
Optimal designs for estimating the slope of a regression

Holger Dette

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum, Germany

e-mail: holger.dette@rub.de

Viatcheslav B. Melas

St. Petersburg State University

Department of Mathematics

St. Petersburg, Russia

email: v.melas@pochta.tvoe.tv

Andrey Pepelyshev

St. Petersburg State University

Department of Mathematics

St. Petersburg , Russia

email: andrey@ap7236.spb.edu

October 7, 2008

Abstract

In the common linear regression model we consider the problem of designing experiments
for estimating the slope of the expected response in a regression. We discuss locally optimal
designs, where the experimenter is only interested in the slope at a particular point, and
standardized minimax optimal designs, which could be used if precise estimation of the
slope over a given region is required. General results on the number of support points of
locally optimal designs are derived if the regression functions form a Chebyshev system.
For polynomial regression and Fourier regression models of arbitrary degree the optimal
designs for estimating the slope of the regression are determined explicitly for many cases
of practical interest.
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1 Introduction

Consider the common linear regression model

Yi = θTf(xi) + εi, i = 1, . . . , N(1.1)

where θ ∈ Rm denotes the vector of unknown parameters, f(x) = (f1(x), . . . , fm(x))T is the

vector of regression functions and x varies in the design space X = [a, b] (a < b). In (1.1)

ε1, . . . , εn denote uncorrelated random variables with E[εi] = 0; Var(εi) = σ2 > 0 (i = 1, . . . , N)

and it is assumed that the regression functions are differentiable on Z = [a, b] ∪ [a′, b′], where

[a′, b′] is an interval of interest that can coincide with [a, b] or intersect it.

Most work on optimal experimental design for the regression model (1.1) refers to precise estima-

tion of the vector of unknown parameters or to the estimation of the expected response θTf(x)

[see e.g. Silvey (1980) or Pukelsheim (1993)]. However in many experiments differences in the

response will often be of more importance than the absolute response. If one is interested in a

difference at two points close together, this means that the estimation of the local slope of the

expected response is the main object of inference of the experiment.

The present paper is devoted to the problem of optimal designing experiments for estimating the

slope of the expected response in a regression. Pioneering work in this direction has been done

by Atkinson (1970) and the problem has subsequently been taken up by many other authors

[see e.g. Ott and Mendenhall (1972), Murthy and Studden (1972), Myres and Lahoda (1975),

Hader and Park (1978), Mukerjee and Huda (1985), Mandal and Heiligers (1992), Pronzato

and Walter (1993) and Melas et al. (2003)]. The present paper takes a closer look at design

problems of this type in the context of a one-dimensional predictor, in particular for polynomial

regression and trigonometric regression models. In Section 2 we introduce two optimal design

problems which might be appropriate if one goal of the experiment consists in the estimation of

the slope of a regression, a locally and a standardized minimax optimality criterion. While the

locally optimal design refers to the estimation of the slope at a particular point, the standardized

minimax optimal design is appropriate, if the experimenter is interested in the estimation of the

slope over a certain range. We state a general result regarding the number of support points

of locally optimal designs for estimating the slope if the regression functions form a Chebyshev

system. Section 3 discusses the polynomial regression model in more detail. In particular, it

is shown that the optimal design problem for estimating the slope of the expected response in

a polynomial regression can be reduced to the problem of estimating individual coefficients in

this model [see Sahm (1998) or Dette et al. (2004)]. Using these results it is possible to derive a

rather complete and explicit description of the optimal designs for the estimation of the slope for

arbitrary degree of the polynomial. The case of trigonometric regression is discussed in Section

4. We explicitly determine locally and standardized maximin optimal designs for estimating the

slope of the expected response in these models. Finally, all technical proofs are deferred to an

Appendix in Section 5.
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2 Optimal designs for estimating the slope

Consider the linear regression model (1.1). An approximate design is a probability measure on

the interval [a, b] with finite support [see e.g. Kiefer (1974)], say

ξ =

(
x1 . . . xk
w1 . . . wk

)
,(2.1)

where the support points x1, . . . , xk give the positions in the interval [a, b] at which observations

are taken and the weights give the relative proportions of total observations taken at the corre-

sponding support points. If N observations can be performed by the experimenter, a rounding

procedure is applied to obtain the samples sizes Ni ≈ wiN at the experimental conditions xi,

i = 1, 2, . . . , k, subject to N1 + N2 + . . . + Nk = N [see Pukelsheim and Rieder (1992)]. In this

case the covariance matrix of the least squares estimate θ̂ is approximately given by the matrix
σ2

N
M−1(ξ), where

M(ξ) =

∫ b

a

f(x)fT (x)dξ(x)(2.2)

denotes the information matrix of the design ξ. If the estimation of the expected response

θTf(x) or the parameter θ is the main goal of the experiment, an optimal design minimizes

(or maximizes) a specific convex (or concave) function of the information matrix and there are

numerous optimality criteria proposed in the literature, which can be used for the determination

of efficient designs [see e.g. Silvey (1980) or Pukelsheim (1993)]. Note that the least squares

estimate for the slope of the expected response θTf ′(x) =
∑m

j=1 θjf
′
j(x) at the point x ∈ X is

given by θ̂Tf ′(x). Consequently, if the data is collected according to an approximate design, then

the variance of θ̂Tf ′(x) is approximately given by

Var(θ̂Tf ′(x)) ≈ σ2

N
Φ(ξ),(2.3)

where

Φ(ξ) =

{
(f ′(x))TM−(ξ)f ′(x) if f ′(x) ∈ Range (M(ξ))

∞ else
(2.4)

Therefore a design, say ξ∗x, minimizing Φ(ξ) in the class of all (approximate) designs satisfying

f ′(x) ∈ Range (M(ξ)) is called locally optimal design for estimating the slope of the expected

response, where the term “locally” reflects the fact that we are minimizing the variance of the

least squares estimate of the slope of the expected response at the particular point x ∈ X . On

the other hand, if the interest of the experimenter lies in the slope of the expected response

over a certain region, say [a′, b′], a maximin approach might be more appropriate [see e.g. Dette

(1995), Müller (1995) or Müller and Pázman (1998)]. To be precise, recall that ξ∗x denotes the
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locally optimal design for estimating the slope of the expected response at the point x, then we

call a design ξ∗ standardized minimax or minimax efficient optimal design for the estimation of

the slope of the expected response if ξ∗ minimizes the expression

eff(ξ) = max
x∈[a′,b′]

(f ′(x))TM−(ξ)f ′(x)

(f ′(x))TM−(ξ∗x)f
′(x)
∈ [1,∞).(2.5)

In nearly all cases of practical interest, standardized optimal designs have to be determined

numerically [see for example Müller (1995), Dette et al. (2003) and Dette and Braess (2007)].

Note also that the calculation of the standardized optimal designs for the estimation of the slope

of the expected response requires the determination of the locally optimal designs, for which

analytical results will be derived in the following sections in the case of a polynomial and the

trigonometric regression model (for the last named model we also derive explicit standardized

minimax optimal designs). Before we consider these special cases, we present a general result

regarding the number of support points of locally optimal designs if the regression functions

form an extended Chebyshev system of second order. Recall that the functions f1(x), . . . , fm(x)

generate an extended Chebyshev system of order 2 on the set Z = [a, b] ∪ [a′, b′] if and only if

U∗
(

1 . . . m

x1 . . . xm

)
> 0

for all x1 ≤ · · · ≤ xm (xj ∈ X ; j = 1, . . . ,m) where equality occurs at at most 2 consecutive

points xj, the determinant U∗ is defined by

U∗
(

1 . . . m

x1 . . . xm

)
= det(f(x1), . . . , f(xm))

and the columns f(xi), f(xi+1) are replaced by f(xi), f
′(xi+1) if the points xi and xi+1 coincide.

Note that under this assumption any linear combination

m∑
i=1

αifi(x)

(α1, . . . , αm ∈ R,
∑m

i=1 α
2
i 6= 0) has at most m− 1 roots, where multiple roots are counted twice

[see Karlin and Studden (1966), Ch. 1]. Because {f1(x), . . . , fm(x)} is also a Chebyshev system

on the interval [a, b], it follows that there exist m points, say a ≤ x∗1 < · · · < x∗m ≤ b and

coefficients α∗1, . . . , α
∗
m such that the “polynomial” α∗Tf(x) =

∑m
j=1 α

∗
jfj(x) satisfies

|α∗Tf(x)| ≤ 1 ∀x ∈ [a, b](2.6)

α∗Tf(x∗j) = (−1)j j = 1, . . . ,m.(2.7)

The function α∗Tf(x) (which is not necessarily unique) is called (generalized) Chebyshev poly-

nomial, while the points x∗1, . . . , x
∗
m are called Chebyshev points. Note that the Chebyshev
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polynomial and the Chebyshev points are determined uniquely under the condition that the

constant function is an element of span(f1, . . . , fm) [see Karlin and Studden (1966), Ch. 1]. The

following result specifies the number of support points of the locally optimal design for estimating

the slope of the expected response, if the regression functions form a Chebyshev system. The

proof is deferred to the Appendix.

Theorem 2.1. Assume that the regression functions in model (1.1) form an extended Chebyshev

system of second order on the interval [a, b], then the number of support points of any locally

optimal design for estimating the slope of the expected response is at least m − 1. Moreover, if

the number of support points is m, then these points must be Chebyshev points. If the constant

function is an element of span(f1, . . . , fm) then the number of support points is at most m.

3 Optimal designs for estimating the slope of a polyno-

mial regression

It is well known that the functions f1(x) = 1, f2(x) = x, . . . , fm(x) = xm−1 form an extended

Chebyshev system of order two on any arbitrary nonnegative interval [see Karlin and Studden

(1966)]. For this choice the model (1.1) reduces to the common polynomial regression

Yi =
m∑
j=1

θjx
j−1
i + εi; i = 1, . . . , N,(3.1)

for which locally optimal designs for estimating the slope of the expected response have been

discussed by Murthy and Studden (1972) for the quadratic and cubic model. In this section we

will derive a general solution of this design problem for any m ≥ 3 reducing the optimization to

a design problem for estimating individual coefficients as considered by Sahm (1998) and Dette

et al. (2004). For this purpose we denote by ej = (0, . . . , 0, 1, 0, . . . , 0)T the jth unit vector in Rm

and call a design minimizing eTjM
−(ξ)ej in the class of all designs satisfying ej ∈ Range(M(ξ)) an

ej-optimal design or optimal design for estimating the coefficient θj in the polynomial regression

model (3.1). The following result relates an optimal design problem for estimating the slope of

the expected response in a polynomial regression to an ej-optimal design problem and is proved

in the Appendix.

Theorem 3.1. A design

ξ =

(
x1 . . . xk
w1 . . . wk

)
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is locally optimal for estimating the slope of expected response at the point x in the polynomial

regression model (3.1) on the interval [a, b] if and only if the design

η =

(
x1 − x . . . xk − x
w1 . . . wk

)
(3.2)

is an e2-optimal for the polynomial regression model (3.1) on the interval [a− x, b− x].

We can now apply the results of Sahm (1998) and Dette et al. (2004) to derive the locally

optimal designs for estimating the slope of the expected response in the polynomial regression

model (3.1). To be precise, we consider the sets

Ai = (−νm−1−i, νi+1) ; i = 0, . . . ,m− 2,(3.3)

B1,i = −B2,i = [νi, ρi] ; i = 1, . . . ,m− 2,

Ci = (ρi,−ρm−1−i) ; i = 1, . . . ,m− 2,

where νm−1 =∞ and ν1 < ν2 < . . . , νm−2 are the roots of the first derivative of the polynomial

(x+ 1)Um−2(x),

and Uj(x) = sin((j + 1) arccosx)/ sin(arccosx) is the j-th Chebyshev polynomial of the second

kind [see Szegö (1975)]. The points ρi are obtained from these roots via the transformation

ρi = νi + (1 + νi)
1− cos(π/(m− 1))

1 + cos(π/(m− 1))
.

Define ui = cos(π i−1
m−1

) (i = 1, . . . ,m) as the extreme points of the mth Chebyshev polynomial

of the first kind Tn(x) = cos((m− 1) arccosx), xi = b−d
2
ui + b+d

2
(i = 1, . . . ,m) and set

x̂ij =
b− a

2
b̂ij +

b+ a

2
,

i = 1, . . . ,m; j = 1, . . . ,m− 2 ;

xij =
b− a

2
bij +

b+ a

2
,

where

b̂ij = −(1 + x)(vj − ui)
vj+1

+ x,

i = 1, . . . ,m ; j = 1, . . . ,m− 2 .

bij =
(1− x)(vj + ui)

vj+1

+ x,

Finally, let L1(x), . . . ,Lm(x), L̂1j(x), . . . , L̂mj(x) and L1j(x), . . . ,Lmj(x) denote the Lagrange

interpolation polynomials with knots x∗1, . . . , x
∗
m; x1j, . . . , xmj and x̂1j, . . . , x̂mj, respectively (j =
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1, . . . ,m− 2), then we consider the designs

ξ∗ =

(
x∗1 . . . x∗m
w∗1 . . . w∗m

)
(3.4)

ξ̂j =

(
x̂1j . . . x̂m−1,j

ŵ1j . . . ŵm−1,j

)
; j = 1, . . . ,m− 2,(3.5)

ξj =

(
x1j . . . xm−1,j

w1j . . . wm−1,j

)
; j = 1, . . . ,m− 2,(3.6)

where x∗i = b−a
2

cos( i−1
m−1

π)+ a+b
2

(i = 1, . . . ,m−1) are the Chebyshev points on the interval [a, b]

and the weights are given by

w∗i =
|L′i(x)|∑m
k=1 |L′k(x)|

; i = 1, . . . ,m,(3.7)

ŵij =
|L̂′ij(x)|∑m
k=1 |L̂′kj(x)|

; i = 1, . . . ,m; j = 1, . . . ,m− 2,(3.8)

wij =
|L′ij(x)|∑m
k=1 |L

′
kj(x)|

; i = 1, . . . ,m; j = 1, . . . ,m− 2,(3.9)

respectively (note that wmj = ŵmj = 0). An application of the results of Sahm (1998) and Dette

et al. (2004) now yields the following result.

Corollary 3.2. For each x ∈ (−∞,∞) the locally optimal design for estimating the slope of the

expected response at the point x in the polynomial regression model (3.1) is unique.

(i) If

a+ b− 2x

b− a
∈

m−2⋃
i=1

Ai,

then the optimal design is given by the design ξ∗ defined in (3.4).

(ii) If for some (j = 1, . . . ,m− 2)
a+ b− 2x

b− a
∈ B1,j,

then the optimal design is given by the design ξ̂j defined in (3.5).

(iii) If for some j = 1, . . . ,m− 2
a+ b− 2x

b− a
∈ B2,j,

then the optimal design is given by the design ξj defined in (3.6).
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(iv) If for some j = 1, . . . ,m− 2

a+ b− 2x

b− a
∈

m−2⋃
i=0

Cj,(3.10)

then the optimal design is supported at m − 1 points including the boundary points of the

interval [a, b].

Remark 3.3. If condition (3.10) is satisfied, the optimal design for estimating the expected

response of the polynomial regression cannot be found explicitly. Dette et al. (2004) provided a

numerical procedure based on the implicit function theorem for the construction of ek-optimal

designs in polynomial regression models, which can easily be adapted to the problem of designing

experiments for estimating the slope of the expected response in a polynomial regression. The

details are omitted for the sake of brevity.

Example 3.4. Consider the case of a quadratic regression, that is m = 3, and [a, b] = [−1, 1].

In this case we have

ν1 = −1

2
, ν2 =∞, ρ1 = 0 ;

A0 =
(
−∞,−1

2

)
, A1 =

(1

2
,∞
)

;

B1,1 =
(
− 1

2
, 0
]
, B2,1 =

[
0,

1

2

)
, C1 = ∅.

By Corollary 3.2 the unique optimal design for estimating the slope of the quadratic regression

is given by

ξ∗ =

(
−1 0 1

1
4
− 1

8
x 1

2
1
4

+ 1
8
x

)
if x ∈ A1 ∪ A2 = R \ [−1

2
, 1

2
], by

ξ̂ =

(
2x− 1 1

1
2

1
2

)
,

if x ∈ B1,1 = [−1
2
, 0] and by

ξ =

(
−1 1− 2x
1
2

1
2

)
if x ∈ B2,1 = [0, 1

2
]. This case was obtained independently by a direct calculation in Fedorov and

Müller (1997).
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Example 3.5. For the cubic regression model, that is m = 4, on the interval [−1, 1] we have

ν1 = −1
3
−
√

7
6
, ν2 = −1

3
+
√

7
6
, ν3 =∞

ρ1 = −1−2
√

7
9

, ρ2 = −1+2
√

7
9

which gives

A0 =
(
−∞,−1

3
−
√

7

6

)
, A1 =

(1

3
−
√

7

6
,−1

3
+

√
7

6

)
, A2 =

(1

3
+

√
7

6
,∞
)

;

B1,1 =
[
− 1

3
−
√

7

6
,−1

9
− 2
√

7

9

]
, B1,2 =

[
− 1

3
+

√
7

6
,−1

9
+

2
√

7

9

]
;

B2,1 =
[1

9
+

2
√

7

9
,
1

3
+

√
7

6

]
, B2,2 =

[1

9
− 2
√

7

9
,
1

3
−
√

7

6

]
;

C1 =
(
− 1

9
− 2
√

7

9
,
1

9
− 2
√

7

9

)
, C2 =

(
− 1

9
+

2
√

7

9
,
1

9
+

2
√

7

9

)
.

Consequently, if x ∈ A1 ∪ A2 ∪ A3 the optimal design for estimating the slope of the expected

response in the polynomial regression is supported at the Chebyshev points x∗1 = −1, x∗2 =

−1
2
, x∗3 = 1

2
, x∗4 = 1 with weights given in (3.7). If x ∈ B1,1 then the locally optimal design for

estimating the slope at the point x has three support points, i.e.

x∗1 = −1, x∗2 =
−1 +

√
7 + 3x

4−
√

7
, x∗3 =

5 +
√

7 + 9x

4−
√

7
.

If x ∈ B1,2 then the support points of the locally optimal design are given by

x∗1 = −1, x∗2 =
−1−

√
7 + 3x

4 +
√

7
, x∗3 =

5−
√

7 + 9x

4 +
√

7
.

If x ∈ B2,1 then the locally optimal design has 3 support points, i.e.

x∗1 =
−5−

√
7 + 9x

4−
√

7
, x∗2 =

1−
√

7 + 3x

4−
√

7
, x∗3 = 1.

Finally, if x ∈ B2,2 then

x∗1 =
−5 +

√
7 + 9x

4 +
√

7
, x∗2 =

1 +
√

7 + 3x

4 +
√

7
, x∗3 = 1.

These results have also been obtained independently by Murthy and Studden (1972) by a direct

calculation. If x ∈ C1 ∪ C2 then there is no explicit form, but the optimal design for estimating

the slope of the expected response at the point x is supported at the two boundary points and

a third point, which can be determined by means of a Taylor expansion as described in Dette

et al. (2004).
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We conclude this section with a brief discussion of the standardized minimax designs in the

quadratic and cubic regression model which have to be found numerically in nearly all cases of

practical interest. Here we take [a′, b′] =[a, b]. Müller and Pázman (1998) determined the stan-

dardized minimax optimal design for estimating the slope in the quadratic regression explicitly

as

ξ∗st =

(
−1 0 1

α/2 1− α α/2

)
(3.11)

where α = 23 − 10
√

5 ≈ 0.64. A numerical calculation shows that the standardized minimax

optimal design for estimating the slope in the cubic regression is given

ξ∗st =

(
−1 −0.39 0.39 1

0.23 0.27 0.27 0.23

)
.(3.12)

We note that the standardized minimax optimal designs (3.11) and (3.12) are very similar to the

D-optimal designs for a quadratic or cubic regression on the interval [−1, 1], respectively.

4 Optimal design for estimating slopes in Fourier regres-

sion

In the context of trigonometric regression models

Yi = θ0 + θ1 sinxi + θ2 cosxi + · · ·+ θ2k−1 sin(kxi) + θ2k cos(kxi) + εi , i = 1, . . . , N(4.1)

the locally and standardized minimax optimal design for estimating the slope of the expected

response can be found analytically in most cases, if the design space is given by the interval

[0, 2π). These models are widely used to describe periodic phenomena [see e.g. Lestrel (1997),

Lau and Studden (1985), Wu (2002) or Zen and Tsai (2004) among others] and optimal design

problems for estimating the parameter θ = (θ0, . . . , θ2k) have been discussed by several authors.

For the determination of optimal design for estimating the slope of the expected response in the

Fourier regression model (4.1) we note that the functions 1, sinx, cosx, . . . , sin(kx), cos(kx) form

a Chebyshev system on the interval [0, 2π) and define [x + t]+ = x + t + 2πs, where s is the

(unique) integer such that x+ t+ 2πs ∈ [0, 2π).

Theorem 4.1. The locally optimal design for estimating the slope of the expected response in

the trigonometric regression model (4.1) is given by

ξ∗x =

(
[x1 − x]+ . . . [x2k − x]+

w1 . . . w2k

)
,(4.2)
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where xi = π(2i− 1)/2k (i = 1, . . . , 2k), and weights are defined by

wi =
|Ai|∑2k
j=1 |Aj|

i = 1, . . . , 2k

Ai = eTi F
−1f ′−(0), F = (fi(xj)(−1)j)2k

i,j=1 and f−(x) = (1, sinx, cosx, . . . , sin((k − 1)x), cos((k −
1)x), sin(kx))T . Moreover, Φ(ξ∗x) = k2.

Theorem 4.2. Any equispaced design ξ∗ with n ≥ 2k+1 support points is standardized minimax

optimal for estimating the slope of the expected response in the trigonometric regression model

(4.1). Moreover, the maximal efficiency is given by

ck(ξ
∗) =

3k

(k + 1)(2k + 1)
.

5 Appendix: Proofs.

Let c ∈ Rm and recall that a c-optimal design minimizes the expression cTM−(ξ)c in the class of

all designs for which c ∈ Range(M(ξ)). Note that the choice c = f ′(x) yields the locally optimal

design problem for the estimation of the slope of the expected response. The following result is

a reformulation of the equivalence theorem for c-optimality [see Pukelsheim (1993)].

Lemma 5.1. If f1, . . . , fm are continuous functions and form a Chebyshev system on the interval

[a, b], then the design ξ given by (2.1) is c-optimal if and only if there exists a vector q ∈ Rm,

such that the generalized polynomial qTf(x) satisfies the following conditions

(i) qTf(xi) = (−1)i i = 1, . . . ,m

(ii) |qTf(x)| ≤ 1 for all x ∈ [a, b]

(iii) Fw = hc

for some h > 0, where F = (fi(xj))
m,k
i,j=1 and w = (w1, . . . , wk). Moreover, cTM−(ξ)c = 1/h2.

Proof of Theorem 2.1. Assume that ξ is a locally optimal design for estimating the

slope of the expected response at the point x which has the form (2.1), where the num-

ber of support points satisfies k ≤ m − 2. We only consider the case x /∈ supp(ξ)

and k = m − 2 (the case k < m − 2 or x ∈ supp(ξ) is treated similarly). From

Lemma 5.1 it follows for the vector α = (w1, . . . , wm−2, 0) ∈ Rm+1 and the matrix

F̃ = (f(x1)(−1), f(x2), . . . , f(xm−2)(−1)m−2, f(x)) ∈ Rm×m−1 that

F̃α = h f ′(x),
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which implies

det (f(x1), . . . , f(xm−2), f(x), f ′(x)) = 0.

However this condition contradicts the property that the functions f1, . . . , fm generate an ex-

tended Chebyshev system of second order on the set [a, b]. Consequently (using similar arguments

for the other cases), it follows that k ≥ m − 1. If k = m we obtain from part (i) and (ii) of

Lemma 5.1 that x1, . . . , xm are Chebyshev points. Now, let us assume that the constant func-

tion is an element of span(f1, . . . , fm). Then the points with properties (i) and (ii) are uniquely

determined. It means that there are no optimal designs with k > m support points.

2

Proof of Theorem 3.1. Obviously we have

f(x+ t) =


1

x+ t
...

(x+ t)m−1

 = Lxf(t),(A.1)

where Lx is a lower triangular matrix which does not depend on t and f(t) = (1, t, . . . , tm−1)T .

Consequently it follows that
∂

∂t
f(x+ t) = Lxf

′(t),

which implies f ′(x) = Lxf
′(0). This yields for the information matrices of the designs ξ and η

M(ξ) =
k∑
i=1

wif(xi)f
T (xi) = Lx

{
k∑
i=1

wif(xi − x)fT (xi − x)

}
LTx = LxM(η)LTx ,(A.2)

and for the criterion Φ(ξ)

Φ(ξ) = (f ′(x))TM−(ξ)f ′(x) = (f ′(0))TM−(η)f ′(0).(A.3)

If ξ is locally optimal for estimating the slope of the expected response in the polynomial regres-

sion model (3.1) it follows from the identity (A.3) that the corresponding design η defined by

(3.2) is e2-optimal for the polynomial regression model (3.1) on the interval [a − x, b − x] and

vice versa, which proves the assertion of Theorem 3.1. 2

Proof of Theorem 4.1. Let ξ denote a design with masses w1, . . . , wn at the points x1, . . . , xn
and η a design with the same masses at the points x1 − x, . . . , xn − x, then a straightforward

calculation yields ∫ 2π

0

f(x)fT (x)dξ(x) = B

∫ 2π

0

f(x)fT (x)dη(x)BT ,

12



where B is a (2k + 1)× (2k + 1) block diagonal matrix with blocks 1, B1, . . . , Bk, such that

Bl =

(
cos(lx) − sin(lx)

sin(lx) cos(lx)

)
.(A.4)

Consequently it follows from the identity (f ′(x))TB−1 = (0, 1, 0, 2, 0, . . . , k, 0)T ∈ R2k+1 that

the locally optimal design for estimating the slope of the expected response in the trigonometric

regression at the point x can be obtained from the locally optimal design for estimating the slope

at the point 0 using the transformation xi → xi − x (mod 2π). A straightforward calculation

shows that for any α the function

cos[k(x− α)] = cos(kα) cos(kx) + sin(kα) sin kx

is the unique trigonometric polynomial of degree k, which attains the value 1 at the point α and

attains its maximal absolute value 1 over the interval [0, 2π) at n ≥ 2k points. It therefore follows

from Lemma 5.1 that the locally optimal design ξ∗0 for estimating the slope of the trigonometric

regression at the point 0 is supported at the points xi = [iπ/k+α]+ (i = 1, . . . , 2k) for some α ∈ R.

We define ξ0 as the design with the same masses as the design ξ∗0 at the points xi = [2π − xi]+
(i = 1, . . . , 2k), then we obtain from Lemma 5.1 that the design ξ0 is also locally optimal for

estimating the slope of the expected response in the trigonometric regression at the point 0.

Consequently a further optimal design is given by the convex combination 1
2
(ξ∗0 + ξ0). Because

this design has at most 2k + 1 support points (by Lemma 5.1) it follows that ξ∗0 = ξ0, α = π
2k

,

which implies xi = (2i − 1)π/(2k) (i = 1, . . . , 2k). The formula for the weights is obtained

from Lemma 5.1, while a direct calculation shows that the quantity h in Lemma 5.1 is given by

h = 1/k, which implies Φ(ξ) = k2. 2

Proof of Theorem 4.2. Let ξ∗ denote an equispaced design with n ≥ 2k + 1 support points.

It follows from Pukelsheim (1993) that the information matrix of the design ξ∗ is given by

M(ξ∗) = diag(1, 1/2, . . . , 1/2) ∈ R2k+1×2k+1 and the efficiency for estimating the slope at the

point x is given by ck = 3k/((k+ 1)(2k+ 1)) for any x. Assume that b′−a′ ≥ 2π(1− 1/(2k+ 1))

and assume that there exists a design ξ with

max
x∈[a′,b′]

(f ′(x))TM−(ξ)f ′(x)

k2
<

1

ck
.

Now consider the matrix A = diag(0, 1, 1, . . . , k2, k2) and the design

η∗ =

(
x∗1 + a′ . . . x∗2k+1 + a′

1
2k+1

. . . 1
2k+1

)
with x∗i = (i − 1)2π/(2k + 1) i = 1, . . . , 2k + 1. We obtain by a direct calculation that η∗ is

a D-optimal design for the trigonometric regression model on the interval [a′, a′ + 2π], that is

M(η∗) = diag(1, 1/2, . . . , 1/2), and therefore∫
f ′(x)(f ′(x))Tdη∗(x) = (1/2)A.
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This yields

1

ck
>

1

k2
max
x∈[a′,b′]

(f ′(x))TM−1(ξ)f ′(x) ≥ 1

k2
tr

{
M−1(ξ)

∫
f ′(x)(f ′(x))Tdη∗(x)

}
(A.5)

=
1

2k2
tr(M−1(ξ)A) ≥ 1

k2
tr(A) =

1

ck
.

Here the last inequality follows from the fact that the design ξ∗ minimizes the function

tr(M−1(ξ)A) in the class of all approximate designs with minimal value 2tr(A) [this can be

proved by a standard application of the equivalence theorem for linear optimality criteria; see

Fedorov (1972)]. Because of the contradiction in (A.5) the assertion of Theorem 4.2 follows. 2
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