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Abstract

The problem of detecting heterogeneous and heteroscedastic Gaussian mixtures is
considered. The focus is on how the parameters of heterogeneity, heteroscedasticity,
and proportion of non-null component influence the difficulty of the problem. We
establish an explicit detection boundary which separates the detectable region where
the likelihood ratio test is shown to reliably detect the presence of non-null effect,
from the undetectable region where no method can do so. In particular, the results
show that the detection boundary changes dramatically when the proportion of non-
null component shifts from the sparse regime to the dense regime. Furthermore, it is
shown that the Higher Criticism test, which does not require the specific information
of model parameters, is optimally adaptive to the unknown degrees of heterogeneity
and heteroscedasticity in both the sparse and dense cases.
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1 Introduction

The problem of detecting non-null components in Gaussian mixtures arises in many ap-
plications, where a large amount of variables are measured and only a small proportion of
them possibly carry signal information. In disease surveillance, for instance, it is crucial to
detect disease outbreaks in their early stage when only a small fraction of the population
is infected (Kulldorff et al., 2005). Other examples include astrophysical source detection
(Hopkins et al., 2002) and covert communication (Donoho and Jin, 2004).

The detection problem is also of interest because detection tools can be easily adapted
for other purposes, such as screening and dimension reduction. For example, in Genome-
Wide Association Studies (GWAS), a typical single-nucleotide polymorphism (SNP) data
set consists of a very long sequence of measurements containing signals that are both sparse
and weak. To better locate such signals, one could break the long sequence into relatively
short segments, and use the detection tools to filter out segments that contain no signals.

In addition, the detection problem is closely related to other important problems, such
as large-scale multiple testing, feature selection and cancer classification. For example,
the detection problem is the starting point for understanding estimation and large-scale
multiple testing (Cai et al., 2007). The fundamental limit for detection is intimately related
to the fundamental limit for classification, and the optimal procedures for detection are
related to optimal procedures in feature selection. See (Donoho and Jin, 2008, 2009), Hall
et al. (2008) and Jin (2009).

In this paper we consider the detection of heterogeneous and heteroscedastic Gaussian
mixtures. The goal is two-fold: (a) Discover the detection boundary in the parameter space
that separates the detectable region, where it is possible to reliably detect the existence of
signals based on the noisy and mixed observations, from the undetectable region, where it
is impossible to do so. (b) Construct an adaptively optimal procedure that works without
the information of signal features, but is successful in the whole detectable region. Such a
procedure has the property of what we call the optimal adaptivity.

The problem is formulated as follows. Given n independent observation units X =
(X1, X2, . . . , Xn). For each 1 ≤ i ≤ n, we suppose that Xi has probability ϵ to be a non-
null effect and probability 1 − ϵ to be a null effect. We model the null effects as samples
from N(0, 1) and non-null effects as samples from N(A, σ2). Here, ϵ can be viewed as the
proportion of non-null effects, A the heterogeneous parameter, and σ the heteroscedastic
parameter. A and σ together represent signal intensity. Throughout this paper, all the
parameters ϵ, A, and σ are assumed unknown.

The goal is to test whether any signals are present. That is, one wishes to test the
hypothesis ϵ = 0 or equivalently, test the joint null hypothesis

H0 : Xi
iid∼ N(0, 1), 1 ≤ i ≤ n, (1.1)

against a specific alternative hypothesis in its complement

H
(n)
1 : Xi

iid∼ (1− ϵ)N(0, 1) + ϵN(A, σ2), 1 ≤ i ≤ n. (1.2)

The setting here turns out to be the key to understanding the detection problem in more
complicated settings, where the alternative density itself may be a Gaussian mixture, or
where the Xi may be correlated. The underlying reason is that, the Hellinger distance
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between the null density and the alternative density displays certain monotonicity. See
Section 6 for further discussion.

Motivated by the examples mentioned earlier, we focus on the case where ϵ is small.
We adopt an asymptotic framework where n is the driving variable, while ϵ and A are
parameterized as functions of n (σ is fixed throughout the paper). In detail, for a fixed
parameter 0 < β < 1, we let

ϵ = ϵn = n−β. (1.3)

The detection problem behaves very differently in two regimes: the sparse regime where
1/2 < β < 1 and the dense regime where 0 < β ≤ 1/2. In the sparse regime, ϵn ≪ 1/

√
n,

and the most interesting situation is when A = An grows with n at a rate of
√
log n. Outside

this range either it is too easy to separate the two hypotheses or it is impossible to do so.
Also, the proportion ϵn is much smaller than the standard deviation of typical moment-
based statistics (e.g. the sample mean), so these statistics would not yield satisfactory
testing results. In contrast, in the dense case where ϵn ≫ 1/

√
n, the most interesting

situation is when An degenerates to 0 at an algebraic order, and moment-based statistics
could be successful. However, from a practical point, moment-based statistics are still not
preferred as β is in general unknown.

In light of this, the parameter A = An(r; β) is calibrated as follows:

An(r; β) =
√
2r log n, 0 < r < 1, if 1/2 < β < 1 (sparse case), (1.4)

An(r; β) = n−r, 0 < r < 1/2, if 0 < β ≤ 1/2 (dense case). (1.5)

Similar setting has been studied in Donoho and Jin (2004), where the scope is limited
to the case σ = 1 and β ∈ (1/2, 1). Even in this simpler setting, the testing problem is
non-trivial. A testing procedure called the Higher Criticism, which contains three simple
steps, was proposed. First, for each 1 ≤ i ≤ n, obtain a p-value by

pi = Φ̄(Xi) ≡ P{N(0, 1) ≥ Xi}, (1.6)

where Φ̄ = 1 − Φ is the survival function of N(0, 1). Second, sort the p-values in the
ascending order p(1) < p(2) < . . . < p(n). Last, define the Higher Criticism statistic as

HC∗
n = max

{1≤i≤n}
HCn,i, where HCn,i =

√
n

[
i/n− p(i)√
p(i)(1− p(i))

]
, (1.7)

and reject the null hypothesis H0 when HC
∗
n is large. Higher Criticism is very different from

the more conventional moment-based statistics. The key ideas can be illustrated as follows.

When X ∼ N(0, In), pi
iid∼ U(0, 1) and so HCn,i ≈ N(0, 1). Therefore, by the well-known

results from empirical processes (e.g. Shorack and Wellner (2009)), HC∗
n ≈

√
2 log log n,

which grows to ∞ very slowly. In contrast, if X ∼ N(µ, In) where some of the coordinates
of µ is nonzero, then HCn,i has an elevated mean for some i, and HC∗

n could grow to ∞
algebraically fast. Consequently, Higher Criticism is able to separate two hypotheses even
in the very sparse case. We mention that (1.7) is only one variant of the Higher Criticism.
See (Donoho and Jin, 2004, 2008, 2009) for further discussions.

In this paper, we study the detection problem in a more general setting, where the
Gaussian mixture model is both heterogeneous and heteroscedastic and both the sparse and
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dense cases are considered. We believe that heteroscedasticity is a more natural assumption
in many applications. For example, signals can often bring additional variations to the
background. This phenomenon can be captured by the Gaussian hierarchical model:

Xi|µ ∼ N(µ, 1), µ ∼ (1− ϵn)δ0 + ϵnN(An, τ
2),

where δ0 denotes the point mass at 0. The marginal distribution is therefore

Xi ∼ (1− ϵn)N(0, 1) + ϵnN(An, σ
2), σ2 = 1 + τ 2,

which is heteroscedastic as σ > 1.
In these detection problems a major focus is to characterize the so-called detection

boundary, which is a curve that partitions the parameter space into two regions, the de-
tectable region and the undetectable region. The study of the detection boundary is related
to the classical contiguity theory, but is different in important ways. Adapting to our ter-
minology, classical contiguity theory focuses on dense signals that are individually weak;
the current paper, on the other hand, focuses on sparse signals that individually may be
moderately strong. As a result, to derive the detection boundary for the latter, one usually
needs unconventional analysis. Note that in the case σ = 1, the detection boundary was
first discovered by Ingster (1997, 1999), and later independently by Donoho and Jin (2004)
and Jin (2003, 2004).

In this paper, we derive the detection boundaries for both the sparse and dense cases. It
is shown that if the parameters are known and are in the detectable region, the likelihood
ratio test (LRT) has the sum of Type I and Type II error probabilities that tends to 0
as n tends to ∞, which means that the LRT can asymptotically separate the alternative
hypothesis from the null. We are particularly interested in understanding how the het-
eroscedastic effect may influence the detection boundary. Interestingly, in certain range,
the heteroscedasticity alone can separate the null and alternative hypotheses (i.e. even if
the non-null effects have the same mean as that of the null effects).

The LRT is useful in determining the detection boundaries. It is, however, not practi-
cally useful as it requires the knowledge of the parameter values. In this paper, in addition
to the detection boundary, we also consider the practically more important problem of
adaptive detection where the parameters β, r, and σ are unknown. It is shown that a
Higher Criticism based test is optimally adaptive in the whole detectable region in both
the sparse and dense cases, in spite of the very different detection boundaries and het-
eroscedasticity effects in the two cases. Classical methods treat the detections of sparse
and dense signals separately. In real practice, however, the information of the signal spar-
sity is usually unknown, and the lack of a unified approach restricts the discovery of the
full catalog of signals. The adaptivity of HC found in this paper for both sparse and dense
cases is a practically useful property. See further discussion in Section 3.

The detection of the presence of signals is of interest on its own right in many applica-
tions where, for example, the early detection of unusual events is critical. It is also closely
related to other important problems in sparse inference such as estimation of the propor-
tion of non-null effects and signal identification. The latter problem is a natural next step
after detecting the presence of signals. In the current setting, both the proportion estima-
tion problem and the signal identification problem can be solved by extensions of existing
methods. See more discussions in Section 4.
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The rest of the paper is organized as follows. Section 2 demonstrates the detection
boundaries in the sparse and dense cases, respectively. Limiting behaviors of the LRT on
the detection boundary are also presented. Section 3 introduces the modified Higher Crit-
icism test and explains its optimal adaptivity through asymptotic theory and explanatory
intuition. Comparisons to other methods are also presented. Section 4 discusses other
closely related problems including proportion estimation and signal identification. Sim-
ulation examples for finite n is given in Section 5. Further extensions and future work
are discussed in Section 6. Main proofs are presented in Section 7. Appendix includes
complementary technical details.

2 Detection boundary

The meaning of detection boundary can be elucidated as follows. In the β-r plane with
some σ fixed, we want to find a curve r = ρ∗(β;σ), where ρ∗(β;σ) is a function of β and
σ, to separate the detectable region from the undetectable region. In the interior of the
undetectable region, the sum of Type I and Type II error probabilities of any test tends
to 1 as n tends to ∞. In the interior of the detectable region, the sum of Type I and
Type II errors of Neyman-Pearson’s Likelihood Ratio Test (LRT) with parameters (β, r, σ)
specified tends to 0. The curve r = ρ∗(β; σ) is called the detection boundary.

2.1 Detection boundary in the sparse case

In the sparse case, ϵn and An are calibrated as in (1.3)-(1.4). We find the exact expression
of ρ∗(β;σ) as follows,

ρ∗(β;σ) =

{
(2− σ2)(β − 1/2), 1/2 < β ≤ 1− σ2/4,
(1− σ

√
1− β)2, 1− σ2/4 < β < 1,

0 < σ <
√
2, (2.8)

and

ρ∗(β;σ) =

{
0, 1/2 < β ≤ 1− 1/σ2,
(1− σ

√
1− β)2, 1− 1/σ2 < β < 1,

σ ≥
√
2. (2.9)

Note that when σ = 1, the detection boundary r = ρ∗(β; σ) reduces to the detection
boundary in Donoho and Jin (2004) (see also Ingster (1997), Ingster (1999), and Jin (2004)).
The curve r = ρ∗(β; σ) is plotted in the left panel of Figure 1 for σ = 0.6, 1,

√
2 and 3.

The detectable and undetectable regions correspond to r > ρ∗(β;σ) and r < ρ∗(β;σ),
respectively.

When r < ρ∗(β;σ), the Hellinger distance between the joint density of Xi under the
null and that under the alternative tends to 0 as n tends to ∞, which implies that the
sum of Type I and Type II error probabilities for any test tends to 1. Therefore no test
could successfully separate these two hypotheses in this situation. The following theorem
is proved in Section 7.1.

Theorem 2.1 Let ϵn and An be calibrated as in (1.3)-(1.4) and let σ > 0, β ∈ (1/2, 1),
and r ∈ (0, 1) be fixed such that r < ρ∗(β;σ), where ρ∗(β; σ) is as in (2.8)-(2.9). Then for
any test the sum of Type I and Type II error probabilities tends to 1 as n→ ∞.
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Figure 1: Left: Detection boundary r = ρ∗(β; σ) in the sparse case for σ = 0.6, 1,
√
2

and 3. The detectable region is r > ρ∗(β;σ), and the undetectable region is r < ρ∗(β;σ).
Right: Detection boundary r = ρ∗(β;σ) in the dense case for σ = 1. The detectable region
is r < ρ∗(β;σ), and the undetectable region is r > ρ∗(β; σ).

When r > ρ∗(β;σ), it is possible to successfully separate the hypotheses, and we show
that the classical LRT is able to do so. In detail, denote the likelihood ratio by

LRn = LRn(X1, X2, . . . , Xn; β, r, σ),

and consider the LRT which rejects H0 if and only if

log(LRn) > 0. (2.10)

The following theorem, which is proved in Section 7.2, shows that when r > ρ∗(β;σ),
log(LRn) converges to ∓∞ in probability, under the null and the alternative, respectively.
Therefore, asymptotically the alternative hypothesis can be perfectly separated from the
null by the LRT.

Theorem 2.2 Let ϵn and An be calibrated as in (1.3)-(1.4) and let σ > 0, β ∈ (1/2, 1), and
r ∈ (0, 1) be fixed such that r > ρ∗(β; σ), where ρ∗(β;σ) is as in (2.8)-(2.9). As n → ∞,
log(LRn) converges to ∓∞ in probability, under the null and the alternative, respectively.
Consequently, the sum of Type I and Type II error probabilities of the LRT tends to 0.

The effect of heteroscedasticity is illustrated in the left panel of Figure 1. As σ increases,
the curve r = ρ∗(β; σ) moves towards the south-east corner; the detectable region gets
larger which implies that the detection problem gets easier. Interestingly, there is a “phase
change” as σ varies, with σ =

√
2 being the critical point. When σ <

√
2, it is always

undetectable if An is 0 or very small, and the effect of heteroscedasticity alone would not
yield successful detection. When σ >

√
2, it is however detectable even when An = 0, and

the effect of heteroscedasticity alone may produce successful detection.

6



2.2 Detection boundary in the dense case

In the dense case, ϵn and An are calibrated as in (1.3) and (1.5). We find the detection
boundary as r = ρ∗(β; σ), where

ρ∗(β;σ) =

{
∞, σ ̸= 1,
1/2− β, σ = 1,

0 < β < 1/2. (2.11)

The curve r = ρ∗(β;σ) is plotted in the right panel of Figure 1 for σ = 1 and σ ̸= 1.
Note that, unlike that in the sparse case, the detectable and undetectable regions now
correspond to r < ρ∗(β; σ) and r > ρ∗(β;σ), respectively.

The following results are analogous to those in the sparse case. We show that when
r > ρ∗(β; σ), no test could separate H0 from H

(n)
1 ; and when r < ρ∗(β; σ), asymptotically

the LRT can perfectly separate the alternative hypothesis from the null. Proofs for the
following theorems are included in Section 7.3 and 7.4.

Theorem 2.3 Let ϵn and An be calibrated as in (1.3) and (1.5) and let σ > 0, β ∈ (0, 1/2),
and r ∈ (0, 1/2) be fixed such that r > ρ∗(β;σ), where ρ∗(β;σ) is defined in (2.11). Then
for any test the sum of Type I and Type II error probabilities tends to 1 as n→ ∞.

Theorem 2.4 Let ϵn and An be calibrated as in (1.3) and (1.5) and let σ > 0, β ∈ (0, 1/2),
and r ∈ (0, 1/2) be fixed such that r < ρ∗(β; σ), where ρ∗(β;σ) is defined in (2.11). Then,
the sum of Type I and Type II error probabilities of the LRT tends to 0 as n→ ∞.

Comparing (2.11) with (2.8)-(2.9), we see that the detection boundary in the dense
case is very different from that in the sparse case. In particular, heteroscedasticity is more
crucial in the dense case, and the non-null component is always detectable when σ ̸= 1 .

2.3 Limiting behavior of LRT on the detection boundary

In the preceding section, we examine the situation when the parameters (β, r) fall strictly
in the interior of either the detectable or undetectable region. When these parameters get
very close to the detection boundary, the behavior of the LRT becomes more subtle. In this
section, we discuss the behavior of the LRT when σ is fixed and the parameters (β, r) fall
exactly on the detection boundary. We show that, up to some lower order term corrections
of ϵn, the LRT converges to different non-degenerate distributions under the null and under
the alternative, and, interestingly, the limiting distributions are not always Gaussian. As
a result, the sum of Type I and Type II errors of the optimal test tends to some constant
α ∈ (0, 1). The discussion for the dense case is similar to the sparse case, but simpler. Due
to limitation in space, we only present the details for the sparse case.

We introduce the following calibration:

An =
√

2r log n, ϵn =

{
n−β, 1/2 < β ≤ 1− σ2/4,

n−β(log(n))(1−
√
1−β/σ), 1− σ2/4 < β < 1.

(2.12)

Compared to the calibrations in (1.3)-(1.4), An remains the same but ϵn is modified slightly
so that the limiting distribution of LRT would be non-degenerate. Denote

b(σ) = (σ
√
2− σ2)−1.
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We introduce two characteristic functions eψ
0
β,σ and eψ

1
β,σ , where

ψ0
β,σ(t) =

1

2
√
πσ1/(σ2−1)(σ −

√
1− β)

∫ ∞

−∞

[
eit log(1+e

y) − 1− itey
]
e
(σ−2

√
1−β

σ−
√

1−β
−2)y

dy

and

ψ1
β,σ(t) =

1

2
√
πσσ2/(σ2−1)(σ −

√
1− β)

∫ ∞

−∞

[
eit log(1+e

y) − 1
]
e
(σ−2

√
1−β

σ−
√
1−β

−1)y
dy,

and let ν0β,σ and ν1β,σ1 be the corresponding distributions. We have the following theorems,

which address the case of σ <
√
2 and the case of σ ≥

√
2, respectively.

Theorem 2.5 Let An and ϵn be defined as in (2.12), and let ρ∗(β; σ) be as in (2.8)-(2.9).
Fix σ ∈ (0,

√
2), β ∈ (1/2, 1), and set r = ρ∗(β, σ). As n −→ ∞,

log(LRn)
L−→


N(− b(σ)

2
, b(σ)), 1/2 < β < 1− σ2/4,

N(− b(σ)
4
, b(σ)

2
), β = 1− σ2/4,

ν0β,σ, 1− σ2/4 < β < 1,

under H0,

and

log(LRn)
L−→


N( b(σ)

2
, b(σ)), 1/2 < β < 1− σ2/4,

N( b(σ)
4
, b(σ)/2), β = 1− σ2/4,

ν1β,σ, 1− σ2/4 < β < 1,

under H
(n)
1 ,

where
L−→ denotes “converges in law”.

Note that the limiting distribution is Gaussian when β ≤ 1 − σ2/4 and non-Gaussian
otherwise.

Next, we consider the case of σ ≥
√
2, where the range of interest is β > 1− 1/σ2.

Theorem 2.6 Let σ ∈ [
√
2,∞) and β ∈ (1− 1/σ2, 1) be fixed. Set r = ρ∗(β, σ) and let An

and ϵn be as in (2.12). Then as n −→ ∞,

log(LRn)
L−→

{
ν0β,σ, under H0,

ν1β,σ, under H
(n)
1 .

In this case, the limiting distribution is always non-Gaussian. This phenomenon (i.e., the
weak limits of the log-likelihood ratio might be nonGaussian) was repeatedly discovered in
the literature. See for example Ingster (1997, 1999); Jin (2003, 2004) for the case σ = 1,
and Burnashev and Begmatov (1991) for a closely related setting.

In Figure 2, we fix (β, σ) = (0.75, 1.1), and plot the characteristic functions and the
density functions corresponding to the limiting distribution of log(LRn). Two density
functions are generally overlapping with each other, which suggests that when (β, r, σ) falls
on the detection boundary, the sum of Type I and Type II error probabilities of the LRT
tends to a fixed number in (0, 1) as n tends to ∞.
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Figure 2: Characteristic functions and density functions of log(LRn) for (β, σ) = (0.75, 1.1).

A1 and A2 show the real and imaginary parts of eψ
0
β,σ , B1 and B2 show the real and

imaginary parts of eψ
0
β,σ+ψ

1
β,σ , and C shows the density functions of ν0β,σ (dashed) and ν1β,σ

(solid).

3 Higher Criticism and its optimal adaptivity

In real applications, the explicit values of model parameters are usually unknown. Hence
it is of great interest to develop adaptive methods that can perform well without informa-
tion on model parameters. We find that the Higher Criticism, which is a non-parametric
procedure, is successful in the entire detectable region for both the sparse and dense cases.
This property is called the optimal adaptivity of Higher Criticism. Donoho and Jin (2004)
discovered this property in the case of σ = 1 and β ∈ (1/2, 1). Here, we consider more
general settings where β ranges from 0 to 1 and σ ranges from 0 to ∞. Both parameters
are fixed but unknown.

We modify the HC statistic by using the absolute value of HCn,i:

HC∗
n = max

1≤i≤n
|HCn,i|, (3.13)

where HCn,i is defined as in (1.7). Recall that, under the null,

HC∗
n ≈

√
2 log log n.

So a convenient critical point for rejecting the null is when

HC∗
n ≥

√
2(1 + δ) log log n, (3.14)

where δ > 0 is any fixed constant. The following theorem is proved in Section 7.5.

Theorem 3.1 Suppose ϵn and An either satisfy (1.3) and (1.4) and r > ρ∗(β;σ) with
ρ∗(β;σ) defined as in (2.8) and (2.9), or ϵn and An satisfy (1.3) and (1.5) and r < ρ∗(β;σ)
with ρ∗(β;σ) defined as in (2.11). Then the test which rejects H0 if and only if HC∗

n ≥√
2(1 + δ) log log n satisfies

PH0{Reject H0}+ P
H

(n)
1

{Reject H(n)
1 } −→ 0 as n −→ ∞.
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The above theorem states, somewhat surprisingly, that the optimal adaptivity of Higher
Criticism continues to hold even when the data poses an unknown degree of heteroscedas-
ticity, both in the sparse regime and in the dense regime. It is also clear that the Type I
error tends to 0 faster for higher threshold. Higher Criticism is able to successfully sepa-
rate two hypotheses whenever it is possible to do so, and it has full power in the region
where LRT has full power. But unlike the LRT, Higher Criticism does not need specific
information of the parameters σ, β, and r.

In practice, one would like to pick a critical value so that the Type I error is controlled
at a prescribed level α. A convenient way to do this is as follows. Fix a large number N
such that Nα ≫ 1 (e.g. Nα = 50). We simulate the HC∗

n scores under the null for N times,
and let t(α) be the top α percentile of the simulated scores. We then use t(α) as the critical
value. With a typical office desktop, the simulation experiment can be finished reasonably
fast. We find that, due to the slow convergence of the iterative logarithmic law, critical
values determined in this way are usually much more accurate than

√
2(1 + δ) log log n.

3.1 How Higher Criticism works

We now illustrate how the Higher Criticism manages to capture the evidence against the
joint null hypothesis without information on model parameters (σ, β, r).

To begin with, we rewrite the Higher Criticism in an equivalent form. Let Fn(t) and
F̄n(t) be the empirical cdf and empirical survival function of Xi, respectively,

Fn(t) =
1

n

n∑
i=1

1{Xi<t}, F̄n(t) = 1− Fn(t),

and let Wn(t) be the standardized form of F̄n(t)− Φ̄(t),

Wn(t) =
√
n

(
F̄n(t)− Φ̄(t)√
Φ̄(t)(1− Φ̄(t))

)
. (3.15)

Consider the value t that satisfies Φ̄(t) = p(i). Since there are exactly i p-values ≤ p(i), so
there are exactly i samples from {X1, X2, . . . , Xn} that are ≥ t. Hence, for this particular
t, F̄n(t) = i/n, and so

Wn(t) =
√
n

(
i/n− p(i)√
p(i)(1− p(i))

)
.

Comparing this with (3.13), we have

HC∗
n = sup

−∞<t<∞
|Wn(t)|. (3.16)

The proof of (3.16), which we omit, is elementary.
Now, note that for any fixed t,

E[Wn(t)] =

{
0, under H0,√
n F̄ (t)−Φ̄(t)√

Φ̄(t)(1−Φ̄(t))
, under H

(n)
1 .
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The idea is that, if, for some threshold tn,∣∣∣∣√n F̄ (tn)− Φ̄(tn)√
Φ̄(tn)(1− Φ̄(tn))

∣∣∣∣ ≫ √
2 log log n, (3.17)

then we can tell the alternative from the null by merely using Wn(tn). This guarantees the
detection succuss of HC.

For the case 1/2 < β < 1, we introduce the notion of ideal threshold, tIdealn (β, r, σ),
which is a functional of (β, r, σ, n) that maximizes |E[Wn(t)]| under the alternative:

tIdealn (β, r, σ) = argmaxt

∣∣∣∣√n F̄ (t)− Φ̄(t)√
Φ̄(t)(1− Φ̄(t))

∣∣∣∣. (3.18)

The leading term of tIdealn (β, r, σ) turns out to have a rather simple form. In detail, let

t∗n(β, r, σ) =

{
min{ 2

2−σ2An,
√
2 log n}, σ <

√
2,√

2 log n, σ ≥
√
2.

(3.19)

The following lemma is proved in the appendix.

Lemma 3.1 Let ϵn and An be calibrated as in (1.3)-(1.4). Fix σ > 0, β ∈ (1/2, 1) and
r ∈ (0, 1) such that r > ρ∗(β, r, σ), where ρ∗(β, r, σ) is defined in (2.8) and (2.9). Then

tIdealn (β, r, σ)

t∗n(β, r, σ)
→ 1 as n→ ∞.

In the dense case when 0 < β < 1/2, the analysis is much simpler. In fact, (3.17) holds
under the alternative if An ≪ t ≤ C for some constant C. To show the result, we can
simply set the threshold as

t∗n(β, r, σ) = 1, (3.20)

then it follows that ∣∣E[Wn(1)]
∣∣ ≫ √

2 log log n.

One might have expected An to be the best threshold as it represents the signal strength.
Interestingly, this turns out to be not the case: the ideal threshold, as derived in the oracle
situation when the values of (σ, β, r) are known, is nowhere near An. In fact, in the sparse
case, the ideal threshold is either near 2

2−σ2An or near
√
2 log n, both are larger than An.

In the dense case, the ideal threshold is near a constant, which is also much larger than
An. The elevated threshold is due to sparsity (note that even in the dense case, the signals
are outnumbered by noise): one has to raise the threshold to counter the fact that there
are merely too many noise than signals.

Finally, the optimal adaptivity of Higher Criticism comes from the “sup” part of its
definition (see (3.16)). When the null is true, by the study on empirical processes (Shorack
and Wellner, 2009), the supremum of Wn(t) over all t is not substantially larger than that
of Wn(t) at a single t. But when the alternative is true, simply because

HC∗
n ≥ Wn(t

Ideal
n (σ, β, r)),

11



the value of the Higher Criticism is no smaller than that of Wn(t) evaluated at the ideal
threshold (which is unknown to us!). In essence, Higher Criticism mimics the performance
of Wn(t

Ideal
n (σ, β, r)), despite that the parameters (σ, β, r) are unknown. This explains the

optimal adaptivity of Higher Criticism.
Does the Higher Criticism continue to be optimal when (β, r) falls exactly on the bound-

ary, and how to improve this method if it ceases to be optimal in such case? The question
is interesting but the answer is not immediately clear. In principle, given the literature
on empirical processes and law of iterative logarithm, it is possible to modify the normal-
izing term of HCn,i so that the resultant HC statistic has a better power. Such a study
involves the second order asymptotic expansion of the HC statistic, which not only requires
substantially more delicate analysis but also is comparably less important from a practical
point of view than the analysis considered here. For these reasons, we leave the exploration
along this line to the future.

3.2 Comparison to other testing methods

A classical and frequently-used approach for testing is based on the extreme value

Maxn = Maxn(X1, X2, . . . , Xn) = max
{1≤i≤n}

{Xi}.

The approach is intrinsically related to multiple testing methods including that of Bonfer-
roni and that of controlling the False Discovery Rate (FDR).

Recall that under the null hypothesis, Xi are iid samples from N(0, 1). It is well-known
(e.g. Shorack and Wellner (2009)) that

lim
n−→∞

{Maxn/
√
2 log n} −→ 1, in probability.

Additionally, if we reject H0 if and only if

Maxn ≥
√
2 log n, (3.21)

then the Type I error tends to 0 as n tends to ∞. For brevity, we call the test in (3.21)
the Maxn.

Now, suppose the alternative hypothesis is true. In this case, Xi splits into two groups,
where one contains n(1−ϵn) samples from N(0, 1) and the other contains nϵn samples from
N(An, σ

2). Consider the sparse case first. In this case, An =
√
2r log n and nϵn = n1−β.

It follows that except for a negligible probability, the extreme value of the first group
≈

√
2 log n, and that of the second group ≈ (

√
2r log n + σ

√
2(1− β) log n). Since Maxn

equals to the larger one of the two extreme values,

Maxn ≈
√
2 log n ·max{1,

√
r + σ ·

√
1− β}.

So as n tends to ∞, the Type II error of the test (3.21) tends to 0 if and only if

√
r + σ ·

√
1− β > 1.

Note that this is trivially satisfied when σ
√
1− β > 1. The discussion is recaptured in the

following theorem, the proof of which is omitted.
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Theorem 3.2 Let ϵn and An be calibrated as in (1.3)-(1.4). Fix σ > 0 and β ∈ (1/2, 1).
As n −→ ∞, the sum of Type I and Type II error probabilities of the test in (3.21) tends
to 0 if r > ((1− σ ·

√
1− β)+)

2 and tends to 1 if r < ((1− σ ·
√
1− β)+)

2.

Note that the region where Maxn is successful is substantially smaller than that of Higher
Criticism in the sparse case. Therefore, the extreme value test is only sub-optimal. While
the comparison is for the sparse case, we note that the dense case is even more favorable
for the Higher Criticism. In fact, as n tends to ∞, the power of Maxn tends to 0 as long
as An is algebraically small in the dense case.

Other classical tests include tests based on sample mean, Hotelling’s test, Fisher’s com-
bined probability test, etc.. These tests have the form of

∑n
i=1 f(Xi) for some function

f . In fact, Hotelling’s test can be recast as
∑n

i=1X
2
i , and Fisher’s combined probability

test can be recast as −2
∑n

i=1 Φ̄(Xi). The key fact is that the standard deviations of such
tests usually are of the order of

√
n. But, in the sparse case, the number of non-null effects

≪
√
n. Therefore, these tests are not able to separate the two hypotheses in the sparse

case.

4 Detection and related problems

The detection problem studied in this paper has close connections to other important
problems in sparse inference including estimation of the proportion of non-null effects and
signal identification. In the current setting, both the proportion estimation problem and
the signal identification problem can be solved easily by extensions of existing methods. For
example, Cai et al. (2007) provides rate-optimal estimates of the signal proportion ϵn and
signal mean An for the homoscedastic Gaussian mixture: Xi ∼ (1−ϵn)N(0, 1)+ϵnN(An, 1).
The techniques developed in that paper can be generalized to estimate the parameters
ϵn, An, and σ in the current heteroscedastic Gaussian mixture setting, Xi ∼ (1−ϵn)N(0, 1)+
ϵnN(An, σ

2), for both sparse and dense cases.
After detecting the presence of signals, a natural next step is to identify the locations

of the signals. Equivalently, one wishes to test the hypotheses

H0,i : Xi ∼ N(0, 1) vs. H1,i : Xi ∼ N(An, σ
2) (4.22)

for 1 ≤ i ≤ n. An immediate question is: when the signals are identifiable? It is intuitively
clear that it is harder to identify the locations of the signals than to detect the presence
of the signals. To illustrate the gap between the difficulties of detection and signal identi-
fication, we study the situation when signals are detectable but not identifiable. For any
multiple testing procedure T̂n = T̂n(X1, X2, . . . , Xn), its performance can be measured by
the misclassification error

Err(T̂n) = E
[
#{i: H0,i is either falsely rejected or falsely accepted, 1 ≤ i ≤ n}

]
.

We calibrate ϵn and An by

ϵn = n−β and An =
√

2r log n.

Note that the above calibration is the same as in (1.4)–(1.5) for the sparse case (β > 1/2)
but is different for the dense case (β < 1/2). The following theorem is a straightforward

13



extension of (Ji and Jin, 2010, Theorem 1.1), so we omit the proof. See also Xie et al.
(2010).

Theorem 4.1 Fix β ∈ (0, 1) and r ∈ (0, β). For any sequence of multiple testing procedure
{T̂n}∞n=1,

lim inf
n−→∞

[
Err(T̂n)

nϵn

]
≥ 1.

Theorem 4.1 shows that if the signal strength is relatively weak, i.e., An =
√
2r log n for

some 0 < r < β, then it is impossible to successfully separate the signals from noise: no
identification method can essentially perform better than the naive procedure which simply
classifies all observations as noise. The misclassification error of the naive procedure is
obviously nϵn.

Theorems 3.1 and 4.1 together depict a picture as follows. Suppose

An <
√

2β log n, if 1/2 < β < 1; nβ−1/2 ≪ An <
√

2β log n, if 0 < β < 1/2. (4.23)

Then it is possible to reliably detect the presence of the signals but it is impossible to
identify the locations of the signals simply because the signals are too sparse and weak. In
other words, the signals are detectable, but not identifiable.

A practical signal identification procedure can be readily obtained for the current setting
from the general multiple testing procedure developed in Sun and Cai (2007). By viewing
(4.22) as a multiple testing problem, one wishes to test the hypotheses H0,i versus H1,i

for all i = 1, .., n. A commonly used criterion in multiple testing is to control the false
discovery rate (FDR) at a given level, say, FDR ≤ α. Equipped with consistent estimates
(ϵ̂n, Ân, σ̂), we can specialize the general adaptive testing procedure proposed in Sun and
Cai (2007) to solve the signal identification problem in the current setting. Define

L̂fdr(x) =
(1− ϵ̂n)ϕ(x)

((1− ϵ̂n)ϕ(x) + ϵ̂nϕ((x− Ân)/σ̂)).

The adaptive procedure has three steps. First calculate the observed L̂fdr(Xi) for i = 1, .., n.

Then rank L̂fdr(Xi) in an increasing order: L̂fdr(1) ≤ L̂fdr(2) ≤ L̂fdr(n). Finally reject

all H
(i)
0 , i = 1, . . . , k where k = max{i : 1

i

∑i
j=1 L̂fdr(j) ≤ α}. This adaptive procedure

asymptotically attains the performance of an oracle procedure and thus is optimal for the
multiple testing problem. See Sun and Cai (2007) for further details.

We conclude this section with another important problem that is intimately related to
signal detection: feature selection and classification. Suppose there are n subjects that are
labeled into two classes, and for each subject we have measurements of p features. The
goal is to use the data to build a trained-classifier to predict the label of a new subject by
measuring its feature vectors. Donoho and Jin (2008) and Jin (2009) show that the optimal
threshold for feature selection is intimately connected to the ideal threshold for detection
in Section 3.1, and the fundamental limit for classification is intimately connected to the
detection boundary. While the scope in these works are limited to the homoscedastic case,
extensions to heteroscedastic cases are possible. From a practical point of view, the latter
is in fact broader and more attractive.
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5 Simulation

In this section, we report simulation results, where we investigate the performance of four
tests: the LRT, the Higher Criticism, the Max, and the SM (which stands for Sample Mean;
to be defined below). The LRT is defined in (2.10); the Higher Criticism is defined in (3.14)
where the tuning parameter δ is taken to be the optimal value in 0.2 × [0, 1, . . . , 10] that
results in the smallest sum of Type I and Type II errors; the Max is defined in (3.21). In
addition, denoting

X̄n =
1

n

n∑
j=1

Xj,

let the SM be the test that rejects H0 when
√
nX̄n >

√
log log n (note that

√
nX̄n ∼ N(0, 1)

under H0). The SM is an example in the general class of moment-based tests. Note that
the use of the LRT needs specific information of the underlying parameters (β, r, σ), but
the Higher Criticism, the Max, and the SM do not need such information.

The main steps for the simulation are as follows. First, fixing parameters (n, β, r, σ),
we let ϵn = n−β, An =

√
2r log n if β > 1/2, and An = n−r if β < 1/2 as before. Second,

for the null hypothesis, we drew n samples from N(0, 1); for the alternative hypothesis,
we first drew n(1 − ϵn) samples from N(0, 1), and then draw nϵn samples from N(An, 1).
Third, we implemented all four tests to each of these two samples. Last, we repeated the
whole process for 100 times independently, and then recorded the empirical Type I error
and Type II errors for each test. The simulation contains four experiments below.

Experiment 1. In this experiment, we investigate how the LRT performs and how
relevant the theoretic detection boundary is for finite n (the theoretic detection boundary
corresponds to n = ∞). We investigate both a sparse case and a dense case.

For the sparse case, fixing (β, σ2) = (0.7, 0.5) and n ∈ {104, 105, 107}, we let r range
from 0.05 to 1 with an increment of 0.05. The sum of Type I and Type II errors of the
LRT is reported in the left panel of Figure 3. Recall that Theorem 2.1-2.2 predict that for
sufficiently large n, the sum of Type I and Type II errors of the LRT is approximately 1
when r < ρ∗(β; σ) and is approximately 0 when r > ρ∗(β;σ). In the current experiment,
ρ∗(β;σ) = 0.3. The simulation results show that for each of n ∈ {104, 105, 107}, the sum
of Type I and Type II errors of the LRT is small when r ≥ 0.5 and is large when r ≤ 0.1.
In addition, if we view the sum of Type I and Type II errors as a function of r, then as n
gets larger, the function gets increasingly close to the indicator function 1{r<0.3}. This is
consistent with Theorems 2.1-2.2.

For the dense case, we fix (β, σ2) = (0.2, 1), n ∈ {104, 105, 107}, and let r range from
1/30 to 0.5 with an increment of 1/30. The results are displayed in the right panel of Figure
3, where a similar conclusion can be drawn.

Experiment 2. In this experiment, we compare the Higher Criticism with the LRT, the
Max, and the SM, focusing on the effect of the signal strength (calibrated through the
parameter r). We consider both a sparse case and a dense case.

For the sparse case, we fix (n, β, σ2) = (106, 0.7, 0.5) and let r range from 0.05 to 1 with
an increment of 0.05. The results are displayed in the left panel of Figure 4. The figure
illustrates that the Higher Criticism has a similar performance to that of the LRT, and
outperforms the Max. We also note that SM usually does not work in the sparse case, so
we leave it out for comparison.
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Figure 3: Sum of Type I and Type II errors of the LRT. Left: (β, σ2) = (0.7, 0.5), r
ranges from 0.05 to 1 with an increment of 0.05, and n = 104, 105, 107 (dot-dashed, dashed,
solid). Right: (β, σ) = (0.2, 1), r ranges from 1/30 to 0.5 with an increment of 1/30, and
n = 104, 105, 107 (dot-dashed, dashed, solid). In each panel, the vertical dot-dashed line
illustrates the critical point of r = ρ∗(β;σ). The results are based on 100 replications.
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Figure 4: Sum of Type I and Type II errors of the Higher Criticism (solid), the LRT
(dashed) and the Max (dot-dashed; left panel) or the SM (dot-dashed; right panel). Left:
(n, β, σ2) = (106, 0.7, 0.5), and r ranges from 0.05 to 1 with an increment of 0.05. Right:
(n, β, σ2) = (106, 0.2, 1), and r ranges from 1/30 to 0.5 with an increment of 1/30. The
results are based on 100 replications.

We note that the LRT has optimal performance, but the implementation of which needs
specific information of (β, r, σ). In contrast, the Higher Criticism is non-parametric and
does not need such information. Nevertheless, Higher Criticism has comparable perfor-
mance as that of the LRT.

For the dense case, we fix (n, β, σ2) = (106, 0.2, 1) and let r range from 1/30 to 0.5 with
an increment of 1/30. In this case, the Max usually does not work well, so we compare the
Higher Criticism with the LRT and the SM only. The results are summarized in the right
panel of Figure 4, where a similar conclusion can be drawn.
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Experiment 3. In this experiment, we continue to compare the Higher Criticism with
the LRT, the Max, and the SM, but with the focus on the effect of the heteroscedasticity
(calibrated by the parameter σ). We consider a sparse case and a dense case.

For the sparse case, we fix (n, β, r) = (106, 0.7, 0.25) and let σ range from 0.2 to 2 with
an increment of 0.2. The results are reported in the left panel of Figure 5 (that of the SM
is left out for it would not work well in the very sparse case), where the performance of
each test gets increasingly better as σ increases. This suggests that the testing problem
becomes increasingly easier as σ increases, which fits well with the asymptotic theory in
Section 2. In addition, for the whole region of σ, the Higher Criticism has a comparable
performance to that of the LRT, and outperforms the Max except for large σ, where the
Higher Criticism and Max perform comparatively.

For the dense case, we fix (n, β, r) = (106, 0.2, 0.4) and let σ range from 0.2 to 2 with
an increment of 0.2. We compare the performance of the Higher Criticism with that of the
LRT and the SM. The results are displayed in the right panel of Figure 5. It is noteworthy
that the Higher Criticism and the LRT perform reasonably well when σ is bounded away
from 1, and effectively fail when σ = 1. This is due to the fact that the detection problem is
intrinsically different in the cases of σ ̸= 1 and σ = 1. In the former, the heteroscedasticity
alone could yield successful detection. In the latter, signals must be strong enough in order
for successful detection. Note that for the whole range of σ, the SM has poor performance.
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Figure 5: Sum of Type I and Type II errors of Higher Criticism (solid), the LRT (dashed)
and the Max (dot-dashed; left panel) or the SM (dot-dashed; right panel). Left: (n, β, r) =
(106, 0.7, 0.25), and σ ranges from 0.2 to 2 with an increment of 0.2. Right: (n, β, r) =
(106, 0.2, 0.4), and σ ranges from 0.2 to 2 with an increment of 0.2. The visible spike is due
to that, in the dense case, the detection problem is intrinsically different when σ = 1 and
σ ̸= 1. The results are based on 100 replications.

Experiment 4. In this experiment, we continue to compare the performance of the
Higher Criticism with that of the LRT, the Max, and the SM, but with the focus on the
effect of the sparsity level (calibrated by the parameter β).

First, we investigate the case of β > 1/2. We fix (n, r, σ2) = (106, 0.25, 0.5) and let
β range from 0.55 to 1 with an increment of 0.05. The results are displayed in the left
panel of Figure 6. The figure illustrates that the detection problem becomes increasingly
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more difficult when β increases and r is fixed. Nevertheless, the Higher Criticism has a
comparable performance to that of the LRT and outperforms the Max.

Second, we investigate the case of β < 1/2. We fix (n, r, σ2) = (106, 0.3, 1) and let β
range from 0.05 to 0.5 with an increment of 0.05. Compared to the previous case, a similar
conclusion can be drawn if we replace the Max by the SM.
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Figure 6: Sum of Type I and Type II errors of the Higher Criticism (solid), the LRT
(dashed) and the Max (dot-dashed; left panel) or the SM (dot-dashed; right panel). Left:
(n, r, σ2) = (106, 0.25, 0.5), and β ranges from 0.55 to 1 with an increment of 0.05. Right:
(n, r, σ2) = (106, 0.3, 1), and β ranges from 0.05 to 0.5 with an increment of 0.05. The
results are based on 100 replications.

In the simulation experiments, the estimated standard errors of the results are in general
small. Recall that each point on the curves is the mean of 100 replications. To estimate
the standard error of the mean, we use the following popular procedure (Zou, 2006). We
generated 500 bootstrap samples out of the 100 replication results, then calculated the mean
for each bootstrap sample. The estimated standard error is the standard deviation of the
500 bootstrap means. Due to the large scale of the simulations, we pick several examples in
both sparse and dense cases in Experiment 3 and demonstrate their means with estimated
standard errors in Table 1. The estimated standard errors are in general smaller than the
differences between means. These results support our conclusions in experiment 3.

Sparse Dense

σ LRT HC Max LRT HC SM

0.5 0.84(0.037) 0.91(0.031) 1(0) 0(0) 0(0) 0.98(0.013)
1 0.52(0.051) 0.62(0.050) 0.81(0.040) 0.93(0.025) 0.98(0.0142) 0.99(0.010)

Table 1: Means with their estimated standard errors in parentheses for different methods.
Sparse: (n, β, r) = (106, 0.7, 0.25). Dense: (n, β, r) = (106, 0.2, 0.4).

In conclusion, the Higher Criticism has a comparable performance to that of the LRT.
But unlike the LRT, the Higher Criticism is non-parametric. The Higher Criticism auto-
matically adapts to different signal strengths, heteroscedasticity levels, and sparsity levels,
and outperforms the Max and the SM.
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6 Discussion

In this section, we discuss extensions of the main results in this paper to more general
settings. We discuss the case where the signal strengths may be unequal, the case where
the noise maybe correlated or nonGaussian, and the case where the heteroscedasticity
parameter σ has a more complicated source.

6.1 When the signal strength maybe unequal

In the preceding sections, the non-null density is a single normal N(An, σ
2) and the signal

strengths are equal. More generally, one could replace the single normal by a location
Gaussian mixture, and the alternative hypothesis becomes

H
(n)
1 : Xi

iid∼ (1− ϵn)N(0, 1) + ϵn

∫
1

σ
ϕ(
x− u

σ
)dGn(u), (6.24)

where ϕ(x) is the density of N(0, 1) and Gn(u) is some distribution function.
Interestingly, the Hellinger distance associated with testing problem is monotone with

respect to Gn. In fact, fixing n ≥ 1, if the support of Gn is contained in [0, An], then
the Hellinger distance between N(0, 1) and the density in (6.24) is no greater than that
between N(0, 1) and (1− ϵn)N(0, 1)+ ϵnN(An, σ

2). The proof is elementary so we omit it.
At the same time, similar monotonicity exists for the Higher Criticism. In detail, fixing

n, we apply the Higher Criticism to n samples from (1− ϵn)N(0, 1) + ϵn
∫

1
σ
ϕ(x−u

σ
)dGn(u),

as well as to n samples from (1 − ϵn)N(0, 1) + ϵnN(An, σ
2), and obtain two scores. If the

support of Gn is contained in [0, An], then the former is stochastically smaller than the
latter (we say two random variables X ≤ Y stochastically if the cumulative distribution
function of the former is no smaller than that of the latter point-wise). The claim can be
proved by elementary probability and mathematical induction, so we omit it.

These results shed light on the testing problem for general Gn. As before, let ϵn = n−β

and τp =
√
2r log p. The following can be proved.

• Suppose r < ρ∗(β;σ). Consider the problem of testing H0 against H
(n)
1 as in (6.24). If

the support of Gn is contained in [0, An] for sufficiently large n, then two hypotheses
are asymptotically indistinguishable (i.e., for any test, the sum of Type I and Type
II errors −→ 1 as n −→ ∞).

• Suppose r > ρ∗(β;σ). Consider the problem of testing H0 against H
(n)
1 as in (6.24).

If the support of Gn is contained in [An,∞), then the sum of Type I and Type II
errors of the Higher Criticism test −→ 0 as n −→ ∞.

6.2 When the noise is correlated or non-Gaussian

The main results in this paper can also be extended to the case where the Xi are correlated
or nonGaussian.

We discuss the correlated case first. Consider a model X = µ + Z, where the mean
vector µ is non-random and sparse, and Z ∼ N(0,Σ) for some covariance matrix Σ = Σn,n.
Let supp(µ) be the support of µ, and let Λ = Λ(µ) be an n by n diagonal matrix the
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k-th coordinate of which is σ or 1 depending on k ∈ supp(µ) or not. We are interested in
testing a null hypothesis where µ = 0 and Σ = Σ∗ against an alternative hypothesis where
µ ̸= 0 and Σ = ΛΣ∗Λ, where Σ∗ is a known covariance matrix. Note that our preceding
model corresponds to the case where Σ∗ is the identity matrix. Also, a special case of the
above model was studied in Hall and Jin (2008) and Hall and Jin (2010), where σ = 1 so
that the model is homoscedastic in a sense. In these work, we found that the correlation
structure among the noise is not necessarily a curse and could be a blessing. We showed
that we could better the testing power of the Higher Criticism by combining the correlation
structure with the statistic. The heteroscedastic case is interesting but has not yet been
studied.

We now discuss the non-Gaussian case. In this case, how to calculate individual p-
values poses challenges. An interesting case is where the marginal distribution of Xi is
close to normal. An iconic example is the study of gene microarray, where Xi could be the
Studentized t-scores ofm different replicates for the i-th gene. Whenm is moderately large,
the moderate tail of Xi is close to that of N(0, 1). Exploration along this direction includes
(Delaigle et al., 2010) where we learned that the Higher Criticism continues to work well
if we use bootstrapping-correction on small p-values. The scope of this study is limited to
the homoscedastic case, and extension to the heteroscedastic case is both possible and of
interest.

6.3 When the heteroscedasticity has a more complicated source

In the preceding sections, we model the heteroscedastic parameter σ as non-stochastic. The
setting can be extended to a much broader setting where σ is random and has a density
h(σ). Assume the support of h(σ) is contained in an interval [a, b], where 0 < a < b < ∞.

We consider a setting where under H
(n)
1 , Xi

iid∼ g(x), with

g(x) = g(x; ϵn, An, h, a, b) = (1− ϵn)ϕ(x) + ϵn

∫ b

a

[
1

σ
ϕ(
x− An
σ

)

]
h(σ)dσ. (6.25)

Recall that in the sparse case, the detection boundary r = ρ∗(β; σ) is monotonically
decreasing in σ when β is fixed. The interpretation is that, a larger σ always makes the
detection problem easier. Compare the current testing problem with two other testing
problems, where σ = νa (point mass at a) and σ = νb, respectively. Note that h(σ) is
supported in [a, b]. In comparison, the detection problem in the current setting should be
easier than the case of σ = νa, and be harder than the case of σ = νb. In other words,
the “detection boundary” associated with the current case is sandwiched by two curves
r = ρ∗(β; a) and r = ρ∗(β; b) in the β-r plane.

If additionally h(σ) is continuous and is nonzero at the point b, then there is a non-
vanishing fraction of σ, say δ ∈ (0, 1), that falls closely to b. Heuristically, the detection
problem is at most as hard as the case where g(x) in (6.25) is replaced by g̃(x), where

g̃(x) = (1− δϵn)N(0, 1) + δϵnN(An, b
2). (6.26)

Since the constant δ only has a negligible effect on the testing problem, the detection
boundary associated with (6.26) will the same as in the case of σ = νb. For reasons of
space, we omit the proof.
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We briefly comment on using Higher Criticism for real data analysis. One interesting
application of HC is for high dimensional feature selection and classification (see Section
4). In a related paper (Donoho and Jin, 2008), the method has been applied to several by
now standard gene microarray data sets (Leukemia, Prostate cancer, and Colon cancer).
The results reported are encouraging and the method is competitive to many widely used
classifiers including the random forest and the Support Vector Machine (SVM). Another
interesting application of the HC is for nonGaussian detection in the so-called WMAP data
(stands for Wilkinson Microwave Anisotropy Probe) (Cayon et al., 2005). The method is
competitive to the Kurtosis-based method, which is the most widely used one by cosmolo-
gists and astronomers. In these real data analysis, it is hard to tell whether the assumption
of homoscedasticity is valid or not. However, the current paper suggests that the Higher
Criticism may continue to work well even when the assumption of homoscedasticity does
not hold.

To conclude this section, we mention that this paper is connected to that by Jager and
Wellner (2007), which investigated Higher Criticism in the context of goodness-of-fit. It
is also connected to Meinshausen and Buhlmann (2006) and Cai et al. (2007), which used
Higher Criticism to motivate lower bounds for the proportion of non-null effects.

7 Proofs

We now prove the main results. In this section we shall use PL(n) > 0 to denote a
generic poly-log term which may be different from one occurrence to the other, satisfying
limn−→∞{PL(n) · n−δ} = 0 and limn−→∞{PL(n) · nδ} = ∞ for any constant δ > 0.

7.1 Proof of Theorem 2.1

By the well-known theory on the relationship between the L1-distance and the Hellinger
distance, it suffices to show that the Hellinger affinity between N(0, 1) and (1−ϵn)N(0, 1)+
ϵnN(An, σ

2) behaves asymptotically as (1+o(1/n)). Denote the density ofN(0, σ2) by ϕσ(x)
(we drop the subscript when σ = 1), and introduce

gn(x) = gn(x; r, σ) =
ϕσ(x− An)

ϕ(x)
. (7.27)

The Hellinger affinity is then E[
√

1− ϵn + ϵngn(X)], where X ∼ N(0, 1). Let Dn be the

event of |X| ≤
√

2 log(n). The following lemma is proved in the appendix.

Lemma 7.1 Fix σ > 1, β ∈ (1/2, 1), and r ∈ (0, ρ∗(β;σ)). As n tends to ∞,

ϵnE[gn(X) · 1{Dc
n}] = o(1/n), ϵ2nE[g

2
n(X) · 1{Dn}] = o(1/n).

We now proceed to show Theorem 2.1. First, since thatE
[√

1− ϵn + ϵngn(X) · 1{Dn}
]
≤

E
[√

1− ϵn + ϵngn(X)
]
≤ 1, so all we need to show is

E
[√

1− ϵn + ϵngn(X) · 1{Dn}
]
= 1 + o(1/n).
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Now, note that for x ≥ −1,
∣∣√1 + x − 1 − x

2

∣∣ ≤ Cx2. Applying this with x = ϵn(gn(X) ·
1{Dn} − 1) gives

E
√
1− ϵn + ϵngn(X) · 1{Dn} = 1− ϵn

2
E[gn(X) · 1{Dc

n}] + err, (7.28)

where, by Cauchy-Schwarz inequality,

|err| ≤ Cϵ2nE[gn(X) · 1{Dn} − 1]2 ≤ Cϵ2n
(
E[g2n(X) · 1{Dn}] + 1

)
. (7.29)

Recall ϵ2n = n−2β = o(1/n). Combining Lemma 7.1 with (7.28)-(7.29) gives the claim.
�

7.2 Proof of Theorem 2.2

Since the proofs are similar, we only show that under the null. By Chebyshev’s inequality,
to show that − log(LRn) −→ ∞ in probability, it is sufficient to show that as n tends to
∞,

−E[log(LRn)] → ∞, (7.30)

and
Var[log(LRn)]

(E[log(LRn)])2
−→ 0. (7.31)

Consider (7.30) first. Recalling that gn(x) = ϕσ(x− An)/ϕ(x), we introduce

LLRn(X) = LLRn(X; ϵn, gn) = log(1− ϵn + ϵngn(X)), (7.32)

and
fn(x) = fn(x; ϵn, gn) = log(1 + ϵngn(x))− ϵngn(x). (7.33)

By definitions and elementary calculus, log(LRn) =
∑n

i=1 LLRn(Xi), and E[LLRn(X)] =
E[log(1+ ϵngn(X))− ϵngn(X)]+O(ϵ2n) = E[fn(X)]+O(ϵ2n). Recalling ϵ

2
n = n−2β = o(1/n),

E[log(LRn)] = nE[LLRn(X)] = nE[fn(X)] + o(1). (7.34)

Here, X and Xi are iid N(0, 1), 1 ≤ i ≤ n. Moreover, since there is a constant c1 ∈ (0, 1)
and a generic constant C > 0 such that log(1+x) ≤ c1x for x > 1 and log(1+x)−x ≤ −Cx2
for x ≤ 1, there is a generic constant C > 0 such that

E[fn(X)] ≤ −C
(
ϵnE[gn(X)1{ϵngn(X)>1}] + ϵ2nE[g

2
n(X)1{ϵngn(X)≤1}]

)
. (7.35)

The following lemma is proved in the appendix.

Lemma 7.2 Fix σ > 0, β ∈ (1/2, 1) and r ∈ (0, 1) such that r > ρ∗(β;σ), then, as n tends
to ∞, we have either

nϵnE[gn(X)1{ϵngn(X)>1}] −→ ∞ (7.36)

or
nϵ2nE[g

2
n(X)1{ϵngn(X)≤1}] −→ ∞. (7.37)
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Combine Lemma 7.2 with (7.34)-(7.35) gives the claim in (7.30).
Next, we show (7.31). Recalling log(LRn) =

∑n
i=1 LLRn(Xi), we have

Var[log(LRn)] = nVar(LLRn(X)) = n
(
E[LLR2

n]− (E[LLRn])
2
)
.

Comparing this with (7.31), it is sufficient to show that there is a constant C > 0 such that

E[LLR2
n(X)] ≤ C

∣∣E[LLRn(X)]
∣∣. (7.38)

First, by Schwartz inequality, for all x,

log2(1−ϵn+ϵngn(x)) =
[
log(1− ϵn

1 + ϵngn(x)
)+log(1+ϵngn(x))

]2 ≤ C[ϵ2n+log2(1+ϵngn(x))].

Recalling ϵ2n = o(1/n),

E[LLR2
n] ≤ CE[log2(1 + ϵngn(X))] + o(1/n).

Second, note that log(1 + x) < C
√
x for x > 1 and log(1 + x) < x for x > 0. By similar

argument as in the proof of (7.35),

E[log2(1 + ϵngn(X))] ≤ C

(
ϵnE[gn(X)1{ϵngn(X)>1}] + ϵ2nE[g

2
n(X)1{ϵngn(X)≤1}]

)
.

Since the right hand side has an order much larger than o(1/n),

E[LLR2
n] ≤ C

(
ϵnE[gn(X)1{ϵngn(X)>1}] + ϵ2nE[g

2
n(X)1{ϵngn(X)≤1}]

)
.

Comparing this with (7.35) gives the claim. �

7.3 Proof of Theorem 2.3

By the similar argument as in Section 7.1, all we need to show is that when σ = 1 and
r > 1/2− β,

E[
√

1− ϵn + ϵngn(X)] = 1 + o(n−1), (7.39)

where X ∼ N(0, 1), and gn(X) is as in (7.27). By Taylor expansion,

E[
√

1− ϵn + ϵngn(X)] ≥ E[1 +
ϵn
2
(gn(X)− 1)− ϵ2n

8
(gn(X)− 1)2].

Note that E[gn(X)] = 1, then

E[
√

1− ϵn + ϵngn(X)] ≥ 1− ϵ2n
8
(E[g2n(X)]− 1). (7.40)

Write

E[g2n(X)] =

∫
1√
2πσ2

e(
1
2
− 1

σ2 )x
2+ 2Anx

σ2 −A2
n

σ2 dx =

∫
1√
2πσ2

e
− 2−σ2

2σ2 (x− 2An
2−σ2 )

2+
A2
n

2−σ2 dx.

In the current case, σ = 1, and An = n−r with r > β − 1/2. By direct calculations,
E[g2n(X)] = eA

2
n , and

ϵ2n
8
(E[g2n(X)]− 1) ∼ ϵ2nA

2
n = o(n−1). (7.41)

Inserting (7.40)-(7.41) into (7.39) gives the claim.

23



7.4 Proof of Theorem 2.4

Recall that LLRn(x) = log(1+ ϵn(gn(x)−1)) and log(LRn) =
∑n

j=1 LLRn(Xj). By similar
arguments as in Section 7.2, it is sufficient to show that for X ∼ N(0, 1), when n −→ ∞,

nE[LLRn(X)] −→ −∞, (7.42)

and
Var[log(LRn)]

(E[log(LRn)])2
−→ 0. (7.43)

Consider (7.42) first. Introduce the event Bn = {X : ϵngn(X) ≤ 1}. Note that
log(1 + x) ≤ x for all x and log(1 + x) ≤ x− x2/4 when x ≤ 1, and that E[gn(X)] = 1. It
follows that

E[LLRn(X)] ≤ E[ϵn(gn(X)− 1)]− 1

4
E[ϵ2n(gn(X)− 1)2 · 1Bn ] = −1

4
ϵ2nE[(gn(X)− 1)2 · 1Bn ].

(7.44)
Since E[gn(X)1Bn ] ≤ E[gn(X)] = 1, it is seen that

E[(gn(X)− 1)21Bn ] ≥ E[g2n(X)1Bn ]− 2 + P (Bn) = E[g2n(X)1Bn ]− 1− P (Bc
n). (7.45)

We now discuss for the case of σ = 1 and σ ̸= 1 separately.
Consider the case σ = 1 first. In this case, gn(x) = eAnx−A2

n/2. By direct calculations,

P (Bc
n) = o(A2

n), E[g2n(X)1Bn ] =
eA

2
n

√
2π

∫
{x:ϵngn(x)≤1}

e−(x−2An)2/2dx = 1+A2
n · (1 + o(1)).

Combining this with (7.44)-(7.45), E[LLRn(X)] . −1
4
ϵ2nA

2
n = −1

4
n−2(β+r). The claim

follows by the assumption r < 1/2− β.
Consider the case σ ̸= 1. It is sufficient to show that as n −→ ∞,

E[g2n(X)1Bn ] ∼


1

σ
√
2−σ2 , σ <

√
2,

C
√
log(n), σ =

√
2,

(C/
√
log n)nβ(σ

2−2)/(σ2−1), σ >
√
2,

(7.46)

where we note that 1
σ
√
2−σ2 > 1 when σ <

√
2. In fact, once this is shown, noting

that P (Bc
n) = o(1), it follows from (7.45) that there is a constant c0(σ) > 0 such that

for sufficiently large n, E[(gn(X) − 1)21Bn ] − 1 ≥ 4c0(σ). Combining this with (7.44),
E[LLRn(X)] ≤ −c0(σ)ϵ2n = −c0(σ)n−2β. The claim follows from the assumption β < 1/2.

We now show (7.46). Write

E[g2n(X)1Bn ] =
1√
2πσ2

∫
{x:ϵngn(x)≤1}

e(
1
2
− 1

σ2 )x
2+ 2Anx

σ2 −A2
n

σ2 dx. (7.47)

Consider the case σ <
√
2 first. In this case, 1/2 − 1/σ2 < 0. Since An = n−r, it is seen

that

E[g2n(X)1Bn ] ∼
1√
2πσ2

∫
e(

1
2
− 1

σ2 )x
2

dx =
1

σ
√
2− σ2

,
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and the claim follows. Consider the case σ ≥
√
2. Let x±(n) = x±(n; σ, ϵn, An), x− < x+,

be the two solutions of ϵngn(x) = 1, and let x0(n) = x0(n;σ, β) =
√
2σ2β log(n)/(σ2 − 1).

By elementary calculus, ϵngn(x) ≤ 1 if and only if x−(n) ≤ x ≤ x+(n) and x±(n) =
±x0(n) + o(1), where o(1) tends to 0 algebraically fast as n −→ ∞. It follows that

E[g2n(X)1Bn ] =
1√
2πσ2

∫ x+(n)

x−(n)

e(
1
2
− 1

σ2 )x
2+ 2Anx

σ2 −A2
n

σ2 dx ∼ 1√
2πσ2

∫ x+(n)

x−(n)

e(
1
2
− 1

σ2 )x
2

dx. (7.48)

When σ =
√
2, 1/2 − 1/σ2 = 0. By (7.48), E[g2n(X)1Bn ] ∼ (1/(

√
2πσ2))2x0(n) ∼

2
σ

√
β log(n)/(π(σ2 − 1)), which gives the claim. When σ >

√
2, 1/2 − 1/σ2 > 0. By

(7.48) and elementary calculus,

E[g2n(X)1Bn ] ∼
1√

2πσ2(1
2
− 1

σ2 )x0(n)
e(

1
2
− 1

σ2 )x
2
0(n) ∼

√
σ2 − 1

(σ2 − 2)σ
√
πβ log(n)

nβ(σ
2−2)/(σ2−1),

and the claim follows.
We now show (7.43). By similar argument as in Section 7.2, it is sufficient to show that

E[LLR2
n(X)] ≤ C

∣∣E[LLRn(X)]
∣∣. (7.49)

Note that it is proved in (7.44) that∣∣E[LLRn(X)]
∣∣ ≥ 1

4
E[ϵ2n(gn(X)− 1)2 · 1Bn ]. (7.50)

Recall that LLRn(x) = log(1 + ϵn(gn(x) − 1)). Since log2(1 + a) ≤ a for a > 1 and
| log2(1 + a)| . a2 for −ϵn ≤ a ≤ 1,

E[LLR2
n(X)] . E[ϵn(gn(X)− 1) · 1Bc

n
] + E[ϵ2n(gn(X)− 1)2 · 1Bn ]. (7.51)

Compare (7.51) with (7.50). To show (7.49), it is sufficient to show that

E[ϵn(gn(X)− 1) · 1Bc
n
] ≤ CE[ϵ2n(gn(X)− 1)2 · 1Bn ]. (7.52)

Note that this follows trivially when σ < 1, in which case Bc
n = ∅. This also follows easily

when σ = 1, in which case gn(x) = exp(Anx− A2
n/2) and Bn = {X : |X| ≥ nβ+rexp(A2

n)}.
We now show (7.52) for the case σ > 1. By the proof of (7.42),

E[ϵ2n(gn(X)− 1)21Bn ] ≥


Cn−2β, 1 < σ <

√
2,

C
√

log(n) n−2β, σ =
√
2,

(C/
√

log(n)) n−βσ2/(σ2−1), σ >
√
2.

(7.53)

At the same time, by the definitions and properties of x±(n) and Mills’ ratio (Wasserman,
2006),

ϵnE[gn(X) · 1Bc
n
] ∼ 2ϵn

∫ ∞

x0(n)

1

σ
ϕ(
x− An
σ

)dx ≤ C√
log n

n
−β σ2

σ2−1 . (7.54)

Note that σ2/(σ2−1) ≥ 2 when σ ≤
√
2. Comparing (7.53) and (7.54) gives (7.52). �
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7.5 Proof of Theorem 3.1

It is sufficient to show that as n tends to ∞,

PH0

{
HC∗

n ≥
√

2(1 + δ) log log n
}
→ 0, (7.55)

and
P
H

(n)
1

{
HC∗

n <
√

2(1 + δ) log log n
}
→ 0. (7.56)

Recall that under the null, HC∗
n equals in distribution to the extreme value of a normalized

uniform empirical process and

HC∗
n√

2 log log n
−→ 1, in probability.

So, the first claim follows directly. Consider the second claim. By (3.16), (3.19), and (3.20),
HC∗

n = sup−∞<t<∞ |Wn(t)| ≥ |Wn(t
∗
n(σ, β, r))|, so all we need to show is that under the

assumptions in the theorem,

P
H

(n)
1

{
|Wn(t

∗
n(σ, β, r))| <

√
2(1 + δ) log log n

}
−→ 0. (7.57)

Towards this end, we write for short t = t∗n(σ, β, r).
In the sparse case with 1/2 < β < 1, direct calculations show that

E[Wn(t)] =

√
nϵn[Φ̄(

t−An

σ
− Φ̄(t)]√

Φ̄(t)(1− Φ̄(t))
∼

√
nϵn[Φ̄(

t− An
σ

)− Φ̄(t)]/
√
Φ̄(t), (7.58)

and

Var(Wn(t)) =
F̄ (t)(1− F̄ (t))

Φ̄(t)(1− Φ̄(t))
∼ F̄ (t)

Φ̄(t)
. (7.59)

By Mills’ ratio (Wasserman, 2006),

Φ̄(
√
2q log n) = PL(n) · n−q, Φ̄

(√
2q log n− An

σ

)
= PL(n) · n−(

√
q−

√
r)2/σ2

. (7.60)

Inserting (7.60) into (7.58) gives

√
nϵn[Φ̄(

t−An

σ
)− Φ̄(t)]√

Φ̄(t)
=

{
PL(n) · nr/(2−σ2)−(β−1/2), σ <

√
2, r < (2− σ2)2/4,

PL(n) · n1−β−(1−
√
r)2/σ2

, otherwise.

(7.61)
It follows from r > ρ∗(σ, β, r) and basic algebra that E[Wn(t)] tends to ∞ algebraically
fast. Especially,

E[Wn(t)]/
√

2(1 + δ) log log n −→ ∞. (7.62)

Combining (7.58) and (7.59), it follows from Chebyshev’s inequality that

P
H

(n)
1

{
|Wn(t

∗
n(σ, β, r))| <

√
2(1 + δ) log log n

}
≤ C

Var(Wn(t))

(E[Wn(t)])2
≤ C

F̄ (t)

nϵ2n[Φ̄(
t−An

σ
)− Φ̄(t)]2

.
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Applying (7.61), the above approximately equals to{
n−2r/(2−σ2)+2β−1 + nσ

2r/(2−σ2)2+β−1, σ <
√
2, r < (2− σ2)2/4,

n−1+β+(1−
√
r)2/σ2

, otherwise,

which tends to 0 algebraically fast as r > ρ∗(σ, β, r).
In the dense case with 0 < β < 1/2, recall that t∗n(σ, β, r) = 1. Therefore,

E[Wn(1)] =

√
nϵn[Φ̄(

1−An

σ
)− Φ̄(1)]√

Φ̄(1)(1− Φ̄(1))
∼ C

√
nϵn[Φ̄(

1− An
σ

)− Φ̄(1)],

and

var[Wn(1)] =
F̄ (1)(1− F̄ (1))

Φ̄(1)(1− Φ̄(1))
∼ a constant. (7.63)

Furthermore,

√
nϵn[Φ̄(

1− An
σ

)− Φ̄(1)] = −Cn
1
2
−β[(

1

σ
− 1)− An

σ
](1 + o(1)).

So, when σ > 1, or σ = 1 and r < 1/2− β,

E[Wn(1)] ∼ nγ (7.64)

for some γ > 0 and
E[Wn(1)]/

√
2(1 + δ) log log n −→ ∞.

On the other hand, when σ < 1,

E[Wn(1)] ∼ −nγ (7.65)

for some γ > 0 and
E[Wn(1)]/

√
2(1 + δ) log log n −→ −∞.

Combining (7.63), (7.64), and (7.65), it follows from Chebyshev’s inequality that

P
H

(n)
1

{
|Wn(t

∗
n(σ, β, r))| <

√
2(1 + δ) log log n

}
≤ C

Var[Wn(1)]

(E[Wn(1)])2
≤ Cn−2γ → 0.

�

8 Appendix

8.1 Proof of Theorem 2.5 and Theorem 2.6

We consider the case σ ∈ (0,
√
2) first. Since the proofs are similar, we only show that

under the null. Recall that log(LRn) =
∑n

j=1 LLRn(Xj) (see Section 6.2). It is sufficient
to show that

E[eitLLRn(X)] =


1 +

(
− it+t2

2

)
1

σ
√
2−σ2

1
n
[1 + o(1)], 1

2
< β < 1− σ2/4,

1 +
(
− it+t2

2

)
1

2σ
√
2−σ2

1
n
[1 + o(1)], β = 1− σ2/4,

1 + 1
n
ψ0
β,σ(t)[1 + o(1)], 1− σ2/4 < β < 1.
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Note that E[eitLLRn(X)] = eit log(1−ϵn)E[eit log(1+ϵngn(X))]+O(ϵ2n), e
it log(1−ϵn) = 1−itϵn+O(ϵ2n),

and E[eit log(1+ϵngn(X))] = 1 + itϵn + E[eit log(1+ϵngn(X)) − 1− itϵngn(X)]. Therefore,

E[eitLLRn(X)] = 1 + E[eit log(1+ϵngn(X)) − 1− itϵngn(X)] + o(1/n). (8.66)

We now analyze the limiting behavior of E[eit log(1−ϵn+ϵn·gn(X) − 1− iϵntgn(X)] for the case
of 1 ≤ σ <

√
2. The case 0 < σ < 1 is similar to that of 1 ≤ σ <

√
2, thus omitted.

In the case 1 ≤ σ <
√
2, we discuss three sub-cases β ≤ (1−σ2/4), β = (1−σ2/4), and

β > (1− σ2/4) separately.
When β < 1− σ2/4, we have

r = (2− σ2) · (β − 1/2), so 0 < r <
1

4
(2− σ2)2. (8.67)

Write

ϵngn(x) = Cϵne
( 1
2
− 1

2σ2 )x
2+Anx

σ2 − A2
n

2σ2 .

We first show that max{|x|≤
√
2 logn} |ϵngn(x)|} = o(1). When σ ≥ 1, the exponent is a convex

function in x, and the maximum is reached at x =
√
2 log n with the maximum value of

n1−(β+
(1−

√
r)2

σ2 ). (8.68)

Note that by (8.67), the exponent 1 − (β + (1−
√
r)2

σ2 ) < 0. When σ < 1, the exponent is
a concave function in x. We further consider two sub-sub-cases:

√
2 log n ≤ An/(1 − σ2)

and
√
2 log n > An/(1 − σ2). For the first case, the maximum is reached at x =

√
2 log n

with the maximum value of (8.68), where the exponent < 0. For the second case, we have√
r < 1− σ2, and the maximum is reached at x = An/(1− σ2) with the maximum value of

n
−β+ r

(1−σ2) .

Notice that, together, (8.67) and that r < (1 − σ2)2 < (1 − σ2

2
)(1 − σ2) imply that β <

1− σ2/2. So, using (8.67) again,

−β +
r

(1− σ2)
=

β

1− σ2
+

2− σ2

2(1− σ2)
< 0.

Combining all these gives that

max
{|x|≤

√
2 logn}

|ϵngn(x)| = exp

(
max

{|x|≤
√
2 logn}

{
(
1

2
− 1

2σ2
)x2 +

Anx

σ2
− A2

n

2σ2

})
= o(1). (8.69)

Now, introduce

fn(x) = f(x; t, β, r) = eit log(1+ϵn·gn(X) − 1− itϵngn(x),

and the event Dn = {|X| ≤
√
2 log n}. We have

E[fn(X)] = E[fn(X) · 1{Dn}] + E[fn(X) · 1{Dc
n}].
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On one hand, by (8.69) and Taylor expansion,

E[fn(X) · 1{Dn}] ∼ (−t2/2) · E[ϵ2ng2n(X) · 1{Dn}].

On the other hand,
|fn(X)| ≤ (1 + ϵngn(X)).

Compare this with the desired claim, it is sufficient to show that

E[ϵ2ng
2
n(X) · 1{Dn}] ∼

1√
σ2(2− σ2)

· (1/n), (8.70)

and that
E[(1 + ϵngn(X)) · 1{Dc

n}] = o(1/n). (8.71)

Consider (8.70) first. By similar argument as that in the proof of Lemma 7.1,

ϵ2nE[g
2
n(X) · 1{Dn}] =

1√
2πσ2

n−2β+2r/(2−σ2)

∫ √
2 log(n)−An/(1−σ2/2)

−
√

2 log(n)−An/(1−σ2/2)

e−(1/σ2−1/2)y2dy. (8.72)

Note that
√

2 log(n) − An/(1 − σ2/2) =
√
2 log n · (1 − 2

√
r

2−σ2 ), where (1 − 2
√
r

2−σ2 ) > 0 as

r < 1
4
(2− σ2)2. Therefore,

∫ √
2 log(n)−An/(1−σ2/2)

−
√

2 log(n)−An/(1−σ2/2)

e−(1/σ2−1/2)y2dy ∼
√

2π(σ2/(2− σ2)).

Moreover, by (8.67), 2β − 2r/(2− σ2) = 1, so

ϵ2nE[g
2
n(X) · 1{Dn}] ∼

1√
σ2(2− σ2)

n−2β+2r/(2−σ2) =
1√

σ2(2− σ2)
· 1
n
,

and therefore,

E[fn(X) · 1{Dn}] ∼ (−t2/2) 1√
σ2(2− σ2)

· 1
n
, (8.73)

which gives (8.70).
Consider (8.71). Recalling gn(x) = ϕσ(x− An)/ϕ(x),

E[(1 + ϵngn(X)) · 1{Dc
n}] ≤

∫
|x|>

√
2 logn

[ϕ(x) + ϵnϕσ(x− An)]dx. (8.74)

It is seen that ∫
|x|>

√
2 logn

ϕ(x) = o(1) · ϕ(
√

2 log n) = o(1/n),

and that∫
|x|>

√
2 logn

ϵnϕσ(x− An)dx = o(1) · n−β · ϕ((1−
√
r)
√

2 log n) = o(n−β+ (1−
√

r)2

σ2 ).
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Moreover, by (8.67), β + (1−
√
r)2

σ2 > 1, so it follows (8.74) gives that

E[(1 + ϵngn(X)) · 1{Dc
n}] = o(1/n). (8.75)

This gives (8.71) and concludes the claim in the case of β < 1− σ2/4.
Consider the case β = 1 − σ2

4
. The claim can be proved similarly provided that we

modify the event of Dn by

D̃n = {|X| ≤
√
2 log n− log1/2(log(n))√

2 log n
}.

For reasons of space, we omit further discussion.
Consider the case β > 1− σ2

4
. In this case, we have

ϵn = n−β(log(n))1−
√
1−β/σ,

and
r = (1− σ

√
1− β)2, so

√
r > 1− σ2/2. (8.76)

Equate ϵn · ϕσ(x−An)
ϕ0(x)

= 1
σ
. Direct calculations show that we have two solutions; using

(8.76), it is seen that one of them ∼
√
2 log n and we denote this solution by x0 = x0(n) =√

2 log n − log(log n)/
√
2 log n. By the way ϵn is chosen, we have 1

x0
e−x

2
0/2 ∼ 1/n. Now,

change variable with x = x0 +
y
x0
. It follows that

ϵngn(x) =
1

σ
e(1−

1−
√
r

σ2 )ye
− y2

2x20
(1/σ2−1)

, ϕ(x) =
1√
2π
x0 · (1/n) · e−y · e

− y2

2x20 .

Therefore,

E[fn(X)] =
1

(
√
2π)n

∫
eit log(1+

1
σ
e
(1− 1−

√
r

σ2 )y
e
− y2

2x20

(1/σ2−1)

)−1−it
σ
e(1−

1−
√

r

σ2 )ye
− y2

2x20
(1/σ2−1)

]e−ye
− y2

2x20 dy.

Denote the integrand (excluding 1/n) by

hn(y) = [eit log(1+
1
σ
e
(1− 1−

√
r

σ2 )y
e
− y2

2x20

(1/σ2−1)

) − 1− 1

σ
e(1−

1−
√

r

σ2 )ye
− y2

2x20
(1/σ2−1)

]e−ye
− y2

2x20 .

It is seen that point-wise, hn(u) converge to

h(y) = [eit log(1+
1
σ
e
(1− 1−

√
r

σ2 )y
) − 1− 1

σ
e(1−

1−
√

r

σ2 )y]e−y.

At the same time, note that

|eit(1+ey) − 1− itey| ≤ C ·min{ey, e2y}.

It is seen that
|hn(y)| ≤ Ce−ymin{e(1−

1−
√

r

σ2 )y, e2(1−
1−

√
r

σ2 )y}.
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The key fact here is that, by (8.76), 0 < 1−
√
r

σ2 < 1/2. Therefore,

e−ymin{e1−
1−

√
r

σ2 , e2(1−
1−

√
r

σ2 )y} =

{
e−

1−
√

r

σ2 ·y, y ≥ 0,

e(1−2 1−
√

r

σ2 )y, y < 0,

where the right hand side is integrable. It follows from the Dominated Convergence Theo-
rem that

nE[fn(X)] −→ (2π)−1/2

∫
h(x)dx,

which proves the claim.
Consider the case σ ≥

√
2. The proof is similar to the case of σ <

√
2 and β > (1−σ2/4)

so we omit it. This concludes the claim. �

8.2 Proof of Lemma 3.1

Consider the first claim. Fix r < q ≤ 1, by Mills’ ratio (Wasserman, 2006),

Φ̄(
√

2q log n) = PL(n) · n−q, Φ̄

(√
2q log n− An

σ

)
= PL(n) · n−(

√
q−

√
r)2/σ2

.

It follows that
√
n
F̄ (t)− Φ̄(t)√

Φ̄(t)Φ(t)
= PL(n)nδ(q;β,r,σ),

where
δ(q; β, r, σ) = (1 + q)/2− β − (

√
q −

√
r)2/σ2.

It suffices to show that δ(q; β, r, σ) reaches its maximum at at q = min{( 2
2−σ2 )

2r, 1} when

σ <
√
2 and at q = 1 otherwise.

Towards this end, we note that, first, when σ <
√
2 and r < (2 − σ2)2/4, δ(q; β, r, σ)

maximizes at q = 4r/(2− σ2)2 < 1 and is monotonically decreasing on both sides, and the
claim follows. Second, when either σ <

√
2 and r ≥ (2− σ2)2/4 or σ ≥

√
2, δ(q; β, r, σ) is

monotonically increasing. Combining these gives the claim.

8.3 Proof of Lemma 7.1

Consider the first claim. Direct calculations show that

ϵnE[gn(X)1{Dc
n}] = ϵn

∫
|x|>

√
2 logn

ϕσ(x−An)dx = ϵn

(
Φ̄(

(1−
√
r)

σ

√
2 log n) + Φ̄(

1 +
√
r

σ

√
2 log n)

)
.

Note that Φ̄(x) ≤ Cϕ(x) for x > 0, the last term is no greater than

Cϵn

(
ϕ(

(1−
√
r)

σ

√
2 log n) + ϕ(

(1 +
√
r)

σ

√
2 log n)

)
= Cn−(β+

(1−
√
r)2

σ2 ).

By the assumption, r < (1− σ
√
1− β)2. The claim follows by

β +
(1−

√
r)2

σ2
= 1− [(1− β)− (1−

√
r)2

σ2
] > 1.
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Consider the second claim. We discuss for the case σ ≥
√
2 and the case σ <

√
2

separately. When σ ≥
√
2, write

g2n(x)ϕ(x) = C · e(
1
2
− 1

σ2 )x
2+ 2Anx

σ2 −A2
n

σ2 ,

which is a convex function of x. Therefore, the extreme value over the range of |x| ≤√
2 log n assumes at the endpoints, which is seen to be

g2n(
√
2 log n)ϕ(

√
2 log n) = C · n1− 2

σ2 (1−
√
r)2 .

Therefore,

ϵ2nE[g
2
n(X) · 1{Dn}] ≤ C ·

√
log n · n1−2(β+ 1

σ2 (1−
√
r)2).

By the assumption of r < (1− σ
√
1− β)2, β + 1

σ2 (1−
√
r)2) > 1, and the claim follows.

When σ <
√
2, we similarly have

ϵ2nE[g
2
n(X) · 1{Dn}] ≤ Cϵ2n

∫
x≤

√
2 logn

e(
1
2
− 1

σ2 )x
2+ 2Anx

σ2 −A2
n

σ2 dx.

Write

(
1

2
− 1

σ2
)x2 +

2Anx

σ2
− A2

n

σ2
= −(

1

σ2
− 1

2
)(x− An

1− σ2/2
)2 + A2

n/(2− σ2),

By changing of variables,

ϵ2nE[g
2
n(X) · 1{Dn}] ≤ Cn−2β+2r/(2−σ2)

∫
y≤

√
2 logn−An/(1−σ2/2)

e−(1/σ2−1/2)y2dy

= Cn−2β+2r/(2−σ2)Φ(

√
2− σ2

σ
(
√

2 log n− An/(1− σ2/2)).

Rewrite √
2 log n− An/(1− σ2/2) =

√
2 log n(1− 2

√
r

2− σ2
),

and note that Φ(x) ≤ Cϕ(x) when x < 0 and Φ(x) ≤ 1 otherwise, we have

ϵ2nE[g
2
n(X) · 1{Dn}] ≤ C

{
n−2β+2r/(2−σ2), r ≤ 1

4
(2− σ2)2,

n
−2β+2r/(2−σ2)− 1

σ2 (2−σ2)(1− 2
√
r

2−σ2 )
2

, otherwise.
(8.77)

We now discuss two cases r ≤ min{1
4
(2− σ2)2, ρ∗(β, σ)} and 1

4
(2− σ2)2 < r < ρ∗(β, σ)

separately. In the first case, r < (2− σ2)(β − 1/2) and r < 1
4
(2− σ2)2, and so

−2β + 2r/(2− σ2) < −2β + 2(β − 1/2) = −1,

the claim follows directly from (8.77).
In the second case, note that this case is only possible when β > 1− σ2/4. Therefore,

r < (1− σ
√
1− β)2, and

−2β +
2r

(2− σ2)
− 1

σ2
(2− σ2)(1− 2

√
r

2− σ2
)2 = 1− 2(β +

1

σ2
(1−

√
r)2) < −1.

Applying (8.77) gives the claim. �
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8.4 Proof of Lemma 7.2

Note that it is not necessary that (7.36) and (7.37) are simultaneously true. We prove
the claim for three cases separately: (a) 1/2 < β < 1 and r > (1 − σ

√
1− β)2 and

σ <
√
2; or 1/2 < β < 1 and r > ρ∗(β; σ) and σ ≥

√
2, and (b) 1/2 < β < 1 − σ2/4 and

(2− σ2)(β − 1/2) < r < (1− σ
√
1− β)2 and 1 < σ <

√
2, and (c) 1/2 < β < 1− σ2/4 and

(2−σ2)(β− 1/2) < r < (1−σ
√
1− β)2 and σ < 1. The discussion for cases where (β, r, σ)

fall right on the boundaries of the partition of these sub-regions is similar, so we omit it.
For (a), we show that (7.36) holds. For (β, r, σ) in this range, by elementary algebra

and the definition of ρ∗(β, σ),

1− β − (1−
√
r)2

σ2
> 1. (8.78)

Also, ϵngn(
√
2 log n) = 1

σ
n1−β− (1−

√
r)2

σ2 , which is larger than 1 for sufficiently large n, so

nϵnE[gn(X)1{ϵngn(X)>1}] ≥ nϵnE[gn(X)1{X≥
√
2 logn}] = nϵn

∫ ∞

√
2 logn

1

σ
ϕ(
x− An
σ

)dx.

By elementary calculus and Mills’ ratio (Wasserman, 2006), the right hand side = PL(n)n1−β− (1−
√
r)2

σ2 .
The claim follows directly from (8.78).

For (b), we show (7.37) holds. It is seen that sup{0≤x≤
√
2 logn}{ϵngn(x)} = o(1) for

(β, r, σ) in this range, so

nϵ2nE[g
2
n(X)1{ϵngn(X)≤1}] ≥ nϵ2nE[g

2
n(X)1{0≤X≤

√
2 logn}].

Direct calculations show that

nϵ2nE[g
2
n(X)1{0≤X≤

√
2 logn}] = nϵ2ne

A2
n

2−σ2Φ

(√
2− σ2

σ
(1−

√
r

1− σ2/2
)
√

2 log n

)
.

By basic algebra, for (β, r, σ) in the current range,
√
2−σ2

σ
(1−

√
r

1−σ2/2
) > 0. Combining these

gives

nϵ2nE[g
2
n(X)1{ϵngn(X)≤1}] & nϵ2ne

A2
n

2−σ2 = n
1−2β+ 2r

2−σ2 .

The claim follows as 1− 2β + 2r
2−σ2 > 0.

For (c), we consider two sub-cases separately: (c1) 1/2 < β < 1−σ2/4 and r < (1−σ2)β
and σ < 1; or 1−σ2 < β < 1−σ2/4 and r ≥ (1−σ2)β and σ < 1, and (c2) 1/2 < β < 1−σ2

and r ≥ (1 − σ2)β and σ < 1. We show that (7.36) holds in cases (a) and (c2), whereas
(7.37) holds in cases (b) and (c1).

For (c1), we show (7.37) holds. Similarly, for (β, r, σ) in this range, sup{0<x<
√
2 logn}{ϵngn(x)} =

o(1) and so
nϵ2nE[g

2
n(X)1{ϵngn(X)≤1}] ≥ nϵ2nE[g

2
n(X)1{0<X≤

√
2 logn}].

For (β, r, σ) in the current range, nϵ2nE[g
2
n(X)1{0<X≤

√
2 logn}] ∼ n

1−2β+ 2r
2−σ2 , where the ex-

ponent is positive. The claim follows.
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Consider (c2). Introduce

∆ = ∆(β, r, σ) =
[
√
r − σ

√
r − (1− σ2)β]2

(1− σ2)2

For (β, r, σ) in this range elementary calculus shows that
√
r < ∆ < 1, and that for

sufficiently large n, ϵngn(x) ≥ 1 for
√
2∆ log n ≤ x ≤

√
2∆ log n +

√
log log n. It follows

that

nϵnE[gn(X)1{ϵngn(X)>1}] ≥ nϵn

∫ √
2∆ log n+

√
log logn

√
2∆ log n

1

σ
ϕ(
x− An
σ

)dx & C√
log n

n1−β− (
√

∆−
√

r)2

σ2 ,

where we have used ∆ > r. Fixing (β, σ),
√
∆ −

√
r is decreasing in r. So for all r ≥

(1− σ2)β,

1− β − (
√
∆−

√
r)2

σ2
≥ 1− β − (

√
∆−

√
r)2

σ2

∣∣∣∣
{r=(1−σ2)β}

= 1− β

1− σ2
,

which is larger than 0 since β < 1− σ2. Combining these gives the claim.
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