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Abstract— The question of designing the best wavelet for a
given signal is discussed from the perspective of orthogonal filter
banks. Two performance criteria are proposed to measure the
quality of a wavelet, based on the principle of maximization
of variance. The method is illustrated and evaluated by means
of a worked example from biomedicine in the area of cardiac
signal processing. The experimental results show the potential
of the approach.

I. INTRODUCTION

In recent years wavelets have been successfully used
in a large number of biomedical applications. The multi-
resolution framework makes wavelets into a very powerful
compression [5] and filter tool [7], and the time and fre-
quency localization of wavelets makes it into a powerful
tool for feature detection [2]. For more advanced applica-
tions, however, the success of these techniques depend to a
considerable extent on the choice of a good wavelet.

This paper addresses the important question of how to
design a good wavelet for an application at hand. Various
authors have made suggestions about how to approach this
question, see [6], [3], [4]. However, hardly any worked
applications are available in the literature. It is the purpose
of this paper to describe an approach to this problem based
on the theory of orthogonal filter banks and to investigate
the performance of this approach for the purpose of cardiac
signal processing.

II. ORTHOGONAL WAVELET DESIGN FROM FILTER
BANKS

To deal with the question of designing a good wavelet
in a systematic way, we employ the theory of wavelets
derived from filter banks, see [6]. This provides an elegant
and well understood framework for discrete-time (digital)
signal processing to which we shall be confined in this
paper. There are four important aspects of filter banks to
take into account (in decreasing order of importance): (i)
perfect reconstruction, (ii) orthogonality of the filter bank and
the underlying wavelet based multi-resolution structure, (iii)
flatness of the filters and vanishing moments in the wavelets,
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(iv) smoothness of the wavelets. Once a filter bank has been
selected, which corresponds to an underlying scaling func-
tion φ(t) and an associated mother wavelet ψ(t), the question
needs to be addressed how well it is suited to perform its
intended signal processing task. This requires a criterion
function, which allows one to measure the performance and
to compare the different filter banks.

A. Orthogonal wavelets and filter banks

The idea of filter bank theory is to perform signal process-
ing by means of a bank of (digital) filters in combination
with down-sampling. This process is illustrated in Fig. 1.
At each stage of the filtering process, the given signal x
is passed through a low pass filter with transfer function
C(z) and a high pass filter with transfer function D(z) after
which down-sampling takes place. These two filters must
meet certain requirements to enable perfect reconstruction
from the two output signals after down-sampling and to yield
an orthogonal underlying wavelet basis. To end up with a
corresponding mother wavelet ψ(t) having compact support,
C(z) and D(z) must be finite impulse response (FIR) filters:

C(z) = c0 + c1z−1 + . . . + cNz−N , (1)

D(z) = d0 + d1z−1 + . . . + dNz−N . (2)

Here N is an integer determining the order of the filters.
Orthogonality of the underlying wavelet basis involves

the following conditions on the filter coefficients: (a) nor-
malization:

∑N
k=0 c2

k = 1 and
∑N

k=0 d2
k = 1; (b) double shift

orthogonality:
∑N

k=0 ckck−2� = 0 and
∑N

k=0 dkdk−2� = 0 for all
integers � � 0; and (c) double shift orthogonality between
the two filters:

∑N
k=0 ckdk−2� = 0 for all integers �. (In the last

two conditions negatively indexed coefficients are all zero by
convention.)

Double shift orthogonality implies that N is odd, say N =
2n−1. The alternating flip construction allows one to specify
the high pass filter coefficients d0, d1, . . . , d2n−1 in terms of
the low pass filter coefficients c0, c1, . . . , c2n−1 in such a way
that condition (c) is automatically fulfilled:

dk = (−1)kc2n−1−k (k = 0, 1, . . . , 2n − 1). (3)



It is described in [6, Ch. 4-5] how the remaining orthogonal-
ity constraints can be handled by reparameterization of the 2n
low pass filter coefficients c0, c1, . . . , c2n−1 in terms of n new
parameters θ1, θ2, . . . , θn. The theory of polyphase matrices
offers a convenient way to achieve this. For k = 1, . . . , n,

let R(θk) =

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

]
and let Λ(z) =

[
1 0
0 z−1

]
.

Then consider the 2 × 2 matrix product

H(z) = Λ(−1)R(θn)Λ(z)R(θn−1)Λ(z) · · ·R(θ2)Λ(z)R(θ1). (4)

Let H(z) be partitioned as H(z) =

[
C0(z) C1(z)
D0(z) D1(z)

]
where

C0(z) = c0 + c2z−1 + c4z−2 + . . . + c2n−2z−(n−1)

C1(z) = c1 + c3z−1 + c5z−2 + . . . + c2n−1z−(n−1)

D0(z) = d0 + d2z−1 + d4z−2 + . . . + d2n−2z−(n−1)

D1(z) = d1 + d3z−1 + d5z−2 + . . . + d2n−1z−(n−1)

from which C(z) and D(z) are formed as C(z) = C0(z2) +
z−1C1(z2) and D(z) = D0(z2) + z−1D1(z2).

It then holds that C(z) and D(z) satisfy all the orthogonality
constraints mentioned above, as well as the relationship
described by the alternating flip construction. Conversely, for
all such C(z) and D(z) there exist parameters θ1, . . . , θn which
achieve this decomposition of the polyphase matrix H(z).

B. Vanishing moments

Apart from orthogonality, an important desirable property
for wavelets is to have vanishing moments. This requires C(z)
to have zeros at z = −1, thus exhibiting a corresponding
degree of flatness at the low and high frequencies (and
likewise for the high-pass filter D(z)).

To have one vanishing moment amounts to the condition
c0−c1+c2−c3+. . .+c2n−2−c2n−1 = 0 which is equivalent to the
commonly imposed condition that the integral of the mother
wavelet ψ(t) is equal to zero:

∫ ∞
−∞ ψ(t)dt = 0. In terms of

θ1, θ2, . . . , θn this is well known to translate into the condition
θ1 + θ2 + . . . + θn = π/4 mod 2π. This allows one to build a
vanishing moment into the filter bank by simply eliminating
one of the free variables.

The conditions corresponding to more vanishing moments
are not difficult to obtain in terms of the filter coefficients
c0, c1, . . . , c2n−1 by requiring also some derivatives of C(z)
to have a zero at z = −1. They amount to a set of linear
conditions in terms of these filter coefficients, but in terms
of the parameters θ1, θ2, . . . , θn the expressions attain a more
difficult form. We state here that the additional condition in
case of a second vanishing moment is given by: cos(2θn) +
cos(2θn−1 + 2θn) + . . . + cos(2θ2 + . . . + 2θn−1 + 2θn) + 1

2 = 0.

C. Computing φ(t) and ψ(t)

The scaling function φ(t) is obtained as the solution of
the dilation equation and ψ(t) then follows from the wavelet
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equation:

φ(t) =
√

2
N∑

k=0

ckφ(2t − k), (5)

ψ(t) =
√

2
N∑

k=0

(−1)kcN−kφ(2t − k). (6)

An iteration scheme which allows for the exact computation
of φ(t) at all the dyadic points up to an arbitrary resolution
can be found, for instance, in [6]. We have adopted this
method in this paper. It is important to note that it may
well happen that these functions exhibit a discontinuous and
fractal structure.

D. Two criteria for wavelet design

For denoising and compression and also for various detec-
tion purposes, it is attractive to measure the quality of a filter
bank and its underlying wavelet in terms of the way the given
signal is represented by the wavelet at various positions and
on various scales. For the orthogonal wavelet bases discussed
in this paper, this is conveniently described by the wavelet
coefficients (and the approximation coefficients) obtained at
the various scales by applying the filter bank.

At the finest level, the signal is represented by the time
series x = (x0, x1, x2, . . .) having the total energy (or variance)
E =

∑
k x2

k . At the first level, after application of the
filters C(z) and D(z) and down-sampling, two sequences
of coefficients are obtained: the approximation coefficients
a(1) = (a(1)

0 , a(1)
1 , a(1)

2 , . . .) and the detail coefficients d(1) =

(d(1)
0 , d(1)

1 , d(1)
2 , . . .). Because of orthogonality of the filter bank

the total energy is preserved: E =
∑

k(a(1)
k )2+

∑
k(d(1)

k )2. Then
at the second level, the filters C(z) and D(z) are applied
to the approximation sequence a(1) to produce the next
approximation sequence a(2) and the next detail sequence
d(2). Again, the total energy remains preserved, and this
process continues for as many levels as desired. See Fig. 2.

Since the wavelet coefficients d(s)
k (together with the ap-

proximation coefficients at the coarsest level) represent the
contribution to the representation of the signal x in terms
of the multi-resolution wavelet basis, it is natural to strive
for a filter bank which represents the signal x by means of
just a few large wavelet coefficients containing most of the
energy and many small wavelet coefficients containing only
little energy. The L2-norm is not able to achieve this because
of preservation of energy. A guiding principle proposed
here is to aim for maximization of the variance, either



maximization of the variance of the absolute values of the
wavelet coefficients, or maximization of the variance of the
squared wavelet coefficients i.e. of the energy distribution
over the wavelet contributions at the various scales.

Theorem 2.1: Let {wk |k = 0, 1, . . . ,m} be the sequence of
the wavelet coefficients at all the levels and the approxi-
mation coefficients at the coarsest level resulting from the
processing of a signal x = (x0, x1, x2, . . . , xm) by means of
an orthogonal filter bank. Then:
(a) Maximization of the variance of the sequence of absolute
values |wk | is equivalent to minimization of the L1-norm
V1 =

∑m
k=0 |wk |.

(b) Maximization of the variance of the sequence of energies
|wk |2 is equivalent to maximization of the L4-norm V4 =

(
∑m

k=0 |wk|4)1/4.
Proof. (a) The variance of the sequence of absolute values

|wk | is given by
∑

k |wk |2
m+1 −

(∑
k |wk |

m+1

)2
= E

m+1 −
(∑

k |wk |
m+1

)2
in which

E and m are constant. Hence maximization of this quantity
is equivalent to minimization of V1.
(b) The variance of the sequence of energies |wk |2 is given

by
∑

k |wk |4
m+1 −

(∑
k |wk |2
m+1

)2
=
∑

k |wk |4
m+1 −

(
E

m+1

)2
in which E and m are

constant. Hence maximization of this quantity is equivalent
to maximization of the L4-norm (

∑
k |wk |4)1/4. �

The criteria V1 and V4 have both been investigated in the
worked examples to design wavelets for various signals.
When all wavelet coefficients are taken into account and no
weighting is applied, both of these criteria tend to produce
similar results. However, when only a few scales are taken
into account (e.g. by weighting) the results may become quite
different: in case of minimization of the L1-norm, energy
tends to be placed in scales not taken into account, whereas
in case of maximization of the L4-norm this does not happen.

III. EXPERIMENTATION

A. Theoretical test

For the first test, as a proof of principle, random testsignals
of length 256 were generated. These signals had the property
that they are sparse in the wavelet domain. To construct them
a wavelet decomposition of a signal of length 256 is taken
and a few (1-3) random detail-coefficients are set to 1 and all
others to 0. Next the test signal is reconstructed in the time
domain with a wavelet filter based on random θ̄2 and θ̄3. The
corresponding parameter set {θ̄1, θ̄2, θ̄3} is likely to give the
most optimal representation of the test signal with respect
to the L1-norm. If one searches for the optimal {θ1, θ2, θ3},
it is therefore most likely that this will be {θ̄1, θ̄2, θ̄3}. In
experiments it was observed that this is indeed the case,
although the optimization may terminate in a local non-
global optimum. Next, additive white noise was added to
various test signals with a signal-to-noise ratio (snr) equal to
20 dB. Again the original {θ̄1, θ̄2, θ̄3} were well recovered.

B. Reference signal

As a practical example from biomedicine, a reference
signal was created by averaging heartbeats from an episode

Fig. 3. Reference signal
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Fig. 4. Local l1-minima for n = 3
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with ECG signals from Physionets MIT normal sinus rhythm
database [1]. This produced a smooth signal that was upsam-
pled to yield the signal displayed in Fig. 3. This signal is used
as a typical ECG signal such that the wavelet will be able
to capture the common essence of this type of signal. It was
used in all the examples below.

C. Local optima

When optimizing a wavelet for the reference signal with
respect to a certain norm, the optimization may terminate in
a local optimum. In order to gain insight in the existence
of these local optima, the situation with n = 3, and thus
with two degrees of freedom since θ1 + θ2 + θ3 = π/4,
was investigated for L1-minimization. θ2 and θ3 are set on a
megapixel grid in the range (− π2 , π2 ], as shown in Fig. 4. Some
of the local optima have been marked with red/green stars in
this figure. When considering some of the filter coefficients
corresponding to the local optima, the resemblance to the
Daubechies 2 (db2) filter coefficients is evident. Note that
to build the db2 wavelet 4 and not 6 filter coefficients are
required and that one degree of freedom is effectively unused
if n = 3. This observation gives a rationale for the use of
the db2 wavelet for cardiac signals. It was also observed that
some of the other filter coefficients resemble the Daubechies
3 wavelet, however with less success.



Fig. 5. Criterium value related to n
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Fig. 6. Wavelets with n = 8 optimized for the reference signal
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D. Choosing the number n

The filter size of the wavelet filter is determined by the
number n. A large n gives more freedom to fit the wavelet
to the signal but also increases the complexity. To determine
the effect of the choice of n on the criterium value that can
be achieved for each n = 1, . . . , 25, 1000 random starting
points were generated and the best criterium value in an L1-
sense was stored. See Fig. 5. The results indicate that n = 8
is a reasonable choice to work with, which was used in the
further experiments below.

E. Practical evaluation

Since the practical application in mind is the use of
wavelets in cardiac signal processing, a simple test case was
designed to investigate the potential of this approach. As a
test set episode 103 of the MIT-BIH arrythmia database [1]
was used. This is a 360 Hz annotated, freely available ECG
signal. Two wavelets were designed using n = 8: one by
minimizing the L1-norm of the wavelet transform of the
reference signal, and another one by maximizing its L4-
norm. The two resulting wavelet functions are illustrated
in Fig. 6. The wavelet function that was obtained with
L4-maximization has a fractal structure. Despite its fractal
nature, the effectiveness of the L4 optimized wavelet is high,
as is illustrated by the wavelet decomposition of the reference
signal in Fig. 7. A single strong wavelet coefficient marks
the location of largest correlation.

As an experimental setup the wavelet decomposition of the
testset with the three wavelets (L1, L4 and the popular db2)
was calculated, but only a single level (scale) was considered.
This level was selected for each wavelet individually to

Fig. 7. Wavelet decomposition of reference signal with L4-wavelet
wavelet coefficients
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TABLE I

E 

Wavelet: L1-wavelet L4-wavelet db2-wavelet
Level: 3 4 2
Threshold: 35 135 39
True positives: 1682/1688 1688/1688 1687/1688
False positives: 28 3 17

maximize performance. Next a binary vector was constructed
of all the wavelet coefficients of which the absolute value
exceeded a certain threshold. These locations were then
related to locations of the original signal.

The beat annotations in the testset were used as a reference
to locate the QRS-complex. There are 1688 normal QRS-
complexes in the testset. If the binary vector corresponding to
the wavelet transform has detected a peak within 20 samples
(56ms) of the marker, it is assumed that the QRS-complex
is detected. If a peak is detected but no marker is within
20 samples, a false detection is assumed. The results of
this experiment are illustrated in Table I. This table shows
that the performance of the db2 wavelet is quite good. The
L4-optimized wavelet however shows superior performance.
Furthermore the L4-wavelet is more robust with respect to the
choice of threshold value, which may be a large advantage
in practical applications.
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[5] Ivo Provaznı́k and Jiřı́ Kozumplı́k. Wavelet transform in electrocardiog-
raphy - data compression. International Journal of Medical Informatics,
45(1-2):111–128, June 1997.

[6] Gilbert Strang and Truong Nguyen. Wavelets and Filter Banks.
Wellesley-Cambridge Press, 1996.

[7] M.P. Wachowiak, G.S. Rash, P.M. Quesada, and A.H. Desoky. Wavelet-
based noise removal for biomechanical signals: a comparative study.
IEEE Trans. Biomed. Eng., 47(3):360–368, March 2000.


