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1 Introduction

During the last decades hierarchical models such as random coefficient regression have become
popular in many statistical applications. These models account for individual effects of sub-
jects or observational units under investigation by the assumption that these subjects or units
come form a larger population and that their individual variability is governed by a random
source. Originally such models were introduced in the biosciences, in particular, in plant and
animal breeding (see for example Henderson (1984)) for selection purposes. More recently,
working groups evolved in medical and pharmaceutical research (PAGE: Population Approach
Group in Europe www.page-meeting.org/, PODE: Population Optimum Design of Experiments
www.maths.qmul.ac.uk/ bb/PODE/PODE.html), which are mainly concerned with the mean (pop-
ulation) parameters in hierarchical models. Moreover, this hierarchical approach is also knwon
as panel models in sociological research and econometrics and may be found in the context of
structural equation modelling in psychology. Even in official statistics this concept appears in
the methodology of small area estimation (see e. g. Rao (2003)).

The problem of estimation of the mean population parameters (“typical response”) has been
widely considered in the literature (see Henderson et al. (1959), Isotalo et al. (2011)). For the
estimation (“prediction”) of the individual random effects the common solution is a Bayesian
approach (see for example Pukelsheim (1993)), if the population parameters are assumed to be
knwon a priori. This assumption is quite unlikely to be appropriate for most populations in real
appplications, where the population parameters will be unknown as well.

The lacking knowledge of the population parameters makes the analysis substantially more
difficult. A straightforward possibility is to use empirical Bayes estimators as proposed by Bryk
and Raudenbush (1992) (see also Molenberghs and Verbeke (2001)). Alternatively the individual
random parameters may be estimated using Henderson’s mixed-model equations (see Henderson
(1963)), which can occasionally coincide with the previous approach.

While there is a reasonable literature on optimal designs for population mean parameters (see
e. g. Entholzner et al. (2005), Fedorov and Hackl (1997), Liski et al. (2002)) hardly any work has
been done to obtain designs, which are optimal for the prediction of the individual parameters:
In their pioneering paper Gladitz and Pilz (1982) established that Bayesian optimal designs are
also optimal for the prediction of individual effects. Their result required the prior knowledge of
the “typical” response mentioned before. However, this crucial assumption seems to have been
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overlooked in the aftermath, which led to the common believe that concerning optimal designs
for prediction everything had been solved by Gladitz and Pilz (1982).

As a rare exception Fedorov and Hackl (1997) made a clear distinction between the two situa-
tions with and without prior knowledge of the population mean parameters. In their monograph
they claim that the design, which is optimal in the associated model without random effects,
retains its optimality for the estimation of the individual parameters in the hierarchical model.
This statement seems to be motivated by a conditional approach, in which the individual re-
sponse is estimated by the observations of the corresponding individual only, neglecting the fact
that the individual effects are assumed to be random and stem from a common population. Some
other related findings are given by Candel (2009), who considered optimal designs for prediction
of random effects in the particular case of polynomial growth curves.

As often in live the truth lies somewhere in between: In the following we will see that the
prediction of the individual parameters leads to compound criteria, which constitute a compro-
mise between the Bayesian optimal design and the optimal design for the model without random
effects.

Here we will mainly focus on the IMSE (integrated mean squared error) criterion, which
aims at minimizing the expected quadratic deviation of the predicted response curves from the
corresponding actual individual curves, averaged over all subjects or units. As an alternative we
also introduce a modification of the most popular D-criterion to adapt it to the needs of predic-
tion, if the model may contain also some parameters, which are fixed across all individuals. The
modified D-criterion can then be interpreted to aim at minimizing the volume of the prediction
ellipsoid within the relevant subspace. In both cases we end up with a compound criterion (see
Cook and Wong (1994)), i. e. a weighted average of the fully Bayesian criterion and the criterion
related to the model without random effects.

The paper is organized as follows: In the second section we specify the model, present the
prediction for the individual random effects and develop the mean squared error matrix for
the prediction. In the third section design criteria are introduced and analytical results are
presented for the characterization of optimal designs for prediction. These results are illustrated
by an example in Section 4, which ahows that the performance of the Bayesian optimal design
may break down in some situations. Section 5 provides some tools for the construction of
optimal designs by means of in- and equivariance considerations and some illustrative examples.
We conclude the paper with some discussion in the final Section 5. Proofs are deferred to an
Appendix.

2 Model Specification and Prediction

For random coefficient regression the observations are specified by a hierarchical model. First,
on the individual level the jth observation Yij of individual i is given by

Yij = f(xij)>βi + εij (1)

for j = 1, ..,mi and i = 1, .., n, where mi is the number of observations at individual i, n is the
number of individuals, and f = (f1, ..., fp)> is a set of known regression functions. The values
xij of the explanatory variables may range over the experimental region X . The observational
errors εij are assumed to be centered with zero mean and homoscedastic and uncorrelated with
common variance σ2 > 0.

Second, on the population level it is supposed that the individual parameters βi = (βi1, ..., βip)>

are realizations from a common distribution with unknown population mean E (βi) = β =
(β1, ..., βp)> and a p× p population covariance matrix Cov (βi) = σ2D.



Moreover, all individual parameters βi and all observational errors εij are assumed to be
uncorrelated.

To simplify the presentation we will restrict ourselves here to random coefficient regression
models, in which all individuals are observed under the same regime, i. e. all individuals i have the
same number mi = m of observations at the same values xij = xj of the explanatory variables.
Then the individual vector Yi = (Yi1, ..., Yim)> of observations can be specified by the individual
linear model equation in vector notation,

Yi = Fβi + εi (2)

with identical individual design matrices F = (f(x1), ..., f(xm))> across all individuals. Here εi =
(εi1, ..., εim)> is the individual vector of observational errors with covariance matrix Cov (εi) =
σ2Im, where Ik denotes the k × k identity matrix. By the hierarchical structure Cov (Yi) =
Cov (Fβi) + Cov (εi) = σ2(Im + FDF>), which produces correlations between the observations
within an individual and can account for the specific properties of each individual.

Alternatively, by separating the random effects from the population mean the individual
vector Yi of observations can be written as

Yi = Fβ + Fbi + εi , (3)

where bi = βi − β is the individual effect compared to the population mean. The contribution
of the last two terms in (3) can then be interpreted as variance components.

The full vector Y = (Y>1 , ...,Y
>
n )> of the observations of all individuals can finally be

expressed by the model equation

Y = (In ⊗ F)B + ε = (1n ⊗ F)β + (In ⊗ F)b + ε , (4)

where B = (β>1 , ...,β
>
n )>, b = (b>1 , ...,b

>
n )> and ε = (ε>1 , ..., ε

>
n )> are the vectors of all individ-

ual coefficients, all individual effects and all observatinal errors, respectively, “⊗” is the common
Kronecker product of matrices or vectors, and 1k denotes the vector of length k with all entries
equal to 1. By the independence of the individuals the covariance matrix of the full observational
vector Y is block diagonal with Cov (Y) = σ2In ⊗ (Im + FDF>).

Using Gauss-Markov theory the best linear unbiased estimator β̂ of the population parameter
β is

β̂ =
(

(1n ⊗ F)>(In ⊗ (Im + FDF>))−1(1n ⊗ F)
)−1

(1n ⊗ F)>(In ⊗ (Im + FDF>))−1Y , (5)

which obviously simplifies to β̂ = (F>(Im+FDF>)−1F)−1F>(Im+FDF>)−1Ȳ, where the term
Ȳ = 1

n

∑n
i=1 Yi denotes the averaged response across the individuals.

Employing some matrix algebra this estimator is readily seen to coincide with the ordinary
least squares estimator

β̂ = (F>F)−1F>Ȳ (6)

and can be rewritten as the average β̂ = 1
n

∑n
i=1 β̂i;ind of the individualized estimates β̂i;ind =

(F>F)−1F>Yi of the individual parameters βi based on the observations Yi of subject i only
(see e. g. Entholzner et al. (2005)). It is worth-while mentioning that the best linear unbiased
estimator for the population parameter β does not depend on the dispersion matrix D.

In the following we will, however, not be interested in estimating the population mean itself
but in the prediction (“estimation”) of the individual parameters βi and the individual responses
µi(x) = f(x)>β. The subsequent theorem provides a representation of these predictions.



Theorem 1. In the case of identical individual design matrices F the best linear unbiased
prediction

β̂i = D((F>F)−1 + D)−1β̂i;ind + (F>F)−1((F>F)−1 + D)−1β̂, (7)

of the individual parameter βi is a weighted average of the individualized estimate β̂i;ind based
on the observations of subject i only and the estimator β̂ for the population parameter.

Note that the contribution of the estimated population mean β̂ to the individual prediction
β̂i essentially diminishes with an increasing number of observations m per individual included
in the individual information matrix F>F.

For a regular dispersion matrix D the representation of the predictors may be simplified.

Corollary 1. If D is regular, then the best linear unbiased prediction β̂i of the individual
parameter βi is given by

β̂i = (F>F + D−1)−1(F>F β̂i;ind + D−1β̂) . (8)

As a consequence of Theorem 1 and Corollary 1 the individual prediction may be calculated
as a weighted average of the individual observational vector Yi and the averaged response Ȳ

β̂i = D((F>F)−1 + D)−1(F>F)−1F>Yi + (F>F)−1((F>F)−1 + D)−1(F>F)−1F>Ȳ (9)

in general and
β̂i = (F>F + D−1)−1(F>Yi + D−1(F>F)−1F>Ȳ) , (10)

if the dispersion matrix D is regular.
In any case the best linear unbiased prediction for the individual response µi(x) = f(x)>βi

is obtained by µ̂i(x) = f(x)>β̂i.

Example 1. We consider the particular case of random intercepts (random block effects),
where an explicit individual constant term is included for each individual, f1(x) ≡ 1, say. Then
the dispersion matrix D can be written as D = d1e1e>1 , where e1 = (1, 0, ..., 0)> denotes the
first unit vector of length p. Hence, D has rank one and is not regular, when there are effects of
the explanatory variable (p ≥ 2).

By the alternative representation β̂i = D((F>F)−1 +D)−1
(
β̂i;ind − β̂

)
+ β̂ derived from (7)

the prediction simplifies to

β̂i =
d1

1 +md1
1>m
(
Yi − Ȳ

)
e1 + β̂ (11)

in this particular situation. It is easy to verify that only the predicted intercepts differ for different
individuals, while the estimates of the others parameters are constant across the individuals.
Similarly the predicted responses µ̂i(x) only differ by an individual specific constant independent
of the value x of the explanatory variables.

The performance of the prediction is measured in terms of the mean squared error matrix
MSE = Cov (B̂ − B) of the predictor B̂ = (β̂

>
1 , ..., β̂

>
n )> for the vector B of all individual

coefficients. The following theorem provides a useful representation of the mean squared error.

Theorem 2. The mean squared error of the prediction of the individual coefficients B is given
by

MSE = σ2
(

(In − 1
n1n1>n )⊗ (D−D((F>F)−1 + D)−1D) + 1

n(1n1>n )⊗ (F>F)−1
)
. (12)



In the case that the dispersion matrix D is regular, the mean squared error matrix for the
predictors B̂ simplifies to a weighted average of the Bayesian covariance matrix σ2(F>F+D−1)−1

propagated by Gladitz and Pilz (1982) and the covariance matrix σ2(F>F)−1 for β in the model
without random effects (D = 0).

Corollary 2. If D is regular, then

MSE = σ2
(

(In − 1
n1n1>n )⊗ (F>F + D−1)−1 + 1

n(1n1>n )⊗ (F>F)−1
)
. (13)

Example 1 (cont.). In the case of random intercepts the MSE matrix (12) has the form

MSE = σ2

(
d1

1 +md1
(In − 1

n1n1>n )⊗ (e1e>1 ) + 1
n(1n1>n )⊗ (F>F)−1

)
. (14)

3 Optimal Design

The mean squared error matrix derived in Theorem 2 and Corollary 2 depends on the design of
the experiment, i. e. on the choice of the experimental settings x1, ..., xm for each individual. The
quality of an experiment measured by the mean squared error matrix does not depend on the
order of the observations. Thus we may rewrite the mean squared error matrix in terms of distinct
settings x1, ..., xk, say, and their respective numbers m1, ...,mk of replications (

∑k
j=1mj = m).

The individual design can then be defined as

ξ =
(

x1 , ..., xk

m1 , ..., mk

)
. (15)

In this paper we focus on the concept of approximate (continuous) designs in the sense of
Kiefer (1974), for which the requirement of integer values for the replication numbers mj is
dropped and only the conditions mj ≥ 0 and

∑k
j=1mj = m have to be satisfied.

Then for any approximate design ξ the individual information matrix is defined by

M(ξ) =
k∑

j=1

mjf(xj)f(xj)> , (16)

which coincides with the individual information matrix F>F in the case of an exact design, where
each setting xj is replicated mj times.

With this notation we can define the mean squared error matrix of an approximate design
by

MSE (ξ) = (In − 1
n1n1>n )⊗ (D−D(M(ξ)−1 + D)−1D) + 1

n(1n1>n )⊗M(ξ)−1 (17)

in accordance with the representation given in Theorem 2 for an exact design, when we suppress
the constant factor σ2. As in Corollary 2 this formula may be simplified to

MSE (ξ) = (In − 1
n1n1>n )⊗ (M(ξ) + D−1)−1 + 1

n(1n1>n )⊗M(ξ)−1 (18)

in the case of a regular dispersion matrix D.
As common in experimental design the full mean squared error matrix cannot be minimized

with respect to the Loewner ordering in the non-negative definite sense. Therefore we will deal in
the following with two optimality criteria, which describe the quality of a design by a real valued



functional of the mean squared error matrix. The first criterion (“IMSE”) is rather appealing and
aims at minimizing the expected mean squared (L2-)distance of the predicted from the actual
individual response function µi over the design region X . The second criterion (“D-criterion”) is
prepared to extend the determinant criterion, which is most commonly used in optimal design
theory because of its nice analytical properties and which aims at minimizing the volume of the
prediction (“confidence”) ellipsoid in the case of Gaussian errors. Special care has to be taken
with this extension in the case of a non-regular dispersion matrix D, because then the prediction
ellipsoid is concentrated in a lower-dimensional subspace and minimization of the volume has to
be done with respect to this subspace.

3.1 The IMSE-criterion

The version of the Integrated Mean Squared Error (“IMSE”) of prediction, which will be used
here, is defined as the sum over all individuals

IMSEpred =
n∑

i=1

E
(∫
X

(µ̂i(x)− µi(x))2ν(dx)
)

(19)

of the expected (L2-)distances of the predicted response µ̂i = f>β̂i from the individual response
µi = f>βi with respect to some suitable measure ν on the experimental region X , which is
typically chosen to be uniform on X with ν(X ) = 1. Similar to the integrated mean squared
error of estimation this magnitude may be rearranged to a linear criterion

IMSEpred = tr (MSE · (In ⊗V)) (20)

in the MSE matrix, where V =
∫
X f(x)f(x)>ν(dx) is the “information matrix” for the weight

distribution ν in the fixed effects model and “tr” denotes the trace of the matrix. With this
relation the IMSE-criterion for prediction will be defined for an approximate design ξ by

IMSEpred(ξ) = tr (MSE (ξ) · (In ⊗V)) . (21)

By Theorem 2 it follows that

IMSEpred(ξ) = tr ((M(ξ)−1 + (n− 1)(D−D(M(ξ)−1 + D)−1D)V) . (22)

This simplifies by Corollary 2 to

IMSEpred(ξ) = tr (M(ξ)−1V) + (n− 1) tr ((M(ξ) + D−1)−1V) , (23)

which is proportional to a weighted average of the IMSE-criterion tr (M(ξ)−1V) in the model
without random effects and the corresponding Bayesian IMSE-criterion tr ((M(ξ) + D−1)−1V).
Thus the IMSE-criterion for prediction can be interpreted as a compound criterion, which can
equivalently be identified with a certain constrained criterion according to Cook andWong (1994).

The IMSE-criterion for prediction is easily seen to be convex and, hence, the optimal designs
can be cahracterized by means of a standard equivalence theorem.

Theorem 3. The approximate design ξ∗ is IMSE-optimal for prediction if and only if

f(x)>M(ξ∗)−1VM(ξ∗)−1f(x) (24)
+ (n− 1) f(x)>M(ξ∗)−1(M(ξ∗)−1 + D)−1DVD(M(ξ∗)−1 + D)−1M(ξ∗)−1f(x)

≤ 1
m

(tr (M(ξ∗)−1V) + (n− 1) tr (D(M(ξ∗)−1 + D)−1M(ξ∗)−1(M(ξ∗)−1 + D)−1DV))



for all x ∈ X . Moreover, for every support point xj of ξ∗ with positive weight (mj > 0) equality
holds in (24).

For a regular dispersion matrix D the condition (24) of Theorem 3 simplifies to that of a
compound criterion.

Corollary 3. If D is regular, the approximate design ξ∗ is IMSE-optimal for prediction if and
only if

f(x)>M(ξ∗)−1VM(ξ∗)−1f(x) + (n− 1) f(x)>(M(ξ∗) + D−1)−1V(M(ξ∗) + D−1)−1f(x)

≤ 1
m

(tr (M(ξ∗)−1V) + (n− 1) tr ((M(ξ∗) + D−1)−1M(ξ∗)(M(ξ∗) + D−1)−1V)) (25)

for all x ∈ X . Moreover, for any support point xj of ξ∗ with positive weight (mj > 0) equality
holds in (25).

Example 1 (cont.). In the case of random intercepts the IMSE-criterion

IMSEpred(ξ) = tr (M(ξ)−1V) +
(n− 1)d1

1 +md1
ν(X ), (26)

depends on the dispersion matrix only through an additive constant term.

Corollary 4. The IMSE-optimal design in the fixed effects model is IMSE-optimal for
prediction in the random intercepts model.

However, if there is a more general influence of the random coefficients on terms, which
include effects of the explanatory variables x, the IMSE-optimal design for prediction may depend
substantially on the dispersion matrix D, as will be exposed in section 4.

3.2 The D-criterion

For estimation the most popular design criterion is the D-criterion, which aims at maximizing
the determinant of the information matrix or, equivalently, at minimizing the determinant of the
covariance matrix. For prediction we adopt this criterion by minimizing the determinant of the
mean squared error (MSE) matrix. However, this direct approach only makes sense in the case
of a regular dispersion matrix D. As usual a logarithmic version of the criterion will be employed
to retain convexity,

Dpred(ξ) = ln det MSE(ξ). (27)

This D-criterion may be represented in the form

Dpred(ξ) = ln det(M(ξ)−1) + (n− 1) ln det((M(ξ) + D−1)−1). (28)

For a general dispersion matrix D this criterion has to be adjusted properly: While from an
interpretation point of view the D-criterion aims at minimizing the volume of a prediction ellip-
soid for the individual parameters, it has to be taken into account that for a singular dispersion
matrix D the prediction ellipsoid is concentrated in a lower dimensional subspace. Therefore
we will make use of the property that for positive definite symmetric matrix the determinant is
equal to the product of the eigenvalues. Thus for a subspace we have to consider the relevant
(non-zero) eigenvalues corresponding to the eigenvectors spanning that subspace. If the disper-
sion matrix D is a non-zero matrix (D 6= 0) with rank q, 1 ≤ q ≤ p, than for the individual
parameters B the prediction ellipsoid is of dimension (n− 1)q + p. Consequently, we define the



(modified) D-criterion for prediction as the logarithm of the product of the (n− 1)q + p largest
eigenvalues of the MSE matrix

Dpred(ξ) = ln det(M(ξ)−1) + (n− 1) ln
q∏

l=1

λl(ξ,D) , (29)

where λ1(ξ,D), ..., λq(ξ,D) are the q largest eigenvalues of the matrix D−D(M(ξ)−1 +D)−1D.
Note that for a regular individual information matrix M(ξ) these eigenvalues are positive. In
the regular case (q = p) definition (29) is in accordance with (28).

As for the IMSE-criterion the D-criterion can be recognized as a compound criterion, which
is a weighted average of the D-criterion − ln det M(ξ) in the fixed effects model and the Bayesian
D-criterion − ln det(M(ξ) + D−1). Then a D-optimal design can be once again characterized by
means of an equivalence theorem.

Theorem 4. The approximate design ξ∗ is D-optimal for prediction if and only if

f(x)>M(ξ∗)−1f(x) + (n− 1) f(x)>(D−D(M(ξ∗)−1 + D)−1D)f(x)

≤ 1
m

(p+ (n− 1) tr (D(M(ξ∗)−1 + D)−1)) (30)

for all x ∈ X . Moreover, for any support point xj of ξ∗ with positive weight (mj > 0) equality
holds in (30).

For regular dispersion matrices D condition (30) of Theorem 4 simplifies,

Corollary 5. If D is regular, the approximate design ξ∗ is D-optimal for prediction if and
only if

f(x)>M(ξ∗)−1f(x) + (n− 1) f(x)>(D−1 + M(ξ∗))−1f(x)

≤ 1
m

(p+ (n− 1) tr ((D−1 + M(ξ∗))−1M(ξ∗))) (31)

for all x ∈ X . Moreover, for any support point xj of ξ∗ with positive weight (mj > 0) equality
holds in (31).

Example 1 (cont.). In the particular case of random intercepts the D-criterion simplifies to

Dpred(ξ) = ln det(M(ξ)−1) + (n− 1) ln
d1

1 +md1
, (32)

which establishes the following result.

Corollary 6. The D-optimal design in the fixed effects model is D-optimal for prediction in
the random intercepts model.

4 Example: Linear Regression with Random Slope

While for models with random intercepts the dispersion matrix D has no influence on the optimal
design for the criteria considered, the impact of the dispersion matrix D may become crucial in
situations, where the random coefficients are associated with the effects of explanatory variables.
This will be illustrated by the simple case of linear regression with random slope,

Yij = βi1 + βi2xj + εij , (33)



on the experimental region X = [0, 1]. For the IMSE-criterion we will consider a uniform weight-
ing ν = λ|[0,1] throughout, i. e. V =

∫ 1
0 f(x)f(x)>dx. It has to be noted that the optimal designs

obtained in this section require a prior guess of the dispersion matrix D and are, hence, only
locally optimal.

By the Theorems 3 and 4 the sensitivity functions of the IMSE- and the (modified) D-criterion
are parabolas with positive leading coefficients, and, hence, the optimal designs ξ∗ have only the
two support points x = 0 and x = 1 on the boundary of the interval and are of the general form

ξ =
(

0 1
m−m1 m1

)
, (34)

where m1 denotes the (generalized) number of replications at x = 1. For design optimality only
the optimal number m∗1 of replications at x = 1 has to be determined.

For the model without random effects (D = 0) it is well-known that the design, which assigns
equal weights m∗1 = m/2 and m∗0 = 1−m∗1 = m/2 to both endpoints, is optimal for both criteria
under consideration. Because of Corollary 4 and 6 this remains true for prediction in models
with solely random intercepts.

In the following we consider the case of random slopes for illustrative purposes, where we
assume for simplicity a constant intercept across the individuals, i. e. βi1 ≡ β1 and D = d2e2e>2 ,
where e2 = (0, 1)> is the second unit vector of length p = 2. This model assumption may seem to
be inadequate for practical applications, but it highlights the behavior, when the variability of the
slopes (effect sizes) is large compared to the variability of the intercepts (baselines). According
to the criterion functions (22) and (29), the corresponding IMSE- and D-criteria are given by
the following formulas:

IMSEpred(ξ) =
1
3

(
m

m1(m−m1)
+ (n− 1)

d2

1 +m1d2

)
, (35)

Dpred(ξ) = ln
1

m1(m−m1)
+ (n− 1) ln

d2

1 +m1d2
. (36)

It is noteworthy that the optimal numbers m∗1 as well as the optimal proportions w∗1 = m∗1/m
do not only depend on the dispersion matrix D but also on the number m of observations per
individual and even on the sample size n. For our numerical calculations we fix the sample
size to n = 100 individuals and the intra-individual number of observations per subject to
m = 10. Then the optimal values for m∗1 can be determined in dependence on the variability d2

of the slopes. These values are depicted in Figure 1 against the standardized variance parameter
ρ = d2/(1 + d2), which mimics the intra-class correlation and has been chosen instead of the raw
slope variance d2 to cover the whole range of possible values by a finite interval (0 ≤ ρ < 1). Note
that ρ is a monotonically increasing transformation of d2, which preserves qualitative behaviors.

For the IMSE-criterion the optimal numberm∗1 (solid line) increases in d2 fromm∗1 = m/2 = 5
for d2 = 0 (ρ = 0) to m∗1 ≈ 0.91 ·m = 9.1 for d2 → ∞ (ρ → 1). The D-optimal designs assign
an optimal number m∗1 (dashed line) increasing from m∗1 ≈ m/2 for small values of the slope
variance (d2 → 0) to m∗1 ≈ 0.99 · m = 9.9 for d2 → ∞. (Note that d2 = 0 would lead to a
different criterion.)

The next graphic (Figure 2) exhibits the efficiency of the equi-replicated design (m0 = m1 =
m/2) for varying values of ρ. For d2 = 0 (resp. d2 → 0) the efficiency equals 1 for both criteria,
and the efficiency decreases, as the dispersion d2 increases, with limiting values 0.60 for the
IMSE-criterion (solid line) and 0.53 for the modified D-criterion (dashed line) when d2 → ∞.
The latter efficiency is computed as

effD(ξ) =
(

exp(Dpred(ξ∗))
exp(Dpred(ξ))

) 1
(n−1)q+p

=
(

det(M(ξ∗))−1(
∏q

k=1λk(ξ∗,D))n−1

det(M(ξ))−1(
∏q

k=1λk(ξ,D))n−1

) 1
(n−1)q+p

, (37)
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Figure 1: Optimal numbers m∗1:
IMSE-criterion (solid line) D-criterion
(dashed line)

Figure 2: Efficiency of the equi-repli-
cated design (m1 = m/2): IMSE-cri-
terion (solid line) D-criterion (dashed
line)

while for the IMSE-criterion the standard formula

effIMSE(ξ) =
IMSEpred(ξ∗)
IMSEpred(ξ)

(38)

is used. Note that these efficiencies are designed to be homogeneous such that the efficiency of a
design ξ describes the proportion of the sample size required for the optimal design ξ∗ compared
to ξ to obtain the same precision measured in terms of the corresponding design criterion. Or,
equivalently, the deficiency of a design def(ξ) = 1/eff(ξ) − 1, i. e. the surplus of the reciprocal
over 100 %, measures the additional proportion in sample size required for ξ compared to the
optimal design ξ∗.

5 Some Invariance Considerations in Design for Prediction

In classical design theory for fixed effect models a commonly proposed advantage of theD- and the
IMSE-criterion is their invariance with respect to reparameterizations. This fact may also be used
to cover relabeling ang rescaling of the explanatory variables, where appropriate. In particular,
rescaling can be used to derive optimal designs for some suitable standardized experimental
region and map them to general regions by linear transformations, which are compatible with
the regression functions. For example, this approach works for complete polynomial regression
models, in which any monomial term is accompanied by all monomials of lower degree and an
intercept, or for analysis of variance models, in which any interaction term comes with its lower
degree interactions and the corresponding main effects. However, for mixed linear models of the
random coefficient regression type considered here an additional induced transformation of the
dispersion matrix D has to be taken into account. This is true for the problem of estimating
the population parameters β (see Graßhoff et al. (2012)) and similarly for the present problem
of prediction of the individual parameters βi or the individual responses µi.

To see this we consider a one-to-one transformation g : X → X1 of the experimental region X
onto its image X1 = g(X ), and we assume that the regression function f is defined simultaneously



on both experimental regions X and X1. Further we require the existence of a regular p×p matrix
Qg such that

f(g(x)) = Qg f(x) (39)

for all x ∈ X . Then the regression function f will be said to be linearly equivariant with respect
to the transformation g (see Schwabe (1996), chapter 3).

Next we define the corresponding transformation for designs

g : ξ =
(

x1, ..., xk

m1 , ..., mk

)
→ ξg =

(
g(x1), ..., g(xk)
m1 , ..., mk

)
, (40)

which transports the frequencies mj to the image g(xj) of the associated design point xj . Note
that ξg is the measure theoretic image of ξ under the mapping g. For this induced design ξg it
follows from the definition (17) of the mean squared error that

MSE(ξg,Dg) = (In ⊗Q−>g )MSE(ξ,D) (In ⊗Q−1
g ) , (41)

where Dg = Q−>g DQ−1
g is the corresponding induced dispersion matrix and Q−>g = (Q>g )−1 =

(Q−1
g )> denotes the inverse of Q>g for brevity. In (41) we have added explicitly the dispersion

matrix D and Dg, respectively, to the definition of the mean squared error in order to indicate
the influence of the dispersion matrix on the MSE.

Theorem 5. If the design ξ∗ is D-optimal for prediction for the dispersion matrix D on the
experimental region X , then the design (ξ∗)g is D-optimal for prediction for the dispersion matrix
Dg on the experimental region X1 = g(X ).

For the IMSE-criterion also the weighting measure ν has to be transformed to its image νg.
Denote by Vg =

∫
g(X ) f(x)f(x)>νg(dx) the “information matrix” for the weight distribution νg

in the induced fixed effects model on X1 = g(X ). Then Vg = QgVQ>g and by (41) the IMSE
is preserved, IMSEpred(ξg,Dg, ν

g) = IMSEpred(ξ,D, ν), where we have added the weighting
measure ν resp. νg for clarification to the notation of the IMSE. This obviously establishes the
following result.

Theorem 6. If the design ξ∗ is IMSE-optimal for prediction for the dispersion matrix D on
the experimental region X with respect to ν, then the design (ξ∗)g is IMSE-optimal for prediction
for the dispersion matrix Dg on the experimental region X1 = g(X ) with respect to νg.

By formula (40) the induced optimal design (ξ∗)g has the form

ξ∗g =
(
g(x∗1), ..., g(x∗k)
m∗1 , ..., m

∗
k

)
, (42)

where x∗1, ..., x∗k andm∗1, ...,m∗k are the design points and the associated frequencies of the optimal
design ξ∗ on the experimental region X .

In general the original and the induced dispersion matrix will differ (see Example 4 below),
but for random intercepts the situation simplifies.

Example 1 (cont.). In the case of random intercepts the original and the induced dispersion
matrix coincide (Dg = D = d1e1e>1 ). This is in accordance with the findings that for fixed
effects models the IMSE- and D-optimal designs, which are also optimal for random intercepts,
can be obtained by transformation.

The following example of a scale transformation illustrates the possibility to obtain an optimal
design for a more general experimental region from known results for a standard one.



Example 2. We consider again the model (33) of simple linear regression (Yij = βi1+βi2xj+εij)
on the experimental region X = [0, 1]. For the IMSE we consider again uniform weighting,
ν = λ|[0,1]. According to Section 4, the optimal design ξ∗ is of the form (34) for every dispersion
matrix D and, hence, concentrated on the endpoints 0 and 1 of the experimental region with
corresponding optimal weights m∗0 = m−m∗1 and m∗1, respectively, depending on D. We further
assume that both individual parameters βi1 and βi2 are random and independent of each other,
i. e. the dispersion matrix D = diag (d1, d2) is diagonal, where the diagonal entries d1 and d2

are the variances of the intercepts and the slopes, respectively. Optimal designs can be obtained
numerically for any given d1, d2, m, and n.

Next we consider the same simple linear regression model (33), but now on the more general
experimental region X1 = [0, a] for some a > 0, which can be obtained from [0, 1] by rescaling,
g(x) = ax. The induced dispersion matrix Dg = diag (d1, d2/a

2) is also diagonal. Moreover the
uniform weighting ν is transformed to νg = λ|[0,a]/a, which is itself uniform (up to the scaling
factor 1/a).

Vice versa, if we consider a general diagonal dispersion matrix Da = diag (da1, da2) on [0, a],
this can be obtained as the induced dispersion matrix, if we start with D = diag (da1, a

2da2) on
the standardized region. It follows from Theorems 5 and 6 that the designs, which are IMSE-
and D-optimal for prediction in (33) on the experimental region X = [0, a], are concentrated on
the endpoints 0 and a and that the corresponding optimal frequencies can be obtained as those
in the standardized case for D = diag (da1, a

2da2).

As in fixed effects models one may be tempted to employ symmetry to characterize optimal
designs, if there is a (finite) groupG of transformations g : X → X of the experimental region onto
itself, which satisfy (39) (see Schwabe (1996), chapter 3) and, additionally, leave the dispersion
matrix invariant, i. e. Dg = D for all g ∈ G.

Theorem 7. Let G be a finite group of transformations on X , for which the regression function
f is linearly equivariant and for which the dispersion matrix D is invariant. If ξ∗ is D-optimal
on X for prediction with dispersion D, then the design ξ̄∗ = 1

#G

∑
g∈G(ξ∗)g is also D-optimal on

X for prediction with dispersion D.

For the IMSE-criterion we additionally need the invariance of the weighting measure, i. e.
νg = ν for all g ∈ G.

Theorem 8. Let G be a finite group of transformations on X , for which the regression function
f is linearly equivariant and for which the dispersion matrix D and the weighting measure ν are
invariant. If ξ∗ is IMSE-optimal for prediction for dispersion D on X with respect to ν, then
the design ξ̄∗ = 1

#G

∑
g∈G(ξ∗)g is also IMSE-optimal for prediction for dispersion D on X with

respect to ν.

Obviously the symmetrized design ξ̄∗ is invariant with respect to G, i. e. ξ̄∗ = (ξ̄∗)g for all
g ∈ G. This result allows to reduce the search for an optimal design to the essentially complete
class of invariant designs, if the conditions of Theorems 7 and 8 are met.

Example 3. Here we consider the simple linear regression model (33) on the standard sym-
metric experimental region [−1, 1] and we will make use of the symmetry to determine optimal
designs. For this the dispersion matrix D of the random parameters is required to be diagonal.

Similar argumentation as in Section 4 can be employed to show that the IMSE- and D-optimal
designs have the form

ξ =
(

−1 1
m−m1 m1

)
. (43)



First we consider the group G = {id, g} induced by the sign change g(x) = −x, and id(x) = x
denotes the identity. With Qg = diag (1,−1) and Qid equal to the identity matrix the dispersion
matrix is invariant (Dg = D), if D is diagonal. The symmetrization of any design of the required
form (43) is again of the same form and results in the invariant design

ξ∗ =
(
−1 1
m/2 m/2

)
, (44)

which is D- and IMSE-optimal because of Theorems 7 resp. 8, when ν is uniform.

This result can now be used to obtain optimal designs on other intervals for specific dispersion
matrices.

Example 4. As in Example 2 it can be derived from Example 3 that the design ξ∗ =(
−a a
m/2 m/2

)
is IMSE- (uniform ν) and D-optimal for prediction in the simple linear regression

model (33) on the experimental region [−a, a] for any a > 0, if the dispersion matrix of the
random parameters is diagonal.

Moreover, if we transform the model (33) from the interval [−1, 1] to some more general

experimental region [b, c] with c > b, then the design ξ∗g =
(

b c
m/2 m/2

)
will be IMSE-

(uniform ν) and D-optimal for prediction, if the dispersion matrix has the specific form

Dg =

(
d1 + d2(c+ b)2/(c− b)2 −2d2(c+ b)/(c− b)2

−2d2(c+ b)/(c− b)2 4d2/(c− b)2

)
, (45)

which is induced by g(x) = b+c
2 + c−b

2 x from D = diag (d1, d2). Note that in the special case
b = 0 and c = a this induced dispersion matrix of the random parameters can be written as

Dg =

(
d1 + d2 −2d2/a

−2d2/a 4d2/a
2

)
, (46)

which simplifies to

Dg =

(
d1 + d2 −2d2

−2d2 4d2

)
(47)

in the case a = 1 for the standard interval [0, 1]. This means that the design ξ∗ =
(

0 1
m/2 m/2

)
is IMSE- and D-optimal for prediction in (33) on [0, 1] if the dispersion matrix is of the form
(47).

Finally we extend the results to a slightly more complicated model.

Example 5. For the quadratic regression model with random parameters

Yij = βi1 + βi2xj + βi3x
2
j + εij (48)

we confine our interest to optimal designs for prediction on the standard symmetric design region
X = [−1, 1] with a chessboard structured dispersion matrix

D =

 d11 0 d13

0 d22 0
d13 0 d33

 . (49)



Again we make use of the sign change group introduced in Example 3, where now Qg =
diag (1,−1, 1), which leaves both the dispersion matrix D and the uniform weighting ν invariant.

By standard arguments we can conclude from Theorems 3 and 4 that the IMSE- and D-
optimal designs are supported by, at most, three design points including the two endpoints of
the interval, and by Theorems 7 and 8 that the symmetric optimal design has the form

ξ∗ =
(
−1 0 1
m∗ m− 2m∗ m∗

)
, (50)

where the optimal frequency m∗ at x = 1 and x = −1 depends on the design criterion as well as
on the entries of the dispersion matrix D and on the number of individuals n.

As an easy consequence the IMSE- (with uniform ν) and D-optimal designs for prediction on
any symmetric interval [−a, a] will be of the form

ξ∗ =
(
−a 0 a
m∗ m− 2m∗ m∗

)
. (51)

6 Discussion and Conclusions

The main aim of this paper is to clarify the problem of optimal designs for prediction in hierarchi-
cal linear mixed models. To this end we derive the mean squared error matrix for the prediction
(estimation) of the individual effects (individual parameters) to characterize the performance of
an experimental design. It turns out that this matrix is a matrix weighted combination of the
corresponding mean squared error matrices in a Bayesian setup and the related model without
random effects. It is worth-while mentioning that the mean squared error matrix differs from
that for the individual deviations from the population mean, which only depends on the Bayesian
part. As a consequence the corresponding optimal designs are in general not the same. In par-
ticular, as the Bayesian criterion may result in a singular optimal design, this is not appropriate
for prediction because of lack of estimability.

As a criterion of design optimality we use here the the integrated mean squared error and
propose a modified version of the determinant criterion, which is an extension of the standard D-
criterion in the situation of a singular dispersion matrix of the random effects. Both criteria can
be simplified if the dispersion matrix is regular. For both criteria the objective function results
in a compromise between the Bayesian and the standard fixed effects counterparts. Thus the
criteria can be considered as compound criteria (see e. g. Cook and Wong (1994)) with weights
depending on the number of experimental units. As a by-product it can be seen that in the
special case of random intercepts the optimal design in the fixed effects model remains optimal
for prediction, whatever the variance ratio and the number of observations is. For the other cases
we formulate the optimality conditions in the form of equivalence theorems and obtain results,
which differ from those proposed in the literature. Finally we give some constructions of optimal
designs by considerations of invariance and equivariance in situtations, where transformations
of the design region are compatible with the structure of the dispersion matrix. The theoretical
results are illustrated by some examples of straight line and quadratic regression.

Although our results presented here are obtained in the framework of approximate designs,
which are in general not directly applicable, highly efficient exact designs can be determined using
appropriate rounding of the optimal approximate designs. Related results are under preparation.

A further problem for applications is the fact that the optimal designs depend on the disper-
sion parameters and are, hence, only locally optimal. Sensitivity and robustness with respect to
the variance parameters is another topic of further research.

Alternative maningful design criteria can also be considered. We expect that the qualitative
results will be similar to those for the IMSE- and (modified) D-criterion, but weights may differ.



Furthermore, the more general model, where different individual designs are allowed, will
have to be investigated in future. This will, in particular, become relevant for small numbers of
observations (sparse sampling), which typically occur e. g. in pharmacological studies in children.

A Appendix

A.1 Proof of Theorem 1 and Theorem 2

To utilize the theoretical results available for the estimation of individual parameters (prediction)
we will recognize model (1) as a special case of the general linear mixed model

Y = Xβ + Zγ + ε (52)

with specific design matrices X and Z for the fixed effects and the random effects, respectively.
Here β denotes again the fixed effect (population parameter), and γ are the random effects.
These random effects and the observational errors ε are assumed to have zero mean and to be
all uncorrelated with corresponding full rank covariance matrices Cov (γ) = G and Cov (ε) = R,
respectively.

According to Henderson et al. (1959) and Christensen (2002), the mixed model equations(
β̂
γ̂

)
=
(

X>R−1X X>R−1Z
Z>R−1X Z>R−1Z + G−1

)−1( X>R−1Y
Z>R−1Y

)
(53)

yield the Best Linear Unbiased Estimator β̂ for β and the Best Linear Unbiased Predictor γ̂ for
γ provided the fixed effects design matrix X has full column rank. Henderson (1975) established
that then the joint mean squared error matrix for both β̂ and γ̂ is of the form

Cov
(

β̂
γ̂ − γ

)
=
(

X>R−1X X>R−1Z
Z>R−1X Z>R−1Z + G−1

)−1

. (54)

Now our model (4) for the full observational vector Y will be adapted to the more general
case (52). First we note that all error terms εij are homoscedastic and uncorrelated, and, hence,
R = Cov (ε) = σ2In·m. With X = 1n ⊗ F, Z = In ⊗ F and γ = b the model equation (4) has
the form of the general model (52). If the covariance matrix D for the random parameters βi is
non-singular, the matrix G = Cov (γ) = In ⊗ (FDF>) is also non-singular, as long as designs
with full rank design matrices F are considered, as is required here throughout.

Special care has to be taken of the fact that the covariance matrix D for the random param-
eters may be singular, which allows for some individual parameters to be non-random. For this
let q be the rank of D. Then there exists a p × q matrix K with D = KK> and rank (K) = q
such that K>K is non-singular. With this notation we introduce the random variables

ci = (K>K)−1K> (βi − β) , (55)

for which holds βi − β = Kci almost surely. Then the model equation (1) can be written as

Yij = f(xj)>β + f(xj)>Kci + εij , (56)

which results in vector notation in

Yi = Fβ + FKci + εi (57)

for the observations Yi of individual i and, finally, in the complete observation vector

Y = (1n ⊗ F)β + (In ⊗ (FK))c + ε (58)



for all individuals, where c = (c>1 , .., c
>
n )> is a vector of random effects. Now by replacing In⊗F

by Z = In ⊗ (FK) and b by γ = c the model equation (58) is of the general form (52) with
non-singular covariance matrices R = σ2In ⊗ Im and G = σ2In ⊗ Iq, respectively.

With this notation the mean squared error matrix (54) becomes

Cov
(

β̂
ĉ− c

)
= σ2

(
nF>F 1>n ⊗ (F>FK)

1n ⊗ (K>F>F) In ⊗ (K>F>FK) + In ⊗ Iq

)−1

(59)

=
σ2

n

(
(F>F)−1 + KK> −1>n ⊗K
−1n ⊗K> (nIn − 1n1>n )⊗ (K>F>FK + Iq)−1 + (1n1>n )⊗ Iq

)
,

where the second equality follows by a standard inversion formula for partitioned matrices. By
(53) this matrix is also relevant for the calculation of the estimator

β̂ = ( 1
n1>n ⊗ (F>F)−1F>)Y = (F>F)−1F>Ȳ (60)

of the fixed effects β and the predictor

ĉ = ((In − 1
n1n1>n )⊗ (Iq −K>((F>F)−1 + KK>)−1K) K>F>)Y (61)

of the random effects c, where we have made use of the standard inversion formula for the sum
of matrices

(K>F>FK + Iq)−1 = Iq −K>((F>F)−1 + KK>)−1K . (62)

This leads to

ĉi = (Iq −K>((F>F)−1 + KK>)−1K)K>F>(Yi − Ȳ)
= K>((F>F)−1 + KK>)−1(F>F)−1F>(Yi − Ȳ)
= K>((F>F)−1 + D)−1(β̂i;ind − β̂) (63)

on the individual level.
The best linear unbiased predictor for the random parameters βi = β + Kci is the corre-

sponding linear combination β̂i = β̂ + Kĉi of the estimators for the fixed and random effects.
The representation (7) of Theorem 1 for the predictors β̂i follows from (63).

Thus the best linear unbiased predictor for the full vector B of all individual parameters
equals B̂ = (1n ⊗ Ip)β̂ + (In ⊗K)ĉ with mean squared error matrix

Cov (B̂−B) = (1n ⊗ Ip | In ⊗K)Cov
(

β̂
ĉ− c

)(
1>n ⊗ Ip

In ⊗K>

)
(64)

= σ2
(

( 1
n1n1>n )⊗ (F>F)−1 + (In − 1

n1n1>n )⊗ (K(K>F>FK + Iq)−1K>)
)
.

according to (59). The mean squared error matrix can be recognized as a “weighted combination”
of the covariance matrix σ2(F>F)−1 for β in the model Y = Fβ + ε without random effects
and dhe mean squared error matrix σ2K(K>F>FK + Iq)−1K> for βi = Kci in the model
Yi = FKci + εi with Cov (ci) = σ2Iq for the zero mean random parameter ci.

The result (12) of Theorem 2 then follows imnmediately by (62).

A.2 Proof of Theorem 3 and Theorem 4

Here we make use of the general equivalence theorem (see e. g. Silvey (1980)): A design ξ∗

is optimal with respect to a convex criterion function Φ to be minimized if and only if the
directional derivative FΦ(M(ξ∗); M(ξx)) of the criterion function at M(ξ∗) in the direction of



M(ξx) = m f(x)f(x)> is nonnegative on the whole experimental region (x ∈ X ), where ξx denotes
the one-point design in x. Moreover, this directional derivative equals zero for all support points
x∗j of the optimal design ξ∗.

The IMSE-criterion for prediction is a compound criterion, i. e. it is a weighted sum of the
IMSE-criterion in the model without random efects and the corresponding Bayesian IMSE-
criterion in the “reduced” model Yi = FKci + εi introduced in section A.1. As a consequence
the IMSE-criterion for prediction inherits convexity from its components and its directional
derivative is also a weighted sum of the counterparts of the components. Thus the directional
derivative at M1 in the direction of M2 is

− tr
(
((n− 1)D(Ip + M1D)−1(M2 −M1)(Ip + DM1)−1D + M−1

1 (M2 −M1)M−1
1 )V

)
, (65)

which establishes Theorem 3.
To determine the directional derivative in the case of the modified D-criterion we represent

this criterion in the form

Dpred(ξ) = (n− 1)(ln det(K>K) + ln det((K>M(ξ)K + Iq)−1)) + ln det(M(ξ)−1) . (66)

Hence, also this criterion can be identified as a compound criterion, which provides convexity
and the following form of the directional derivative

− tr
(
(n− 1)(D−D(M−1

1 + D)−1D)(M2 −M1) + M−1
1 (M2 −M1)

)
, (67)

which proves Theorem 4.

A.3 Proof of Theorem 5

By (66) the criterion function of the modified D-criterion can be written as

Dpred(ξ,D) = (n− 1)(ln det(K>K)− ln det(K>M(ξ)K + Iq))− ln det(M(ξ)) . (68)

Let Kg = Q−>g K. Then Kg has full column rank q and satisfies KgK>g = Dg. The modified
D-criterion for the transformed design ξg on the experimental region X1 may be represented as

Dpred(ξg,Dg) = (n− 1)(ln det(K>g Kg)− ln det(K>g Mg(ξg)Kg + Iq))− ln det(Mg(ξg)), (69)

where Mg(ξg) = QgM(ξ)Q>g is the information matrix in the transformed model without random
effects. This can be transformed to

Dpred(ξg,Dg)
= Dpred(ξ,D) + (n− 1)(ln det(K>Q−1

g Q−>g K)− ln det(K>K))− 2 ln | det(Qg)| , (70)

where on the right hand side only the first term depends on the design.

A.4 Proof of Theorem 6

By (20) we represent the IMSE-criterion for the transformed design ξg on the experimental region
X1 as

IMSEpred(ξg,Dg, ν
g) = tr (MSE(ξg,Dg)(In ⊗Vg)) , (71)

where Vg =
∫
X1

f(x)f(x)>νg(dx) =
∫
X f(g(x))f(g(x))>ν(dx), which can be rewritten as

Vg =
∫
X

Qf(x)f(x)>Q>ν(dx) = QVQ> (72)

according to (39). Then it follows from (41) that the criterion functions for the designs ξ and ξg
coincide

IMSEpred(ξg,Dg, ν
g) = IMSEpred(ξ,D, ν) . (73)



A.5 Proof of Theorem 7

Let the design ξ∗ be IMSE-optimal on the experimental region X . Then by Theorem 6 the
transformed designs ξ∗g of the form (40) are also IMSE-optimal on X for all transformations g
from the group G, i. e.

IMSEpred(ξ∗,D) = IMSEpred(ξ∗g ,D), for all g ∈ G. (74)

As the criterion function is convex, it immediately follows that

IMSEpred(ξ̄∗,D) ≤ IMSEpred(ξ∗,D) , (75)

which gives the IMSE-optimality of the design ξ̄∗.
To proof the D-optimality of ξ̄∗ we use Theorem 5 instead of Theorem 6.
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