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Abstract—In this paper, three single-stage stochastic programs
are proposed and compared for optimal dispatch by a System
Operator (SO) into balancing markets (BM). The motivation for
the models is to represent a possible requirement to undertake
system balancing with increasing amounts of intermittent re-
newable generation. The proposed optimization models are re-
formulated as tractable Mixed Integer Linear Programs (MILPs)
and these consider both fuel cost and intermittency cost of the
generators, when the SO activates the up- or down-regulation
bids. These three models are based on the main approaches
seen in practice: dual-imbalance pricing, single imbalance pricing
and single imbalance pricing with spot reversion. A scenario-
generation algorithm based on predictive conditional dynamic
density distributions is also proposed. We perform a comparative
analysis of these three proposed models in terms of how they help
the SO to optimize their balancing market actions considering
intermittent-renewable generators. The single imbalance pricing
is found to be the most market efficient.

Index Terms—Balancing market, Imbalance settlement cost
(ISC), Stochastic program, GAMLSS

NOMENCLATURE
The main notation is presented below for a quick reference.
Additional symbols are introduced throughout the text.
Indices
i generating unit
ω scenarios of power generation

Parameters
gmi,ω metered output of generator i in scenario w
gsi scheduled output of generator i
gupi up-regulation quantity bid of generator i
gdni down-regulation quantity bid of generator i
λupi up-regulation price bid of generator i
λdni down-regulation price bid of generator i
SIL System Imbalance Level
β CVaR parameter (specified probability level)
πω Probability weight of scenario ω
G Total number of generators
λspot Spot price
µ Mean of metered output of generators
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σ Standard deviation of metered output of generators
windt Wind generation in MWh at time t
demt Demand in MWh at time t
hydt Hydropower in MWh at time t
Ξ Big-M parameter
ε Constant used in linearizing ’If’ condition

Variables
φupi Binary variable for up-regulation bid of generator i
φdni Binary variable for down-regulation bid of generator i
φ Binary variable for system up-regulation status
φ Binary variable for system down-regulation status
λdnreg Down-regulation price
λupreg Up-regulation price
δmi,ω Imbalance quantity of generator i in scenario w
αβ Surplus generation for a given probability value β
αβ Unmet level of demand for a given probability value β
∆ω Net deviation in scenario ω
∆−ω Net negative deviation in scenario ω
∆+
ω Net positive deviation in scenario ω

b−ω Binary variable to linearize ∆−ω
b+ω Binary variable to linearize ∆+

ω

Variables used in DIP model for Big-M linearization
I+
i,w Bilinear variable for positive deviation and

down-regulation
I−i,w Bilinear variable for negative deviation and

up-regulation
sω Non-linear term for E(ISC) due to negative deviation
cω Non-linear term for E(ISC) due to positive deviation
Iupi,w Non-linear variable equal to product of sω and φupi
Idni,w Non-linear variable equal to product of cω and φdni
zdnω Variable to linearize the product of φdni and cω
zupω Variable to linearize the product of φupi and sω
u−ω Non-linear variable for linearizing CVaR constraint for

unmet demand
u+
ω Non-linear variable for linearizing CVaR constraint for

surplus generation
b1ω Binary variable to linearize Max operator for surplus

generation
b2ω Binary variable to linearize Max operator for unmet

demand

Variables used in SIP-SR model for Big-M linearization
Nup
i,ω Bilinear variable equal to product of φupi and ∆−ω

Ndn
i,ω Bilinear variable equal to product of φdni and ∆+

ω

cupω Bilinear variable related to up-regulation cost
cdnω Bilinear variable related to down-regulation cost
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qiω Binary variable to identify marginal down-regulating
generator

riω Binary variable to identify marginal up-regulating
generator

φ Binary variable to indicate equal activated volumes for
up- and down-regulation

kupi Non-linear variable equal to product of φupi and φ
kdni Non-linear variable equal to product of φdni and φ
h+ Bilinear variable equal to product of ∆+

ω and φ
h− Bilinear variable equal to product of ∆−ω and φ
tupω Bilinear variable equal to product of ∆+

ω and φ
tdnω Bilinear variable equal to product of ∆−ω and φ

Set
Ω Set of decision variables

Operators
I(condition) “If” operator
E(expression) “Expectation” operator.

I. INTRODUCTION

IN electricity markets, renewable generation has been
increasing substantially following decreasing technology

costs and supportive government policies [1]. In the European
Union, the share of renewable generation has increased by
64% from 2007 to 2017 [2]. Reference [3] reports 25 TWh
production from renewable generation in the third quarter
of 2018 in UK (a 10% increase year-on-year). A similarly
increasing pattern is reported for the US electricity system [4].
This increasing share of renewable generation brings major
environmental benefits but it also introduces new operational
challenges. Although renewable generation has low marginal
costs and is CO2 free, it is highly variable and intermittent
[5]. This feature implies a need for more real-time balancing
services by the system operator (SO). Authors in [6] and [7]
discuss the balancing task of the SO in an electricity system
with high penetration of intermittent-renewable generation.
They suggest that at some point the intermittent-renewable
generators will have to actively participate in the balancing
market (BM) and be part of the solution as well as the
cause. On the legislation side, the European Union direc-
tive 2003/54/EC enforces the non-discriminatory and market-
based provision of balancing services [8]. This encourages
intermittent-renewable generators to provide balancing ser-
vices in the BM (see for example [9] for Britain and [10]
for Nordic countries).
Accordingly, authors in [11] propose different models for the
SO to facilitate the active participation of wind generators in
the balancing markets. In [12], a Lyapunov optimization based
real-time strategy has been proposed in order to minimize the
imbalance costs for a virtual power plant. This formulation
does not need the specification of the probability distributions
of the renewable power generation. In [13], a combined energy
and reserve market model has been proposed to increase the
wind producers’ revenue by allowing them to optimally bid
in both markets and help them reduce their imbalance costs.
A mathematical model to maximize the overall profit of a
portfolio of a wind farm and a combined heat and power by
minimizing their imbalances in a two-price balancing market

has been proposed in [14]. A bidding strategy to minimize
the imbalance costs for wind power producers is described
in [15] where forecast errors in wind power are represented
as stochastic processes. But the risk associated with wind
power forecast errors is not accounted for in this model.
Reference [16] discusses the lack of economic incentives
for the wind power producers in Portugal to minimize their
imbalances as the wind imbalance costs are socialised. In
[17], a method to choose the generation adjustments and the
volumes of elastic demand that match the imbalances in the net
inelastic demand (inelastic demand minus RES production),
with respect to the day-ahead scheduling, has been proposed.
In [18], the link between the power system cost due to wind
power imbalances and the imbalance settlement payments to
wind power producers is investigated. They draw a comparison
between the one and two-price settlement systems.

TABLE I
OVERVIEW OF LITERATURE IN RELATED AREAS

Ref. BMC Imbal. pricing Role of Prob. Stoch. Prob.
+ISC SO constr. gen. scen.

Single Dual in BM gen.
[6] 7 7 7 7 7 7 7
[11] 7 X X 7 7 7 7
[15] 7 X 7 7 7 X 7
[19] 7 X 7 7 X X 7
[20] 7 7 7 X 7 7 7
[21] 7 7 7 X 7 7 7
[22] 7 7 7 X 7 7 7
[23] 7 X X 7 7 X 7
[24] 7 X 7 7 7 7 7
[25] 7 7 X 7 7 7 X
[26] 7 X 7 7 7 7 7

Our X X X X X X X
paper

Table I summarizes an overview of the published research
on the various aspects of specifications. The first column in
Table I, ‘BMC+ISC’ refers to the approach of considering
both balancing market cost and imbalance settlement cost
to take the balancing market decisions. The second column,
‘Imbal. pricing (Single and Dual)’, mentions the imbalance
pricing schemes. While some of the literature is limited
to the producers’/consumers’ perspectives of minimizing the
imbalance settlement costs, the third column, ‘Role of SO in
BM’, aims to highlight which papers have discussed about
the involvement of the SO in the balancing market. ‘Prob.
const.’ (Probabilistic constraint) emphasizes the approach for
considering the uncertainty in the system, which in our case
is a CVaR (Conditional Value at Risk) constraint. The fifth
column, ‘Stoch. gen.’ (Stochastic generation), highlights those
papers that have considered stochastic generation in their
work. ‘Prob. scen. gen.’ (Probabilistic scenario generation)
tries to show if the method chosen for generating scenarios
is probabilistic or not.
The above research generally, but implicitly, recognizes the
role of the imbalance settlement cost (ISC) influencing the
active participation of the intermittent-renewable generators
in the BM. This point is further explained in [6] and
[20]. Accordingly, proper modeling of the ISC in the SO
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optimal-dispatch can ensure the efficient participation of the
intermittent-renewable generators in the balancing market and
maybe incentivize the intermittent-renewable generators to
adapt technologies to reduce their ISC exposure (eg. hybrid
facilities with battery-storage devices) or to hedge more effec-
tively (eg. with weather derivatives). Furthermore, in principle,
the SO as a regulated entity would be expected to perform a
welfare maximizing approach to system balancing, and thus
include all relevant costs to participants, including ISCs, but in
practice this is not yet widespread. Hence this is the motivation
for this paper.

II. BACKGROUND

In this section, we present a brief description of a few
electricity markets to explain their basic functioning:
• Nordic electricity market: At the day-ahead (DA) stage,

all the producers and consumers willing to participate
in the DA market submit their bidding curves to the
electricity market operator. Then the market operator
clears the DA market based on uniform price auction and
defines the DA price, all the producers and consumers
below that price are cleared in the DA auction. Based
on the updated forecasts, these producers and consumers
can adjust their position in the market by trading in
the intraday market. At the gate closure (60 minutes
before actual delivery of electricity), the position becomes
binding and cannot be changed further. However, at the
time of actual delivery of electricity, these producers
and consumers deviate from their scheduled value. It
is then the responsibility of the SO to activate bids in
the balancing market to match the supply and demand
of electricity. According to the existing method, there
is a merit-order dispatch (marginal cost pricing (MCP)
auction) performed by the SO, in the balancing market
1, to decide which producer or consumer needs to be
called upon, based on their marginal cost of production
or marginal utility of consumption. In the imbalance set-
tlement stage, the SO calculates the imbalance settlement
cost for each producer or consumer who participated in
the market based on their deviation from the committed
value and the direction of the system imbalance [29].

• Great Britain (GB): In GB electricity market, there is
continuous trading up until the gate closure, which hap-
pens one hour before the actual delivery of electricity, and
that is when all generators and retailers must nominate
to the SO what they expect to generate or consume in
the delivery period. But the participants are allowed to
trade even after the gate closure for a further hour until
the beginning of the actual delivery period. The delivery
period length (also known as Settlement Period (SP)) is
30 minutes. It is the responsibility of the SO to ensure 50
Hz frequency, by activating bids and offers continuously

1Here we refer to the m-FRR (manual Frequency Restoration Reserve)
of the balancing market. This is the main balancing resource in the Nordic
market apart from this the other reserves are FCR-N (Frequency Containment
Reserve-Normal), FCR-D (Frequency Containment Reserves-Disturbance)
and a-FRR (automatic Frequency Restoration Reserve). For more information
check [27], [28].

in every SP2. For each SP, a single imbalance price (SIP)
is calculated. Based on whether the offer volumes exceed
the bid volumes or vice versa, the NIV (Net Imbalance
Volume) can be either positive or negative. The marginal
price for 1 MW of the NIV gives the SIP [19], [31].

• PJM 3: PJM compiles the bids in ascending price or-
der and auction is performed to clear the bids until
the point of intersection of the supply-demand curve.
This sets the DA price for a particular hour for the
delivery of electricity on the next day. Real-time market
is another market that serves electricity for immediate
delivery. Supply and demand curves are paired and based
on the intersection point (MCP auction), the prices are
calculated every five minutes. Based on the situation of
fluctuations in the system, PJM informs the producers
what their output should be. But if they deviate from
PJM’s instructions, they are penalized. If they follow
the instructions of PJM, they are compensated for that.
Another important market in PJM is the ancillary ser-
vices market, which comprises of regulation and reserves
market. The regulation market is in place to correct
the small fluctuations in the electricity supply/demand
that can affect the stability of power system. It allows
to compensate those producers/consumers that have the
ability to adjust their production/consumption as per the
requirement in the system [33].

III. CONTRIBUTIONS

This paper contributes to the relevant research in this context
in several ways:
• Our paper proposes a mechanism for the SO to dispatch

generators to activate their up- and down-regulation bids
on the basis of having lowest expected costs, taking into
account both their production costs and potential devi-
ations from nominated outputs. We propose a stochastic
framework for clearing the real time balancing market by
the SO.

• In our formulation, we introduce a CVaR constraint,
which allows surplus generation or unmet demand, with
an appropriate small probability. This produces useful
and computationally tractable solutions under supply side
uncertainty, where hard constraints with no surplus gen-
eration or unmet demand might lead to infeasibility.

• The proposed method has been mathematically applied
to compare three imbalance pricing models namely Dual
Imbalance Pricing (DIP), Single Imbalance Pricing with
Spot Reversion (SIP-SR) and Single Imbalance Pricing
(SIP) models.

• The three proposed models have been tested on a stylised
five-generator system and a more realistic eight-generator

2Short term operating reserve (STOR) provides the grid in GB with
additional power when actual demand in the network is greater than the
forecast and/or there is unforeseen generation unavailability [30].

3PJM: Pennsylvania-Jersey-Maryland, which is the regional transmission
organiziation that is responsible for coordinating the wholesale electricity
market in some or all parts of Indiana, Delaware, Virginia, West Virginia,
Maryland, Illinois, Pennsylvania, Michigan, Kentucky, North Carolina, Ten-
nessee, New Jersey, Ohio, and the District of Columbia [32].



5

gate closure actual delivery 

time
gi
m

gi
s

Balancing 

market 

imbalance

settlement

gi
r

gi
r

gi
s

post delivery 

Fig. 1. The proposed balancing market operation (Dotted line represents
uncertainty)

system. In the case of eight-generator system, the un-
certain parameters in the stochastic MILP models were
estimated and predicted using a state-of-the art algorithm,
the Generalized Additive Models for Location, Scale
and Shape (GAMLSS). We demonstrate the performance
of our proposed MILP models and the GAMLSS-based
uncertainty-modeling algorithm with realistic numerical
studies.

The rest of the paper is structured as follows. Section IV
develops the optimal-dispatch model for the SO. Section V
presents the GAMLSS-based forecasting model for generation
imbalances. An illustrative example is provided in Section VI.
Numerical results based on variations of a Nordic case study
is provided in Section VII. Finally, Section VIII concludes the
paper.

IV. MATHEMATICAL FORMULATION

We assume three stages in our analysis. At gate closure the
scheduled generations (gsi ) are reported to the SO. Then the
SO receives up-regulation offers from generators for increasing
output and down-regulation bids for reducing output, (gri ).
If called, generators receive payments for their generation,
or pay for their reduced generation. The SO also forecasts
system demand in real time and estimates the imbalance
settlement charges. Since the metered output of generators
(gmi ) are available only at the imbalance settlement stage, they
are uncertain parameters in balancing-market optimal dispatch
model. These stages are illustrated in Fig. 1. We now consider
three variations in the formation of imbalance charges.

A. Dual Imbalance Pricing (DIP)

The DIP mechanism uses two imbalance prices, often called
system buy price (SBP) and system sell price (SSP) [34].
The SBP is the average price at which the system has to buy
electricity during a balancing period and the SSP reflects the
average price at which the system has to sell electricity in order
to dispose of surplus energy. Participants will then pay SBP or
receive SSP depending upon whether their imbalance volumes
were short or long. This mechanism has been favoured by reg-
ulators who want to deter speculation. It was the mechanism
introduced in Great Britain in 2001 (although it has since been
changed), also in France, Spain, Italy and elsewhere. At gate
closure, let λupi , λdni , gupi and gdni represent bid prices and
volumes for generator i participating in the balancing market.
For notational simplicity, we assume that each generator
submits only one bid pair. Let φupi (respectively, φdni ) be
binary variables which take values 1 or 0 depending whether
the bid (respectively, offer) from generator i is accepted or
not.
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Fig. 2. (a) Time series for scheduled generation and depiction of imbalance
at a specific time (b) Illustration of δmi

1) Objective function of proposed optimal-dispatch model:
The proposed objective function for the SO optimal-dispatch
model is given by (1), where BSC stands for Balance Settle-
ment Cost:

BSC =
∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) + (1a)

max(
∑
i

δmi , 0)

∑
i λ

dn
i gdni φdni∑
i g
dn
i φdni

I(
∑
i

φdni ≥ 1) + (1b)

min(
∑
i

δmi , 0)

∑
i λ

up
i g

up
i φupi∑

i g
up
i φupi

I(
∑
i

φupi ≥ 1) (1c)

In (1), both gupi and gdni are assumed to be positive. gmi is the
metered output of generator i and is considered to be a random
parameter with known means and known continuous joint
distribution. gsi is the scheduled power dispatch of generator i.
The δmi = gmi − (gsi +gupi φupi −gdni φdni ) models the deviation
for generator i. The SO objective function in (1) can be split
into two parts, (1a) is the Balancing Market Cost (BMC) while
(1b) and (1c) represent the positive and negative Imbalance
Settlement Cost (ISC), respectively. Observe that whilst ISCs
are the charges incurred by the generators, they are also the
recourse costs incurred by the SO in balancing, because of the
non-firm regulating dispatch.
2) Constraints of proposed optimal-dispatch model: Let
f(φ, gm) =

∑
i δ
m
i =

∑
i(g

m
i − (gsi + gupi φupi − gdni φdni ))

be the deviation function, where φ and gm are vector valued
variables corresponding to φi and gmi . Fig. 2a depicts the
time series for total scheduled generation and the mean of
the total metered generation. The blue color band highlights
the uncertainty in the total metered generation. At a given
time instant, the red colored line represents the total scheduled
generation at that time, orange colored line gives the regulation
volume, and green colored line shows the total imbalance
(deviation) at that time. Our paper discusses one such specific
time instant. In Fig. 2b, the probability density of the total
imbalance (deviation) is demonstrated, the details about which
are discussed further in this section. In our formulation, we
allow surplus generation (f(φ, gm) > 0) or unmet demand
(f(φ, gm) < 0) with an appropriate small probability. The
probability of f(φ, gm) not exceeding a given α is given by:

Ψ(φ, α) =

∫
f(φ,gm)≤α

p(gm)dgm (2)



6

where p(gm) is the joint distribution function of gm. Similarly,
the probability of −f not exceeding a given α (f exceeding
−α) is given by:

Ψ(φ, α) =

∫
−f(φ,gm)≤α

p(gm)dgm (3)

For a specified probability level β, let the surplus generation
be defined by:

αβ(φ) := min{α ∈ R+, Ψ(φ, α) ≥ β} (4)

and the unmet level of demand is defined by:

αβ(φ) := min{α ∈ R+, Ψ(φ, α) ≥ β} (5)

Thus, given a probability level β, the surplus generation does
not exceed ᾱ with probability β. In other words, ᾱ is one
endpoint of the non-empty interval of values α such that
Ψ̄(φ, α) = β. Similarly, unmet demand does not exceed α with
probability β. We then define the average surplus generation
if it already exceeds α as:

Lβ(φ) = (1− β)−1

∫
f(φ,gm)≥αβ(φ)

f(φ, gm)p(gm)dgm (6)

Similarly, we define the average unmet demand if it already
exceeds α as:

Lβ(φ) = (1− β)−1

∫
−f(φ,gm)≥αβ(φ)

f(φ, gm)p(gm)dgm

(7)
Note that the probability of f(φ, gm) exceeding α is 1 − β,
so that Lβ(φ) gives conditional expectation, i.e., the average
surplus generation, when it exceeds ᾱ. Similar comments hold
for Lβ(φ).
Lβ(φ) and Lβ(φ) can be incorporated into our optimization
model through appropriately relaxed versions of these func-
tions. These are defined as follows:

F β(φ, α) = α+ (1− β)−1

∫
gm

(f(φ, gm)− α)+dg
m

F β(φ, α) = α+ (1− β)−1

∫
gm

(−f(φ, gm)− α)+dg
m

where (x)+ = max(x, 0). Then F β(φ, α) (respectively
F β(φ, α)) is convex and continuously differentiable in α

(respectively α). Further, Lβ(φ) = minα∈R F β(φ, α) and
a similar result holds for Lβ(φ) [35]. Now, if we generate
samples of gm, we can write an approximation to F β(φ, α)
as:

Fβ(φ, α) = α+
1

N(1− β)

∑
j

(f(φ, vec(gmi,ω))− α)+ (9)

where vec(xi) represents a vector with xi as its ith element,
with its dimension determined by the context. Fβ(φ, α) is
defined similarly. For a given System Imbalance Level (SIL),
Fβ(φ, α) ≤ SIL and Fβ(φ, α) ≤ SIL can be written as in
(10).

α+
1

N(1− β)
(f(φ, vec(gmi,ω))− α)+ ≤ SIL (10a)

α+
1

N(1− β)
(−f(φ, vec(gmi,ω))− α)+ ≤ SIL (10b)

where in (10), SIL in MWh is a behavioural parameter to
reflect SO aversion to large real-time imbalances. It represents
the total imbalance in the system tolerated by the SO and risk
constraints (2) represent the probabilistic tolerance of this large
imbalance.
3) The proposed optimal-dispatch model: As we consider the
measured generation gmi,ω to be an uncertain parameter, it can
be modeled using a set of scenarios. We assume that scenarios
of gi,ω (ω = 1, 2, · · · ,N ) are available, along with the associ-
ated probability weights πω . The discussion of how to generate
scenarios is explained in Section V. Explicit modeling of the
ISC in the optimization model (12) exposes the intermittent-
renewable generators participating in the balancing market to
their imbalance penalties (because of the deviation from their
nominated outputs). The deviation δmi,ω depends on the stochas-
tic measured generation gmi,ω and the expression of deviation
can be given as: δmi,ω = gmi,ω − (gsi + gupi φupi − gdni φdni ). This
term of δmi,ω when introduced in (1b) and (1c) motivates us to
take the expected value of the expression in (1b) and (1c) due
to the stochasticity. Therefore, the expression of BSC becomes
(11):

BSC =
∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) + (11a)

E(max(
∑
i

δmi,ω, 0)

∑
i λ

dn
i gdni φdni∑
i g
dn
i φdni

I(
∑
i

φdni ≥ 1)) + (11b)

E(min(
∑
i

δmi,ω, 0)

∑
i λ

up
i g

up
i φupi∑

i g
up
i φupi

I(
∑
i

φupi ≥ 1)) (11c)

Here it can be observed that (11b) and (11c) together comprise
the expected value of ISC.
Hence, the proposed optimization model for SO considering
both BMC and ISC can be presented as in (12).

Minimize
Ω1={φupi ,φdni ,α,α}

BSC = BMC + E(ISC)

subject to: (10), {φupi , φ
dn
i } ∈ {0, 1}, α, α ∈ R,∀ i (12)

4) The MILP formulation of the proposed optimal-dispatch
model: We now present a MILP model of the deterministic
equivalent problem for (12). The total deviation in a scenario
w can be given as ∆ω =

∑
i δ
m
i,ω where δmi,ω = gmi,ω − (gsi +

gupi φupi − gdni φdni ). The ∆+
ω = Max(∆ω ,0) can be linearized

as shown in (13).

0 ≤ ∆+
ω ≤ b+ωΞ(1) (13a)

∆ω ≤ ∆+
ω ≤ ∆ω + (1− b+ω )Ξ(1) (13b)

where Ξ(1) is a suitable large constant. The ∆−ω = Max(-∆ω ,0)
can be linearized similarly as in (13). Referring to the positive
deviation part of (11), we denote cω =

∑
i λ
dn
i gdni φdni ∆+

ω∑
i g
dn
i φdni

which
can be written as (14):

cω
∑
i

gdni φdni =
∑
i

λdni gdni φdni ∆+
ω (14)

Using change of variable Idni,w = cωφ
dn
i in (14), the non-linear

term can be linearized by implementing (15):

0 ≤ Idni,w ≤ φdni Ξ(2) (15a)

cω − (1− φdni )Ξ(2) ≤ Idni,w ≤ cω (15b)
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where Ξ(2) is a suitably large constant. Also, substituting
I+
i,w = φdni ∆+

ω in (14), it can be linearized as in (15). The
linearized form of (14), after implementing the change of
variable, can be written as in (16):∑

i

gdni Idni,w =
∑
i

λdni gdni I+
i,w (16)

Consider the negative deviation part of (1), we define sω =∑
i λ
up
i gupi φupi ∆−

ω∑
i g
up
i φupi

which means:

sω
∑
i

gupi φupi =
∑
i

λupi g
up
i φupi ∆−ω (17)

By implementing the substitutions, Iupi,w = sωφ
up
i and

I−i,w = φupi ∆−ω , the linearized form of (17) can be written
as

∑
i g
up
i Iupi,w =

∑
i λ

up
i g

up
i I−i,w by following the similar

equations as in (15). The If condition in (1b) is written as
linear constraints

∑
i φ

dn
i ≥ 1 − Ξ(3)(1 − φ) and

∑
i φ

dn
i ≤

1 + Ξ(3)(φ). A similar linearization can be adopted for (1c)
and replaced with φ. Then the objective function becomes:

Minimize
Ω2

∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) +∑

ω

πω(φcω − φsω)
(18)

where Ω2 = Ω1 ∪ {φ, φ, b+ω , b−ω , cω, sω,∆+
ω ,∆

−
ω , I

dn
i,w, I

up
i,w,

I−i,w, I
+
i,w}. If we use zdnω = φcω and zupω = φsω , then the

nonlinear expressions (φcω and φsω) can be linearized as in
(15). The probabilistic constraint can be written as:

α+
1

(1− β)

N∑
ω

πωu
+
ω ≤ SIL (19)

where u+
ω = Max(∆+

ω − α, 0). Also,

α+
1

(1− β)

N∑
ω

πωu
−
ω ≤ SIL (20)

where u−ω = Max(∆−ω − α, 0).
Linearization of Max(·) operator is possible in similar way
as in (13). Accordingly, the optimization problem (12) can be
re-formulated as the stochastic mixed-integer linear program
(MILP) in (21):
Minimize

ΩA

∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) +

∑
ω

πω(zdnω − zupω )

(21a)
subject to : (13), (15), (16), (19), (20) (21b)

{φ, φ, φupi , φ
dn
i , b+ω , b

−
ω } ∈ {0, 1} ∀ i, ω (21c)

where ΩA = Ω2 ∪ {zupω , zdnω , u+
ω , u

−
ω } is the set of decision

variables in (21).

B. Benchmark model for the DIP model

An illustration of the benchmark model for the DIP model is
given in Fig. 3. In the benchmark model, the decision of the SO
to activate up- or down-regulation bids is taken solely based
on the marginal cost of the generators. This is achieved by
minimizing expression (11a). The output of the optimization
problem would then give the values for φupi and φdni . These

Add BMC and ISC to get 

BSC

Minimize (11a)

Calculate (11b) and (11c)ISC

Regulation 

bid status

BMC

ISC

BSC

Fig. 3. Illustration of Benchmark model for the DIP model

values serve as inputs to the calculation of (11b) and (11c),
which collectively give the value for ISC. The optimized value
for BMC and the calculated value of ISC can be added together
to find the BSC.

C. Single Imbalance Pricing with Spot Reversion (SIP-SR)
Model

The SIP-SR mechanism differs in two respects from above.
It is based on marginal rather than average pricing, i.e. the
imbalance price is set according to the most expensive gener-
ator that is cleared during up-regulation hour, or the cheapest
generator cleared during down-regulation hour. Further, as
shown in Table II, if the deviations contribute to the system
imbalance then the balance provider is charged according
to the regulation price. However, if the deviations help to
maintain the system in balance then it should not be penalized
and accordingly the spot market price is applied [29]. This is
the current Nordic model.

TABLE II
PRICES IN BALANCING MARKET FOR SIP-SR MODEL

Up-regulation hour Down-regulation hour
∆−

ω p=λupreg p=λspot

∆+
ω p=λspot p=λdnreg

The objective function of SIP-SR optimal dispatch model can
be written as:

Minimize
Ω3

∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) + (22a)∑

ω

πω[∆+
ωλ

spotI(
∑
i

φupi g
up
i >

∑
i

φdni gdni )+ (22b)

∆+
ωλ

spotI(
∑
i

φupi g
up
i =

∑
i

φdni gdni )+ (22c)

∆+
ωλ

dn
regI(

∑
i

φupi g
up
i <

∑
i

φdni gdni )− (22d)

∆−ωλ
up
regI(

∑
i

φupi g
up
i >

∑
i

φdni gdni )− (22e)

∆−ωλ
spotI(

∑
i

φupi g
up
i <

∑
i

φdni gdni )− (22f)

∆−ωλ
spotI(

∑
i

φupi g
up
i =

∑
i

φdni gdni )] (22g)

Ω3 = {φupi , φdni , λdnreg, λ
up
reg,∆

+
ω ,∆

−
ω } where λdnreg =

Min(λdni φdni ) and λupreg = Max(λupi φ
up
i ). Hence, the objective

function (22) becomes:
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Minimize
Ω3

(
∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) +∑

ω

πω[∆+
ωλ

spotI(
∑
i

φupi g
up
i >

∑
i

φdni gdni )+

∆+
ωλ

spotI(
∑
i

φupi g
up
i =

∑
i

φdni gdni )+

Min(λdni φdni ∆+
ω )−Max(λupi φ

up
i ∆−ω )

−∆−ωλ
spotI(

∑
i

φupi g
up
i <

∑
i

φdni gdni )−

∆−ωλ
spotI(

∑
i

φupi g
up
i =

∑
i

φdni gdni )])

(23)

If Ndn
i,ω = φdni ∆+

ω and Nup
i,ω = φupi ∆−ω , the non-linearity in-

troduced (bilinear term φdni ∆+
ω and φupi ∆−ω ) can be linearized

in the same way as (15). The expression cdnω = Min(λdni Ndn
i,ω)

is linearized in (24) (the term cupω = Max(λupi N
up
i,ω) can be

linearized in the same way as shown in the Appendix):

− qiωΞ(5) ≤ cdnω − λdni Ndn
i,ω ≤ qiωΞ(5) (24a)∑

i

qiω = G − 1 (24b)

where G is the total number of generators in the electric-
ity market and qiω is a binary variable. The If condition,
I(
∑
i φ

up
i g

up
i >

∑
i φ

dn
i gdni ) in (23) is replaced by binary

variable φ where:

∑
i

φupi g
up
i ≥

∑
i

φdni gdni − Ξ(6)(1− φ) + ε (25a)∑
i

φupi g
up
i ≤

∑
i

φdni gdni + Ξ(6)φ− ε (25b)

where ε is a non-zero number. The If condition,
I(
∑
i φ

up
i g

up
i <

∑
i φ

dn
i gdni ) in (23) can be linearized the

same way as in (38) using binary variable φ. The If condition,
I(
∑
i φ

up
i g

up
i =

∑
i φ

dn
i gdni ) in (23) is linearized by replacing

it by binary variable φ and rewriting the If condition as∑
i k
up
i gupi =

∑
i k
dn
i gdni where kupi (= φφupi ) is linearized

using φ+φupi −1 ≤ kupi ≤ φ and kupi ≤ φ
up
i . The kdni = φφdni

can be linearized in the same way as kupi . The objective
function can now be written as:

Minimize
Ω4

∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) +

∑
ω

πω[∆+
ωλ

spotφ

+∆+
ωλ

spotφ+ cdnω − cupω −∆−ωλ
spotφ−∆−ωλ

spotφ].
(26)

Ω4 = Ω3 ∪ {φ, φ, φ, b+ω , b−ω , Ndn
i,ω, N

up
i,ω, c

dn
ω , cupω , k

dn
i , kupi } If

we use tupω = ∆+
ωφ, h+ = ∆+

ωφ, tdnω = ∆−ωφ, and h− = ∆−ωφ
then the non-linear expressions can be linearized similar to
(15). Accordingly, the final stochastic MILP model is given in
(27).

Minimize
ΩB

∑
i

(λupi g
up
i φupi − λ

dn
i gdni φdni ) + (27a)∑

ω

πω[λspot(tupω + h+) + cdnω − cupω − λspot(tdnω + h−)]

subject to : (13), (19), (20), (24) (27b)

{φ, φ, φ, φupi , φ
dn
i , b+ω , b

−
ω } ∈ {0, 1} ∀ i, ω (27c)

Where ΩB = {Ω4 ∪ tupω , tdnω , h+, h−, u+
ω , α, u

−
ω , α} is the set

of decision variables in (27).

D. Benchmark model for the SIP-SR model

As explained in Subsection IV-B, the benchmark model for the
SIP-SR model works on the similar principle. Fig. 4 illustrates
the functioning of the benchmark model. The SO ignores the
deviations of the generators while choosing them for up- or
down-regulation. The decision of φupi and φdni is taken by
minimizing (22a), which gives the BMC. Based on the output
of the optimization problem, (22b), (22c), (22d), (22e), (22f),
and (22g) are calculated to find the ISC. Thus, BMC and ISC
are added together to get the BSC value for the benchmark
model.

Add BMC and ISC to get 

BSC

Minimize (22a)

Calculate (22b), (22c), (22d), 

(22e), (22f), and (22g)ISC

Regulation 

bid status

BMC

ISC

BSC

Fig. 4. Illustration of Benchmark model for the SIP-SR model

E. Single Imbalance Pricing (SIP) Model

The SIP model here, based on the imbalance pricing mecha-
nism introduced in Great Britain (GB) in 2015, is summarized
in Table III.

TABLE III
PRICES IN BALANCING MARKET FOR SIP MODEL

Up-regulation hour Down-regulation hour
∆−

ω p=λupreg p=λdnreg
∆+

ω p=λupreg p=λdnreg

The model is quite similar to SIP-SR in that the SO computes
the Net Imbalance Volume (NIV), i.e. the net amount of up-
and down- regulation called in the trading period, then, for
that net amount, it computes the marginal offer price or bid
price, but, in this case, without any reversions to the spot
price. The motivation is to make it easier to hedge imbalance
prices by market participants, especially vertically integrated
companies that may be out of balance in opposite directions
in their generation and retail accounts, and to go further than
SIP-SR by actually encouraging participants to help to balance
the system. Apart from GB, single imbalance pricing exists in
Belgium, Austria and Germany subject to various conditions.
In this section, we have presented the mathematical formu-
lation of our proposed concept applied to three imbalance
pricing models. We explain and discuss the dual imbalance
pricing (DIP) model, a benchmark model corresponding to the
DIP model, single imbalance pricing with spot reversion (SIP-
SR) model, a benchmark model for the SIP-SR model, and
the single imbalance pricing (SIP) model. Our concept of SO
clearing the balancing market by considering the imbalances
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TABLE IV
INPUT PARAMETER DATA FOR FIVE-GENERATOR SYSTEM IN ALL MODELS

gen λup λdn gup gdn gs

no. ($/MWh) ($/MWh) (MWh) (MWh) (MWh)
G1 10 8 30 20 400
G2 11 7 40 40 500
G3 12 6 25 15 350
G4 13 5 35 25 450
G5 14 4 45 35 550

of the generators has been applied to different imbalance
pricing models. A CVaR constraint has been introduced to the
optimization model in order to account for surplus generation
or unmet demand, with an appropriate small probability. The
resulting non-linear optimization models have been linearized
through Big-M method.

V. PROPOSED DYNAMIC DENSITY ESTIMATION AND
FORECASTING USING GAMLSS

To be implemented in practice, the above formulations re-
quire probabilistic forecasting of imbalances and we adopt a
Generalized Additive Model for Location, Scale and Shape
(GAMLSS) as effectively used in this context by [36]. In
GAMLSS, one of a variety of density functions can be
selected in which the mean and higher moments can be
specified dynamically as conditional upon exogenous driving
variables, [37]. In our proposed stochastic MILP models (21)
and (27), the metered generation is the uncertain variable
and the estimation flowchart is shown in Fig. 5. First, we
fit the best distribution to the uncertain metered generation
using the Akaike Information Criterion (AIC). The moments
of the selected distribution are linearly regressed on selected
explanatory variables (see Section VII for more details). With
forecasts for the explanatory variables, the moments of the
selected distribution are estimated. This distribution is then
approximated using a set of scenarios [38].

VI. ILLUSTRATIVE EXAMPLES

We assume five generators G1 to G5 participate in our
proposed balancing market to meet the system demand. Table
IV shows the values of input parameter for the five-generator
system in all the three proposed models. The simulations were
performed by setting the values of Ξ(1),Ξ(2),Ξ(3),Ξ(4),Ξ(5),
and Ξ(6) equal to 2000 in optimization models (21) and (27).
The generation of G1, G2, G3, G4, and G5 are distributed
according to normal distribution4 N(400, 0), N(500, 4), N(350,
8), N(450, 12) and N(550, 16), respectively. Using these nor-
mal distributions, 1000 scenarios are sampled and then reduced
to 10 scenarios presented in Fig. 6. The MILPs for all the
three proposed models are coded in GAMS and solved using
CPLEX solver [39]. Simulations are carried out on a computer
with 16 GB of RAM and 1.2GHz CPU. The computational
times for the DIP, SIP-SR and SIP models were 0.25 seconds,
1.69 seconds and 67.89 seconds, respectively. As observed,

4The notation N(µ, σ) represents the normal probability distribution
function (PDF) with mean µ and standard deviation σ.

Input data

Select explanatory and response variables

Check AIC 

If minimum

AIC?
No

Yes

Perform linear regression of the statistical moments

of selected PDF over explanatory variables

Approximate forecasted distribution [15]

Output scenarios

PDF  

estimation 

 using  

GAMLSS

Select distribution type j

j=j+1

Select generator i

If i=G (last

generator)?

Yes

i=i+1

No

Predict values of explanatory variables for generator i

Predict the moments for generator i

Predicted distribution of metered output of  generator i

PDF  

prediction 

Fig. 5. Estimation and forecasting the dynamic distribution of metered
generation gmi using GAMLSS

the computational time for the SIP model is the highest due
to the several binary variables introduced for the linearization
process 5. We can reduce the computational time in our MILP
models in two ways: first, we can employ decomposition
algorithms to break the MILP model into smaller and easier-
to-solve optimization problems [40], [41]. Second, we can use
scenario generation and reduction algorithm to reduce the size
of our MILP models [42], [43]. Using the reduced scenarios
with updated probabilities that can represent the entire data
set enables us to reduce the computational time significantly,
which is desirable for real-time dispatch decisions. We employ
the second approach in our paper and through a proposed
scenario generation and reduction algorithm, the number of
scenarios in our MILP models is reduced to 10 scenarios
with updated probabilities. We select generator G1 (the first
generator in the merit-order dispatch) as the (renewable-)
intermittent generator participating in the balancing market.
The standard deviation of output generation for G1 is changed
from σG1 = 0 MWh (firm output) to σG1 = 70 MWh
(intermittent output). As seen in Fig. 7, the BSC increases
with increasing output intermittency of G1 in SIP and SIP-SR

5It is not the primary focus of the paper to reduce the computation time.
However, it could be an interesting future work to look at possible ways to
reduce the computation time for the SIP model.
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=1
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=7

=8

=9

=10

gm=[400, 499.49, 350.76, 449.24, 547.92]; =0.118

gm=[400, 498.17, 350.45, 449.39, 566.56]; =0.094

gm=[400, 502.20, 350.96, 451.62, 532.03]; =0.134

gm=[400, 501.61, 350.76, 463.69, 551.32]; =0.117

gm=[400, 502.70, 352.01, 433.79, 552.65]; =0.089

gm=[400, 499.48, 345.06, 441.07, 539.84]; =0.111

gm=[400, 498.33, 357.13, 459.89, 574.46]; =0.074

gm=[400, 500.20, 346.21, 459.69, 539.39]; =0.102

gm=[400, 499.36, 350.87, 436.60, 570.01]; =0.072

gm=[400, 502.04, 341.53, 449.34, 555.52]; =0.089

Regulation

bid status

Imbalance in

each scenario

Stage 1

Fig. 6. Sample scenario tree for one-stage stochastic MILPs for all the three
models
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Fig. 7. Effect of varying standard deviation of G1 metered generation on
balancing and settlement cost (BSC) and minimum SIL for five-generator
system (BSC axis is scaled down by 10 for SIP model)

models. This indicates that these models do not prefer to stay
with the cheaper generator G1 as it becomes more intermittent.
Both SIP and SIP-SR use marginal cost pricing, and in this
case they provide strong signals on the cost of intermittency.
The DIP model however, being based on average pricing, is
not able to give this signal as the BSC reduces in its case with
the increase in intermittency of G1. This is one of the reasons
why the GB market moved from DIP to SIP model.
The effect of probabilistic constraint (10) is also shown in Fig.
7. The SO can satisfy the energy-balance constraint in 90%
of scenarios (β = 0.9) with lower SIL level when the σG1 is
low. However, when generator G1 becomes more intermittent
(higher σG1), the SO needs to tolerate higher SIL levels in
order to satisfy the probabilistic constraint (10) in 90% of
scenarios.

A. Comparison of the proposed optimal-dispatch models with
the benchmark models

In the benchmark model, the recourse costs incurred by the SO
decision in the BMC (term E(ISC) in optimization model (12))
are ignored. This benchmark optimal-dispatch model is solved
and the BMC is calculated. The ISC for each scenario is also
calculated and weighted average of the imbalance costs E(ISC)
is obtained. Results in Table V show the predictive nature of
our optimal-dispatch model. Under σG1 = 30 MWh, the
Bench-DIP model leads to BSC=226.6 $/h. This is while

TABLE V
COMPARISON OF BMC, ISC AND BSC (ALL VALUES ARE IN $/h) FOR

THE BENCHMARK (BENCH.) AND PROPOSED (PROP.) MODELS FOR
β = 0.9 AND SIL=125MWh AT DIFFERENT STANDARD DEVIATION (STD.

DEV.) OF G1

std. DIP SIP-
SR SIP

dev. Bench. Prop. Bench. Prop. Bench. Prop.
0 BMC -55 210 -55 230 -55 1365

ISC 216.2 -151.7 274.0 -1390.5 274.0 -2185
BSC 161.1 58.2 219.0 -160.5 219.0 -820

30 BMC -75 210 -75 930 -75 1035
ISC 301.6 -164 445.2 -1040.8 445.2 -1666
BSC 226.6 46 370.2 -110.8 370.2 -631

50 BMC -195 210 -195 600 -195 735
ISC 295.8 -206.7 338.8 -680.8 342.4 -1233
BSC 100.8 3.2 143.8 -80.8 147.4 -498

under our Prop-DIP model, the BSC cost is reduced to
46 $/h. Under benchmark model, the SO has a revenue of
BMC=75 $/h in the balancing market, however, the recourse
cost of its decision amounts to ISC=301.6 $/h. This is
while in our proposed optimal-dispatch model, the SO takes
into account the ISC in the BM decision making process.
The BMC is increased to 140 $/MWh at the benefit of
reduced ISC to 164 $/MWh revenue. Once we increase the
intermittency level of G1 (σG1 = 50 MWh), the same pattern
is observed. The benchmark optimal-dispatch model ignores
the ISC leading to 100.8 $/h for total system cost (BSC). But
in our proposed model, the BSC is reduced in order of five to
BSC=3.2 $/h at SIL=125 MWh. The comparative analysis
of prop-SIP-SR and prop-SIP models with their corresponding
benchmark models show similar pattern for the costs. For
our case studies, the Prop-SIP model has the lowest BSC as
compared to the Prop-DIP and Prop-SIP-SR models.

VII. NUMERICAL RESULTS

In this section, we assume eight generators6 participating in the
BM, where each generator represents one area in the Nordic
electricity market7. The metered generation of these generators
are taken from Nord Pool website [46].

A. Proposed GAMLSS-based scenario generation algorithm in
Fig. 5
To estimate and forecast, the dynamic distribution of metered
generations, the GAMLSS packages in R is used [47] and
this linearly regresses the parameters of the assumed distri-
bution on lagged values, wind generation, hydropower and
demand. Table VI gives the value of Akaike Information
Criterion (AIC) for different distributions for the data of G1

metered generation. The skew t distribution was found to
have minimum AIC. Similarly, the analysis was performed for
other generators in the system. Once the skew t distribution

6With eight generators it was easier to interpret the choice of generators
by the system operator (SO) for balancing market considering their intermit-
tency, which is reflected by the ISC. Therefore, the choice of five- and eight-
generator systems was for the ease of demonstration. As all our proposed
models have been linearized, decomposition methods can be implemented to
study a real system [38], [40], [41], [44], [45].

7Out of the eight generators, three of them are located in Sweden, one
in Denmark and four in Norway.
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TABLE VI
AIC VALUES FOR DIFFERENT DISTRIBUTIONS TESTED ON G1 METERED

GENERATION

Distribution Skew t Log Negative Normal Poisson
normal binomial

AIC values 4000 4894.05 4901.03 4925.47 23262.09

TABLE VII
INTERCEPTS AND COEFFICIENTS OBTAINED FROM GAMLSS FOR THE

GENERATORS G1 TO G4

α1 γ1 γ2 γ3 β1 β2 β3
G1 35.6 0.072 0.091 0.424 0.451 0.194 5.81
G2 661.1 0.057 0.061 0.338 0.551 0.468 11.58
G3 716.6 0.045 0.009 0.431 1.976 0.450 -33.05
G4 -774.8 0.115 0.052 0.380 0.273 0.828

is selected for G1 metered generation, different parameters
of this distribution (mean, standard deviation, skewness and
kurtosis) are linearly regressed on those explanatory variables
which were significant at 5%. The linear expression (28)
shows the regression of the mean value (µG1

t ) for G1 metered
generation over its explanatory variables. In (28), α1 indicates
the intercept of the response variable µG1 . The γ1, γ2 and γ3

are the coefficients of the lag values of µG1
t . The coefficients

corresponding to wind generation (windt), demand (demt)
and hydropower (hydt) are β1, β2 and β3, respectively.

µG1
t =α1 + γ1µ

G1
t−1 + γ2µ

G1
t−2 + γ3µ

G1
t−3 + β1wind

G1
t

+ β2dem
G1
t + β3hyd

G1
t (28)

Tables VII and VIII give the values of intercepts and coeffi-
cients for the mean value of metered generation as obtained
from GAMLSS. Table IX shows the values of mean (µ),
standard deviation (σ), skewness (ν) and kurtosis (τ ) of the
metered generation calculated by GAMLSS. These values are
used for scenario generation from the skew t distribution. Each

TABLE VIII
INTERCEPTS AND COEFFICIENTS OBTAINED FROM GAMLSS FOR THE

GENERATORS G5 TO G8

α1 γ1 γ2 γ3 γ4 β2 β3
G5 -21.5 0.003 0 -0.006 1.086 -0.034 -1.38
G6 687.7 0 0 -0.004 0.816 0.199 -7.83
G7 6287 -0.003 -0.015 -0.004 -0.981 0.5346 -39.13
G8 11090 0.003 -0.722 -0.254 -0.564 -2.341 41.35

TABLE IX
OBTAINED VALUES OF MEAN, STANDARD DEVIATION, SKEWNESS AND

KURTOSIS FOR THE GENERATORS FROM GAMLSS

µ(MWh) σ(MWh) ν τ
G1 1269.2 266.24 0.6082 5.6916
G2 2560.7 494.664 0.8782 144.459
G3 10988 236.78 -0.1696 3.309
G4 1488.8 209.22 0.6236 12.114
G5 1523.8 0 1.8538 8.6119
G6 6749.8 0.0433 -0.2543 0.072
G7 3214.1 0 0.8149 3.6506
G8 3562.2 0 1.3201 3.4879

TABLE X
INPUT PARAMETER DATA FOR EIGHT-GENERATOR SYSTEM IN DIP,

SIP-SR AND SIP MODELS

Gen λup λdn gup gdn gs

($/MWh) ($/MWh) (MWh) (MWh) (MWh)
G1 15 4 300 300 1404.9
G2 16 5 200 200 2700.2
G3 17 6 1100 1100 11405
G4 18 7 100 100 1604.7
G5 19 8 100 100 1523.8
G6 20 9 700 700 7122
G7 21 10 200 200 3214.1
G8 22 11 200 200 3562.2

TABLE XI
COMPARISON OF STATUS OF UP- AND DOWN-REGULATION BIDS FOR THE

EIGHT-GENERATOR SYSTEM

Gen G1 G2 G3 G4 G5 G6 G7 G8

DIP φup 1(0) 0(0) 0(0) 0(1) 0(0) 0(0) 0(0) 0(0)
Prop(Ben) φdn 0(1) 0(0) 0(0) 0(0) 0(1) 1(0) 0(1) 0(1)
SIP-SR φup 0(0) 1(0) 0(0) 0(1) 0(0) 0(0) 0(0) 0(0)
Prop(Ben) φdn 0(1) 0(0) 0(0) 1(0) 1(1) 0(0) 1(1) 1(1)
SIP φup 0(0) 0(0) 0(0) 0(1) 0(0) 0(0) 0(0) 0(0)
Prop(Ben) φdn 0(1) 0(0) 0(0) 0(0) 1(1) 0(0) 1(1) 1(1)

skew t distribution is sampled by 1000 scenarios which are
given as input to the fast forward selection reduction algorithm
[38]. As a result of the scenario reduction algorithm, ten
scenarios are obtained along with their updated probabilities,
which are then used in the proposed and benchmark models8.
The computational time for eight-generator system turned
out to be 0.11 seconds, 1.5 seconds and 840.41 seconds for
the DIP, SIP-SR and SIP models respectively. Again, the
computational time for the SIP model was the highest even for
this case study due to the several binary variables introduced
for the linearization process.

B. Proposed economic-dispatch models

Table XI shows the status of up- and down-regulation offers
and bids for the eight generators when the same input is given
to all the proposed and benchmark models. The minimum
SIL for DIP and SIP-SR was 603 MWh while for SIP it
was 435 MWh to satisfy the probabilistic energy-balance
constraint (10) at β = 0.9. It can be seen that some of the
generators up-regulate while none of them down-regulate for

TABLE XII
COMPARISON OF BSC, BMC AND ISC (ALL VALUES ARE IN $/h) FOR

THE BENCHMARK (BENCH.) AND PROPOSED (PROP.) MODELS (POSITIVE
VALUE INDICATES COST AND NEGATIVE VALUE IS REVENUE)

DIP model SIP-SR model SIP model
Bench. Prop. Bench. Prop. Bench. Prop.

BMC -4400 -1800 -4400 -2500 -4400 -4200
ISC 69.4 -3671.3 656.7 -3809.4 745.7 -3018.6
BSC -4330.5 -5471.3 -3743.2 -6309.4 -3654.2 -7218.6

8We use the same data for all the three dispatch models, since the
generator characteristics can be taken as representative across both the regions
(Nordic countries and Great Britain).
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the given set of inputs. As shown in Table X, G1 is the
most expensive for down-regulation and has a high standard
deviation (see Table IX), hence it was not chosen in any
of the proposed models due to its high intermittency level.
However, it was chosen by all benchmark models which ignore
the intermittency cost of G1. Table XII clearly shows the
predictive nature of our optimal-dispatch model. The Bench-
DIP model results in BSC=−4330.5 $/h while our Prop-
DIP model gives BSC=−5471.3 $/h. This indicates a higher
revenue in our Prop-DIP model as compared to the Bench-
DIP model. The results followed the trend as observed in the
Illustrative examples (see Table V). Even though the SO earns
a higher revenue (BMC=4400 $/h) in Bench-DIP model, the
recourse cost of its decision leads to ISC of 69.4 $/h. In our
Prop-DIP model however, the ISC=−3671.3 $/h. This results
in a net reduction in BSC by 1140.8 $/h in our Prop-DIP
model as compared to Bench-DIP model. This reduction in
BSC can be accounted to the fact that in our Prop-DIP model,
the objective function of the optimization problem comprises
of both the BMC and ISC (as given in equation (11)) that
are minimized. However, in the benchmark model, only the
BMC is minimized and the output for binary variables φdni
and φupi from minimizing BMC serves as inputs to (11b) and
(11c) respectively for finding out the ISC. This value of ISC
for the benchmark model turns out to be higher than that in
our proposed model as the intermittency of the generators do
not play any role in selecting the generators to be operated in
the balancing market. Another interesting point to explain the
large differences in the ISC values of Table XII as compared to
those in Table V would be that it has to do with the differences
in the input values of λup, λdn, gup, gdn and gs in the five-
and eight-generator systems. Table IV and Table X give the
values of the inputs considered for the λup, λdn, gup, gdn and
gs in our simulations for five- and eight-generator systems,
respectively. In order to obtain values for the scheduled output
of the generation, gs, we take average of the 10 values of
gmi,ω that were obtained from the proposed scenario generation
algorithm based on predictive conditional dynamic density
distributions. The study has been performed on real market
data acquired from the Nord Pool website to find the values
for gmi,ω . As the magnitudes of all these input values for the
eight-generator system in the Table X are larger as compared
to those assumed for the five-generator system in Table IV,
the results of the ISCs have larger differences in Table XII as
compared to those in Table V.
The reduction in BSC for the Prop-SIP-SR and Prop-SIP
models were 2566.2 $/h and 3564.4 $/h respectively as com-
pared to the corresponding benchmark models. A similar trend
of reduction in BSC in the proposed models of Numerical
examples has reaffirmed our observations from the Illustrative
examples. The less reduction in BSC for the Prop-DIP-model
can be accounted for in Table X. It can be seen that G1 was
chosen by the Prop-DIP model for up-regulation as it was the
cheapest for up-regulation but also more variable than G4,
which was chosen by the corresponding Bench-DIP model.

VIII. CONCLUSION

This paper proposes three stochastic optimization models
in order to enable the SO to dispatch into the balancing
market not just based on the marginal cost but also on the
intermittency of the generators. This capability will become
increasingly important as more intermittent and stochastic gen-
erators come on to the system and indeed wish to take part in
balancing actions. The three one-stage stochastic optimization
models are based on different imbalance pricing methods.
Out of the three proposed models, the single imbalance price
models are able to give a clear signal to the stochastic (cheaper
but more uncertain) generators to invest in technologies or
hedge efficiently if they want to be chosen in the balancing
market by the SO. For the same inputs to the MILP models,
SIP model gives more saving for the SO as compared to the
DIP model. Therefore, we observe why it was beneficial for
the GB electricity market to move from DIP model to SIP
model in 2015.

IX. FURTHER DISCUSSIONS AND FUTURE WORK

In Nordic market, the balancing market is a two-stage market.
In the first stage, the transmission constraints are ignored and
the dispatching is done only based on the energy imbalances,
then if the re-dispatch in the first stage is violating some
transmission constraints, in the second stage, the counter
trading will be performed [28]. The balancing market in GB
is explicitly designed to deal with energy imbalances and
any actions, which the system operator takes for locational
or voltage reasons are recorded separately and included in
the recovery of overall system costs by the SO. They are
not part of the balancing market [30]. Thus, from a practical
view-point while activating the bids in the balancing market,
transmission constraints are not considered in the first stage
of Nordic balancing market and GB electricity market. As our
paper primarily focuses on these markets, we do not model
transmission constraints in our paper. However, the explicit
modeling of transmission constraints in our proposed model
is a good future extension of our work, which adjusts our
model for other electricity markets too.
Reference [48] explains how the SO in Sweden procures losses
before the DA market clearing. In the balancing market, the
SO activates the bids based on the merit order list independent
of how large losses might occur due to activating a particular
bid [29]. Later, the SO pays for the transmission grid losses,
which it has to buy before the DA market clearing. Losses in
GB are included in the settlement system, not the balancing
market. All contracts are settled in comparison with metered
volumes and imbalance volumes after the delivery periods and
zonal loss factors are applied at that stage [49]. But in some
other electricity markets, if it is important to model losses then
the modeling of ohmic losses in our proposed formulation can
be considered as a good future extension of our work.
The tests performed in Sections VI and VII serve the purpose
of demonstrating the functionality of the proposed models.
While the existing work tests the proposed models with five-
and eight-generator systems, it is desirable to apply these
models to a full system [38], [40], [41], [44], [45]. This will
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be a further extension of the existing work.
The issue of fairness and openness in scenario generation and
reduction, as employed in our method, is not addressed in the
literature. This is one promising direction of future research.
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XI. APPENDIX

A. Linearizations related to DIP model

The non-liear expression, ∆−ω = Max(-∆ω ,0), can be linearized
by replacing it with the following two equations:

0 ≤ ∆−ω ≤ b−ωΞ(1) (29a)

−∆ω ≤ ∆−ω ≤ −∆ω + (1− b−ω )Ξ(1) (29b)

A similar linearization has been performed for I+
i,w = φdni ∆+

ω

by using the following equations:

0 ≤ I+
i,w ≤ φdni Ξ(1) (30a)

∆+
ω − (1− φdni )Ξ(1) ≤ I+

i,w ≤ ∆+
ω (30b)

Again, for the non-linear expression, Iupi,w = sωφ
up
i , it can be

replaced by the equations given below:

0 ≤ Iupi,w ≤ φupi Ξ(1) (31a)

sω − (1− φupi )Ξ(1) ≤ Iupi,w ≤ sω (31b)

Similarly, for I−i,w = φupi ∆−ω , the following equations can be
used for linearizaion:

0 ≤ I−i,w ≤ φupi Ξ(1) (32a)

∆−ω − (1− φupi )Ξ(1) ≤ I−i,w ≤ ∆−ω (32b)

The ‘If’ condition in (1c) is written as linear constraints∑
i φ

up
i ≥ 1− Ξ(1)(1− φ) and

∑
i φ

up
i ≤ 1 + Ξ(1)(φ).

The bi-linear term, zdnω = φcω , corresponding to (18), can be
linearized as:

0 ≤ zdnω ≤ φΞ(1) (33a)

cω − (1− φ)Ξ(2) ≤ zdnω ≤ cω (33b)

Similarly, another bi-linear expression, zupω = φsω , in (18) can
be replaced by the following equations to make them linear:

0 ≤ zupω ≤ φΞ(1) (34a)

sω − (1− φ)Ξ(1) ≤ zupω ≤ sω (34b)

The Max operator, u+
ω = Max(∆+

ω −α, 0), in the probabilis-
tic constraint can be linearized as given by:

0 ≤ u+
ω ≤ b1ωΞ(1) (35a)

∆+
ω − α ≤ u+

ω ≤ ∆+
ω − α+ (1− b1ω)Ξ(1) (35b)

Again, the other Max operator, u−ω = Max(∆−ω − α, 0), can
be replaced by:

0 ≤ u−ω ≤ b2ωΞ(1) (36a)

∆−ω − α ≤ u−ω ≤ ∆−ω − α+ (1− b2ω)Ξ(1) (36b)

B. Linearizations related to SIP-SR model

The non-linearity introduced because of up-regulation price
and total negative deviation in the SIP-SR model is given by
cdnω =Max(λupi N

up
i,ω), in order to linearize it, it can be replaced

with the following equations:

− riωΞ(1) ≤ cupω − λ
up
i N

up
i,ω ≤ riωΞ(1) (37a)∑

i

riω = G − 1 (37b)

where riω is a binary variable.

For the ‘If’ condition, I(
∑
i φ

up
i g

up
i <

∑
i φ

dn
i gdni ), the below

equations can be used:∑
i

φupi g
up
i ≥

∑
i

φdni gdni − Ξ(1)(1− φ) + ε (38a)∑
i

φupi g
up
i ≤

∑
i

φdni gdni + Ξ(1)φ− ε (38b)

The non-linear expression, kdni = φφdni , can be linearized as
φ+ φdni − 1 ≤ kdni ≤ φ and kdni ≤ φdni

From the objective function (26), tupω = ∆+
ωφ can be replaced

by the following equations:

0 ≤ tupω ≤ φΞ(1) (39a)

∆+
ω − (1− φ)Ξ(1) ≤ tupω ≤ ∆+

ω (39b)

Another non-linear term, h+ = ∆+
ωφ, from (26) can be written

as:

0 ≤ h+ ≤ φΞ(1) (40a)

∆+
ω − (1− φ)Ξ(1) ≤ h+ ≤ ∆+

ω (40b)

On similar lines, the term ∆−ωφ, in (26), can be denoted by
tdnω and replaced with:

0 ≤ tdnω ≤ φΞ(1) (41a)

∆−ω − (1− φ)Ξ(1) ≤ tdnω ≤ ∆−ω (41b)

Finally, the non-linearity introduced in (26), by h− = ∆−ωφ
can be tackled by replacing it with the following equations:

0 ≤ h− ≤ φΞ(1) (42a)

∆−ω − (1− φ)Ξ(1) ≤ h− ≤ ∆−ω (42b)

Please note that, in our case, the same value of Ξ worked
for all the linearization equations. But it can also be different
corresponding to each specific linearization, even though we
have written Ξ(1) throughout the Appendix section.
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