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We study the message complexity of distributed algorithms

in tori and chordal Rings when the communication links are

unlabeled, which implies that the processors do not have “sense

of direction.” We introduce the paradigm of handrail which

allows messages to travel with a consistent direction. We give

a distributed algorithm which confirms the conjecture that the

leader election problem for unlabeled tori of N processors can

be solved using �(N ) messages instead of O(N log N ). Using

the same handrail paradigm, we solve the election problem using

�(N ) messages in unlabeled chordal rings with one chord (of

length approximately
√

N). This solves the long-standing open

problem of the minimal number of unlabeled chords required to

decrease the O(N log N ). message complexity. For each topology,

we give an algorithm to compute the sense of direction in �(N )

messages (improving the O(N log N ) previous results). This proves

the more fundamental result that any global distributed algorithm

for these labeled topologies can be used with a similar asymptotic

complexity in the respective unlabeled class. © 1997 Academic Press

1. INTRODUCTION

One of the main themes of investigation in distributed

computation concerns the identification of the factors which

are significant for the computability and the communication

complexity of problems. Recently, it has become clear that an

important role is played by structural information; that is, a

priori knowledge available to the entities about the structure

of the system.

In particular, sense of direction (denoted as ) has

been identified as being significant for computability and

communication complexity [8]. Informally, refers to

the capability of a processor to distinguish between adjacent

communication links, according to some globally consistent

scheme [20]. More formally, it represents the ability of the

processors to adequately combine the relationship between the
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labeling, the topological structure, and the local view of the

system that an entity has [7].

In this paper (extended from [14]), we address the message

complexity of distributed algorithms in tori and in chordal

rings when the communication links are unlabeled, which

implies that processors do not have a globally consistent

labeling of the communication links. They have no “sense of

direction” but have only a topological awareness.

We first study the impact of structural information limited

to topological awareness on the leader election problem

(the problem of moving the system from an initial situation

where the nodes are in the same computational state to a

final situation where exactly one node is in a distinguished

computational state, called leader, and all the others are in

the same state, called defeated). The election process may be

started independently by any subset of the processors. It is

assumed that every processor Pi has a distinct identity idi

chosen from some infinite totally ordered set I D, and is only

aware of its own identity (in particular, it does not know those

of its neighbors).

Leader election is a widely used solution for distributed

algorithms requiring one process to act as a coordinator,

initiator, or sequencer, or otherwise to perform some special

role. The election problem occurs, for instance, in token-

passing when the token is lost or the owner has failed;

in this a case, the remaining processors elect a leader to

issue a new token. Several other problems encountered in

distributed systems can be solved by election; for example;

crash recovery (a new server should be found to continue

the service when the previous server has crashed), mutual

exclusion (where values for election can be defined as the last

time the process entered the critical section), and group server

(where the choice of a server for an incoming request is made

through an election between all the available servers managing

a replicated resource).
The lack of sense of direction is known to increase the

message complexity of the election problem. For instance,
in arbitrary networks, the election problem requires 2(e +
N log N ) messages [9], instead of 2(N log N ) [15]. In
the complete graph, the complexity increases from 2(N )

[13] to 2(N log N ) messages [11]. In the torus, an O(N )

messages algorithm with sense of direction has been given
[18]. It was conjectured that the problem can be solved with
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linear complexity when sense of direction is not available.
For chordal rings, the main open problem is to determine
the minimal sets of links that must be added to the ring
(which requires 2(N log N ) messages) in order to achieve
a linear election algorithm. Along the years, a succession of
papers [2, 10, 17] finally proved that a unique chord was
sufficient [22], but without sense of direction no result better
than O(N log N ) messages was known.

In Section 2, we give a distributed algorithm which confirms
the conjecture suggested in [18] that the leader election
problem for unlabeled tori of N processors can be solved
using 2(N ) messages instead of O(N log N ). In Section
3, we solve the election problem using a 2(N ) message
complexity for the unlabeled chordal ring with one chord (of
length approximately

√
N ). Finally, in Section 4, we give

a distributed algorithm to compute the sense of direction in
2(N ) messages for each topology, improving the O(N log N )

previous results, and Section 5 concludes by showing the
relationship between solutions for labeled and unlabeled
networks.

2. DISTRIBUTED ALGORITHMS FOR

UNLABELED TORI

The labeled square torus of size N is a two-dimensional
(wrap-around) array of

√
N ×

√
N processors. Each processor

is labeled Pi, j with 0 ≤ i, j ≤ (
√

N − 1) and is connected
by a bidirectional link to four processors; P

i, j+1 mod
√

N
,

P
i, j−1 mod

√
N

, P
i+1 mod

√
N , j

, and P
i−1 mod

√
N , j

, through

links labeled east, west, north, and south, respectively.
The same construction can extend to rectangular tori and

higher dimensions. In the following, unless specified, we will
denote as a torus any (

√
N ×

√
N )-processor topology with

the previous definition.

2.1. Sense of Direction in Tori

Before proceeding with the unlabeled torus, we provide
an intuitive description of the fundamental properties used as
sense of direction in labeled tori.

For example, consider a portion of a torus depicted in Fig.
1, the communication topology is a 2-dimensional torus where
the edge labels {north, south, east, west} are assigned in the
natural globally consistent way. This labeling is a sense of
direction [7]. Consider for instance the three paths, starting
from node O, whose associated labels are c1 = [north, east,
south, north], c2 = [east, north, west, east], and c3 = [east,
east]. Using the rules of the globally consistent labeling, it is
trivial to deduce that the two paths corresponding to c1 and c2

will end in the same node NE, while the one corresponding
to c3 will end in a different node EE. With sense of direction,
there is a relationship between labeling and capability of
distinguishing among paths. Intuitively, the labeling is a sense
of direction if it is possible to understand, from the labels
associated to the edges, whether different paths from any given
node x end in the same node or in different nodes.

FIG. 1. Sense of direction in a portion of a torus.

2.2. Electing a Leader in a Torus with

We briefly recall the main features of Peterson’s algorithm

[18] for square bidirectional tori. In its preliminary definition,

all processors are assumed to be initially active and then

process in phases. The number of active processes at each

phase is reduced by a constant factor (but more than half since

we must avoid an O(N log N ) message complexity).
The basic goal of each active processor at the i th phase is to

mark off the boundary of a square distance d on a side (d = αi

for some constant α). This is done by sending a “looking”
message at distance d to the north then d to the east, d south,
and finally d west to the original node (see Fig. 2). Marking its
boundaries, an active processor can see or be seen by another
active processor. When the “looking” message encounters the
boundary of a processor on the same phase, the message
either continues its way after becoming a “SawSmaller” (if
the value of the encountered processor is smaller), or becomes
a “SeenbySmaller” and continues along the boundary of the
encountered processor with a larger value. The active processor
is promoted to the next phase i +1 iff either (a) it receives both

FIG. 2. Leader election steps (right) in a torus (left).
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a “SawSmaller” and a “SeenbySmaller” message, or (b) it did
not see an active processor. The efficiency of the algorithm is
based on the choice of the size of the search area, which must
be sufficiently large to cross another square.

The algorithm will terminate when a processor reaches
phase d = αi ≥

√
N ; at this time there are at most

(2 − α2)−1 active processors surviving. To elect the leader
among the remaining processors, a constant number of wrap-
around phases (sending a probe message in one dimension) are
needed. Each costs O(

√
N ) messages. The optimal constant

is α = 1.1795.
Also, it is conjectured that the algorithm can easily extend

to higher dimensions. However, if the torus is not square but
rectangular with length l and width w (l ≤ w), then the
algorithm can be adapted to use 2(n + l log l/w) messages.

2.3. Electing a Leader in a Torus without

When links are unlabeled, Peterson [18] suggested that the
same algorithm can be used as is since “the algorithm only
needs to mark off a square; the orientation of the square
is irrelevant.” It is only required to pass a message in a
straight line or make the “appropriate” turn. To confirm the
conjecture we introduce the detailed modifications. We first
provide a message with the ability to be forwarded in the
same direction (east/west, north/south) and then introduce the
notion of handrail, partial structural information, which allows
messages to turn consistently (clockwise or counterclockwise).

DEFINITION 2.1. (a) A district labeling of x is a function
which maps the sequences of labels associated to the paths
from x to any node y at a distance of at most 2 to the local
name βx (y) used by x to refer to y.

(b) A district labeling associated to βx for x is consistent

iff ∀y, z at a distance of at most 2 from x , βx (y) = βx (z)

implies that y = z.

LEMMA 2.1. The algorithm presented in Fig. 3 computes

a consistent district labeling for every node using exactly 16N

messages in unlabeled square tori of N nodes with
√

N > 4.

Proof. An arbitrary subset of processors can spontaneously
start the execution of the algorithm; this is modeled by the
reception of a WAKEUP message.

The goal of the algorithm is to acquire the identity and
the position of each processor at distance 2. Each processor
sends its identity to each of its neighbors, which forwards it
to its three remaining neighbors. Overall, each processor has
received 4 messages for its immediate neighbors and 4×3 for
nodes at distances 2, that is, 16N messages overall. Note that
this algorithm, suggested in [18], is similar to the prelabeling
used in [22] for computing in O(N log N ), and was
independently discovered in [16].

For the sake of the explanation, and without loss of
generality, we applied the algorithm in the portion of the
torus depicted in Fig. 1, although the edge labeling does not
contain any particular information in this case (it is only a local
naming). When the algorithm terminates, the node O knows:

FIG. 3. District labeling algorithm in an unlabeled torus.

• that N, E, S, W are its immediate neighbors,

• which link must be used to reach them, respectively

north, east, south, west,

• for each link, which node at distance 2 can be

reached, H2north = {NW, NN, NE}, H2east = {NE, EE, SE},
H2south = {SE, SS, SW}, H2west = {SW, WW, NW}, respec-

tively,

• (if
√

N > 4), that two sets H2i and H2 j the intersection

of which is empty are in the same dimension (north/south or

east/west), perpendicular if not.

To sum it up, the corresponding Fig. 1 is deduced by O (as

shown in Fig. 4).

The restricted cases of electing a leader in unlabeled tori

in O(N ) messages when
√

N ≤ 4 are simple to design and

are not presented here for brevity. It is worth noting that

the consistent district labeling algorithm does not need to be

started simultaneously at all nodes; it can be initiated by any

subset of processors (each sleeping processor will be awakened

by the first incoming message).

By construction of the consistent district labeling in Lemma

2.1, a message can be forwarded easily in the same dimension

(“straightforward”): the message received on link i is sent

through the link j which has an empty intersection set,

H2i ∩ H2 j = ∅. By contradiction a “turn” can easily be made

too (H2i ∩ H2 j 6= ∅), but the exact direction is unknown.

With the next lemma, we show that if the message carries

specific information, a handrail, it is possible to make the

appropriate turn. The processors do not have a sense of

direction but the message forwarded has a globally consistent

orientation (thanks to a handrail). Indeed, since the orientation

of the square is irrelevant for the correctness of the algorithm,
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FIG. 4. View of a processor at distances 0 to 2 in an unlabeled torus.

the choice of the first direction and the first “turn” does not

matter for the correctness, but the choice must be consistently

applied. Moreover, it can be done by the initiator of the

message.

LEMMA 2.2. Using the handrail algorithm presented in Fig.

6, a message can travel along the boundaries of a square of a

given size d with globally consistent turns in unlabeled tori.

Proof. The algorithm is presented in Fig. 6. Before a mes-

sage is sent, a processor, say X1 in Fig. 5, chooses arbitrarily

two perpendicular communication links locally labeled r and

k and labels them accordingly, without loss of generality, say

east and south, respectively. Enough information should be

provided for the message to travel in the “world according

to X1.”

The message contains its own handrail. The handrail is the

immediate neighbor according to the other arbitrarily chosen

perpendicular direction (Handrail := H1k). The processor can

then initiate the message on one of these two links (say east)

to be forwarded at distance d in the same dimension (east/

west). In our example, the message heading to the east contains

the name of the processor at distance 1 at south (X1 sets the

handrail’s value to Y1 in the message).

Upon receipt of the message, the neighbour X2 deduces

from the handrail’s value Y1 that, according to X1, its south

is the link heading to Y2: i.e., the perpendicular link which

can lead to the processor Y1 in 2 hops, ((1)k, H2r ∩ H2k =

Handrail). It updates the handrail value to Y2 (its own relative

south now) and forwards the updated message. As it can easily

be guessed at this stage, the set of nodes used as a handrail is

FIG. 5. Handrail in the unlabeled torus.
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the set of immediate “inside” neighbours of the nodes of the

visited path (as shown with the dashed area inside the traveling

path in Fig. 5).

The message is forwarded with the same principle until

reaching the processor at distance d, say Xd . To turn, the

message uses the handrail as a pivot. Xd helps the message to

find out which way to turn. Using the idea described above,

Xd detects the relative south and forwards the message to

this direction after updating the handrail value to Xd−1 as the

relative node at west (the new inside face). The straightforward

process is repeated d times to reach a node, say Bd , where the

same turn-and-forward process is repeated to B1 and finally to

X1.

The following Theorem can be immediately deduced.

THEOREM 2.1. The algorithm elects a leader using O(N )

messages in an unlabeled two-dimensional torus of
√

N ×
√

N

nodes.

Proof. For brevity we only present the modifications to

the original algorithm regarding the modifications due to the

handrail algorithm.

By construction of the consistent district labeling in Lemma

2.1 as a preprocessing phase, all processors are initially active

and therefore can process in phases.

Each processor chooses arbitrarily two perpendicular com-

munication links and labels them accordingly, and sends a

“looking” message (instead of a token) around the square

boundary using the handrail algorithm (Fig. 6) as presented

in Lemma 2.2. If the message becomes a “SeenbySmaller”

and must continue along the boundary of a processor with

the larger value, it will update its handrail value to the one

stored locally in the visited node and which corresponds to

the processor with the larger value. (Each processor stores the

handrail of the processor’s boundary it belongs to.)

After
√

N phases, the “wrap around” phases are executed as

in [18] (they required only straightforward communications).

Therefore, the complexity of the algorithm remains unchanged,

which proves the theorem.

COROLLARY 2.1. The size of the messages in the Election

algorithm in an unlabeled torus requires exactly log m extra

bits, where m is the largest value in ID.

Proof. Immediate. Only the handrail’s value, a processor

identity, is added in the message.

2.4. Generalization of the Handrail

Using the same handrail paradigm, one should be able to

solve other distributed problems in unlabeled tori with the

same asymptotic complexity as in the labeled case. Indeed,

the handrail provides more than just making it possible to turn

always “clockwise” or “counterclockwise.” We have seen that,

at each processor, the message has the choice either to keep

on in the same direction or to turn consistently. By elimination

of choices, the message can turn in the opposite direction, if

desired, by choosing the remaining link and can update the

handrail accordingly. Moreover, the message will be able to

repeat this as many times as necessary and still being able

to know its relative position from its initiator: the message

must contain the number of hops in each direction (this can

be compressed to a shortest path notation by elimination

of combination or application of modulo, e.g., as presented

in [6]).

FIG. 6. Consistent square travel with the handrail algorithm.
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Extending the result to d-dimensional unlabeled tori or grids
(d > 2) is based on the same consistent district labeling
algorithm. To acquire the identity of each processor at distance
2, the algorithm costs 8 d messages. Again, the sets of nodes
accessible by a link which have no intersection are in the same
dimension, perpendicular otherwise. The handrail is chosen
according to d arbitrarily chosen perpendicular links and
corresponds to as many node identities (at most d − 1), which
are necessary to turn consistently: one processor identity is
sufficient to do consistent turns in a 2-dimensional subtorus,
two are necessary for a 3-dimensional subtorus, etc.

3. UNLABELED CHORDAL RINGS

A common technique to improve reliability of ring networks
is to introduce link redundancy; that is, to have each node
connected to two or more additional nodes in the network.
With alternate paths between nodes, the network can sustain
several node and link failures. The overall topological structure
of these redundant rings is always highly regular [1]; in
particular, the set of ring edges (regular) and additional edges
(bypass) form a circulant graph. Because of an uncoordinated
literature, numerous terms for this topology (e.g., chordal ring

or distributed loop computer network) are commonly used. A
detailed survey of these topologies is presented in [3]. For sake
of simplicity, we will use the term chordal ring in this paper.

A chordal ring CN 〈d1, d2, . . . , dk〉 of size N and k-chord
structure 〈d1, d2, . . . , dk〉, with d1 = 1, is a ring RN of N

processors {p0, p1, . . . , pN−1}, where each processor is also
directly connected to the processors at distance di and N − di

by additional incident chords. The link connecting two nodes
is labeled by the distance which separates these two nodes on
the ring, i.e., following the order of the nodes on the ring:
the node pi is connected to the node pi+d j mod N through its
link labeled d j (as shown in Fig. 7(a)). In particular, if a link
between two processors p and q , is labeled by distance d

at processor p, this link is labeled by N − d at the other
incident processor q , where N is the number of processors.
Note that both rings and complete graphs are chordal rings,
denoted CN 〈1〉 and CN 〈1, 2, 3, . . . , ⌊N/2⌋〉, respectively.

This link labeling, known as distance or chordal labeling,
is a sense of direction [7]. Some instances of the chordal
ring are reminiscent of the torus, as shown in Fig. 7. (It is
worth pointing out that some designs for redundant tori and
redundant hypercubes are also chordal rings, e.g. [4].)

3.1. Electing a Leader in a Chordal Ring with

For this class of network topology, the fundamental problem
of leader election has been extensively studied. The main
problem is to determine the minimal sets of links that must be
added to the ring in order to achieve a linear election algorithm.
Over the years, the minimal number of necessary chords has
decreased from O(log N ) [2] to O(log log N ) [10] and to
O(log log log N ) [17]. The ultimate case is the chordal ring
CN 〈1, n〉, where n is approximately

√
N . Using Peterson’s

algorithm, Fabri and Tel presented a 2(N ) solution for this
case [22].

Fabri and Tel’s Algorithm. We briefly recall the main fea-
tures of the algorithm. Each processor has four communication
links labeled {1, N − 1, n, N − n}, conveniently denoted as
{+1, −1, +n, −n} in the following. All the processors are as-
sumed to be initially active and then to process in phases. The
basic goal of each active process on the i th phase is to mark off
the boundary of a d-square (d = αi for some constant α). This
is done by sending a “looking” message at distance d through
links +1, then d through links +n, d through links −1, and
finally d through links −n to the original node. Marking its
boundaries, an active processor can see or be seen by another
active processor.

The promotion rules applied and the modifications of
the message boundary are as in Peterson’s algorithm. The
algorithm will terminate when a processor will reach phase
d = αi ≥

√
N , at this time there are at most (2 − α2)−1

active processors surviving. In this case, instead of “wrap-
around” phases, an election is initiated along the ring (on
link labeled +1 and −1) to distinguish the leader among the
constant number of survivors. This termination phase costs
O(N ) messages.

FIG. 7. (a) Chordal ring C9〈1, 3〉 and (b) torus.
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3.2. Electing a Leader in a Chordal Ring without

Again, the previous observation that the orientation of the
square is irrelevant holds. In Tel’s algorithm, if marking the
boundary is initiated through +1 edges, it terminated through
−n chords. Obviously, marking the boundary by reversing the
path will have no impact on the correctness of the algorithm.
Similarly, a sequence of turns [+n, +1, −n, −1] or any
permutation which respects the alternate dimensional sequence
is still valid. The algorithm is only based on the ability of the
search area to be sufficiently large to cross another boundary.
Using the same handrail paradigm, we introduce the necessary
modifications.

LEMMA 3.1. The algorithm presented in Fig. 3 computes

a consistent district labeling for every node using exactly 16N

messages in an unlabeled chordal ring CN 〈1, n〉, (n ≈
√

N

and n > 3).

Proof. Same as in Lemma 2.1 using the algorithm pre-
sented in Fig. 3. Each processor sends its identity to each of its
neighbors, which forwards it to its three remaining neighbours.
The case n ≤ 3 avoids consistency, but obvious solutions for
this case can be designed to obtain linear complexity.

For the sake of the explanation we applied the algorithm
in a system depicted in Fig. 8, using the same notation as
in Fig. 1. Again, when the algorithm terminates, the node O

knows that N, E, S, W are its immediate neighbors; which
link must be used to reach them, respectively north, east,
south, west; for each link, which node at distance 2 can be
reached, H2north = {NW, NN, NE}, H2east = {NE, EE, SE},
H2south = {SE, SS, SW}, H2west = {SW, WW, NW} respec-
tively; that two sets H2i and H2 j the intersection of which is
empty are in the same dimension (north/south or east/west),
perpendicular if not.

In this case, however, the problem is different from the
torus where both dimensions are of the same length and play
a symmetric role in the algorithm. In the present setting,
a node does not know which of north/south and east/west

corresponds to the ring labeling +1/−1. This means that after
this preprocessing phase a node cannot distinguish between a
ring edge and a bypass chord.

LEMMA 3.2. Using the handrail algorithm, a message can

travel along the boundaries of a square of a given size d

(d ≤
√

N ) with “globally consistent turns” in an unlabeled

chordal ring CN 〈1, n〉, (n ≈
√

N ).

Proof. Similar to Lemma 2.2 using the algorithm presented
in Fig. 6. First, the consistent district labeling is computed as
shown in Lemma 3.1. Second, a processor chooses arbitrarily
two perpendicular communication links and labels them ac-
cordingly, without loss of generality say east and south, as
shown in Fig. 8. The processor then initiates the message on
one of these two links (say east) to be forwarded to distance
d in the same dimension (east/west). The message heading to
the east contains the name of the processor at distance 1 at
south (O sets the handrail’s value to S in the message).

FIG. 8. Handrail in the unlabeled chordal ring CN 〈1, n〉.

Upon receipt of the east message, the immediate neighbor

E of the node O deduces from the handrail’s value S that

its south, according to O, is the link heading to SE (the

perpendicular link which can lead to the processor S in 2 hops).

It updates the handrail value to its own relative south (SE) and

forwards the updated message.

The same process is repeated until the message returns to

its original node. As shown in Fig. 8 for an execution with

d = 2, SE will be used repeatedly as handrail since it is the

centre of a 3 × 3 grid).

The Election Theorem follows.

THEOREM 3.1. Using the handrail, the algorithm elects

a leader using 2(N ) messages in unlabeled chordal rings

CN 〈1, n〉, (n ≈
√

N ).

Proof. By construction of the consistent district labeling

(Lemma 3.1) as a preprocessing phase, all processors are

initially active and therefore can process in phases.

Each processor chooses arbitrarily two perpendicular com-

munication links and proceeds as presented in Lemma 3.2.

Each processor initiates a “looking” message. If the mes-

sage becomes a “SeenbySmaller” and must continue along the

boundary of a processor with the larger value, it updates its

handrail value to the one stored locally in the visited node and

which corresponds to the processor with the larger value. Ev-

ery node stores the respective handrail’s value of the boundary

it belongs to.

After
√

N phases, only a constant number of processors

remain active. An election termination phase on the ring

between them can be trivially achieved by sending a message

in each perpendicular dimension (since the node cannot

distinguish between a ring link and a bypass chord). The

node receiving its own messages back declares itself as the

leader. This technique only doubles the number of termination

messages compared to the original algorithm. Each phase,

including the termination, costs at most O(N ) messages,

which proves the theorem.
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COROLLARY 3.1. During the termination phase of the Elec-

tion algorithm for an unlabeled chordal ring CN 〈1, n〉 (n ≈√
N ), the leader distinguishes between the chordal links and

the ring links iff n and N are not co-prime.

Proof. During the termination phase, the message coming

back after N hops is the one which travels on the ring and

allows the processor to distinguish between the −1/ + 1 ring

links and −n/ + n chords. Both messages used N hops iff n

and N are co-prime (i.e., gcd(n, N ) = 1). In this case, the

processor cannot arbitrarily choose a link to be labeled +1

since each local link can be used to build a ring. Indeed, it is

then possible to build two isomorphic chordal rings where one

has a chord of length n−1 (modulo N), with n approximately√
N (e.g., C23〈1, 5〉 is isomorphic to C23〈1, 9〉).

Improvement of the Termination. If n and N are not co-

prime, topological observations allow an improvement of the

termination phase. First observe that in any phase i (αi <√
N ), because a message makes at most

√
N hops in a

direction before turning, a message initiated through a given

link, say east, will always come back through the arbitrarily

chosen perpendicular link (i.e., the handrail), say south.

Second, note that when N mod n = 0 (i.e., n =
√

N )

the chords provides a wrap-around of size
√

N . At the last

iteration, d =
√

N , two cases may occur:

• The message comes back after only
√

N hops through

the link west (opposite of east). The initiator immediately

deduces that east is a chord link. It then distinguishes between

the −1/ + 1 ring links (south/north) and the −n/ + n chords

(west/east).

• The message comes back after only 3
√

N hops through

link east (used for sending). The processor immediately

deduces that east is a ring link. It then distinguish between

the −1/ + 1 ring links (west/east) and the −n/ + n chords

(south/north).

In both cases, the termination phase can proceed as in the

original algorithm using only the ring.

COROLLARY 3.2. The size of the messages in the Election

algorithm in the unlabeled chordal ring requires exactly log m

extra bits, where the largest value in I D is m.

Proof. Immediate (as in Corollary 2.1). Only the handrail’s

value is added in the message.

4. COMPUTING SENSE OF DIRECTION

The handrail can be used as a generic tool to solve many

other distributed problems in unlabeled topology, but its use

may remain a tedious task for the designer of the distributed

algorithm. Other alternatives may be considered.

Since sense of direction is known to improve the commu-

nication complexity of distributed algorithms, computation of

as a preprocessing phase in unlabeled topology has been

studied [21, 22]. So far, results have not been encouraging:

any algorithm computing exchanges at least �(e−1/2 N )

messages in a network with N nodes and e edges. This result

is not attractive for dense topologies, �(N 2) for cliques and

�(N log N ) for the hypercube; even if algorithms matching

the lower bounds have been proposed. The interest is more

relevant for topologies with a linear number of edges such

as tori; however, the best algorithm known so far requires

O(N log N ) [22]. Here, we present a solution to build

using 2(N ) messages for each topology. This proves that so-

lutions for any problem in an unlabeled topology will im-

mediately be deduced from the corresponding solution in the

labeled topology without asymptotic overcost.

THEOREM 4.1. A leader can compute sense of direction us-

ing exactly N +
√

N messages in unlabeled two-dimensional

tori with
√

N ×
√

N nodes.

Proof. The algorithm is executed in two concurrent phases,

as shown in Fig. 9. First the leader arbitrarily chooses two per-

pendicular communication links and labels them accordingly,

without loss of generality say east and south. The leader then

initiates a message on each of these two links to be forwarded

in the same dimension (east/west and north/south) as shown in

the algorithm presented in Theorem 2.1. Both messages build

their own handrails (according to the other arbitrarily chosen

direction): the message heading to the east contains the name

of the processor at distance 1 at south, the message heading

to the south contains the processor at distance 1 at east.

Upon receipt of the east message, the immediate neighbor

of the leader labels its incoming link as west and the other

link on same dimension as east. With the handrail’s name in

the message, it deduces where is its south (the perpendicular

link which can lead to the processor mentioned in two

hops) and initiates a message to the south to be forwarded

in the same dimension in order to take care of the north/

south labeling in this column. It can then resume its east/

west phase by changing the label of the handrail to its own

south node and can forward the updated leader message.

The second phase (started concurrently upon receipt of the

first phase message) corresponds to the north/south labeling.

The north/south message is just forwarded and does not

generate any message in the east/west dimension. However,

using the same technique as above, the message must contain

the corresponding handrail’s name (the processor at distance

1 at east) to distinguish east and west locally (and update

accordingly). Each message will be stopped upon receipt by

its initiator.

The algorithm will terminate in O(N ) time and will use

exactly
√

N messages for the first phase and N for the second,

which proves the theorem.

COROLLARY 4.1. A distributed algorithm computes

sense of direction using 2(N ) messages in unlabeled two-

dimensional tori with
√

N ×
√

N nodes.
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FIG. 9. Leader constructing sense of direction in a torus.

Proof. Immediate from Theorem 2.1 and Theorem 4.1.

Remarks. Processor Naming. Note that the algorithm can

name the processor in the commonly used way ({Pi, j : 0 ≤
i, j ≤ (

√
N − 1)}) without overcost: the leader names itself

P0, 0 and initiates the naming of each {P0, j : 0 ≤ j ≤
(
√

N − 1)} during the first step (east), which will initiate the

naming of their respective {Pi, j : 0 ≤ i ≤ (
√

N − 1)} during

the second step (south).

Grid. Without wraparound, in a regular d-dimensional array

of processors, the algorithm presented in Theorem 4.1 is still

valid. For each phase, the processor must initiate a message in

both directions of the dimension which will be stopped when

encountering the boundary.

Higher Dimensions. The algorithm can be designed in

a simple manner by extending the handrail as shown in

Section 2.

THEOREM 4.2. A leader can compute sense of direction

using at most N + 2
√

N messages in unlabeled chordal ring

CN 〈1, n〉, (n ≈
√

N ).

Proof. The algorithm is shown in Fig. 10. When n and
N are not co-prime, the algorithm is executed in two phases.
After completion of the election algorithm, by Corollary 3.1,
the leader knows which pair of links is associated to −1/+ 1.
It sends a probe message on one of these two links (labeled
arbitrarily +1). The message is forwarded n times in the same
dimension to be received by an immediate neighbor of the
leader which sends back to the leader directly. Upon receipt,
the leader can assign the label +n to the link from which it
receives the message, and ends this phase.

The rest of the algorithm can be achieved with a method
similar to the algorithm used in Theorem 4.1 (providing con-
currency and achieving an optimal time complexity, O(

√
N )).

However, for brevity, we give a simpler method based on the
ring-based structure (requiring O(N ) time, though).

The leader initiates the second phase by sending a token
through link +1, the message contains a handrail set to
the identity of its neighbor accessible through link +n. The
message will be forwarded along the same dimension (the ring)
while the handrail will be updated accordingly. Upon receipt,
each processor will be able to label consistently each of its
links (knowing that −1 is the receiving link and +n is the
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FIG. 10. Leader constructing sense of direction in a chordal ring.

corresponding handrail). The second phase will terminate
when the neighbor of the leader (through link −1) receives
the token. Overall, the algorithm requires exactly N +

√
N

messages.
When n and N are not co-prime, the algorithm may need to

repeat the first phase twice. Indeed, the leader does not know
which pair of links corresponds to −1/ + 1. It must choose
arbitrarily and proceed as above. If after n hops the node
receiving the message does not match a neighbor of the leader,
this node can undoubtedly detect that its perpendicular pair of
links corresponds to the dimension −1/ + 1. This node can
then process the two phases as the leader in the previous case.
This modification adds only

√
N messages to the (N +

√
N )

messages required above, which gives a N + 2
√

N in the
worst case, proving the theorem.

COROLLARY 4.2. A distributed algorithm computes sense

of direction using 2(N ) messages in unlabeled chordal rings

CN 〈1, n〉, (n ≈
√

N ).

Proof. Immediate from Theorem 3.1 and Theorem 4.2.

5. CONCLUDING REMARKS AND OPEN PROBLEMS

This study shows how a limited number of edges, usually
considered as a drawback, can be used efficiently to obtain an
optimal communication complexity. We built partial structural
information, which is proved sufficient to allow the design
of linear Election algorithms, and built sense of direction
without asymptotic overcost. Both algorithms use the same
fundamental ideas to achieve efficiency, indicating that the
technique is both powerful and general. Since the solution
is based on a preprocessing phase which will work for any
network with constant degree (i.e., linear number of edges), it
can be used for such other topologies, e.g. [19]. The question
is still open for topologies such as the hypercube where the
degree is logarithmic. In this case such a method would cost
O(N log N ) preliminary messages and thus is not suitable.
The best known complexity is O(n log log n) messages [5],
compared to O(n) in the labeled case [6].

Finally, we showed that extending the result to d-

dimensional unlabeled tori or grids (d > 2) was a simple
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matter. For brevity, we did not investigate the case of an

unlabeled chordal ring with more than one chord. The

problem does not appear as simple (even if one of the chords

is known to have length
√

N ).
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