
Optimal Deterministic Self-stabilizing Vertex Coloring in Unidirectional Anonymous
Networks

Samuel Bernard∗, Stéphane Devismes†, Maria Gradinariu Potop-Butucaru∗, and Sébastien Tixeuil∗
∗LIP6 - Université Pierre et Marie Curie - Paris, France

Email: {samuel.bernard,maria.gradinariu,sebastien.tixeuil}@lip6.fr
†VERIMAG - Université Joseph Fourier - Grenoble, France

Email: stephane.devismes@imag.fr

Abstract

A distributed algorithm is self-stabilizing if after faults
and attacks hit the system and place it in some arbitrary
global state, the systems recovers from this catastrophic
situation without external intervention in finite time. Uni-
directional networks preclude many common techniques
in self-stabilization from being used, such as preserving
local predicates. In this paper, we investigate the intrinsic
complexity of achieving self-stabilization in unidirectional
anonymous general networks, and focus on the classical
vertex coloring problem. Specifically, we prove a lower
bound of n states per process (where n is the network size)
and a recovery time of at least n(n−1)/2 actions in total. We
also provide a deterministic algorithm with matching upper
bounds that performs in arbitrary unidirectional anonymous
graphs.

1. Introduction

One of the most versatile technique to ensure forward re-
covery of distributed systems is that of self-stabilization [1],
[2]. A distributed algorithm is self-stabilizing if after faults
and attacks hit the system and place it in some arbitrary
global state, the systems recovers from this catastrophic
situation without external (e.g. human) intervention in finite
time. Self-stabilization makes no hypotheses about the extent
or the nature of the faults and attacks that may harm the
system, yet may induce some overhead (e.g. memory, time)
when there are no faults, compared to a classical (i.e. non-
stabilizing) solution. Computing space and time bounds for
particular problems in a self-stabilizing setting is thus crucial
to evaluate the impact of adding forward recovery properties
to the system.

The vast majority of self-stabilizing solutions in the litera-
ture [2] considers bidirectional communications capabilities,
i.e. if a process u is able to send information to another
process v, then v is always able to send information back
to u. This hypothesis is valid in many cases, but cannot

This work was supported by ANR SHAMAN project.

capture the fact that asymmetric situations may occur, e.g.
in wireless networks [3], it is possible that u is able to
send information to v yet v cannot send any information
back to u (u may have a wider range antenna than v).
Asymmetric situations, that we denote in the following under
the term of unidirectional networks, preclude many common
techniques in self-stabilization from being used, such as
preserving local predicates (a process u may take an action
that violates a predicate involving its outgoing neighbors
without u knowing it, since u cannot get any input from its
outgoing neighbors).

1.1. Related Works

Self-stabilization in bidirectional networks makes a dis-
tinction between global tasks (i.e. tasks whose specification
forbids particular state combinations of processes arbitrarily
far from one another in the network, such as leader election)
and local tasks (whose specification forbids particular state
combinations only for neighboring processes, such as vertex
coloring). Self-stabilizing solutions for local tasks are often
considered easier in bidirectional networks since detecting
incorrect situations requires less memory and computing
power [4], recovering can be done locally [5], and strict
Byzantine containment can be guaranteed [6], [7].

Since a self-stabilizing algorithm may start from any
arbitrary state, lower bounds for non-stabilizing (a.k.a. prop-
erly initialized) distributed algorithms still hold for self-
stabilizing ones. As a result, relatively few works investigate
lower bounds that are specific to self-stabilization [8], [9],
[10], [11], [12], [13]. Results related to space lower bounds
deal with global tasks (e.g. constructing a spanning tree [9],
finding a center [9], electing a leader [8], [9], passing a
token [10], [11], [13], etc.). [12] provides a time lower
bound for self-stabilizing token passing, still a global task.
Global tasks typically require Ω(n) states per process (i.e.
Ω(log(n)) bits per process) and Ω(n) time complexity to
recover from faults.

Investigating the possibility of self-stabilization in uni-
directional networks was recently emphasized in several

papers [14], [15], [16], [17], [18], [19], [20]1. In particular,
[16] shows that in the simple case of acyclic unidirectional
networks, nearly any recursive function can be computed
anonymously in a self-stabilizing way. Computing global
tasks in a general topology requires either unique identi-
fiers [14], [15], [18] or distinguished processes [17], [19],
[20]. Observe that all aforementioned works consider global
tasks, and provide constructive upper bound results (i.e
algorithms), leaving the question of matching lower bounds
open.

1.2. Our Contribution

In this paper, we investigate the intrinsic complexity
of achieving self-stabilization in unidirectional anonymous
uniform networks. In such networks, processes do not have
identifiers, and no process (or subset of processes) is distin-
guished. We focus on the classical vertex coloring problem, a
local task that can be self-stabilizingly solved in bidirectional
networks with a memory requirement and a number of
moves per process that only depend on the degree of the
communication graph [21], [22]. In bidirectional networks,
deterministic solutions require only a number of states that
is proportional to the network maximum degree ∆, and the
number of actions per process in order to recover is O(∆).
Moreover, since the length of the chain of causality after a
correcting action is executed is only one, strict Byzantine
containement can be achieved [7].

To satisfy the vertex coloring specification in unidirec-
tional general networks, an algorithm must ensure that no
two neighboring nodes (i.e. two nodes u and v such that
either u can send information to v, or v can send information
to u, but not necessarily both) have identical colors. The
main result of this paper is to show that solving vertex
coloring in unidirectional anonymous general networks with
a deterministic algorithm is much harder than solving the
same task in bidirectional networks. Specifically, we prove a
lower bound of n states per process (where n is the network
size) and a recovery time of at least n(n − 1)/2 actions
in total (and thus Ω(n) actions per process). This result
essentially implies that scalability of tasks in unidirectional
networks induces a complexity cost proportional to the
size of the network while in bidirectional networks it may
depend on other parameters (i.e. network degree) that can
be maintained constant even if the system size changes.
Moreover, we present a deterministic algorithm for vertex
coloring in unidirectional networks with matching upper
bounds that performs in arbitrary graphs. The protocol is
thus optimal for both space and time complexity.

1. Please refer to [2] for additional references

1.3. Outline

The remaining of the paper is organized as follows:
Section 2 presents the programming model and problem
specification, Section 3 provides impossibility results and
lower bounds for the vertex coloring problem in unidirec-
tional anonymous general networks, while Section 4 presents
a deterministic algorithm matching the upper bounds. Sec-
tion 5 gives some concluding remarks and open questions.

2. Model

2.1. Distributed Program Model

A distributed program consists of a set V of n processes
which may not have unique identifiers. Therefore, processes
will be referred in the following as anonymous. A process
maintains a set of variables that it can read or update, that
define its state. Each variable ranges over a fixed domain
of values. We use small case letters to denote singleton
variables, and capital ones to denote sets. A process contains
a set of constants that it can read but not update. A set E of
oriented edges is defined as follows: (i, j) ∈ E if and only
if j can read the variables maintained by i. In this case, i is
called a predecessor of j, and j is called a successor of i.
The set of predecessors (resp. successors) of i is denoted by
P.i (resp. S.i), and the union of predecessors and successors
of i is denoted by N.i, the neighbors of i. In some case,
we are interested in the iterated notions of those sets, e.g.
S.i0 = {i}, S.i1 = S.i, and S.ik = ∪j∈S.iS.jk−1. The
values δin.i, δout.i, and δ.i denote respectively |P.i|, |S.i|,
and |N.i|; ∆in, ∆out, and ∆ denote the maximum possible
values of δin.i, δout.i, and δ.i over all processes in V .

An action has the form 〈guard〉 −→ 〈command〉. A
guard is a Boolean predicate over the variables of the
process and its predecessors. A command is a sequence
of statements assigning new values to the variables of the
process. We refer to a variable v of process i as v.i.
A parameter is used to define a set of actions as one
parameterized action.

A configuration of the distributed program is the assign-
ment of a value to every variable of each process from its
corresponding domain. Each process contains a set of actions
referred in the following as algorithm. In the following we
consider that processes are uniform. That is, all the processes
contain the exact same set of actions. An action is enabled in
some configuration if its guard is true in this configuration.
A computation is a maximal sequence of configurations
such that for each configuration γi, the next configuration
γi+1 is obtained by executing the command of at least one
action that is enabled in γi. Maximality of a computation
means that the computation is infinite or eventually reaches a
terminal configuration (i.e., a configuration where no action
is enabled).

A configuration conforms to a predicate if this predicate
is true in this configuration; otherwise the configuration
violates the predicate. By this definition every configuration
conforms to predicate true and none conforms to false.
Let R and S be predicates over the configurations of the
program. Predicate R is closed with respect to the program
actions if every configuration of the computation that starts
in a configuration conforming to R also conforms to R.
Predicate R converges to S if R and S are closed and
any computation starting from a configuration conforming
to R contains a configuration conforming to S. The program
deterministically stabilizes to R if and only if true converges
to R.

A scheduler is a predicate on computations, that is, a
scheduler define a set of possible computations, such that ev-
ery computation in this set satisfies the scheduler predicate.
We distinguish two particular schedulers in the sequel of
the paper: the distributed scheduler corresponds to predicate
true (that is, all computations are allowed); in contrast, the
locally central scheduler implies that from any configuration
belonging to a computation satisfying the scheduler, no two
enabled actions are executed simultaneously on neighboring
processes.

2.2. Problem Specification

Consider a set of colors ranging from 0 to k−1, for some
integer k > 1. Each process i defines a function color .i that
takes as input the states of i and its predecessors, and outputs
a value in {0, . . . , k−1}. The unidirectional vertex coloring
predicate is satisfied if and only if for every (i, j) ∈ E,
color .i 6= color .j.

3. Impossibility Results and Lower Bounds

This section is dedicated to impossibility results and
lower bounds for deterministic vertex coloring programs that
operate in every topology. Theorem 1 (presented below)
shows that if unconstrained schedules (i.e. the scheduler
is distributed) are allowed, there are some topologies for
which initial symmetric configurations cannot be broken
afterwards, making the unidirectional coloring problem im-
possible to solve by a deterministic algorithm. This justifies
the later hypothesis of a locally central scheduler in Sec-
tion 4, i.e. a scheduler that never schedules for execution
two neighboring enabled processes simultaneously.

Lemma 1 Let us consider an unidirectional anonymous
ring network {p0, p1, . . . , pn−1} of size n. Consider every
node executes a uniform deterministic self-stabilizing vertex
coloring algorithm. If there exists a configuration c such
that, for every i ∈ {0, . . . , n − 1}, s.pi = s.p(i−1) mod n

holds, the coloring specification is not satisfied in c.

Proof: By hypothesis, the color of a node depends only
on its state and that of its predecessors. In a ring network,
the color of a node depends only of its own state and that
of its predecessor. Since all nodes have the same state and
the same predecessor’s state, all nodes have the same color.
As a result, two neighboring nodes have the same color, and
the coloring problem is not satisfied.

Lemma 2 Let us consider an unidirectional anonymous
ring network {p0, p1, . . . , pn−1} of size n. Consider every
node executes a uniform deterministic self-stabilizing ver-
tex coloring algorithm. Whenever there exists i such that
s.pi = s.p(i−1) mod n, pi is enabled and if activated would
change its state to s′.pi with s′.pi 6= s.pi.

Proof: We first show that pi is enabled. Assume the
contrary, and consider a uniform ring of n nodes that are all
in the same state. If pi is not enabled, none of the remaining
processes is enabled either. Hence, the configuration is termi-
nal. Now, a process pi may only read its own state and that of
its predecessor in the ring, so the color color .pi is uniquely
determined by these two values only. Moreover, the color .pi
is the same as color .p(i−1) mod n. So, the configuration is
terminal and two neighboring processes have the same color.
This contradicts the fact that the algorithm is a deterministic
self-stabilizing unidirectional vertex coloring one.

Then we show that pi, if activated moves to a different
state s′.pi. Assume pi moves to the same state s.pi, then
if the starting configuration is such that all nodes have the
same state, then no node is able to change its state, the
algorithm being uniform. Since this configuration cannot be
a vertex coloring (Lemma 1), the system never changes the
global configuration and thus is not self-stabilizing.

Theorem 1 There exists no uniform deterministic self-
stabilizing vertex coloring algorithm that can run on ar-
bitrary unidirectional graphs under a distributed scheduler.

Proof: Assume, by the contradiction, that there ex-
ists a uniform deterministic self-stabilizing vertex color-
ing algorithm that runs on arbitrary unidirectional graphs
under a distributed scheduler. Consider a unidirectional
ring {p0, p1, . . . , pn−1} of size n (the algorithm must in
particular self-stabilizes in this topology). Assume that in
the initial state all nodes are in the same state s (see
Figure 1.(a)). By Lemma 2, all nodes are enabled, and if
a node is activated by the scheduler, it moves to a different
state s′. Consider the synchronous scheduler (a particular
case of the distributed scheduler) that, at each step, activates
all nodes. Then, after one scheduler activation, all nodes
have state s′ (see Figure 1.(b)). After another activation, all
nodes move to state s′′, etc. In this infinite execution, every
configuration has all nodes with the same state and thus,
the vertex coloring problem is not solved. As a result, the
algorithm cannot be self-stabilizing.

s

s

s

s

s

s

s

s

(a) uniform configuration in state s

s'

s'

s'

s'

s'

s'

s'

s'

(b) uniform configuration in state s′

Figure 1. A possible execution with synchronous
scheduling

Notice that the result of Theorem 1 holds even if partici-
pating processes have infinite number of states.

From now on, we assume the scheduler is locally central.2

We demonstrate that a uniform deterministic self-stabilizing
algorithm for the unidirectional vertex coloring problem
that can perform in arbitrary networks must use at least n
states per process. As previously, the proof is by exhibiting
a particular family of networks (namely, n-sized rings) in
which the bound is reached by any such algorithm even

2. Note that in the model considered in the current paper the local central
scheduler and central scheduler are equivalent.

assuming a locally central scheduler.

Algorithm 1 A uniform deterministic vertex coloring algo-
rithm for unidirectional rings
process i
const

k : integer
p.i : predecessor of i

var
c.i : color of node i

action
c.i = c.p.i →

c.i := c.i+ 1 mod k

Lemma 3 Assume every process executes a uniform deter-
ministic self-stabilizing unidirectional vertex coloring algo-
rithm that uses a finite number of states K and can perform
in arbitrary networks of size n (possibly, K is related to
n). There exists some networks and initial configurations
such that the state sequences of every process (starting from
those configurations) are isomorphic to that of Algorithm 1,
for some parameter k ≤ K.

0

1

2

3

4

k-2

k-1

Figure 2. State transition function of Algorithm 1

Proof: Since the protocol is assumed to perform in
arbitrary networks, it must also performs properly in uni-
directional rings {p0, p1, . . . , pn−1} of size n. Assume that
in every execution, the (locally central) scheduler activates
a node pi only when its state s.pi is equal to s.p(i−1) mod n,

the state of the predecessor of pi in the ring. Then, the
transition function of node pi is solely based on the state
s.pi.

Let s0.i, s1.i, . . . be the sequence of states returned by
the transition function of process pi executing the self-
stabilizing vertex coloring algorithm started in some state
s0.i. Since (i) the overall number of states of pi s finite (it
is bounded by K by hypothesis), (ii) pi is enabled whenever
s.i = s.p.i (by Lemma 2), and (iii) the protocol is determin-
istic (by hypothesis), the sequence of states s0.i, s1.i, . . . is
infinite and contains a recurring pattern of consecutive states.
That is, there exists j and l (j < l) such that sj .i = sl.i
and l − j ≤ K. Since we assume that the protocol is self-
stabilizing, it may be started from any arbitrary state for
every process, in particular this implies that every process
pi may be started from state sj .i.

When all processes start in state sj , and are activated
only when they are in the same state as their predecessor,
the only possible behavior is to move to the next state in the
recurring pattern. That is, the transition function that is used
by every process pi is isomorphic to that of the same process
executing Algorithm 1 (e.g. with isomorphism f such that
f(sj) = j − i,∀i ≤ j < l and assuming k = l − i).

So, there exists a family of networks and initial con-
figurations such that the state sequences of every process
(starting from those configurations) are isomorphic to that
of Algorithm 1, for some parameter k ≤ K.

Theorem 2 Any uniform deterministic self-stabilizing pro-
tocol for unidirectional vertex coloring in general graphs
requires at least n states per process where n is the size of
the network.

0

1

2

3

4

n-2

0

activation

Figure 3. A possible execution of Algorithm 1: Starting
configuration

1

1

2

3

4

n-2

0

activation

Figure 4. A possible execution of Algorithm 1: After 1
step

1

2

2

3

4

n-2

0

activation

Figure 5. A possible execution of Algorithm 1: After 2
steps

Proof: Assume there exists a uniform deterministic
self-stabilizing protocol for unidirectional vertex coloring in
arbitrary graphs that requires (strictly) less than n states for
a particular node. Since the protocol is uniform, every node
must use k < n states.

Since the protocol must perform in arbitrary n-sized
graphs, it must also perform correctly in an n-sized unidirec-
tional ring {p0, p1, . . . , pn−1}. In what follows, we consider
executions of the protocol in which the scheduler only
activates nodes that have the same state as their predecessor.
By Lemma 3, the transition function of every node is

1

2

3

4n-2

0

0

activation

Figure 6. A possible execution of Algorithm 1: After n−1
steps

isomorphic to that of Algorithm 1, so we assume all nodes
execute Algorithm 1 with k < n.

In the following, we consider k = n − 1 but the proof
can be easily generalized for any k < n by putting the
n−k+1 last processors in the same state. Now consider the
unidirectional ring presented in Figure 3. The scheduler only
activates the single node with the same state 0 as its parent,
and reach the configuration presented in Figure 4. The
scheduler may now activate the single node with the same
state 1 as its parent and reach the configuration presented in
Figure 5. We repeat the argument and reach the configuration
presented in Figure 6. This configuration is symmetric to that
of the configuration presented in Figure 3, so the process can
repeat infinitely often.

As a result, the protocol does not stabilize, and the initial
hypothesis that there exists a deterministic self-stabilizing
protocol that performs in every n-sized network is contra-
dicted.

We now address the question of time lower bounds for
deterministic self-stabilizing programs for the unidirectional
vertex coloring problem in general graphs.

Theorem 3 Any uniform deterministic self-stabilizing pro-
tocol for unidirectional vertex coloring in arbitrary n-sized
networks converges in at least n(n−1)

2 steps.

Proof: Let us assume that there exists a deterministic
self-stabilizing protocol for arbitrary unidirectional n-sized
networks.

Since the protocol must perform in any arbitrary n-sized
network, it must perform properly on a n-sized unidirec-
tional chain, where processes are ordered from the sink p1
to the source pn.

Since the protocol is self-stabilizing, every process may
be started in some arbitrary state s. We now consider a
locally central scheduler that activates nodes according to
the schedule presented in Schedule 1.

Schedule 1 Our n(n−1)
2 -steps scheduling in n-sized chains

var
i,j: integer

scheduler
for j from n− 1 to 1

for i from 1 to j
activate pi

Schedule 1 selects a single process at a time for execution,
thus it satisfies the locally central scheduler property. In
addition, it only selects for execution a process that has
the same state as its predecessor (and that is thus enabled
by Lemma 2): if p1, . . . , pk have the same state s then p1
to pk−1 are enabled and if they are activated in ascending
order, p1 to pk−1 will move to the same “next” state s′

(see Figure 2.(a)). So every process activation leads to
an effective move and the total number of activations is∑n−1

i=1 i = n(n−1)
2 .

By Lemma 1, it is necessary for the coloring specification
to be satisfied, that a process does not have the same state
as its predecessor, which implies that the total number of
possible moves expressed above is actually the minimal
number of moves before satisfying the coloring specification.

4. Optimal Deterministic Unidirectional Vertex
Coloring

In this section we propose a time and space optimal self-
stabilizing deterministic algorithm for unidirectional col-
oring. The algorithm is referred thereafter as Algorithm
2 and performs under the locally central scheduler (see
Theorem 1). The algorithm can be informally described as
follows: each process i has an integer variable c.i (that
ranges from 0 to k − 1, where k is a parameter of the
algorithm) that denotes its color; whenever a node has the
same color as one of its predecessors, it changes its color to
the next available color in the modulo-k ring (that is, a ring
of nodes labelled from 0 to k − 1 and such that for every
label i, node i is the successor of node (i−1) mod k). Here,
the color .i function simply returns the color variable c.i of
i.

A configuration is legitimate if, for every process i, and
for every predecessor p ∈ P.i, c.i 6= c.p.i. Obviously, a
legitimate configuration satisfies the unidirectional coloring
predicate (assuming color .i return c.i) and is terminal (all
guarded commands are disabled). There remains to show

Algorithm 2 A uniform deterministic coloring algorithm for
general unidirectional networks
process i
const

k : integer
P.i : set of predecessors of i

parameter
p : node in P.i

var
c.i : color of node i

action
p ∈ P.i, c.i = c.p →

do p ∈ P.i, c.i = c.p →
c.i := c.i+ 1 mod k

od

Processors P3, P2 Pn−1, P1 ... Pn−2

States 0 1 2 3 ... n− 1

Table 1. An example of color table

how fast the algorithm attains a legitimate configuration in
the worst case for every possible locally central schedule.

Theorem 4 Algorithm 2 is a (state-optimal) uniform de-
terministic self-stabilizing protocol for coloring nodes in
unidirectional general networks of size n (when k = n),
assuming a locally central scheduler and converges in
n(n−1)

2 steps to a legitimate configuration.

Proof: Assume Algorithm 2 starts in an arbitrary initial
configuration. We now consider the table that lists, for every
possible color (in the set {0, . . . , n−1} since we assume k =
n), the processes that currently have this color. An example
of such a table is presented as Table 1, where processes P3

and P2 have color 0, process Pn−2 has color n−1, etc. This
table is denoted in the sequel as the color table.

According to Algorithm 2 the evolution of the color table
follows two rules:

1) A cell containing one process cannot become empty.
That is, a process having a color not used by any
other process in the system cannot be activated. In
our algorithm, this is due to the fact that processes
are enabled only if they share their color with their
predecessor.

2) A process only moves to the right (in a cyclic manner)
and cannot jump over an empty cell. Indeed, when
activated, a process chooses the first “next” (in the
sense of the usual total order on integers) unconflictual
color hence the processes always move to the right. A
process may move by several positions, but never skips
a free position (this would mean that a process does

not choose the ”next” color although this color is not
conflicting with any other process and thus not with
the process predecessors).

Since there are n cells and n processes, every process
could be placed in a different cell if necessary. Since a
process cannot jump over an empty cell, after n− 1 moves,
a process is sure to find a free cell. In fact, the number of
moves a process may have to perform to reach a free cell
depends on the number of free cells. With k free cells, there
are at most n − k consecutive non-empty cells that could
potentially provoke further conflicts. A process, in order to
reach a free cell has to perform at most n− k moves. Once
this process occupies a free cell, the number of free cells
decreases to k − 1. Starting with n − 1 free cell (every
process has the same color), and finishing with 1, at most
1 + 2 + ... + (n − 1) = n(n−1)

2 steps are needed to have
every process in a free cell or with a non-conflicting color
(i.e. different from that of its predecessors) and thus reach
a legitimate configuration.

5. Conclusion

We investigated the intrinsic complexity of performing
local tasks in unidirectional anonymous networks in a self-
stabilizing setting. More specifically, we focus the vertex
coloring problem. Contrary to “classical” bidirectional net-
works, local vertex coloring now induces global complexity
(n states per process at least, n moves per process at least)
for deterministic solutions. We presented a state and time
optimal solution for the deterministic coloring. This work
raises two important open questions:

1) Investigate the possibility of probabilistic coloring and
its complexity.

2) The lower bounds we provide in the deterministic case
rely on the existence of cycles in the unidirectional
communication graph. We question the possibility of
lowering those bounds (and matching upper bounds)
for the vertex coloring problem in the case where the
network is acyclic.

References

[1] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control.” Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] S. Dolev, Self-stabilization. MIT Press, March 2000.

[3] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker, “Complex behavior at scale: An
experimental study of low-power wireless sensor networks,”
UCLA Computer Science Department, Tech. Rep., 2002.
[Online]. Available: http://citeseer.ist.psu.edu/533751.html

[4] J. Beauquier, S. Delaët, S. Dolev, and S. Tixeuil,
“Transient fault detectors,” Distributed Computing, vol. 20,
no. 1, pp. 39–51, June 2007. [Online]. Available: http:
//www.springerlink.com/content/m267v22224127575/

[5] Y. Afek and S. Dolev, “Local stabilizer,” J. Parallel Distrib.
Comput., vol. 62, no. 5, pp. 745–765, 2002.

[6] T. Masuzawa and S. Tixeuil, “Stabilizing link-coloration
of arbitrary networks with unbounded byzantine faults,”
International Journal of Principles and Applications of
Information Science and Technology (PAIST), vol. 1,
no. 1, pp. 1–13, December 2007. [Online]. Available:
http://210.119.33.7/paist/paper/2008 12/TOC2008 12.pdf

[7] M. Nesterenko and A. Arora, “Tolerance to unbounded
byzantine faults,” in 21st Symposium on Reliable Distributed
Systems (SRDS 2002). IEEE Computer Society, 2002, pp.
22–29.

[8] J. Beauquier, M. Gradinariu, and C. Johnen, “Randomized
self-stabilizing and space optimal leader election under ar-
bitrary scheduler on rings,” Distributed Computing, vol. 20,
no. 1, pp. 75–93, January 2007.

[9] S. Dolev, M. G. Gouda, and M. Schneider, “Memory require-
ments for silent stabilization,” Acta Inf., vol. 36, no. 6, pp.
447–462, 1999.

[10] S. Dolev, A. Israeli, and S. Moran, “Resource bounds for
self-stabilizing message-driven protocols,” SIAM J. Comput.,
vol. 26, no. 1, pp. 273–290, 1997.

[11] P. Duchon, N. Hanusse, and S. Tixeuil, “Optimal randomized
self-stabilizing mutual exclusion in synchronous rings,” in
Proceedings of the International Conference on Distributed
Computing (DISC 2004), ser. Lecture Notes in Computer
Science, no. 3274. Amsterdam, The Nederlands: Springer
Verlag, October 2004, pp. 216–229.

[12] C. Genolini and S. Tixeuil, “A lower bound on k-stabilization
in asynchronous systems,” in Proceedings of IEEE 21st Sym-
posium on Reliable Distributed Systems (SRDS’2002), Osaka,
Japan, October 2002.

[13] S. Tixeuil, “On a space-optimal distributed traversal algo-
rithm,” in WSS, ser. Lecture Notes in Computer Science, A. K.
Datta and T. Herman, Eds., vol. 2194. Springer, 2001, pp.
216–228.

[14] Y. Afek and A. Bremler-Barr, “Self-stabilizing unidirectional
network algorithms by power supply,” Chicago J. Theor.
Comput. Sci., vol. 1998, 1998.

[15] J. A. Cobb and M. G. Gouda, “Stabilization of routing in
directed networks,” in WSS, ser. Lecture Notes in Computer
Science, A. K. Datta and T. Herman, Eds., vol. 2194.
Springer, 2001, pp. 51–66. [Online]. Available: http://link.
springer.de/link/service/series/0558/bibs/2194/21940051.htm

[16] S. Das, A. K. Datta, and S. Tixeuil, “Self-
stabilizing algorithms in dag structured networks,”
Parallel Processing Letters (PPL), vol. 9, no. 4,
pp. 563–574, December 1999. [Online]. Available:
http://dx.doi.org/10.1142/S0129626499000529

[17] S. Delaët, B. Ducourthial, and S. Tixeuil, “Self-stabilization
with r-operators revisited,” Journal of Aerospace Computing,
Information, and Communication (JACIC), vol. 3, no. 10,
pp. 498–514, 2006. [Online]. Available: http://dx.doi.org/10.
2514/1.19848

[18] S. Dolev and E. Schiller, “Self-stabilizing group communi-
cation in directed networks,” Acta Inf., vol. 40, no. 9, pp.
609–636, 2004.

[19] B. Ducourthial and S. Tixeuil, “Self-stabilization with
r-operators,” Distributed Computing (DC), vol. 14, no. 3,
pp. 147–162, July 2001. [Online]. Available: http://www.
springerlink.com/content/0p4g0yt8vkd9jnlp/

[20] ——, “Self-stabilization with path algebra,” Theoretical
Computer Science (TCS), vol. 293, no. 1, pp. 219–236,
February 2003. [Online]. Available: http://dx.doi.org/10.1016/
S0304-3975(02)00238-4

[21] M. Gradinariu and S. Tixeuil, “Self-stabilizing vertex
coloring of arbitrary graphs,” in Proceedings of International
Conference on Principles of Distributed Systems (OPODIS
2000), Paris, France, December 2000, pp. 55–70. [Online].
Available: http://hal.upmc.fr/hal-00631707/fr/

[22] N. Mitton, E. Fleury, I. Guérin-Lassous, B. Séricola, and
S. Tixeuil, “On fast randomized colorings in sensor net-
works,” in Proceedings of ICPADS 2006. IEEE Press, July
2006, pp. 31–38.

[23] A. K. Datta and T. Herman, Eds., Self-Stabilizing Systems, 5th
International Workshop, WSS 2001, Lisbon, Portugal, Octo-
ber 1-2, 2001, Proceedings, ser. Lecture Notes in Computer
Science, vol. 2194. Springer, 2001.

