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Abstract

In this paper we develop an optimality-based framework
for designing controllers for discrete-time nonlinear cas-
cade systems. Specifically, using a nonlinear-nonquadratic
optimal control framework we develop a family of globally
stabilizing backstepping-type controllers parameterized by
the cost functional that is minimized. Furthermore, it is
shown that the control Lyapunov function guaranteeing
closed-loop stability is a solution to the steady-state Bell-
man equation for the controlled system and thus guaran-
tees both optimality and stability.

1. Introduction

Since most physical processes evolve naturally in con-
tinuous time, it is not surprising that the bulk of non-
linear control theory has been developed for continuous-
time systems. Nevertheless, it is the overwhelming trend
to implement controllers digitally. Despite this fact the
development of nonlinear control theory for discrete-time
systems has lagged its continuous-time counterpart. This
is in part due to the fact that concepts such as zero dy-
namics, normal forms, and minimum phase are much more
intricate for discrete-time systems. For example, in con-
trast to the continuous-time case, technicalities involving
passivity analysis tools needed to prove global stability via
smooth feedback controllers [1] as well as system relative
degree requirements [2] are more involved in the discrete-
time case.

Recent work involving differential geometric methods [3]
employing concepts of zero dynamics and feedback lin-
earization have been applied to discrete-time systems. In
particular, these results parallel continucus-time results
on linearization of nonlinear systems via state and out-
put feedback. However, as in the continuous-time case,
these techniques cancel out system nonlinearities and may
therefore lead to inefficient designs since the resulting feed-
back linearizing controller may generate large control ef-
fort to cancel beneficial nonlinearities.

Backstepping control for continuous-time systems has
recently received a great deal of attention in the non-
linear control literature [4]. The popularity of this con-
trol methodology can be explained in a large part due to
the fact that it provides a framework for designing sta-
bilizing nonlinear controllers for a large class of nonlin-
ear cascade systems. Even though discrete-time recur-
sive backstepping techniques have not been developed,
the closest discrete-time analog to backstepping is given
in [2,51. Specifically, in [2,5] discrete-time passivity analy-
sis tools are used to construct control Lyapunov functions
guaranteeing global asymptotic stability for block cascade
discrete-time systems.

In this paper we develop an optimality-based control
design theory for nonlinear discrete-time cascade systems.
The key motivation for developing an optimal nonlinear
control theory framework for discrete-time cascade sys-
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tems is that it provides a family of candidate controllers
parameterized by the cost functional that is minimized.
In order to address the optimality-based nonlinear con-
trol problem we use the nonlinear-nonquadratic optimal
control framework developed in [6]. The basic underly-

ing ideas of the results in [f(S} rely on the fact that the
steady-state solution of the discrete-time Bellman equa-
tion is a control Lyapunov function for the nonlinear con-
trolled system thus guaranteeing both optimality and sta-
bility. Finally, we use the following standard notation.
Let N™*™ (resp., P"*") denote the set of n X n nonneg-

ative (resp., positive) definite matrices and let A" denote
the set of nonnegative integers.

2. Optimal Control for Nonlinear Systems
In this section we consider the nonlinear system
z(k+1) = f(z(k))+g(z(k))u(k), z(0) = zo, k € N, (1)

where z € R, u € R™, f : R® — R"” such that f(0) =0,
g : R® — R™*™ with performance criterion

J(xo,u(")) = 35lo [L1(z(k)) + La(z(k))u(k)
+u” (k) Rau(k)). (2)
where L; : R® — R, Ly : R® — R*™ and R, € P™*™,

Furthermore, define the set of asymptotically stabilizing
controllers for the nonlinear system (1) by

S(xo) 2 {u:R™x N — R™: z(-) given by (1)
satisfies z(k) — 0 as k — oo}.

Theorem 2.1. Consider the controlled system (1) with
performance functional (2). Assume there exist functions
V:R? - R, Ly: R® = R¥*™ Py : R* - R*™ and a
nonnegative-definite function P, : R™ — N™X™ guch that

L3(0) =0, P12(0) =0, V(0) =0, (3)

V{z)>0, z€R* z+#0, (4)
V[f(z)—3g9(z)(R2 + Py(z))7"

LY@)] -V(®) <0, zeR", z#0, (5)

V(f(2) + g(2)u) = V(f(2)) + Pia(z)u + u" Py(z)u, (6)

where V(z) — oo as Hxlll — 00. Then the solution z(k) =
0, k € N, of the closed-loop system

z(k + 1) = f(z(k)) + g(z(k))p(z(k)), ©(0) = @0, k € J(\{i’)
is globally asymptotically stable with the feedback cohtrol
law ¢(z) = —-%(Rg + Py(x)) " Lo(z) + P12(.’E)]T, and the
performance functional (2), with

Li(z) = ¢" (2)(Rz + Py(a))(x) — V(f(2)) + V(2), (8)
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is minimized in the sense that

J(zo,9(z(-))) = min J(zo,u(:)), zo € R".  (9)

u(-)€S(zo)

Finally, J(zo, #(z(-))) = V(zo), for all zo € R™.

3. Optimal Block Backstepping Controllers

In this section we consider nonlinear cascade systems
with nonlinear input subsystems of the form

z(k+1) = fz(k)) + g(z(k))y(k), z(0) ==zo, (10)
2(k+1) = f(&(k) + §(E(K))u(k), 2(0) = 2o, (11)
y(k) = h(z(k)) + J(&(k))u(k), (12)

where k € N, 2 € RY, u,y € R™, f : R — RY, § :

R? — R¥*™ h : RY — R™, and J : R? — R™*™ such
that f(0) = 0 and h(0) = 0. Here, we consider the case in

which the nonlinear input subsystem (11), (122 is feedback
strictly passive with positive definite storage function V; :
R? — R such that V(0) = 0 and

~

Ve(f(2) +§(2)u)

where Ppy : R? — R1X™ and P, : R — P™X™_ Specif-
ically, we assume there exist functions £ : R? — R™,
I:R? — RP, and W : RY — RP*™ guch that /(0) = 0,
k(0) =0,

= Va(f(&)) + Pra(@)u+uT Py(2)u, (13)

Va((@) + (@)k(@)) = Va() + 1T (@)U(2), & #0, (14)
=%PT2< )+ WE@N(@) - (h(&) + T (@)k(@))  (15)

P(fc)k(z)

By(@) + WH@W(@) - (J(2) + T (@), (16)

Theorem 3.1. Consider the cascade system (10)-(12)
with performance functional

) = Y [La((k), &(k)

k=0
+La(2(k), 2(k) yu(k) + u™ (k) Rzu(k)], (17)

where (z(k), 2(k)), k € N, solves (10), (11). Assume that
the input subsystem (11), (12) is feedback strictly passive
and the subsystem (10) has a globally stable equilibrium
at (k) = 0, k € N, and Lyapunov function Viup(z) so
that Vaub(f(z)) < Vaub(z), for all z € R™ such that z # 0.
Furthermore, assume there exist functions Ly :R*"xRY —

J(x07107

RIX™ P, R® — RY™™ and P, : R® — N™*™ guch that
z/2(0, 0) = 07 P12(0) = 07 (18)

+yT152($)y,
yT{PE(m + By(0)h(@) — 26(8) — (I + L Po(2) ] (8))
'R2_a1 (.’L‘, i‘)[plr];

(2) + 2JT(2) Py(z) M) + LT (z, %)

+JT(£)1511;(:U)]} <0, (z,&) eR*xR?, (20)

where Roq(x,2) £ R+ Py(&) + JT (2) Py () J(&) and k(2)
satisfies (14)—(16). Then the solution (z(k), Z(k)) = (0,0),
k € N, of the cascade system (10}, (11) is globally asymp-

totically stable with the feedback control law u = @(z, &),
where

O(z,2) = —3R3N(x, 2)[P5(2) + 277 (&) Py(z)h(2)
+L3 (z,2) + JT(2) Ph(2)]. (21)
Furthermore, for (zo,%¢) € R™ x R™
J(z0, 20, p(z(-), £("))) = V(z0,Z0), (22)

where V(z,Z) = Voub(z) + V5(£), and the performance
functional (17), with

il(x,ﬁ:) = éT($ai)R2a(xaj)q§(m7i) + ‘/sub(m)
(z

~Veub(f(2) + g(z)h(£)) + Va(&) — Va(F(£)),  (23)
is minimized in the sense that
Tao,do.0(),2() = _min J(@o.do,u(). (24)

Remark 3.1. Assuming det{l,, + %ﬁ’g(x)J(i)) # 0 for
all (z,2) € R® x R, a particular choice of Lo(z, %) satis-
fying conditions (18) and (20) is given by

Lo(z,8) = [Pia() + Pa(2)h(#) — 2k(2)]"

(I + L Py(2)J (2)) T Rou(, 2) = Pra(z)J(2)
)J (2

—Pra(&) — 20T (&) Po(z) J (£). (25)
In this case,

(e, 2) = k(@) - §(Im + 3 Pa(2)J(2)) 7! [P ()

+By(x) (h(2) + T(@)k(2))]. (26)
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