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Abstract

Single-particle tracking is increasingly used to extract quantitative parameters on single molecules 

and their environment, while advances in spatial and temporal resolution of tracking techniques 

inspire new questions and avenues of investigation. Correspondingly, sophisticated analytical 

methods are constantly developed to obtain more refined information from measured trajectories. 

Here we point out some fundamental limitations of these approaches due to the finite length of 

trajectories, the presence of localization error, and motion blur, focusing on the simplest motion 

regime of free diffusion in an isotropic medium (Brownian motion). We show that two recently 

proposed algorithms approach the theoretical limit of diffusion coefficient uncertainty. We discuss 

the practical performance of the algorithms as well as some important implications of these results 

for single-particle tracking.

 I. INTRODUCTION

Single-particle tracking (SPT) methods are well established and widely used for studying the 

microscopic behavior and interactions of individual molecules or microscopic objects in soft 

matter and biological environments [1,2] and are part of the growing toolbox available to 

researchers studying nanoparticle and single-molecule dynamics. A single particle can be 

localized with nanoscale accuracy through optical microscopy—a fact that has been 

extensively analyzed and applied in recent years in general nanoscale measurement methods 

and specifically for super-resolution microscopy [3–5], high-resolution colocalization 

studies [6,7], or single-particle and single-molecule tracking [8–10]. However, the 

consequences of finite localization accuracy on measurements of properties of moving 

particles have not yet received much attention. As it turns out, this can lead to very large 

errors on dynamic parameter estimation, preventing in some cases any quantitative 

conclusion on the particle motion. The purpose of this article is to compare and summarize 

new theoretical and numerical developments, allowing a precise assessment of these effects, 

as well as to provide simple guidelines to adjust experimental control parameters 
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(localization accuracy, exposure time, frame separation, and trajectory length) in order to 

ensure a desired precision on the measured parameters.

A basic dynamic characteristic of microscopic behavior is the diffusion coefficient D, which 

may be constant in an isotropic medium or vary spatially or temporally in complex 

environments [11,12]. For example, changes from slow to fast diffusion are sometimes 

observed in membrane proteins, and can in principle be characterized as changes in D [13–

17]. Although not all motion regimes can be characterized by a single D value (a regime we 

will refer to as “free diffusion”) or even a few different D values—for example, diffusion 

may be superimposed to drift (directed motion), confined within hard boundaries (confined 

motion), or taking place within a fractal domain (anomalous diffusion) [2]—free diffusion is 

one of the most common models used to interpret experimental data, in particular when only 

short trajectories are available. In these complex situations, it is of fundamental importance 

to understand how accurately a free diffusion coefficient can be estimated from a finite-

length trajectory. In particular, this knowledge is necessary to assess the statistical 

significance of apparent differences in diffusion coefficients between segments of a single 

trajectory, between multiple trajectories observed under identical conditions or between 

experiments obtained under different conditions.

The previous discussion raises the question of how well D can be obtained from the analysis 

of a finite length single-particle trajectory, but a no less important aspect of this question is 

the influence of localization error on the measured D. Surprisingly, although the precision of 

noise-limited single-particle localization has been the focus of significant attention due to its 

importance in super-resolution imaging [18,19], the consequence of a finite localization 

precision on D estimation (and its worsening due to diffusion) has until recently been 

scarcely addressed theoretically [20–22].

In this paper we answer two fundamental theoretical questions regarding the optimal 

estimation of free diffusion coefficients from SPT data.

1. What is the best theoretically achievable precision in estimating D from a 

single trajectory knowing its length (number of positions N), localization 

precision, and camera integration time? Since a theoretical bound without a 

practical means of attaining it is of limited use, we also address a second, more 

practical question.

2. What estimation procedure extracts D from the data in a way that achieves 

such precision?

Answering the first question provides relations allowing optimizing experimental data 

acquisition parameters in order to achieve a desired level of precision on the measured D.

The answer to the second question provides tools to extract an optimal estimation of the 

diffusion coefficient from the resulting experimental trajectories.

This work extends and ties together our two recent independent publications addressing 

partial aspects of these questions [20,21]. On one hand, asymptotic (large N) expressions for 

the optimal precision (or Cramér-Rao lower bound) as well as a maximum likelihood 
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estimator (MLE) of D were obtained in Ref. [20]. On the other hand, an algorithm for 

optimized least-square fit (OLSF) of the familiar mean-square displacement curve, 

accounting for localization accuracy and trajectory length, was presented in Ref. [21]. Both 

results were incomplete in the following sense: the applicability of the asymptotic results of 

Ref. [20] to real data remained unknown (in particular, the question of how large must N be 

for the asymptotic results to apply), while the information theoretic optimality of the OLSF 

approach [21] remained to be addressed.

Here we give a complete theoretical analysis of diffusion coefficient estimation in SPT by 

first providing an exact Cramér-Rao lower bound formula for the diffusion coefficient 

uncertainty valid for all N, based on maximum likelihood estimation, thus answering 

question (1). We then briefly summarize the OLSF method and compare its theoretical 

performance with the Cramér-Rao lower bound, finding it to perform near optimally. We 

next compare numerical implementations of the MLE and OLSF approaches to the 

fundamental limit (Cramér-Rao bound) over a large simulated data set, verifying that both 

approach the theoretical performance. We conclude that (1) dynamic localization uncertainty 

σ sets a fundamental limit on the precision with which D can be determined, quantified by 

the Cramér-Rao lower bound; (2) both the MLE and OLSF provide a good approximation of 

the best possible diffusion coefficient estimate over a large portion of parameter space [thus 

answering question (2)]; and (3) in many experimental scenarios—including the estimation 

of short-time diffusion coefficients as might be encountered in complex or switching 

regimes—D cannot be measured precisely by any data analysis procedure. This, of course, 

should be of immediate practical interest, as it sets a practical limit to the claims that can be 

drawn from experimental data. We also hope that this work will motivate further studies of 

similar constraints existing in other diffusion or complex motion models.

This article is organized as follows. Section II briefly summarizes the maximum likelihood 

approach used in Ref. [20] and provides exact results for the Cramér-Rao lower bounds 

(CRLB) on fitted parameters (detailed in Appendix B), briefly discussing the general 

implications for parameter estimation in SPT. Section III provides a brief summary of the 

optimal least-square fit (OLSF) analysis of the mean-square displacement introduced in Ref. 

[21], while improvements introduced in this work are detailed in Appendix A. Section IV 

compares the results of OLSF with the CRLB, establishing that OLSF is nearly optimal. 

Section V then compares the performance of numerical implementations of the MLE and 

OLSF methods with the theoretical limits. Finally, Sec. VI summarizes our main results and 

discusses some applications.

 II. MAXIMUM LIKELIHOOD ESTIMATION AND CRAMÉR-RAO LOWER 

BOUNDS ON THE VARIANCE OF D AND σ2

In a typical SPT experiment, a trajectory is obtained by determining a particle’s positions at 

equally spaced time intervals Δt, for instance using a series of N images (or frames) obtained 

by video microscopy [1,2]. The particle’s position at each time point iΔt is known with an 

uncertainty σ.
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It is worth mentioning that the dynamic localization error σ involved in a tracking 

experiment is larger than the static localization error σ0 involved in super resolution or high-

resolution colocalization studies [18,19,23]. Indeed, as discussed in Ref. [21], the effect of 

diffusion is to expand the single-particle image and thus “spread out” the total signal over a 

larger area, therefore decreasing the signal-to-noise ratio and correspondingly, the 

localization accuracy. A simple model to take this effect into account was proposed in Ref. 

[21], resulting in the following approximation:

(1)

where s0 is the standard deviation of a Gaussian approximation of the microscope point-

spread function and tE is the camera exposure duration (tE ≤ Δt). From this expression, 

which involves the unknown parameter D, it is clear that σ should formally be considered as 

an unknown parameter of the model.

After SPT data have been collected, estimating model parameters such as D and σ from the 

trajectory can be accomplished using various methods [24–26]. Mean-square displacement 

(MSD) analysis is among the most popular one [2,24], but has a number of fundamental 

limitations, which make it wholly inappropriate for reliable parameter estimation, unless 

special care is taken, as discussed in a later section. An alternative approach to diffusion 

coefficient estimation based on maximum likelihood estimation was introduced in Ref. [15] 

and updated in Ref. [20], where it was noted that, in contrast with the original assumption of 

Ref. [15], SPT displacements {Δi
 = r ⃗i+1

 − ri⃗
} (i = 1, …, N − 1) calculated from realistic data 

are correlated due to localization error and motion blur, resulting in a multivariate Gaussian 

distribution of observed displacements with nondiagonal covariance matrix Σ [20,27,28]. 

For the one-dimensional case:

(2)

In this expression Δ is the (N − 1)-component column vector of observed displacements and 

Σ is the covariance matrix with (N − 1) × (N − 1) elements defined by [20] 

(3)

where the reduced square localization error x is defined by

(4)
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and R is the motion blur coefficient, a dimensionless parameter specifying the duration and 

type of camera exposure used in the experiment [20,21]:

(5)

In this expression, S(t) is the illumination percentage occurring before time t (between the 

beginning and end of a frame, separated by Δt). R ranges from 0 to 1/4 depending on the 

camera exposure mode and duration. For instance, in the common experimental case of a 

uniform exposure of duration tE ≤ Δt, R = 1/6(tE/Δt) [setting S(t) = t/tE in Eq. (5) for t < tE, 

S(t) = 1 otherwise] [15,20,21,29,30].

Using a standard assumption of statistical inference theory, the “best fit” parameters of the 

model are taken as those maximizing the probability distribution of the displacements, given 

the observed data. It is equivalent and in general simpler to maximize the log-likelihood, 

L(Δ) = log[p(Δ)], which can be done by diagonalizing the covariance matrix Σ. This 

computation can be done approximately (for large N) by a discrete Fourier transform, as 

discussed in Ref. [20]. From the diagonalized data, a numerical algorithm approximating the 

MLE for large N was given in Ref. [20], allowing an iterative search of the best fit 

parameters.

In Ref. [20] this approximation was used to compute the Fisher information matrix I in the 

two parameters D and σ2, whose matrix elements Ijk are equal to

(6)

where θj designates either parameter D or parameter σ and E indicates the mean value of the 

quantity in parentheses. From this matrix, the Cramér-Rao lower bounds (CRLB) on the 

model parameter variances for large N were obtained as the inverse of the diagonal elements 

of the Fisher information matrix. The CRLB is an information theoretic quantity that sets a 

lower limit on the variances of all unbiased estimation procedures (not just the MLE [31]). 

In other words, no practical algorithm used to extract parameters D and σ from the data can 

expect to achieve a smaller uncertainty on these parameters than the lower limit set by the 

CRLB. Expressed in yet another way, any algorithm achieving an error on the fitted 

parameters that approaches the CRLB result is performing optimally from an information 

theory point of view.

In Ref. [20] the number of points N required to make these approximations valid was not 

discussed. Here we present exact results for the MLE and CRLB for any of N, allowing an 

exhaustive comparison of the MLE and OLSF algorithms performance with the CRLB. As 

shown in Appendix A, the CRLB on D depends only on the number of trajectory points N 

and the reduced square localization error x.

Michalet and Berglund Page 5

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 June 22.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



The CRLB1 on σ2 also depends on the motion blur coefficient R. From the expressions for 

the CRLB on the variance of D and σ2 given in Appendix A, the relative uncertainties [ratio 

between the standard deviation (S) and the expected value of the parameter] satisfy

(7)

(8)

where d is the number of spatial dimensions of the trajectory and δ(x) [respectively, ς(x)] is 

an increasing (respectively, decreasing) function of x, whose exact expressions as a function 

of x, N, and R are given in Appendix A.

Equations (7) and (8) completely specify how accurately D and σ2 can be determined in SPT 

by an unbiased estimator. They are represented in Fig. 1, which shows contours of regions in 

the (x, N) plane within which each quantity can be estimated with a specified relative 

uncertainty ε.

It is worth noting that the dependence of the uncertainties on D and σ2 with respect to the 

reduced square localization error x are anticorrelated: better precision on D is achieved when 

the reduced square localization error x is small, whereas the opposite behavior is observed 

for the localization error σ2.

Equations (7) and (8) also express the fact that the standard deviation of both parameters 

vary as [d(N − 1)]−1/2, where d(N − 1) is the total number of one-dimensional displacements 

in the trajectory. In other words, an improvement of a factor of 2 of the precision on D 

requires 4 times more trajectory points (assuming the localization uncertainty remains 

constant). In particular, since both vary as d−1/2, where d is the number of spatial 

dimensions, this means that from a statistical point of view it is not recommended to perform 

a separate MSD analysis for each dimension, as sometimes seen in the literature [32], unless 

there is a reason to expect some diffusion anisotropy. Section VI will discuss different 

limiting cases of these results and their application in practical situations.

 III. OPTIMIZED LEAST-SQUARE FIT OF THE MSD

As mentioned above, one of the most popular approaches to SPT data analysis involves 

computing the so-called mean-square displacement (MSD) curve of the trajectory and fitting 

it with the appropriate dynamic model. Among different possible definitions of the MSD, we 

consider the most commonly used:

1To facilitate comparison of the CRLB results with those of the optimized least square fit approach presented in the next section, it is 
easier to consider the CRLB on the variance of σ2 rather than of σ.
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(9)

where ri⃗, i ∈ {1, …, N} is the measured position of the particle in frame i. The MSD curve 

represents the average square distance traveled by the particle after different time lags iΔt. 

For an isotropic free diffusion regime in d dimensions, the theoretical MSD curve grows 

linearly with time, the slope of the curve being proportional to the diffusion coefficient D:

(10)

Equation (10) can be normalized by the average single-frame mean square displacement 

2dDΔt to obtain

(11)

which identifies the reduced square localization error x defined in the previous section as the 

offset of the normalized MSD curve. When R = 0, a small value of x (x < 1) indicates a 

regime where the dynamic localization error σ is small compared to the mean displacement 

due to diffusion during a single frame duration, .

Although a linear fit to the experimental MSD curve should provide a good estimate of D, 

the problem is complicated by the increased variance and correlated values of the MSD at 

large time lags, as noted originally [24,33]. This suggests using only the first few points of 

the MSD curve in order to reduce the influence of the large variance of the later MSD 

points. How few points to use has remained largely an empirical decision and varies from 

author to author. It was recently recognized that the MSD variance is also severely affected 

at short time lags by dynamic localization error σ and motion blur R [20,21] (the explicit 

expression for the MSD variance and covariance for arbitrary dimension d including 

dynamic localization error and motion blur is provided in Appendix C for reference). The 

increased variance of the MSD curve at short time lags is particularly noticeable when the 

reduced square localization error x is larger than 1, and results in poor MSD fits if only 

small time lags are used for the fit, as is often practiced. This suggested that there exists an 

optimal number pmin of MSD points to use (depending on the reduced parameter x as well as 

on the number of trajectory points N) in order to obtain the smallest uncertainty on the fitted 

parameter D.

This heuristic argument was confirmed by computing the expected error on both parameters 

(D and σ2) as a function of number of fitting points p. As shown in Ref. [21], a minimal 

error on each fitted parameter can be achieved using an optimal number of MSD points pmin, 

whose exact value depends on x and N. Arguably the most important conclusion of this 

work was the fact that using any other number of MSD points (say 10% of the total number, 
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or the first four points, or any other empirical choice) results in potentially much larger 

uncertainty on the fitted parameters. Although pmin can be computed without approximation 

as detailed in Ref. [21], it is more computationally efficient to use the approximate formulas 

for pmin(D) and pmin(σ2) provided in Appendix B [Eqs. (B3) and (B4)]. The resulting error 

on each parameter D and σ2 can then be computed using Eqs. (B11) and (B16).

The least-square fit of the unweighted MSD using the optimal number of points described 

above is what we will refer to in the following as the optimized least square fit (OLSF) of 

the MSD curve. Note that since this fit requires the a priori knowledge of x to compute the 

optimal number of points needed to fit D and σ2, it is not directly applicable to experimental 

data, for which, by definition, D and σ are not known. However, an iterative search of the 

optimal number of fitting points can be devised, as briefly discussed in Ref. [21]. An 

improved version of this algorithm and results of extensive study of its performance are 

presented in Appendix B, and discussed in Sec. V.

 IV. COMPARISON OF THE THEORETICAL OLSF RESULTSWITH THE 

CRAMÉR-RAO LOWER BOUNDS

One of the unanswered questions regarding the theoretical OLSF approach is in what sense 

the fitted OLSF parameters are optimal. An indication that they might be more than optima 

for the least-square fit approach only, is given by the fact that uncertainties on fitted 

parameters [D and σ2, Eqs. (B11) and (B16)] appear numerically indistinguishable whether 

one used a weighted or an unweighted optimized least-square fit [21]. This is a nontrivial 

result, as both types of fit (weighted or unweighted) result in very different behavior of the 

parameter uncertainties as a function of the number of MSD points p used for the fit (see 

Ref. [21] for details). The fact that both fits yield the same minimum uncertainty on the 

parameters is thus a strong indication that this minimum is an absolute minimum. However, 

the only way to establish that the OLSF results are truly optimal in a information theoretic 

sense is by a direct comparison with the lowest statistical bounds on each parameter’s 

uncertainty.

We thus compared the OLSF theoretical results for the uncertainties on D and σ2 [Eqs. (B11) 

and (B16)] with the respective CRLB obtained in Sec. II.

As shown in Fig. 2 for R = 1/6 (camera integration during the whole frame duration) and d = 

1, there is an excellent agreement between the two approaches over several orders of 

magnitude for x and N. Similar results hold for R = 0 (no integration, see Fig. 8 in Appendix 

A) and values in between.

Since the CRLB are by definition the theoretical limits of the MLE approach, these results 

indicate than numerical implementations of both MLE and OLSF methods should be 

capable of approaching these theoretical limits in experimental situations. This, however, 

can only be determined by investigating the performance of actual algorithms implementing 

these approaches, which we do in the next section.

Michalet and Berglund Page 8

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 June 22.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



 V. COMPARISON OF ACTUAL MLE AND OLSF ALGORITHMS WITH ONE 

ANOTHER AND WITH THE CRLB

To test the practical performance of MLE and OLSF algorithms we performed a series of 

simulations over a large range of reduced square localization error x and number of 

trajectory points N. For each (x, N) pair we simulated 1000 trajectories and ran both the 

MLE and OLSF estimators (provided as a Matlab routine in Supplemental Material [34]) on 

each of them, and analyzed the resulting distribution of fitted D and σ2 parameters.

Figures 3 and 4 summarize the results of our numerical study in the form of “success maps” 

for both algorithms. For each (x, N) pair we computed the fraction of trajectories whose 

fitted D (Fig. 3) or σ2 (Fig. 4) was within 25% of the true value (the value used for the 

simulation), as a measure of the success rate of both approaches. We also overlaid smooth 

contours showing the expected success fraction (defined as above) for an optimal unbiased 

estimator that achieves the CRLB. Note that the choice of a 25% distance to the true value is 

arbitrary and does not change the fact that for any other choice the agreement between 

theory and algorithms is excellent.

From Figs. 3 and 4, which show a near perfect match between the success maps of both 

methods and the predicted success rates, it appears that both MLE and OLSF estimators 

achieve nearly optimal performance. That is, each estimator performs almost as well as an 

ideal unbiased estimator. In other words, no other unbiased estimator can significantly 

outperform the MLE or OLSF estimators presented here over the vast majority of the (x, N) 

space. A detailed comparison of the complete data set is available online as a hyperlinked 

PDF document [34] and is worth looking at to understand the difference between the 

situation in high success rate regions (green) and a low success rate regions (red). In the 

latter, the fitted parameters can be wildly off the exact result, casting doubt on the usefulness 

of even attempting to fit the data in these regions of the (x, N) plane.

In particular, it is important to realize that, although MLE and OLSF are nearly optimal, they 

cannot give reliable estimates of D for small numbers N of trajectory points (N < 10). 

Indeed, it is impossible for any estimator to obtain reliable estimates in this case, even when 

the reduced square localization error x is fairly modest (x < 1). This can be seen from Eq. (7) 

and Figs. 1–4, and suggests that a number of approaches using short trajectory segments to 

infer subtle changes of diffusion regimes may need to be revisited (e.g., Refs. [35,36]). We 

discuss this important point further in Sec. VI.

Although they approach optimality, MLE and OLSF do not give identical results. Indeed, in 

contrast to OLSF, MLE cannot return an unphysical negative value for D or σ2. Although 

this seems initially to be a desirable attribute, it means that estimates of a parameter with a 

large variance (compared to the true value) tend to have an asymmetric distribution with 

positive values results “piling up” at D = 0 and σ2 = 0 (see Supplemental Material [34] for 

examples). This results in a positive bias (overestimation of the mean), which is particularly 

marked for x > 1. OLSF on the contrary is not constrained to return positive values and thus 

results in symmetrically distributed, unbiased results. However, in the same regime of large 

parameter variance (compared to the true value), this can result in unphysical negative fitted 
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values. Each of these phenomena (biased results and unphysical estimates) are undesirable, 

but it is important to note that both issues appear in “red zones” of the parameter space 

(Figs. 3 and 4), where the CRLB is large compared to the mean, and even an optimal 

unbiased estimator performs rather poorly. In these regimes there is simply not enough 

information in the data to obtain high-quality estimates by any estimation procedure.

Another noteworthy difference between the two algorithms (implemented in the Matlab 

routine provided as Supplemental Information [34]) is their execution speed. A simple 

estimate of computation time as a function of the number of points in the trajectory shows an 

approximately linear behavior for MLE versus a quadratic dependence for the OLSF (Fig. 

S1). However, the OLSF algorithm appears to outperform the MLE algorithm for N < 3000 

points. As the computer speed steadily improves, these differences might become irrelevant.

So far we only discussed results for cases where σ is unknown and must be estimated along 

with D. If σ is already known, the CRLB on D is improved and a smaller number of 

trajectory points are needed to obtain a given uncertainty (Fig. 5). It is common to attempt to 

measure this quantity using immobilized particles. However, σ depends on all aspects of the 

experiment including motion blur contributions not present for static particles [Eq. (1)]. We 

therefore consider that the most important case of practical interest is that in which σ is 

unknown, as discussed in the text.

 VI. DISCUSSION

In the previous sections we have presented exact results for the MLE and OLSF approaches 

and established that the two corresponding numerical algorithms perform optimally in most 

practical situations. In this section we discuss some possible applications of these results for 

SPT analysis.

 A. Estimating the uncertainty on D

A first application of these results consists, after using either one of these algorithms to 

obtain the best possible estimates of D and σ2 from a given trajectory, of estimating the 

uncertainty on these parameters using the CRLB results [Eqs. (7) and (8)] computed using 

the fitted parameters. However, since Eqs. (7) and (8) depend on the reduced localization 

error x, which is very sensitive to the values of D and σ2, a large relative uncertainty on 

either one or both fitted parameters may yield artificially small or large x value, resulting in 

erroneous estimates of their relative uncertainties. Although analytically computable using 

the results of Appendix A, the exact distribution of x values is complex and can moreover be 

bimodal (with positive or negative values) [37], making a general discussion very tedious.

It is possible, however, to discuss a few common experimental cases. For instance, in the 

presence of negligible dynamic localization error (σ2/DΔt < 1) and assuming the exposure 

time tE is equal to the frame duration Δt (R = 1/6), the results of Fig. 2 show that a better 

estimate of D than of σ2 is expected. Supposing for instance that the true value of the right-

hand side of Eq. (8) defining the minimum relative error on σ2 is of the order of 1, we could 

potentially obtain a fitted value of σfit
2: (i) a few times larger than the true value [e.g., σfit

2 ~ 
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σ2 + V (σ2)1/2 ~λσ2, with λ = O(1)] or (ii) a few orders of magnitude smaller than the true 

value [e.g., σfit
2 ~ σ2 − V (σ2)1/2 ~ σ2/λ, with λ = O(1)].

In the first case (i) the value xfit of x computed using the fitted values of D and σ2 [Eq. (4)], 

Dfit ~ D, and σfit
2 > σ2 would be such that xfit > x, and would result in an overestimation of 

the error on D and an underestimation of the error on σ2. Note however, that if xfit + 2R = 

σfit
2/DfitΔt ≪ 1, the overestimation of the error on D will be negligible (Fig. 2). Indeed, in 

this regime, the relative error on D is approximately independent of x.

In the second case (ii) [e.g., σfit
2 ~ σ2 − V (σ2)1/2], the severe underestimation of σ2 could 

result in xfit + 2R ≪ 1, which, as we have just seen, would have little effect on the estimated 

error on D.

Inversely, in presence of significant dynamic localization error (σ2/DΔt > 1), the opposite 

would be expected: larger error on D and small error on σ2. Suppose the fitted Dfit is 

underestimated and a few orders of magnitude smaller than its true value [e.g., Dfit ~ D − V 

(D)1/2 ~ D/λ, with λ = O(1)]. Then xfit would be much larger than its true value, and the 

inferred relative error on D much larger than it is really. If, on the contrary, Dfit is a few 

times larger than its true value [e.g., Dfit ~ D + V (D)1/2 ~ λD, with λ = O(1)], xfit + 2R = 

σfit
2/DfitΔt would be a few times smaller than its true value. If xfit + 2R ≪ 1, the effect on 

the estimated relative error on D would be negligible, whereas in the other cases, it would be 

difficult to determine how bad this estimate is.

In summary, it appears that the CRLB result for the relative error on D [Eq. (7), calculated 

using the fitted values] can be used reliably provided the fitted x value (xfit = σfit
2/Dfit Δt 

− 2R) is smaller than 1, whereas no reliable error estimation can be made if xfit > 1. The 

opposite conclusion holds for the relative error on σ2 [Eq. (8)].

Naturally, if a large series of trajectories of identical particles can be studied, a reliable 

estimate of the mean value of the diffusion constant D may be obtained (law of large 

numbers), from which an estimate of σ could be made using Eq. (1) and an estimate of x 

using Eq. (4)). The resulting estimate of the relative uncertainty on D [Eq. (7)] could then be 

compared to the relative statistical standard deviation of D for self-consistency. Significant 

discrepancy between the two might indicate an underlying distribution of diffusion 

coefficients for the particles studied.

 B. Adjusting experimental parameters to improve the precision on D

A second application of these results consists in optimizing SPT experimental parameters 

(N, Δt, R, and σ) to achieve a desired precision on the measured diffusion constant D 

(assuming one has an approximate idea of its order of magnitude). As shown in Appendix A 

and Fig. 6, when the desired relative uncertainty is smaller than 1, it is sufficient to use the 

asymptotic forms of Eqs. (A7) and (A8) for the CRLB. In this approximation, the relative 

uncertainty on D can be expressed as
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(12)

showing that when N and x are large (compared to 1), , and the relative 

uncertainty on D increases as x1/4 (i.e., σ1/2) but decreases as N−1/2. In other words, when 

the reduced square localization error x is large, halving the dynamic localization error σ (for 

instance by increasing the brightness of the particle’s PSF) allows halving the number of 

data points N needed to obtain a given precision on D.

When N is large and the reduced square localization error x is small, δ(x)2 ~ 2, indicating 

that the relative uncertainty on D varies as . For instance, in order to obtain a 

10% precision on D in two dimensions, N > 300 trajectory points are necessary. A 30 points 

trajectory with negligible dynamic localization error would only allow at best a ~30% 

precision on D, while a 10 points trajectory only a ~54% precision. These figures would be 

increased by a factor ~2 for a reduced square localization error x = 1 and significantly more 

for larger x values (see also Fig. 5 for a visual guide). Note that none of these figures are 

recommendable goals since a 30% relative uncertainty translates into a three-sigma 

confidence range going approximately from zero to twice the actual value of the diffusion 

constant. In other words, the fitted value has potentially very little resemblance to the true 

value.

Clearly there is quite some flexibility in adjusting x or N in order to reduce the uncertainty 

on D. For instance, x can always be decreased by increasing the frame interval Δt or 

reducing the static localization error σ0 [Eq. (1)]. The latter can for instance be obtained by 

increasing the particle brightness (number of collected photons). This, however, may reduce 

the lifetime of the particle due to premature photobleaching, thus limiting the number of 

observable trajectory points N, which is always detrimental to the precision of the 

measurement.

On the other hand, if one is interested in measuring D over short time scales (in order to 

detect changes in diffusion coefficient), the total duration of the measurement is constrained 

by the time scale of interest: N Δ t = T, therefore increasing Δt would reduce N and vice 

versa.

We can quantify these different statements using the approximate expression for the 

dynamic localization error σ [Eq. (1)].

The reduced square localization error x can be expressed as

(13)
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In the absence of pixilation, background, detector noise, and amplifier excess noise, the 

static localization error σ0 itself can be approximated by [21]

(14)

where P is the total number of photons in the PSF image and Q is the average photon rate 

emitted by the particle. From these two equations, it is straightforward to verify that x is 

minimized when tE = Δt (R = 1/6) and when Δt is maximized. In fact, according to Fig. 2, 

given a number of trajectory points N, a quasi-optimal precision on D can be obtained as 

soon as x + 1/3 < 1, which reads

(15)

Using a PSF size s0 ~ 100 nm and a typical membrane protein diffusion coefficient D ~ 0.1 

µm2/s, we see that the number of photons required to satisfy Eq. (15) is easily achieved in 

practice (Δt = 100 ms → P > 2, Δt = 1 ms → P > 100). For particles diffusing more slowly, 

accurate measurements of D will require longer integration times or brighter images (D ~ 

10−3 µm2/s, Δt = 100 ms → P > 100, Δt = 10 ms → P > 1000).

So far we have not specified the precision desired for D. According to Fig. 2 it can be 

improved either by decreasing x + 2R or by increasing the number of trajectory points N. If 

we are interested in measuring the diffusion coefficient rapidly with a relative precision ε, 

we can use the asymptotic behavior  provided the number of frames N is 

sufficiently large (N > 10) and x < 1. The latter condition can be ensured by adjusting Δt as 

discussed previously and therefore the minimum number of frames needed to achieve a 

precision ε will be given by N > 6/dε2. For d = 2 and ε = 0.5 (a 50% precision on D, which 

again is not a recommendable goal), we obtain N > 12. For a better precision (for instance, 

to distinguish between D and D/2), ε = 0.1 would require N > 300. Since the total duration 

of the measurement T = N Δ t might be constrained by other considerations, Δt might 

become relatively short, requiring stronger signal to keep x small.

 VII. CONCLUSION

In conclusion, we show that both MLE and OLSF estimators achieve nearly optimal 

performance in estimating D and σ2. Exact expressions for the CRLB on parameter 

uncertainties provided here can be used for determining when an experiment can reasonably 

be expected to give any useful information at all. It could also be used to determine a priori, 

based on experimental parameters such as integration time, frame rate, signal-to-noise ratio, 

maximum experiment duration, etc., what maximum precision can be expected for an 

estimate of the diffusion coefficient D. These results will also allow benchmarking other 

analysis methods with respect to the exact Cramér-Rao lower bound for various (x, N) 

values. In regimes where experimental data contains sufficient information to give a useful 

estimate, MLE and OLSF can be implemented to achieve near-optimal results with high 
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confidence. Extension of these results to more sophisticated dynamic models will obviously 

be of great practical interest but are beyond the scope of this study.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 APPENDIX A

 CRAMÉR-RAO LOWER BOUND ON THE UNCERTAINTY OF D AND σ2

We briefly extend results from Ref. [20] to find exact, rather than approximate, expressions 

for the maximum likelihood estimator (MLE) and Cramér-Rao (CR) bounds for D and σ2. 

For a one-dimensional (d = 1), N-element trajectory (X1, …, XN), we define the (N − 1)-

element displacement (column) vector to be Δ = [X2
 − X1

, X3
 − X2, …, XN

 − X
N − 1

]T. For 

free diffusion with diffusion coefficient D and zero drift velocity, recorded at a frame 

interval Δt with noise σ in each frame, the (N − 1) × (N − 1) covariance matrix of Δ was 

found to be tridiagonal with matrix elements [20]: 

(A1)

where x is the reduced square localization error [21] including a motion blur term [Eq. (5)].

The displacement covariance matrix is diagonal if and only if x = 0. R is the motion blur 

coefficient defined in Eq. (5). In Ref. [20] approximate expressions for the eigenvalues and 

eigenvectors of Σ were used to derive the MLE, Fisher information matrix, and Cramér-Rao 

lower bound on estimates of D and σ. Those results hold asymptotically for large N. Here 

we update those results with exact expressions. Let v(k) and Ψk be the kth eigenvector and 

corresponding eigenvalue of Σ. These are found to be [38]

(A2)

(A3)
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and satisfy Σv(k) = Ψk v(k) and v(k) ·v(l) = δkl. Equation (A2) corresponds to the eigenvectors 

of the discrete sine transform (DST), for which a fast numerical implementation is known, 

similar to the fast Fourier transform [39]. In the terminology of stochastic processes, we 

have observed that the DST is the Karhunen-Loève transform [38] of the single-particle-

tracking displacement process Δ. Consequently, the DST of Δ has a diagonal covariance 

matrix (its components are uncorrelated), and an exact numerical implementation of the 

MLE can be efficiently computed in this basis using Eq. (18) of Ref. [20] but setting Δ̃ = 

DST (Δ). The exact Fisher information matrix I in the two parameters D and σ2 can also be 

found from the eigenvalues given above using the formula in Eq. (19) of Ref. [20]. Its 

inverse, which sets a lower bound on the covariance matrix of estimates of D and σ2 is found 

after algebraic manipulation to be (in d dimensions)

(A4)

where

(A5)

(A6)

(A7)

(A8)

These formulas can be used to compute the exact CRLB of Eqs. (7) and (8). The 

approximate results indicated by “~” arise from approximating the sum over N as a 

continuous integral. Plugging the asymptotic forms of Eqs. (A7) and (A8) into Eqs. (A5) and 

(A6), and in turn plugging these into Eq. (A4) gives the asymptotic form of the CRLB.

The asymptotic formulas can be used for a large range of (x, N) values as shown in Fig. 6, 

which represent curves of constant relative CRLB for D using either the exact formula (open 

symbols) or the approximate ones (plain curves). The asymptotic formulas result in an 
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underestimation of the minimum number of trajectory points N needed to obtain a given 

relative error ε on D only if ε > 1 (which corresponds to situations where D cannot be 

estimated reliably and therefore should be avoided).

 APPENDIX B

 OPTIMIZED LEAST-SQUARE FIT (OLSF) OF THE MSD

As discussed in detail in Ref. [21], for each value of x [Eq. (4)], there is an optimal number 

of MSD points pmin to use in order to obtain the “best” least-square fit parameters a 

(intercept) and b (slope) of the MSD, where

(B1)

in which d is the space dimension. The fitted parameters are “optimal” fits in the sense that 

their standard deviation (or uncertainty) is minimum among all fitted parameters obtained 

with a different number of MSD points p. Reference [21] only considered the blur-free case 

(R = 0) in the derivation of the fit parameters uncertainty and provided only a very short 

discussion of a practical algorithm to obtain pmin. This Appendix provides additional details 

on the algorithm and extends the analysis to the general case 0 ≤ R ≤ 1/4.

 Optimal number of fitting points

Ref. [21] provided an approximate formula to estimate the optimal number of MSD points to 

use for an unweighted fit of a and b:

(B2)

where x is given by Eq. (4). Note that if x < 0, Eq. (B2) should read pmin = 2. This 

approximation is poor for large x values (x ≫ 1) and N < 1000 values and does not reflect 

the fact that slightly different optimal number of points are needed to fit the slope b (i.e., D) 

or the intercept a (i.e., σ2).2

Figure 7 (open symbols) represents the number of points to use to obtain the optimal 

intercept a [Fig. 7(a)] or slope b [Fig. 7(b)] using an unweighted LSF of the MSD curve, as a 

function of both x and N. These values were obtained by direct calculation of the relative 

fitted parameter uncertainties as a function of number of fitting points p and determination 

of the minimum location [21]. They are therefore exact results of the OLSF algorithm with 

prior information on x. The corresponding relative uncertainties on each parameter can be 

computed using Eqs. (B16) and (B11) [21].

To avoid computing the relative uncertainties for all p (2 ≤ p < N) in order to find the 

minimum uncertainty, an iterative search of the minimum can be used since the relative 

2The values of pmin given here correspond to the fit of the MSD curve as defined by Eq. (9). Any other definition would require a new 
computation of the variance and covariance of the MSD, and consequently, of the theoretical uncertainty of the fitted parameters.
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uncertainties are, in general, convex curves of p. Although this approach is very fast for 

modest values of trajectory points N, computation of the uncertainties can become slow for 

large N (N > 1000). Since this procedure needs to be repeated at each step of the iterative 

algorithm mentioned in Sec. III and described next, using a heuristic formula can 

significantly speed up the approach.

Plain curves in Fig. 7 represent heuristic formulas providing a good approximation of pmin 

for x ∈ [10−2, 107] and N ≤ 104. The heuristic formulas represented on these graphs are

(B3)

and

(B4)

La,b(N) are the limits for x → ∞ of pmin
(a,b)(x, N). Note that these formulas are ad hoc 

formulas and could be replaced by any other algebraic form fitting the exact results 

sufficiently well. In practice, the fitted a and b obtained using these approximate formulas 

are indistinguishable from those obtained using the exact results.

 Determining the optimum number of fitting points without a priori knowledge

In the absence of any a priori knowledge on x, an iterative search of pmin
(a,b)(x,N) [yielding 

a series of pi(a) and pi(b) values for each parameter a and b] is needed. The algorithm 

proposed in Ref. [21] (modified here to account for the improved formulas (B3) and (B4)) 

starts with pi(a) = pi(b) = N/10 and proceed as follows:

1. Using the new pi, fit the MSD curve and obtain new fit parameters ai and bi.

2. Using the new fit parameters ai and bi compute a new xi.

3. Using the new xi, compute new pi+1 using Eqs. (B3) and (B4).

4. Repeat steps 1–4 until a previously found set of pi is repeated.

5. In the latter case, use the previous set of pi.

In practice, this algorithm does not function well for very small or very large x, because in 

these cases, either the relative error on a or the relative error on b is very large (and the 

computed x is therefore extremely unreliable) if the optimum p are not used. These cases are 

however easily detected. When the relative error on a is very large, a will occasionally have 
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a negative value. In this case, the algorithm is stopped and a value of x = 0 is assumed (in 

other words, pmin = 2 is used for both parameters).

When the relative error on b is large, b will occasionally have a negative value. In this case, 

the algorithm is stopped and a value of x = ∞ is assumed [in other words, pmin(a,b) = 

La,b(N) are used].

This simple algorithm is surprisingly successful and very rapid (only a few iterations are 

necessary).

Figure 8 shows the percentage of success as a function of x and N in determining the 

optimal pmin using simulated data described in the text. Success if defined here as computing 

a pmin with the previous algorithm, which, if used to perform the MSD least-square fit, 

would result in an error no more than 25% larger than the optimal error. The algorithm is 

successful in more than 50% of cases even in the most unfavorable regions of the (x, N) 

plane (x ≫ 1 for D and x ≪ 1 for σ2).

 Relative error on D and σ2 in the presence of motion blur (R > 0)

This section expands the results of Ref. [21] in the presence of blur, limiting it to the case of 

unweighted linear fit. We explicitly introduce the number of spatial dimensions d in the final 

results.

The first p ≤ N − 1 points of the MSD curve are fitted by the equation

(B5)

where a and b are related to the variable parameters σ2 and D by Eq. (B1). The best fit 

values of an unweighted LSF limited to the first p points of the MSD are obtained by 

minimization of the χ square:

(B6)

with respect to σ2 and D. Here we have used the notations of Ref. [21]:

(B7)

After some straightforward algebra we obtain
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(B8)

where we have introduced the intermediate quantities

(B9)

and Δ is defined by

(B10)

The results of Ref. [21] for the relative variance (Var) of the intercept a and slope b need to 

be multiplied by a factor 2/d for an arbitrary number of spatial dimensions d: 

(B11)

where functions f (i, N, x) and g(i, j, N, x) have been introduced in Ref. [21] and are defined 

by
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(B12)

where the quantities  in the above equation are the covariance (variance when i = j) of the 

MSD derived in Refs. [20,21] and reported in Appendix C.

The variance of 2dσ2 can be either computed directly or using the properties of multivariate 

normal distributions:

(B13)

where Cov(a, b) is the covariance of a and b defined by

(B14)

We obtain

(B15)

The relative variance of σ2 can thus be rewritten:

(B16)

where the expressions for Var(a)/a2 and Var(b)/b2 are given by Eq. (B11) and U(p,N,x) by 

Eq. (B15).

The relative variance of D is simply given by the relative variance of b [Eq. (B11)]. These 

results were used to plot the graphs of Figs. 2 and 9.
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 APPENDIX C

 VARIANCE AND COVARIANCE OF THE MSD FOR ARBITRARY SPATIAL 

DIMENSION d

The variance  and covariance  of the MSD were 

computed in Refs. [20,21]. However, Ref. [20] only provided a compact form for d = 1, 

whereas Ref. [21] provided an expanded form for d = 2. Both expressions are equivalent and 

can be easily generalized for arbitrary dimension d (assuming an identical dynamic 

localization uncertainty σ for all spatial dimensions) as follows:

(C1)
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FIG. 1. 
(Color online) Contours of constant Cramér-Rao lower bounds ε [Eqs. (7) and (8)] for the 

relative uncertainty on D (plain curves) or σ2 (dashed curves), for R = 0 and d = 1. From top 

to bottom, ε = 0.1, 0.2, 0.5, and 1. Pairs of values (x, N) located above a given contour have 

a lower relative uncertainty than the value defined by this contour (reported in the legend). 

For instance, pairs in the top green hatched region have both relative uncertainties on D and 

σ2 smaller than 10%. By looking at the intercept of these contours with the N axis when x → 

0 (respectively, x → ∞), the minimum number of trajectory points needed to achieve a 

desired level of precision for D (respectively, σ2) can be determined. For instance, a 

minimum of 600 (respectively, 150 or 24) trajectory points is needed to obtain a 10% 

(respectively, 20% or 50%) uncertainty on D in the absence of localization error (x = 0). 

Significantly more trajectory points are needed if x > 1. S is the standard deviation. Note that 

values of N reported to the left need to be replaced by 1 + (N − 1)/d in d > 1 dimensions.
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FIG. 2. 
(Color online) Comparison between the relative error on OLSF fit parameters [open 

symbols, Eqs. (B11) and (B16)] and the corresponding Cramér-Rao lower bounds [plain 

curves, Eqs. (7) and (8)] for various number of trajectory points N, in the case R = 1/6 

(camera integration during the whole frame duration) and d = 1. N = 5 to 1000 from top to 

bottom. There is a remarkable agreement between the two, demonstrating that OLSF 

provides close to optimal estimate of the parameters. S is the standard deviation.
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FIG. 3. 
(Color online) Success maps for the MLE and OLSF algorithms for d = 1, showing the 

fraction of trajectories resulting in an estimated D value within 25% of the true value, as a 

function of the reduced localization error x and the number of points N. Green indicates 

100% success, while red indicates failure. White curves are contours where an optimal 

unbiased estimator reaches success 10% to 90% of the time (from bottom to top). Note that 

these curves are different from (though related) to those represented in Fig. 1. As in Fig. 1, 

values of N reported to the left need to be replaced by 1 + (N − 1)/d in d > 1 dimensions.
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FIG. 4. 
(Color online) Success map for the MLE and OLSF algorithms for d = 1, showing the 

fraction of trajectories resulting in an estimated σ2 value within 25% of the true value, as a 

function of the reduced localization error x and the number of points N. White curves are 

contours where an optimal unbiased estimator reaches success 10% to 90% of the time 

(from bottom to top). The same comment as for Fig. 3 applies.
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FIG. 5. 
(Color online) Curves of constant Cramér-Rao lower bounds (CRLB) for the relative 

uncertainty on D for d =1 dimension in different experimental situations: unknown σ and 

arbitrary R (plain curves), known and uniform exposure (R = 1/6, dashed curves), and 

known σ and instantaneous exposure (R = 0, dotted curves). The first experimental situation 

requires more points to obtain a given uncertainty on D, but this disadvantage is negligible 

for large relative localization uncertainty. More precisely, noting Nk the number of trajectory 

points to achieve a given relative uncertainty on D when σ is known and Nuk that number 

when it is unknown, Nuk/Nk(R = 0,x = 0) = 3 and Nuk/Nk(R = 1/6,x = 0) = 3/2. Note that for 

R > 0, negative values of x can be obtained but are not represented here. S is the standard 

deviation.
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FIG. 6. 
(Color online) Contours of constant Cramér-Rao lower bounds for the relative uncertainty on 

D, for d = 1. Open symbols correspond to the exact formula (7) [right-hand side of Eq. (7) = 

ε], whereas the plain curves correspond to the approximate formula [right-hand side of Eq. 

(12) = ε]. As in Fig. 1, values of N reported to the left need to be replaced by 1 + (N − 1)/d 

in d > 1 dimensions. S is the standard deviation.
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FIG. 7. 
(Color online) Optimal number of points for least-square fitting of (left) the intercept a (i.e., 

σ2) and (right) the slope b (i.e., D) of the MSD. Each curve corresponds to a different 

number of trajectory points N (N = 5 to 10000 from bottom to top). The plain curves 

correspond to Eq. (B3) (left) and Eq. (B4) (right). These results are valid for any value of the 

blur factor R. For x < 0, pmin = 2.
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FIG. 8. 
(Color online) Success rate of the OLSF algorithm in determining the optimal number of 

fitting point needed to optimally fit (a) σ2 and (b) D.
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FIG. 9. 
(Color online) Comparison between the relative error on OLSF fit parameters and the 

corresponding Cramér-Rao lower bounds [plain curves, Eqs. (8) and (7) of the main text] for 

various number of trajectory points N, in the case R = 0 (no camera integration) and d = 1. N 

= 5 to 1000 from top to bottom.
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