it will be shown in the following and further detailed in [7].

Finally, in order to show the accuracy of this proposed simplified approach, a comparison with the optimal
values obtained through the iterative SLT has also been performed. In this respect, considering the previously
introduced reference set of parameters (see Sects. 3.1), which in turn have been varied in a wide range of values,
the particle-swarm optimization (PSO) method [23] has been used to find those values of (ν, ξ) that minimize
the base-isolation displacement variance σ 2

Xb
of the complete linear equations of motion (7). Note that, in this

way, for each iteration of the PSO optimization algorithm the iterative SLT must be applied to evaluate the
equivalent linear damping ratio ζl , as previously discussed. Therefore, in this case, a rather elaborate numerical
procedure must be implemented.

In Table 1, the comparison among the optimal design parameters νopt and ζopt, obtained by the proposed
simplified approach, and those determined through the aforementioned iterative solution, is listed for various
values of the system parameters, together with the corresponding percentage differences. For the results of
this table, the following reference set of values has been used: α = 0.06, μl = 0.05, ζb = 0.05, ζ1 = 0.01,
G0 = 5 × 10−4.

Furthermore, Table 1 also provides the previously defined normalized base-isolation subsystem displace-
ment variance εXb

= σ 2
X0

/σ 2
X0

, where σ 2
X0

is the base-isolation subsystem displacement variance of the system
without TLCD (see Eq. 4). Note that this parameter may also serve as a performance control index for the
base-isolated TLCD-controlled structure, since the lower εXb

is, the more effective the TLCD has been. As
shown in Table 1, very small differences between the two approaches are obtained in terms of optimal tuning
ratio νopt. On the other hand, higher discrepancies are achieved in terms of the optimal head loss coefficient
ξopt, especially for greater values of ζb. However, as highlighted in the last columns of Table 1, very small
differences between the two procedures exist in terms of the parameter εXb

, with the largest error being less
than 5%. Clearly, as expected, the fact that these errors are always negative means that higher control is reached
with optimal parameters evaluated through the iterative procedure.

Nevertheless, since very small discrepancies are obtained in terms of εXb
, and considering the significant

reduction in computational effort achieved with the proposed straightforward procedure, the aforementioned
approach can effectively be regarded as a powerful and reliable tool to be employed for the evaluation of the
optimal design parameters.

5 Analysis of control performance

In the previous analysis, a stationary white noise process has been considered as a model for the base acceler-
ation, with the aim of deriving the optimal design parameters minimizing the computational cost. Clearly, real
earthquake ground motions are neither stationary nor have a constant PSD as in the case of the white noise.
Therefore, to show the influence of the non-stationary nature of real ground motions, in this section the control
performances of the base-isolated structure with attached TLCD device are examined by using time-history
analyses with selected recorded accelerograms.
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Table 1 Comparison of optimal TLCD design parameters νopt and ξopt Reference set of values: α = 0.06, μl = 0.05, ζb = 0.05,

ζ1 = 0.01, G0 = 5 × 10−4

νopt

Proposed
approach

νopt

Iterative
solution

Err. (%) ξopt

Proposed
approach

ξopt

Iterative
solution

Err. (%) εXb

Proposed
approach

εXb

Iterative
solution

Err. (%)

α 0.5 0.949 0.928 − 2.35 8.34 10.01 16.7 0.79 0.78 − 1.03
0.6 0.943 0.919 − 2.51 10.4 12.07 13.7 0.73 0.72 − 1.02
0.7 0.936 0.914 − 2.40 12.7 14.05 9.86 0.68 0.67 − 0.99
0.8 0.928 0.908 − 2.17 15.1 16.58 9.10 0.63 0.62 − 0.77

μl 0.03 0.960 0.937 − 2.43 5.79 6.83 15.2 0.78 0.77 − 1.66
0.05 0.943 0.920 − 2.47 10.4 12.3 15.2 0.73 0.72 − 1.02
0.07 0.927 0.907 − 2.17 15.5 16.9 8.51 0.69 0.69 − 0.86
0.10 0.905 0.887 − 1.98 23.7 24.7 4.06 0.67 0.66 − 0.58

ζb 0.01 0.959 0.941 − 1.98 8.46 7.81 −8.38 0.33 0.32 − 4.13
0.02 0.956 0.939 − 1.85 8.97 9.18 2.25 0.46 0.45 − 2.27
0.05 0.943 0.920 − 2.47 10.4 12.5 16.8 0.73 0.72 − 1.02
0.07 0.932 0.911 − 2.35 11.3 14.1 19.9 0.82 0.82 − 0.69

ζ1 0.0002 0.943 0.921 − 2.39 10.4 12.4 15.6 0.73 0.72 − 0.99
0.002 0.943 0.921 − 2.34 10.4 12.3 15.0 0.73 0.72 − 1.00
0.02 0.943 0.921 − 2.42 10.4 12.3 15.2 0.73 0.72 − 1.02
0.2 0.943 0.918 − 2.69 10.4 12.5 16.7 0.75 0.74 − 1.20

G0 1 × 10−4 0.943 0.943 − 2.40 23.3 27.1 14.0 0.73 0.72 − 1.02

5 × 10−4 0.943 0.920 − 2.44 10.4 12.2 14.8 0.73 0.72 − 1.02

1 × 10−3 0.943 0.919 − 2.52 7.37 8.83 16.6 0.73 0.72 − 1.02

5 × 10−3 0.943 0.920 − 2.47 3.29 3.84 14.2 0.73 0.72 − 1.02
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Fig. 8 Median of the PSDs of the 44 records of the FEMA P-695-FF set

Specifically, results are based on the 44 recorded far-field ground motions of the FEMA P-695-FF set
described in [10], which originate from severe seismic events of moment magnitude between 6.5 and 7.6
recorded on NEHRP site classes C (soft rock) and D (stiff soil). The structural properties of each story unit
are as follows: story mass Mi = 300 × 103 kg, elastic story stiffness Ki = 106 kN/m, damping coefficient
Ci = 2261 kN s/m (corresponding to a damping ratio of the first mode ζ1 = 0.005), and height of each story
hi = 3.0 m. As far as the base-isolation system is concerned, its mass is Mb = 400 × 103 kg, while stiffness
and damping coefficient are assumed to be, respectively, Kb = 40 × 103 kN/m (corresponding to a natural
frequency ωb = 2.5 rad/s) and Cb = 90.44 kN s/m (corresponding to a damping ratio ζb = 0.0028). Further,
in order to properly design the TLCD device to be connected to the base-isolated structure, the one-sided PSD
G Ẍg

(ω) of the FEMA P-695-FF record set has been computed, thus determining the corresponding value of

the input PSD G0 = G Ẍg
(ωb). The median of the PSDs of these records is shown in Fig. 8. For the analysis,

the PSD at ωb is taken, i.e., G0 = 0.002, see Fig. 8. The benchmark structure considered for the numerical
analysis is a base-isolated 20-story shear-type planar frame (n = 20), used in [33]. Therefore, considering a
TLCD with mass ratio μl = 5% and length ratio α = 0.8, the optimal design parameters obtained by proposed
simplified approach are νopt = 0.952 and ξopt = 4.71.
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Fig. 9 Response profiles for hybrid-controlled structure (BI + TLCD—black solid line) and base-isolated structure (BI—red
dashed line) subjected to the 44 FEMA P-695-FF records: circles—median; crosses—16th percentile; squares—84th percentiles;
a peak floor displacement relative to the ground; b peak floor total acceleration; c peak floor interstory drift ratio (color figure
online)

To properly account for the non-classical damping nature of the base-isolated structure and the nonlinear
features of the TLCD device, direct numerical solution of the pertinent equations of motion of the complete
systems (Eqs. (3) and (5)) has been performed using a forth order Runge–Kutta algorithm, using as base
accelerations the FEMA P-695-FF records. In this manner, for each of the FEMA P-695-FF 44 records, the
displacement relative to the ground, total acceleration and interstory drift ratio of the base-isolation subsystem
and story beams have been determined for both the base-isolated structure and the base-isolated structure
controlled by TLCD device.

In this regard, Fig. 9 shows comparison of the profile of the median of the peak response quantities of
the base-isolated structure with (black solid line) and without (red dashed line) TLCD. Further, for the sake
of completeness, the corresponding 16th and 84th percentiles are also depicted. As apparent in these figures,
the optimized TLCD device directly connected to the base-isolation subsystem is able to effectively reduce
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Fig. 11 Response time histories of hybrid-controlled structure (black solid line) and base-isolated structure (red dashed line)
subjected to the a, b Imperial Valley and c, d San Fernando earthquake records; a, c base-isolation displacement relative to
ground; b, d roof displacement relative to base-isolation (color figure online)

the relative displacement demand (Fig. 9a), with a reduction in the median of 16% at the base plate and 22%
at the roof. The total peak accelerations remain almost unaffected by the TLCD, as shown in Fig. 9b. It is
also worth stressing that, since the interstory drift ratios decrease when a TLCD device is connected to the
base-isolation subsystem (see Fig. 9c), this reduction is not achieved at their expense, as may happen when
generally providing supplemental damping to the base-isolation subsystem [17,27].

Analogous results may also be seen from the time histories of all the response quantities. However, from
a thorough analysis of the responses to each of the 44 records, it can be evidenced that there may be cases in
which the TLCD has little effect in reducing the displacement demand of the base-isolation system. In this
respect, two records of the considered FEMA P-695-FF record set, specifically the Imperial Valley and the
San Fernando earthquakes, are depicted in Fig. 10, while comparison among the corresponding response time
histories of the base-isolated benchmark structure with and without TLCD are shown in Fig. 11.

As evident from Fig. 11a, for the Imperial Valley earthquake record, the TLCD device yields a clear
reduction in the peak base-isolation displacement (relative to the ground) of almost 35% . Further, similar
features can be observed for the roof displacement (relative to the base-isolation) (Fig. 11b).

On the other hand, as shown in Figs. 11c, d, a different behavior is noticeable considering the San Fernando
earthquake record. In this case, the TLCD device yields no reduction at all in terms of peak base-isolation
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subsystem displacement, even though it clearly leads to a more rapid dissipation of the free vibration response
(Fig. 11c). This phenomenon is rather common to other similar systems, such as TMD controlled structures
[28] or TMD controlled base-isolated structures [27,29]. Specifically, this is due to the fact that passive control
devices (as TLCDs and TMDs) have little effects on the structural responses in the first few seconds of the
excitation. Therefore, TLCDs cannot appreciably reduce maximum base-isolation subsystem displacement if
the maximum response occurs early in the earthquake record, as in the case of the San Fernando ground motion.
For such excitation, the use of an active TLCD device would be recommended [14,19,32]. Nevertheless, since
the overall effect of the TLCD on the base-isolation system, for the considered FEMA P-695-FF record set,
is a clear reduction in all structural displacement and drift ratio demands, as already highlighted in Fig. 9, this
passive control device appears to be rather effective in decreasing the displacement demand of the base-isolation
subsystem. Moreover, taking into account the previously described TLCD-positive features (easy installation,
low maintenance, mass of water utilizable for firefighting too), and considering that such a device would be
positioned on the ground level, the proposed TLCD-controlled base-isolated structure is simple enough for
practical implementation, when a reduction in the displacement demand of the base-isolation system is required.

6 Conclusions

In this paper, the effect of a tuned liquid column damper (TLCD) device on the seismic response of base-isolated
structures has been investigated. The pertinent equations of motion of a multi-degree-of-freedom (MDOF) base-
isolated structure, controlled at the base through a TLCD, have been introduced. Considering a Gaussian white
noise model of the ground excitation, and under some assumptions regarding the base-isolation subsystem, a
straightforward procedure for the optimal design of such a device has been proposed, aiming at maximally con-
trol the seismic response of the base-isolated structure. In order to prove the reliability of the proposed approach,
comparison with the classical iterative statistical linearization technique (SLT) has been presented, showing a
satisfactory agreement between the two approaches, even when the aforementioned assumptions are removed.

On this base, a direct optimization procedure of the TLCD design parameters has been performed, and
optimal design charts have been introduced as a ready-to-use practical design tool. Comparison with the
optimal parameters obtained by a rather elaborate numerical optimization procedure, based on the classical
iterative SLT, has been carried out, leading to very small discrepancies especially in terms of control per-
formances. Note, however, that a significant reduction in computational effort has been achieved with the
proposed straightforward approach.

To show the influence of the non-stationary nature of real ground motions, the control performance of the
TLCD device connected to the base-isolated structure has been examined, employing time-history analyses
using the 44 recorded ground motions of the FEMA P-695 far-field set, and considering a 20-story benchmark
base-isolated shear-type frame structure. It has been shown that the TLCD device can lead to a 16% reduction
in the median of the peak base-isolation displacement, compared to the base-isolated structure without TLCD.
It is also worth stressing that similar reduction has been reached for other response quantities, such as roof peak
displacement and interstory drift ratio. However, the total acceleration demands remain almost unaffected by
the TLCD. Further, from the time-history analyses it has been found that, although the TLCD has moderate
effect on the peak response in case of earthquake records with early large pulse (as also happens with other
passive control devices), it can add damping to the structure to reduce the subsequent free vibration response.

For sake of simplicity, the main structure and the base-isolation subsystem have been assumed to be linear
elastic. Clearly, many real base-isolation systems may show characteristic nonlinear features. Nevertheless,
the herein developed analysis would be equally applicable by utilizing, for instance, an equivalent linearization
technique to partially take into account for the effect of the nonlinearity.

Finally, considering the advantageous characteristics of the TLCD devices and its overall beneficial effects
in controlling the seismic response of base-isolated structures, TLCDs can be regarded as a practical and
appealing means to reduce the displacement demands of the base-isolation subsystem. In any case, it is hoped
that results presented in this paper provide valuable insights to researchers and engineers contemplating the
use of TLCDs in base-isolated structures.

7 Appendix A

In this appendix, the displacement transfer functions of the equivalent linear equations of motion (7) are
presented. In this respect, the Fourier transform of system (7) yields
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Xb (ω)
[

−ω2 (1 + μl) + 2iω ζbωb + ω2
b

]

− ω2αμlY (ω) − ω2μ1 X1 (ω) = − (1 + μl) Ẍg (ω) ,

− ω2αXb (ω) + Y (ω)
[

−ω2 + 2iω ζlωl + ω2
l

]

= −α Ẍg (ω) ,

− ω2 Xb (ω) + X1 (ω)
[

−ω2 + 2iω ζ1ω1 + ω2
1

]

= −Ẍg (ω) . (27)

Therefore, the base-isolation displacement transfer function (Hb (ω) = Xb (ω) /Ẍg (ω)) can be written as

Hb (ω) =
(1 + μl) + ω2α2μl

c(ω)
+ ω2μl

a(ω)

−b (ω) + ω4α2μl

c(ω)
+ ω2μl

a(ω)

, (28)

while the main structure displacement transfer function (HX1 (ω) = X1 (ω) /Ẍg (ω)) and liquid column
displacement transfer function, respectively, are

HX1 (ω) =
1

a (ω)

[

−1 + ω2 Hb (ω)
]

, HY (ω) =
α

c (ω)

[

−1 + ω2 Hb (ω)
]

(29)

in which

a (ω)=−ω2 + iω2ζ1ω1 +ω2
1, b (ω)=−ω2 (1 + μl)+ iω2ζbωb +ω2

b, c (ω)=−ω2 + iω2ζlωl +ω2
l . (30)

These parameters can be directly used to evaluate the statistics of the equivalent linear system in Eq. (7),
necessary for the iterative SLT.
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