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ABSTRACT Microgrids are localized electric grids that can operate independent of the main grid and help

strengthen grid resiliency by working alongside backup generators to maintain electricity supply in the

event of a large-scale grid disturbance. This research proposes a single-source capacitated facility location

coverage problem (SS-CFLCP) to optimize the location, assignment and number of renewable distributed

generators (DGs) within a utility-based microgrid during a large-scale grid disturbance, where the microgrid

is operating independent of the main grid. Traditional analytical techniques for DG placement within

microgrids tend to focus on minimizing power losses, minimizing electric energy losses, improving voltage

profile and maximizing cost savings. To deter from these traditional techniques, the proposed SS-CFLCP

combines the facility location and location coverage problems, with an aim to minimize the following:

total investment costs, total operation and maintenance cost, the distance traveled for electricity distribution,

the power outage levels (unmet electricity demand) experienced due to a large-scale grid disturbance, and

the levels of excess renewable penetration, which can cause reverse power flow issues that damage the main

grid, within a network. Additionally, the proposed SS-CFLCP is modeled with a budgetary constraint for

installing the DGs, making it a more practical and applicable model for a utility company. A case study using

solar/photovoltaic-based DGs is used to show the effectiveness of the proposed model.

INDEX TERMS Distributed renewable energy generation, electric grid resilience, facility location, micro-

grid, optimization.

I. INTRODUCTION

Cities, towns and communities rely on utility-provided elec-

tricity to keep essential resources such as hospitals, grocery

stores, police and fire stations operational. Grid functionality

can be jeopardized by large-scale exogenous disturbances

such as storms, earthquakes and cyber-attacks. Backup gen-

erators, while extremely beneficial during grid disturbances,

have limited capacities and face the difficult challenge of

providing electricity during the grid disturbance, which may

last from hours to days even weeks depending on the impact

of the disruption. Microgrids are localized low voltage grids

that can disconnect from the main grid and operate indepen-
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approving it for publication was Ravindra Singh.

dently. Microgrids contain multiple generation sources that

coexist and can operate in parallel [1]. The main elements

of microgrids are load/demand nodes, energy storage units,

generation sources (renewable and non-renewable), an inter-

connection switch, a controller and an energy management

system [1]. The two operating modes of a microgrid are

the ‘‘grid connected mode’’ and ‘‘island mode’’. When in

the ‘‘grid connected mode’’, the utility grid is still oper-

ational meaning all feeders can be supplied electricity by

the utility grid or the renewable sources. When in ‘‘island

mode’’ however, the utility grid is no longer supplying elec-

tricity thus feeders with connection to renewable sources are

supplied electricity by the renewable sources, and feeders

that are 100% reliant on utility provided electricity are now

inactive [2].
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Electricity customers with large, mission-critical facilities,

and customers in areas prone to frequent and/or prolonged

power outages are typically the greatest beneficiaries of

microgrids. This is primarily due to multiple examples of

on-site backup generators failing during prolonged outages

[3]. Natural disasters have proven to be extremely threatening

to the functionality of the electric grid. Recent examples,

such as Hurricane Sandy in 2012, forced a major New York

hospital to evacuate 300 patients after the utility provided

electricity and backup generators failed [3]. Hurricane Sandy

not only affected the electricity supply to essential resources

such as hospitals, the hurricane left more than 285,000 cus-

tomers without electricity for almost two weeks [4], further

emphasizing how damaging large-scale grid disturbances can

potentially be.

In 2015, Presidential Policy Directive 21 (PPD-21) was

implemented. PPD-21 pushed for the strengthening of critical

infrastructure security and resilience so that infrastructure,

such as the electric grid, can maintain functionality in the

event of disturbances [5]. In addition, the US Department

of Energy (DoE) launched a microgrid initiative that calls

for the development of technical, operational and economic

models to demonstrate the value of microgrids to utilities

through the use of simulation and case studies [6]. Incor-

porating microgrids into the main grid system can benefit

utilities by providing increased reliability of electricity supply

during times of disaster. Microgrids can also add reactive

power generation for a utility, reduce demand on the main

grid during peak hours of the day, reduce emissions, improve

overall energy efficiency by improving voltage regulation for

load balancing, and reduce transmission losses due to a closer

proximity to end customers. These serve as added benefits

for a utility during periods where the main grid is operating

without disturbance.

The renewable generation sources within a microgrid can

be solar, wind, hydroelectric, etc. based. Solar/photovoltaic

(PV) based generation microgrids are typically less chal-

lenging to implement within largely populated cities due

to the increased availability of rooftop mounting in such

locations, but can also be easily implemented in more rural

areas. On the other hand, wind based generation microgrids

tend to be more likely in more rural areas, where there is

sufficient space for large wind turbines to be established

and hydroelectric requires a water source to be present. The

generation sources proposed in this research are solar/PV-

based distributed generators (DGs) due to the ease of instal-

lation and geographic flexibility when compared to wind and

other generation sources. This research models a scenario

where a large-scale disturbance has already occurred and

the microgrid is operating in ‘‘island mode’’. The PV-based

DG microgrid provides electricity during the day-time hours,

while backup generators provide electricity at night when

the PV-based DGs can no longer generate electricity. The

load/demand nodes are the essential resources - hospitals,

large-scale grocery stores, police and fire stations, transporta-

tion systems, etc. - within cities, towns and communities.

The following section performs a review of literature pertain-

ing this research topic.

II. LITERATURE REVIEW

A literature review is performed to highlight the three main

aspects of this research: (1) the potential of microgrids as a

solution during a large-scale grid disturbance; (2) the negative

impacts high penetration levels of renewable generation can

have on an existing electricity network, specifically in the

form of reverse power flow (RPF); (3) the general optimiza-

tion of DGs within a microgrid. This section divides the

three aspects and discusses literature pertaining to each aspect

separately.

A. MICROGRIDS AS A SOLUTION DURING POWER

GRID DISTURBANCE

The authors in [7] present examples from numerous parts of

theworldwhere amicrogridwas used in thewake of a disaster

for reliable electricity supply. For example, in 2011, a micro-

grid helped restore Japan from the East Japan earthquake. The

microgrid contained three different DG types and was kept

in operation years after restoration from the earthquake was

complete [7]. This example shows the capability of micro-

grids to accommodate communities when their main grid is

affected by some type of large-scale grid disturbance, along

with the benefits microgrids can serve during periods where

the main grid is fully operational.

Montgomery County, the most populous county in Mary-

land, installed a 2 megawatt (MW) solar-based microgrid at

the Public Safety Headquarters (PSHQ). PSHQ serves as the

county’s hub for critical public services such as transportation

management resources, the County’s Office of Emergency

Management and Homeland Security, and the police sta-

tion that serves the central portion of the county [8]. The

microgrid was installed as part of a comprehensive effort

to ensure resiliency of critical public services during large-

scale grid disturbances, and was established in partnership

with the Duke Energy utility that serves the area. In addi-

tion, the microgrid saves the county $4 million in expenses

for aging low-voltage and medium-voltage electrical system

upgrades [8]. This microgrid shows how utility involvement

can benefit the utility and the area the utility serves, as is

suggested by the utility-based microgrid we present in our

research.

In 2019, Fremont, California completed the first microgrid

system installed at three fire stations within the city [9],

[10]. The project demonstrates the islanding of critical infras-

tructure and increasing the protection of such infrastructure

against power outages; currently, fire stations in Fremont can

use diesel backup generation for 72 hours before replenish-

ment is necessary. This microgrid system is one of the first

examples of DG placement at the site of essential resources.

Our research furthers this idea to include more essential

resources in total andmore essential resource types-hospitals,

gas stations, police stations and grocery stores, as opposed to

just fire stations.
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B. RPF CAUSED BY EXCESS PV-BASED

DG PENETRATION

The authors in [11] introduce new methodologies and tech-

niques to determine the impact solar DG systems could

have on the main grid. They provide insight to the RPF

that can occur through the PV-based DG proliferation [11].

RPF can occur at section, feeder, and substation levels

while negatively affecting protection coordination and volt-

age regulators (VRs). This might offset the feeder load and

affect over-current production since most distributed feed-

ers are setup for unidirectional power flow. The study rec-

ommends the regulation of VRs to allow for bidirectional

power flow to avoid voltage violations, which can prove to be

costly due to the expense of installing bidirectional converters

within an already designed distribution system. Our research

presents a manner to mitigate RPF without having to account

for large amounts of bidirectional power flow.

A Renewable System Interconnection study, as part of a

larger effort by the DoE, is presented in [12]. The study

addresses the challenges of implementing high-penetration

levels of distributed renewable technologies such as PV. The

goal of the research was to identify the resources needed to

compensate high-penetration renewable technologies while

enhancing the operation of the main grid [12]. The study

acknowledges that penetration of PV could not only offset

the load, but also cause RPF in the distribution system.

This can further cause over-voltage, increased short circuits,

breach of protection coordination, and incorrect operation

of control equipment [12]. The study states that one way

to contain RPF is through adjustments to the amount of

reactive power generated. This can be difficult to execute

without some form of system regulation on the PV generation

when the sun is available. Our research presents a manner to

mitigate excess PV generation without incorporating system

regulation.

C. DG OPTIMIZATION IN MICROGRIDS

Optimization of microgrid DG placement through an

improved reinitialized social structures particle swarm opti-

mization, known as IRS-PSO, is proposed in [13]. The objec-

tive is to minimize real power loss within real and reactive

power generation limits and voltage limits. When given a

number of DGs, IRS-PSO can perform better than the basic

particle swarm optimization, adaptive weight particle swarm

optimization, as well as global best, local, and near best

particle swarm optimization. However, the model in [13]

limits the number of DGs in each microgrid, which can be

troublesome when larger demand networks are considered.

Our developed model requires at least one DG installed and

limitation on how many in total is controlled by the utility’s

budget.

A novel combined method based on a GA and Intelli-

gent Water Drops (IWD) for the optimization of the loca-

tion and capacity of DGs within a microgrid is presented

in [14]; IWD is described as a swarm-based optimization

algorithm developed from observing natural water flow in

rivers formed by a swarm of water drops [14]. The objective

of the model is to minimize power loss, voltage variation and

voltage stability index within the network. The novel GA-

IWD method is compared to conventional algorithms such

as a general GA, particle swarm optimization and harmony

search methods. Results show that the GA-IWD method per-

forms better than the compared methods in terms of quality

of answer, number of iterations and run time [14]. Results

also showed that the GA-IWD run time increased linearly

as the number of DGs installed in the microgrid increased,

whereas the other conventional methods increased almost

exponentially.

Optimal placement and sizing of DGs in a distribution grid

is discussed in [15]. A genetic algorithm (GA), which aims to

minimize power loss while maintaining appropriate voltage

levels, is employed. The GA is then run on a variety of scenar-

ios and shows that optimal location and size depend heavily

on the conditions provided. Configurations, load profiles, and

time of year all have an impact on the optimal solutions -

number of DGs installed and DG sizes - computed by the

algorithm. In terms of seasons, the summer scenario solutions

suggested more PV generators be used, while the winter

scenarios leaned more towards the combined heat and power

units. For a utility, allocating DGs based off of season may

not be feasible or desired. In contrast, our developed model

allocates microgrid DGs based on annual demand averages,

making it more practical for a utility to deploy.

Traditional analytical techniques for the optimization of

DG integration within the distribution network usually aim

to minimize active/reactive power losses [13]–[15], mini-

mize distribution losses [16], maximize cost savings [16],

or improve voltage profiles [14]–[16]. Figure 1, adapted

from [16], displays the traditional analytical technique model

formulation. To deter from the norm, this research proposes a

FIGURE 1. Traditional formulation of analytical models that optimize DG
integration into the power grid.
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single-source capacitated facility location coverage problem

(SS-CFLCP) that optimizes the location, size, assignment

and number of DGs within a utility-based microgrid with the

following objectives: (1) minimize the total cost of installing

a microgrid; (2) minimize the total cost of operation and

maintenance of microgrid DGs; (3) minimize the distance

electricity travels for distribution; (4) minimize the power

outage (unmet demand) levels during a large-scale grid

disturbance; (5) minimize RPF amounts caused by excess

DG penetration. Objective (1) and (2) have been optimized

objectives in previous DG integration research. The main

contributions of our research are objectives (4) and (5),

along with the DGs being established at and providing

power to the actual essential resources within the micro-

grid, and a budget constrained utility perspective of a sce-

nario where a large scale grid disturbance has occurred

and the microgrid is operating in island mode. The fol-

lowing section discusses the methodology applied to this

research.

III. METHODOLOGY

We propose a SS-CFLCP for the optimization of a utility-

based microgrid, under a large-scale grid disturbance sce-

nario. A single-source, as opposed to a multiple-source,

forces each demand node/essential resource to be sup-

plied by only a single DG. The single-source problem

is generally more challenging because the decision vari-

ables are binary, but is considered typical for real life

situations where multiple deliveries maybe involved [17].

We use a capacitated problem, as opposed to an un-

capacitated problem, due to the generation limitations of

the DGs. We incorporate the location coverage problem

because the proposed model aims to supply/cover as much

demand as possible, given the specified constraints. This

section describes the formulation of the SS-CFLCP, which

employs a combination of the single-source facility loca-

tion problem described in [17] and the location coverage

problem described in [18], [19]. Furthermore, this section

states the assumptions of the developed SS-CFLCP model

and describes the model formulation by defining the vari-

ables, objectives and constraints. The parameters used within

the model are explained in this section and stated in the

Nomenclature.

NOMENCLATURE

A. SETS

i Set of electricity demand nodes {1..n}.

j Set of potential DG nodes/locations {1..m}.

B. VARIABLES

Dj =

{

1 if a DG is installed at node j

0 otherwise

Xij =

{

1 if node i is supplied by j

0 otherwise

C. PARAMETERS

a Minimum number of DGs required for microgrid.

B Budget utility can use to establish the microgrid.

δi Electricity demand for each node i (W).

αj Generation power for each DG j (W).

ωj Electricity output for each DG j (W).

φj Total cost of operation and maintenance for each

DG j ($/W).

λj Penalty cost for excess DG j penetration ($/W).

ψi Penalty cost for not covering/supplying electricity to

demand node i ($/W); the more important the

demand node, the higher the penalty cost.

γj Total cost of installing a utility-based DG j ($/W);

total cost includes the modules, inverter, balance of

system structural and electrical components,

installation, taxes, land acquisition and permitting,

inspection, and interconnection costs.

cij An n × m matrix of the distance costs from demand

nodes i to DG location j, where the distances serve as

electricity distribution costs.

D. SS-CFLCP MODEL

The SS-CFLCP proposed assumes the following: (1) the

maximum number of locatable DGs is known; (2) the can-

didate nodes for locating DGs are known and assumed to

be within an already interconnected distribution network; (3)

the generation power and electricity outputs of the DGs are

known; (4) the model is deterministic with constant levels of

electricity generation and flow within the already assumed

interconnected distribution network; (5) the model models

a worst-case or large-scale grid disturbance scenario, where

the employed microgrid is operating in island mode; (6) the

PV-based DG microgrid provides day-time electricity, while

backup generators (each demand node/essential resource is

assumed to posses a backup generator) provide electricity

during night-time; (7) DGs generate and output their full

capacity, thus DGs can output more electricity than needed

for the annual day-time network demand; (8) the demand for

each demand node/essential resource is fully met by only

one installed DG [17]; (9) the utility has a pre-determined

budget to abide by when establishing the microgrid within

the network.

The model contains a given set of demand nodes/essential

resources, that also serve as potential DG location sites

within the network. Each demand node/essential resource

has an electricity demand and a penalty cost suffered if the

electricity demand of the node is not met/supplied by the

model. Since the demand nodes/essential resources are prior-

itized, the penalty cost is higher for demand nodes/essential

resources with a higher priority. Each potentially installed

DG has a generation power and electricity output, a cost

for installing the DG, a cost for operation and maintenance

and a penalty cost for excess DG penetration that may occur

from the DG. For this research, it is desired that at least one

DG is installed. Lastly, there is a transportation cost, based
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on euclidean distance, between each demand node/essential

resource and potential DG location site.

For each potential DG location site, a decision must be

made to either install or not install a DG. Also, a decision

must be made on which demand nodes/essential resources

are supplied electricity by which installed DG(s). Given the

decision variables, the objective function and constraints of

the complete model are described as follows:

Min

[ m
∑

j=1

γjαjDj

]

+

[ n
∑

i=1

m
∑

j=1

δiXijφjDj

]

+

[ n
∑

i=1

m
∑

j=1

cijXij

]

+

[ n
∑

i=1

ψiδi −

n
∑

i=1

m
∑

j=1

ψiδiXij

]

+

[ m
∑

j=1

λjωjDj −

n
∑

i=1

m
∑

j=1

λjδiXij

]

(1)

Subject to:

m
∑

j=1

Xij ≤ 1 ∀i (2)

m
∑

j=1

Dj ≥ a (3)

m
∑

j=1

γjαjDj ≤ B (4)

Xij ≤ δi ∀i, ∀j (5)

n
∑

i=1

δiXij ≤ ωjDj ∀j (6)

Dj ∈ {0, 1} ∀j (7)

Xij ∈ {0, 1} ∀i, ∀j (8)

Equation (1) is the objective function and minimizes

5 objectives. The first objective minimizes the total cost of

installing DGs:

m
∑

j=1

γjαjDj (9)

This objective minimizes the number of DGs installed to

meet as much of the demand as possible, and is determined

by computing the product of the DG installation costs (γj)

and the generation power (αj) of each DG (Dj), summed for

all DGs. The second objective minimizes the total cost of

operation and maintenance of the DGs:

n
∑

i=1

m
∑

j=1

δiXijφjDj (10)

This objective is determined by computing the product of the

summed demand (δi) met by or assigned to each specific DG

(Xij, which is binary) and the operation and maintenance cost

(φj) of each DG (Dj), summed for all DGs. The operation

and maintenance costs (φj) of this second objective are deter-

mined as a percentage of the DG installation costs (γj) of

the first objective [20]. Thus, a decrease in the installation

cost objective (first objective) will lead to a decrease in the

operation and maintenance cost objective (second objective).

Furthermore, an increase in the installation cost objective will

lead to an increase in the operation and maintenance cost

objective. The third objective minimizes the total electricity

distribution costs:
n

∑

i=1

m
∑

j=1

cijXij (11)

This objective reduces the distribution losses experienced as

electricity travels fromDG to demand node/essential resource

and is determined by computing the product of the summed

distance costs from demand node/essential resource i to DG

location j (cij - electricity distribution costs converted from

i to j distances) and the coverage/assignment of demand

node/essential resource i to DG location j (Xij, which is

binary). The fourth objective, one our main research contri-

butions, minimizes the total network power outage (unmet

demand) during a large-scale grid disturbance:

n
∑

i=1

ψiδi −

n
∑

i=1

m
∑

j=1

ψiδiXij (12)

Minimizing power outage (unmet demand) levels is not typ-

ically an objective of focus in such optimization studies [16]

and thus is one of our main research contributions. To incor-

porate this objective, a penalty cost for not meeting/supplying

a demand node/essential resource i (ψi) is applied; the more

important the demand node/essential resource, the higher

the penalty cost. This objective is determined by subtract-

ing the summed demand (δi) met by or assigned to a spe-

cific DG (Xij, which is binary), from the summed demand

(δi) of the of the entire network, and then applying the

the penalty cost for not covering/supplying electricity to a

demand node/essential resource (ψi). In other words, the net-

work demand met/supplied is subtracted from the total net-

work demand and that difference is then multiplied by the

unmet demand penalty cost. This fourth objective cost func-

tion is dependent upon the electricity demand met by each

DG (δiXij), which is bounded as described in equation (6),

and the demand of each demand node/essential resource (δi)

which is provided by the data and constrained as described in

equation (5); equations (5) and (6) are explained at the end of

this section.

The fifth and final objective, another main contribution of

our research, deals with excess DG penetration within the net-

work. Distribution systems are designed for radial operation

but it has become well known that implementing renewable

DGs may cause negative impacts, such as RPF, to the net-

work and thus pre-planning for such impacts is vital [11].
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Pre-planning for such impacts becomes even more impor-

tant when considering utility-scale renewable DG penetration

[12], as is considered in this research. Most DG penetration

impact studies focus on quantifying the extent of the issues

and providing utilities with guidelines, tools, and processes

to help manage such issues [11], [12]. The model developed

in this research aims to mitigate the potential RPF issue by

minimizing the amount of excess renewable penetration (RPF

amounts) experienced within the network:

m
∑

j=1

λjωjDj −

n
∑

i=1

m
∑

j=1

λjδiXij (13)

This objective is determined by subtracting the product of the

summed demand (δi) met by or assigned to each specific DG

(Xij, which is binary) from the summed electricity generation

(ωj) of all DGs (Djs), and then applying the penalty cost

for excess DG penetration (λj). In other words, the network

demand met/supplied is subtracted from the total electricity

generated within the network and that difference is then

multiplied by the excess penetration cost. This fifth objective

cost function is dependent upon the electricity demand met

by each DG (δiXij), which is bounded as described in equa-

tion (6), and the electricity output of each DG (ωjDj) which

is provided by the data. The unmet demand cost objective

(fourth objective) and this excess penetration cost objective

(fifth objective) both depend on how much network demand

is met/supplied (δiXij). Thus, an increase in the network

demand met/supplied will lead to a decrease in the unmet

demand cost objective and in this excess penetration cost

objective. Furthermore, a decrease in the network demand

met/supplied will lead to an increase in the unmet demand

cost objective and can lead to an increase in this excess pen-

etration cost objective depending on what size DG system is

installed.

Equation (2) is a demand constraint ensuring that each

demand node/essential resource i is assigned to/supplied elec-

tricity by at most one DG j. Equation (3) is a constraint

ensuring that the total number of installedDGs (Djs) is greater

than or equal to the pre-determined number of DGs the utility

desires to install (a); this research assumes at least one DG is

installed, thus a ≥ 1. Equation (4) is a budget constraint that

ensures the total installation cost (γjαjDj) is less than or equal

to what the pre-determined utility budget (B) allows. Our

problem is modeled from the perspective of a utility attempt-

ing to meet network demand during a disturbance. Including

a budget that limits the installation costs helps make the cost

minimization problem more practical to how a utility would

approach establishing amicrogrid. An unbounded installation

cost would imply that the utility has no limits on how much it

is able to spend when establishing the microgrid, which is not

realistic due to the business considerations a utility has. Thus,

this budget constraint is included as another main contribu-

tion of our research because it captures amajor business focus

of the utility company. Equation (5) is a demand assignment

constraint ensuring that a demand node/essential resource is

only assigned to a DG if that demand node/essential resource

actually has a demand. Equation (6) is a DG constraint ensur-

ing that the total electricity demand met by each DG (δiXij)

must be less than or equal to the electricity output of the

DG (ωjDj), and that demand can only be met/supplied by

an installed DG, for all DGs. Equation (7) and (8) ensure

that the installing of DGs and the assignment of demand

nodes/essential resources to DGs, is binary, for all demand

nodes/essential resources and DGs. A case study applying

the developed SS-CFLCP model is detailed in the following

section.

IV. TENNESSEE CASE STUDY

A network, composed of a 25-node city grid in Tennessee,

is used as a case study for this research. The 25 nodes that

the network is comprised of are all essential resources that

provide essential services. There are 5 hospitals, 5 fire depart-

ments, 7 large-scale grocery stores, 4 gas stations and 4 police

stations. A distance matrix is developed using the longitude

and latitude coordinates of each node [21]. Annual electricity

demands for the essential resources are adopted from the U.S.

Energy Information Administration (EIA) survey data for

commercial buildings within the southern region of the coun-

try [22]. Since the electricity generated from the PV-based

DG systems in the microgrid is assumed to only provide

day-time demand, the annual demands for each building are

multiplied by 0.56 to account for the fact that the area of

Tennessee the grid encompasses has an annual ‘%sun’ total

of 56% [23]; ‘%sun’ is a measure of the percentage of time,

between sunrise and sunset, that sunshine reaches the ground

[23]. All buildings for each type of essential resource have the

same demand (i.e., all hospitals have the same demand and all

fire departments have the same demand). The total annual and

daytime electricity demands for each building can be viewed

in Table 1.

TABLE 1. Electricity demand for the south region of the US.

The generation power and cost of each PV-based DG sys-

tem is based on data provided by the National Renewable

Energy Laboratory (NREL). NREL data is used as opposed

to data from public sector integrators such as SolarCity,

Sunrun, and Vivint Solar because these integrators account

for sold and leased PV-based DG systems. Reported costs

for leased systems span the life of the lease rather than the

period in which the system is sold, thus making it difficult to

accurately determine the true costs at the time of sale [24].

PV-based DG systems of 500 kW, 1 MW and 5 MW are

used this research. The electricity output of each system is

computed using NREL’s PVWatts calculator, which estimates
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the electricity production of grid-connected PV-based DG

systems based on the solar radiation in the specific location

(Tennessee) [25]. Each of the 25 nodes within the network

can potentially have a PV-based DG system installed through

rooftop-mounting or ground-mounting. NREL’s benchmark

assumptions for the PV sector are that 3 kW - 2MWPV-based

DG systems can be rooftop-mounted and anything greater

than 2 MW is a ground-mounted system where land acquisi-

tion is required [24]. For our research, a 500 kW system can

be installed on gas stations, a 1 MW system on police and

fire stations and a 5 MW system on hospitals and large-scale

grocery stores. Thus, for hospitals and large-scale grocery

stores, land acquisition is included in the cost for locating a

PV-based DG system at the site. Electricity outputs for each

PV-based DG system, presented by month for the state of

Tennessee, can be viewed in Table 2.

TABLE 2. PV-based DG system generation for Tennessee.

The costs for each PV-based DG system used for this

research include the following: (1) the cost to install a

PV-based DG system, expressed in $/W; (2) the cost of oper-

ations and maintenance of each DG, which is set at 3% of

the cost to install a system and is expressed in $/W [20]; (3)

the penalty cost applied for excess DG penetration, which is

assumed to be half the cost to install a PV-based DG system

and is expressed in $/W; (4) the penalty cost applied for unmet

demand, which is higher for more important buildings and

is also expressed in $/W. The unmet demand penalty cost

is arbitrarily assigned for each building type based on what

we, as the researchers, view as the importance hierarchy of

the building types. We view hospitals as the most impor-

tant during a large-scale grid disturbance and thus assign

hospitals the highest unmet demand penalty cost. Grocery

stores are viewed as the second most important building type.

We assign police stations and fire stations the same level

of importance, and thus the same unmet demand penalty

cost, because the these two building types have the same

electricity demand based on the EIA survey data. Gas stations

are viewed as the least important during a large-scale grid

disturbance and are thus assigned the lowest unmet demand

penalty cost.

We design the unmet demand penalty cost based on an

importance hierarchy for practicality purposes. Since the

FIGURE 2. Costs for each type of system by rated power.

utility-based microgrid we model is under a large-scale grid

disturbance scenario, where the microgrid is operating in

island mode, decisions would have to be made as to what

essential resources are covered, especially since there is a

budget constraint that limits the electricity output of the

microgrid. As a result, incorporating an importance hierarchy

allows for the model to decide what essential resources are

covered based on penalization that still leads to the most

optimal minimized total cost. The unmet demand penalty

costs can be adjusted to the specific desires of the utility and

the network the utility serves. The system power and costs

for each PV-based DG system can be viewed in Figure 2. The

operations and maintenance costs are minor when compared

to the other costs, but are included in the model for practical-

ity purposes. A utility establishing a microgrid would have to

consider the operation and maintenance costs, thus our devel-

oped model accounts for these costs. Even if only in minor

amounts, the operation and maintenance costs still add to the

overall total cost objective solution of the model. The unmet

demand and excess DG penetration penalty costs for each

building can be viewed in Figure 3 and Figure 4 respectively.

Both penalty costs are displayed as ‘‘High’’, ‘‘Medium’’ and

‘‘Low’’, which signifies the sensitivity levels of the penalty

cost. The sensitivity levels help show how sensitive the results

are to changes within these two penalty cost parameters. This

is later discussed in the sensitivity analysis of the results. The

next section provides and discusses the results of the case

study.

V. RESULTS OF CASE STUDY

The developed SS-CFLCP model is solved using CPLEX

solver 12.8 on a 2.9 GHz Intel Core i7 and the results are

presented in Table 3 based on budget (B) amount. Budgets

of $1, $5, $10, $15, $20 and $50 million are used. A budget

of $1 million is used as the lowest possible budget amount

because the cheapest microgrid possible is one with a sin-

gle 500 kW system at an investment of $875,000 as shown

in the table; the model requires that the microgrid contain
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FIGURE 3. Unmet demand penalty cost for each building type at each
sensitivity level.

FIGURE 4. Excess penetration penalty cost for each building type at each
sensitivity level.

at least one installed DG. The optimal solutions show no

improvement for any budget amount greater than $15million.

Even with a budget of $50 million, which would financially

allow the utility to install 7 total 5 MW DG systems at a cost

of $6.8 million each, the optimal solution at the $50 million

budget results in the installation of the same two 5 MW

DG systems (DGs 2 and 15) as that of the $15 million

budget. This is because the additional installation costs of

another PV-based DG system would increase the total cost to

a sub-optimal solution. As a result, the total cost minimiza-

tion objective function finds no improvement for any budget

above $15 million, even if the installation cost function was

unbounded. Thus, the $20 and $50 million budget results are

not presented in Table 3. The optimal solutions for a $5 mil-

lion budget showed no improvement over $1 million budget

and thus the $5 million budget results are also not presented

in Table 3. The results display the following information:

(1) the investment cost, which is total cost of installing the

DG(s); (2) the optimal solution (total cost); (3) the installed

DG(s), which are the determined optimal locations within the

network to establish DGs upon; (4) total network demandmet

and unmet for each optimal solution (expressed as a percent-

age); (5) the demand met for each type of essential resource

(expressed as a percentage). Matrices detailing which DG is

installed for each solution, and which essential resources are

covered by or assigned to each installed DG are provided

TABLE 3. Model solutions with unmet demand sensitivity analysis.

at [26]. Installed DGs are denoted with a ‘‘1’’ and highlighted

orange, while closed DGs are denoted with a ‘‘0’’. Similarly,

essential resources covered by or assigned to an installed

DG are denoted with a ‘‘1’’ under that DG and highlighted

orange, while non-covered essential resources are denoted

with a ‘‘0’’.

A sensitivity analysis is performed on the unmet demand

penalty cost, an arbitrarily assigned parameter, that relates

to the fourth objective (minimize total network power out-

age/unmet demand) which is one of our main research contri-

butions. We use three levels for the parameter: high, medium,

and low. Figure 3 displays the costs for each essential resource

at each sensitivity level of the parameter. The results are sim-

ilar across all budget options for the ‘‘Low’’ and ‘‘Medium’’

levels. At the ‘‘Low’’ level, the optimal location is either DG

20 or DG 18, both of which are gas stations. The optimal

solution is a minimized total cost of $3,442,640.85 for bud-

gets of $1 and $15 million, and $3,442,641.74 for a budget

of $10 million. All budget options at the ‘‘Low’’ level cover

100% of the grocery store demand and 75% of the gas station

demand, but do not cover any demand for the hospitals, fire

stations or police stations. Overall, 5% of the total network

demand is met and 95% is unmet. The same situation is

witnessed at the ‘‘Medium’’ level except the optimal solution

increases to a minimized total cost of $13,680,881.65 for

the $1 and $10 million, and $13,680,882.54 for a bud-

get of $15 million. The increase witnessed with the objec-

tive solution is caused by the increase in unmet demand

penalty cost amount from the ‘‘Low’’ level to ‘‘Medium’’

(see Figure 3).

We begin to see variation within the results at the ‘‘High’’

level of the unmet demand penalty cost. At a budget of $1mil-

lion, the results resemble those of the ‘‘Low’’ and ‘‘Medium’’

levels where the optimal solution is a single DG microgrid,

with the DG being a 500 kW system (DG 20) installed at a

gas station. The investment cost, demand met and demand

unmet within the network are exactly the same as well.
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FIGURE 5. Demand-coverage map for $15 million budget solution under
‘‘High’’ sensitivity level; this is the optimal solution found.

The optimal solution (total cost) nearly doubles when com-

pared to the $13,680,881.65 of the ‘‘Medium’’ level budget

options. This is due to the increase in unmet demand penalty

cost, which is doubled for the ‘‘High’’ level when compared

to the ‘‘Medium’’ (see Figure 3). When a $10 million bud-

get is used at the ‘‘High’’ level, improvements are finally

witnessed. The investment cost increases to $6.8 million

because the optimal DG selected is a 5 MW system (DG

4), versus the 500 kW systems selected at the ‘‘Low’’ and

‘‘Medium’’ levels. The total electricity demand met within

the network improves from 5% to 46% and we observe that

all essential resource buildings are covered except for three

of the five hospitals. Most importantly however, we see an

improvement in the optimal solution of about $5 million.

Improvements continue to be seen when the budget increases

to $15 million. The investment cost doubles to $13.6 million

because two 5MWPV-based DG systems (DGs 2 and 15) are

selected at optimality now. The total demand met within the

network increases to 82% and all essential resource buildings

are covered expect for one hospital. The optimal solution

also improves by about $3 million over the ‘‘Medium’’ level

solution.

Figure 5 displays the demand-coverage map for the

$15 million budget under the ‘‘High’’ level. The yellow

highlighted buildings represent the optimal DG locations

(ID 2 and 15) within the network. The dotted line shapes

represent the essential resources whose demand is met by

the PV-based DG highlighted in yellow. The solution only

has one essential resource, DG 3, with unmet demand. This

same essential resource is not covered in any of the solu-

tions at any of the sensitivity levels. Even with hospitals

such as DG 3 having the highest unmet demand penalty

cost, the model can opt to leave a hospital uncovered if

the other costs involved with covering that hospital (instal-

lation, operation and maintenance, distribution and excess

penetration (RPF) costs) would increase the total cost to a

sub-optimal solution. This is what would happen if essential

resource DG 3 were to be covered. The lack of coverage for

this essential resource is due to its large demand, which is tied

for the highest along with the other four hospitals, and its far

distance when compared to other essential resources within

the network. Meeting the demand for DG 3 would require

installing another 5 MW DG, as the 1 MW and 500 kW

sizes would be too small to cover DG 3’s annual demand.

Installing another 5 MW DG would lead to an increase

in excess DG penetration, which in-turn can significantly

increase the overall cost due to the excess penetration penalty

cost our developed model applies. Increasing the excess DG

penetration also weakens the reliability of the grid because

it increase RPF amounts within the distribution network.

In addition, meeting the electricity demand of DG 3, which is

further away in distance from the optimally installed DGs (ID

2 and 15), would increase the total distribution costs within

the network in a manner that worsens the optimal solution.

As a result, themodel accepted the penalty cost of notmeeting

the electricity demand of DG 3 in order to assure that as much

network demand was met with the overall total costs also

minimized.

A sensitivity analysis is also performed on the excess DG

penetration (i.e., RPF) penalty cost, which is assumed to be

half the cost to install a PV-based DG system. This param-

eter relates to the fifth objective (minimize RPF amounts

caused by excess DG penetration) which is another one of

our main research contributions. We evaluate how sensitive

the results are to an excess DG penetration cost that is equal

to the cost of installing a PV-based DG system (‘‘Medium’’

level) and greater than the cost of installing a PV-based DG

system (‘‘High’’ level). At the ‘‘High’’ level, the excess DG

penetration cost is set at 1.5 times the cost of installing a

PV-based DG system. Figure 4 displays the excess DG pen-

etration costs for each essential resource at each sensitivity

level of the parameter, where the ‘‘Low’’ level represents the

assumed cost of excess DG penetration as half of the cost

to install a PV-based DG system. The results are displayed

in Table 4 with the exclusion of the demand met percentages.

The demand met percentages are identical for each installed

DG in Table 4 as they are to those in Table 3. For example,

demand met percentages for network, hospital, fire station,

grocery store, gas station and police station for a solution

where the installed DG is DG 20, are identical for Table 4

results as they are for an installed DG 20 solution in Table 3.

The results in Table 4 at each ‘‘Low’’ level of excess penetra-

tion, for each respective unmet demand penalty cost level, are

as shown in Table 3. These are the results of the assumed cost

for the excess penetration penalty cost (assumed half of the

cost to install a PV-based DG system). For the ‘‘Low’’ and

‘‘Medium’’ levels of the unmet demand penalty cost, there

is minimal difference between the optimal solutions at each

level of the excess penetration penalty cost and across the

budget options. For all budget options at the ‘‘Low’’ level of

the unmet demand penalty cost, all the solutions are about

VOLUME 8, 2020 21341



R. Kizito et al.: Optimal DG Placement in Utility-Based Microgrids During a Large-Scale Grid Disturbance

TABLE 4. Excess DG penetration sensitivity analysis.

$3.4 million across all excess penetration penalty cost levels.

Additionally, for all budget options at the ‘‘Medium’’ level

of the unmet demand penalty cost, all the solutions are about

$13.6million across all excess penetration penalty cost levels.

This means the excess penetration penalty cost level has

minimal to no effect on the optimal solution (total cost) at the

‘‘Low’’ and ‘‘Medium’’ levels of the unmet demand penalty

cost. We begin to notice the effect of the excess penetration

penalty cost at the ‘‘High’’ level of the unmet demand penalty

cost. For example, at a budget of $15 million, the optimal

solution (total cost) goes from $18.9million, to $19.2million,

to $19.5 million for the ‘‘Low’’, ‘‘Medium’’ and ‘‘High’’

excess penetration cost levels respectively. A $15 million

budget still provides the best solution across all levels of the

excess penetration penalty cost as it does across all levels of

the unmet demand penalty cost.

The excess penetration amounts and the cost of excess

penetration at each level of sensitivity are provided in Table 5

for the each budget solution. With a budget of $15 mil-

lion, the optimal solution is a microgrid with DGs 2 and

15 installed for a total generation of 2,702,496 W. The

optimal solution finds 82% of the total network demand is

met/supplied as shown in Table 3. The difference between

the total generation of DGs 2 and 15, and the 82% of the

network demand met is 420,268 W; this is the excess pene-

tration (RPF) experienced for the optimal solution. The costs

of this excess penetration are $285,782.28, $571,564.56 and

$857,346.84 at the ‘‘Low’’, ‘‘Medium’’ and ‘‘High’’ levels

of the excess penetration penalty cost respectively; these

are the costs of the fifth objective for the model. Mini-

mizing the excess penetration is included as one of our

main research contributions because it helps strengthen the

resilience of the traditional grid. An excess penetration cost

TABLE 5. Excess penetration/RPF amounts and costs by sensitivity level
for each budget solution at the ‘‘High’’ unmet demand penalty cost level.

of $285,782.28 accounts for about 1.5% of the optimal solu-

tion/total cost ($18,933,733.59), meaning the model success-

fully minimizes the excess penetration amounts (fifth objec-

tive) while still meeting 82% of the total network demand

(24/25 essential resources covered). Ultimately, this shows

the model’s ability to address both the unmet demand and

excess penetration objectives.

VI. CONCLUSION AND DISCUSSIONS

We have formulated a single-source capacitated facility loca-

tion coverage problem (SS-CFLCP) model to optimize the

location, size, assignment and total number of DGs within

a microgrid under a large-scale grid disturbance scenario,

where the microgrid is operating in island mode. The SS-

CFLCP aims to minimize the total cost of the microgrid,

as well as the distance traveled by electricity (distribution

costs), network power outage (unmet demand) levels due to

a grid disturbance and reverse power flow (RPF) caused by

excess DG penetration within the network. The results are

presented with the application of a sensitivity analysis on the

unmet demand penalty cost parameter and the excess DG

penetration cost parameter. The results show no variation at

the ‘‘Low’’ and ‘‘Medium’’ sensitivity levels of the unmet

demand parameter. Variation is seen at the ‘‘High’’ level of

the unmet demand parameter with the best objective solution,

and highest percent of network demand met, occurring when

a budget of $15 million is provided for the microgrid.

This research helps show the significance of microgrids

and how they can be utilized as a way to better secure

the functionality of the main grid. As the Presidential Pol-

icy Directive 21 (PPD-21) and the Department of Energy

microgrid initiative (see introduction) call for, the research

performed provides an operational model that demonstrates

the value of microgrids for utilities in terms of strengthening

the resilience of the traditional grid. This is accomplished

with the incorporation of our fourth and fifth objectives,

which focus on minimzing the unmet demand and excess

DG penetration (RPF) within the network. By applying the

model to a case study, this research provides insights towards

how beneficial a practical microgrid can be for a city or

town that experiences natural disasters, especially when those

disasters effect the power distribution system and lead to

large-scale blackouts/outages. Food, medical aid and security

are prioritized during large-scale power blackouts/outages.

By focusing on the essential resources within the city or

town that provide food, medical aid and security services,

the model developed helps show how to best mitigate the
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damage a large-scale blackout/outage can have on the city

or town. Furthermore, by adding a budget constraint, this

research provides utilities a framework for how to feasibly

establish the most optimal microgrid for the area the utility

serves.

The developed model comes with some limitations. The

first limitation pertains to the electricity demand data used,

which is surveyed demand data of essential resources [22].

The survey is compiled by census region of the country, but

is not depicted by state. Thus, the southern region survey

electricity demands are adopted for the state of Tennessee due

to its geographical location within the southern region of the

country. Ideally, demand data directly from the 25 individual

essential resources is preferred. The second limitation per-

tains to the constraints. The model lacks constraints for the

active/reactive power flow equality, line capacity, and voltage

balancing at each node within the network. Instead, the model

assumes an already interconnected distribution network with

static levels of electricity flow. A third limitation of the model

pertains to the type of optimization model used. This paper

employs a deterministic model, where each parameter is a

single value, as opposed to a stochastic model, where the

parameters are described by random variables or distribu-

tions. A stochastic model allows the modeller to evaluate

the natural uncertainty of the modeled system’s parameters

[27]. The stochastic nature of the parameters used in this

model, such as electricity demand and electricity output of

a DG, both of which vary over the course of a 24-hour

day and over the course of the year, will be addressed

in the continuation of this research. A fourth limitation of

this model is the lack of energy storage within the micro-

grid. Energy storage will also be addressed and incorporated

into the microgrid framework in the continuation of this

research. These limitations will be addressed in our future

research.
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