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Abstract. A nonlinear optimization model is developed to transmute a unit
hydrograph into a probability distribution function (PDF). The objective function
is to minimize the sum of the square of the deviation between predicted and actual
direct runoff hydrograph of a watershed. The predicted runoff hydrograph is esti-
mated by using a PDF. In a unit hydrograph, the depth of rainfall excess must be
unity and the ordinates must be positive. Incorporation of a PDF ensures that the
depth of rainfall excess for the unit hydrograph is unity, and the ordinates are also
positive. Unit hydrograph ordinates are in terms of intensity of rainfall excess on
a discharge per unit catchment area basis, the unit area thus representing the unit
rainfall excess. The proposed method does not have any constraint. The nonlinear
optimization formulation is solved using binary-coded genetic algorithms. The
number of variables to be estimated by optimization is the same as the number of
probability distribution parameters; gamma and log-normal probability distribu-
tions are used. The existing nonlinear programming model for obtaining optimal
unit hydrograph has also been solved using genetic algorithms, where the con-
strained nonlinear optimization problem is converted to an unconstrained problem
using penalty parameter approach. The results obtained are compared with those
obtained by the earlier LP model and are fairly similar.

Keywords. Unit hydrograph; rainfall-runoff; hydrology; genetic algorithms;
optimization; probability distribution.

1. Introduction

One of the most common interests of hydrologists is the estimation of direct runoff from
a watershed for specified distribution of rainfall. This can be achieved either by a system
or a physical approach. The system approach is a lump approach and the spatial variation
of rainfall and infiltration over the watershed is ignored. On the other hand, the physical
approach considers spatial variation of rainfall and infiltration. In the lump approach, the

A list of symbols is given at the end of the paper

499



500 Rajib Kumar Bhattacharjya

transformation of rainfall into direct surface runoff can be modelled mathematically using a
transfer function. A unit hydrograph is the most widely used and accepted transfer function
to model the rainfall-runoff process.

Unit hydrograph of a watershed under the assumption of linear system may be defined as
the unit pulse response function of a linear system. The transfer function, unit hydrograph,
of the linear hydrologic system follows two basic principles of linear system operation, i.e.
the principle of proportionality and principle of superposition (Chowet al 1988). A unit
hydrograph is defined as the direct runoff hydrograph resulting from one centimetre (or one
inch) of rainfall excess uniformly distributed over a watershed at a constant rate for an effective
duration (Sherman 1932). The main use of the unit hydrograph (UH) is to determine the
direct runoff hydrograph (DRH) from the effective rainfall hyetograph (ERH). In this paper,
both UH and DRH are considered on a unit watershed area basis. The discrete convolution
relationship between the DRH, UH and ERH can be written as (Chowet al 1988)

Qn =
n6M∑
m=1

PmUn−m+1, (1)

where,Pm is themth ordinate of the ERH,Qn is thenth ordinate of the DRH, andUn−m+1 is
the(n − m + 1)th ordinate of UH. The total number of UH ordinates isN − M + 1, where
M is the number of ERH ordinates, andN is the number of DRH ordinates. Knowing ERH
and DRH, the corresponding UH can be obtained from (1). This process is known as de-
convolution. On the other hand, knowing ERH and UH, one can determine the DRH of the
watershed by using (1).

Many researchers derive unit hydrographs by using convolution relationships. These
include the method of successive approximations (Collins 1939; Barnes 1959; Bender &
Roberson 1961), method of least squares (Singh 1976; Bruen & Dooge 1984), optimization
methods such as linear programming (Deinger 1969; Mays and Coles 1980; Morel-Seytoux
1982; Singh 1988; Prasadet al 1999) and nonlinear programming (Mays & Taur 1982). The
main disadvantage of these methods is that the number of unknowns is equal to the number
of unit hydrograph ordinates. Therefore, for larger time bases these methods may involve
difficulties in estimating the unit hydrograph from the rainfall-runoff data as the number of
unknowns is large.

This study presents a genetic algorithm-based optimization model to transmute unit hydro-
graphs into probability distribution functions. Gamma and log-normal probability distribu-
tions are used in this study. The objective function is to minimize the sum of the squares
of the deviation between predicted and actual direct runoff hydrographs per unit area of the
watershed. The predicted direct runoff hydrograph per unit watershed area is estimated using
a probability distribution function. From the principles of unit hydrograph drawn on a unit
area basis, the depth of rainfall excess must be unity and the ordinates of the unit hydrograph
must be positive. The incorporation of probability distribution function ensures that the depth
of rainfall excess, and the area under the curve is unity, and also that the ordinates of the
unit hydrograph are always positive. Therefore, the proposed methodology does not have any
constraint, and the unconstrained nonlinear optimization formulation is solved using binary-
coded genetic algorithms. The advantage of this method is that the number of unknowns to
be determined by optimization is equal to the number of probability distribution parameters.
It is also not dependent on the number of direct runoff hydrograph ordinates. A comparison
with the previously published models is also presented.
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2. Probability distribution

The probability distribution functions considered in this study are log-normal and gamma
distributions.

2.1 Gamma distribution

A random variablex is said to follow gamma distribution if its probability density function
(PDF) is given by

f (x) = (λ/0(η))(λx)η−1eλx, for x > 0, (2)

whereλ > 0 andη > 0 are the parameters of the distribution, which is also known as scale
and shape parameter respectively, and0(η) is the gamma function given by

0(η) =
∞∫

0

xη−1e−xdx. (3)

Whenη is an integer, then0(η) = (η−1)!. Whenη is not an integer, then the gamma function
has to be evaluated by numerical integration. In this paper, the gamma function is calculated
by Simpson’s method of numerical integration.

2.2 Log-normal distribution

A random variablex is said to be log-normally distributed if its probability density function
is given by

f (x) = (1/xσn

√
2π) exp[−(ln x−µn)

2/2σ 2
n ], for x > 0, (4)

whereµn andσn are the parameters of distribution, also known as scale and shape parameters
respectively.

3. Genetic algorithms

The study of genetic algorithms originated in the mid-1970’s from John H Holland (Holland
1975), and has become a powerful and robust tool for function optimization. It is a search
technique based on the concept of natural selection inherent in natural genetics. Genetic
algorithms combine the “survival of the fittest” principle with genetic operators abstracted
from Nature. One of the advantages of genetic algorithms is that it does not require continuity
or differentiability of either the objective function or the constraints (Deb 2001). The main
difference of genetic algorithms with classical methods is that genetic algorithms work with
coding of the parameter set, and not the parameters themselves and it starts from a population
of points rather than a single point (Goldberg 1989).

Genetic algorithms start with randomly generating an initial population(p) of possible
solutions. Each solution is known as a “chromosome”. These chromosomes are evaluated
based on their performance with respect to the objective function. The population is then
operated by three basic operators in order to produce better offspring for the next generation.
These operators are known as “reproduction”, “crossover” and “mutation”. Reproduction is



502 Rajib Kumar Bhattacharjya

Table 1. Genetic algorithm parameters.

String length(l) 20* (no. of decision variables)
Population size(p) 1·5∗ (l)

Crossover probability(pc) 0·85
Mutation probability(pm) 1/l

Generation(g) 400
Elitism size(E) 5% ofp

a process in which individual strings are copied according to their fitness (Goldberg 1989).
Crossover is considered the partial exchange of corresponding segments between two par-
ent strings to produce two offspring strings. The genetic algorithm picks up two strings from
the population to perform crossover with probabilitypc at a randomly selected point along
the string. Mutation is the occasional introduction of new features into the population pool
to maintain diversity in the population. Random bit-by-bit mutation is used in this study to
generate new solutions. These genetic operators are designed in such a way that they pro-
duce better solutions after each generation. Sometimes, crossover and mutation may produce
inferior solutions, but these solutions die out when passed through the selection operator the
next time. Moreover, to increase the efficiency of the genetic algorithms, it is necessary to
preserve some better solutions for the next generation without applying crossover or mutation
operators. This process is known as elitism. Generally, the betterE percent of the total popu-
lation is preserved for the next generation without applying crossover and mutation operators.
Elitism is important since it allows the solutions to get better over time. These procedures
would continue till the better individual is better enough to suit the objective. The genetic
algorithms parameters used in this study are listed in table 1.

4. Optimization formulation

4.1 Model I. Existing nonlinear optimization formulation

The main objective is to minimize the sum of the squares of deviation between the actual and
predicted direct runoff hydrographs when drawn on a unit watershed area basis. Constraints
are that the area under the unit hydrograph must be unity, and the UH ordinates must be
positive. This may be written as

Minimize
N∑

n=1

e2
n, (5)

subject to (
1·0− 1t

N−M+1∑
r=1

Ur

)
= 0·0, (6)

Ur > 0 where r= 1,2, 3, . . . . . . . . . , N − M + 1, (7)

where,

en =
n6M∑
m=1

PmUn−m+1 − Q/
n, (8)
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en is the deviation between thenth ordinate of the predicted and of the actual direct runoff
hydrograph,Q/

n is thenth ordinate of the actual direct runoff hydrograph.
Equality constraints are difficult to handle using genetic algorithms. Therefore, the equality

constraint, (6), is converted to an inequality constraint by imposing some allowable error(ε).
This may be written as,

ε −
(

1·0− 1t

N−M+1∑
r=1

Ur

)
> 0·0. (9)

Here, the number of unknowns to be determined is equal to the number of unit hydrograph
ordinates, i.e.(N −M + 1). The constrained optimization problem is converted to an uncon-
strained one by penalty parameter approach. The unconstrained optimization problem is
solved using binary-coded genetic algorithms.

4.2 Modified formulation to transmute UH into probability distribution

The main disadvantage of model I is that the number of unknowns are equal to the number
of unit hydrograph ordinates, which is equal to(N − M + 1). A modified formulation is
presented here to transmute unit hydrographs into probability distribution functions. In this
case, the number of unknowns is equal to the probability distribution parameters. Gamma
and log-normal distributions are used in this model.

4.2a Model II. Transmute UH into gamma distribution:The optimization formulation to
transmute a unit hydrograph into gamma distribution may be written as,

Minimize
N∑

n=1

e2
n (10)

where

en =
n6M∑
m=1

PmUn−m+1 − Q/
n, (11)

Un−m+1 = f (x), (12)

wherex = (n − m + 1) ∗1t, f (x) is gamma probability distribution function and is written
as

f (x) = [λ/0(η)](λx)η−1 exp(λx)

4.2b Model III. Transmute UH into log-normal distribution:The optimization formulation
to transmute a unit hydrograph into log-normal distribution may be written as,

Minimize
N∑

n=1

e2
n (13)

where,

en =
n6M∑
m=1

PmUn−m+1 − Q/
n, (14)

Un−m+1 = f (x), (15)
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wherex = (n − m + 1)∗ 1t, f (x) is the log-normal probability distribution function and is
written as

f (x) = (1/xσn

√
2π) exp[−(ln x−µn)

2/2σ 2
n ] .

In model I and II, the number of unknowns, i.e. the probability distribution parameters is only
two. The probability distribution parameters areη andλ in case of Gamma distribution, and
σ 2

n andµn in case of Log-normal distribution. The incorporation of probability distribution
function ensures that the area under the probability distribution function is always unity and
the ordinates are always positive. Therefore, this formulation does not have any constraint. The
unconstrained optimization formulation is solved by using binary-coded genetic algorithms
to estimate the probability distribution parameters.

5. Application of the model

Data derived from the North Potomac River near Cumberland, Maryland, USA corresponding
to two separate storms (Singh 1976; Mays & Coles 1980) are used to evaluate the applicability
of the proposed method. The first storm was of 24 hours duration between April 24 and 26,
1937 and the second was of 8 hours duration on March 15–16, 1942. These two datasets are
given in table 2. These two sets of storm data are used to derive a 4-hour unit hydrograph for
the above mentioned catchment.

Model I is an inverse problem. It optimizes the ordinate of the unit hydrograph by mini-
mizing the difference between the predicted and actual direct runoff hydrograph. The number
of variables to be estimated by optimization are equal to ordinates of the unit hydrograph,

Table 2. Storms for the North branch of the Potomac River, Cumberiand, MD.

Dataset I (Storm A) Dataset II (Storm B)
April 24–26, 1937 March 15–16, 1942

P (inches) Q (inches/hour) P (inches) Q (inches/hour)

0·36 0·001 0·12 0·0005
0·84 0·005 0·48 0·0017
0·92 0·023 0·0049
0·04 0·052 0·0151
0·12 0·083 0·0256
0·24 0·088 0·0238

0·081 0·0174
0·070 0·0136
0·061 0·0111
0·047 0·0091
0·037 0·0073
0·028 0·0060
0·020 0·0046
0·014 0·0035
0·009 0·0024
0·005 0·0016
0·003 0·0011

Note: 1 inches= 25·4 mm; 1 inches/hour= 25·4 mm/h
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Table 3. Probability distribution parameters.

Model II Model III
(gamma distribution) (log-normal distribution)

Dataset λ η µn σ 2
n

4·2190 0·1740 3·2350 0·2590
3·5635 0·1306 3·1280 0·2612

which is 12 for dataset I and 16 for dataset II. Model II and model III are also an inverse
problem which optimizes the probability distribution parameter by minimizing the difference
between the actual and predicted direct runoff hydrograph. In this case, two parameter gamma
and log-normal probability distributions are used for models II and III respectively. Thus, the
optimization problem becomes much smaller than the LP model (Mays & Coles 1980) and
model I, as it needs to optimize only two variables. Table 3 shows the probability distribution
parameters for both the datasets. The probability distribution parameters are optimized using
binary-coded genetic algorithms.

The unit hydrographs derived by different models are shown in figure 1 for dataset I and
in figure 2 for dataset II. The resulting direct runoff hydrographs are shown in figures 3 and
4 for dataset I and II respectively. Figures 1 and 2 show that the unit hydrograph obtained
from model I is similar to that obtained by the LP model (Mays & Coles 1980). Models I, II,
and III do not show any tail oscillations. The UH produced by the LP model has waves on
the tail end of the unit hydrograph, and tail oscillation is not physically acceptable. Mays &
Coles (1980) stated that the fluctuation at the tail of the unit hydrograph can be eliminated
using some constraints in the LP model. They did not consider it as it would increase the
computational complexity of the model. Therefore, models I–III are definitely better than the
LP model, as monotonic declination at the tail of the unit hydrograph is achieved without
imposing any constraints.

All the models have estimated the time-to-peak more or less perfectly for both the datasets.
The unit hydrograph transmuted into gamma distribution (model II) failed to estimate the peak
discharge for both the datasets. On the other hand, the log-normal distribution (model III) is

Figure 1. UH using different models
(dataset I).
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Figure 2. UH using different models
(dataset II).

Figure 3. Comparison of DRH (dataset
I).

Figure 4. Comparison of DRH (dataset
II).

Table 4. Objective function value.

Model Dataset I Dataset II

LP (Singh 1976) 0·015040 0·000612
Model I (existing NLP with GA) 0·020740 0·002733
Model II (gamma distribution) 0·053018 0·025232
Model III (log-normal distribution) 0·084061 0·040000
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Table 5. Comparison of different optimization formulations.

No. of decision No. of
Model variables constraints

LP (Singh 1976) 3N − M + 1 N + 1
Model I (existing NLP) N − M + 1 1
Model II (gamma distribution) 2 Nil
Model III (log-normal distribution) 2 Nil

better in predicting peak flow for both the datasets, but it fails to predict the rising and recession
limbs properly. Table 4 shows the objective function values for the different models. The
lesser the objective function value the better would be the model performance. The objective
function value of LP and model I is almost the same. The objective function value for a unit
hydrograph transmuted into the gamma (model II) and log-normal distribution (model III) is
not significantly better than the model I and the LP model, but is quite comparable. However,
model II is better than model III.

Table 5 shows the comparison of different optimization formulations. Models II and III are
much simpler than the LP model in terms of the number of decision variables, and number of
constraints. In fact, there are no constraints on models II and III. On the other hand model I is
simpler in term of number of decision variables and number of constraints than the LP model.
The main advantage of models II and III is that the number of unknowns to be determined by
optimization is only two, which can be estimated quickly by using any optimization technique,
such as genetic algorithms. Moreover, the unknowns to be determined do not depend upon
the number of DRH ordinates.

6. Conclusions

A simple nonlinear optimization model is developed to transmute a unit hydrograph into a
probability distribution function. Gamma and log-normal probability distribution functions
are used in this study. The nonlinear optimization problem is solved by using genetic algo-
rithms. For the example problems, gamma and log-normal distribution estimate the time-to-
peak properly. Gamma distribution fails to estimate the peak discharge, where as log-normal
distribution predicts peak discharge more or less correctly. The main advantage of the model
is that there are no constraints in the optimization model, and the number of variables to be
estimated by optimization is equal to probability distribution parameters. The performance
of the model is not better than the LP and existing nonlinear optimization model, but is quite
comparable. Moreover, model II is much simpler in terms of the number of variables to be
determined and number of constraints. Therefore, this model may be applied for quick and
approximate estimation of unit hydrographs. However, more rigorous evaluation with differ-
ent datasets is required before the applicability of this approach is fully established.

List of symbols

E elitism size in percentage;
f (x) probability density function for variablex;
M total number of effective rainfall hyetograph ordinates;
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m effective rainfall hyetograph ordinate;
N total number of direct runoff hydrograph ordinates;
n number of the direct runoff hydrograph ordinate;
Pm excess rainfall(L);
p population size;
pc crossover probability;
pm mutation probability;
Q

/
n nth actual direct runoff hydrograph ordinate(L/T );

t time (T );
Ur rth ordinate of unit hydrograph(L/T );
ε permissible error for each constraint;
λ distribution parameter for gamma function (scale parameter);
η distribution parameter for gamma function (shape parameter);
0(x) gamma function for random variablex;
µn distribution parameter for log-normal function (scale parameter);
σn distribution parameter for log-normal function (shape parameter).
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