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Abstract

Online prediction methods are typically presented as serial algorithms running on a single proces-
sor. However, in the age of web-scale prediction problems, it is increasingly common to encounter
situations where a single processor cannot keep up with the high rate at which inputs arrive. In
this work, we present thedistributed mini-batchalgorithm, a method of converting many serial
gradient-based online prediction algorithms into distributed algorithms. We prove a regret bound
for this method that is asymptotically optimal for smooth convex loss functions and stochastic in-
puts. Moreover, our analysis explicitly takes into accountcommunication latencies between nodes
in the distributed environment. We show how our method can beused to solve the closely-related
distributed stochastic optimization problem, achieving an asymptotically linear speed-up over mul-
tiple processors. Finally, we demonstrate the merits of ourapproach on a web-scale online predic-
tion problem.

Keywords: distributed computing, online learning, stochastic optimization, regret bounds, convex
optimization

1. Introduction

Many natural prediction problems can be cast as stochastic online prediction problems. These are
often discussed in the serial setting, where the computation takes place on a single processor. How-
ever, when the inputs arrive at a high rate and have to be processed in real time, there may be no
choice but to distribute the computation across multiple cores or multiple cluster nodes. For exam-
ple, modern search engines process thousands of queries a second,and indeed they are implemented
as distributed algorithms that run in massive data-centers. In this paper, wefocus on suchlarge-
scaleandhigh-rateonline prediction problems, where parallel and distributed computing is critical
to providing a real-time service.
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First, we begin by defining the stochastic online prediction problem. Supposethat we observe a
stream of inputsz1,z2, . . ., where eachzi is sampled independently from a fixed unknown distribution
over a sample spaceZ. Before observing eachzi , we predict a pointwi from a setW. After making
the predictionwi , we observezi and suffer the lossf (wi ,zi), where f is a predefined loss function.
Then we usezi to improve our prediction mechanism for the future (e.g., using a stochastic gradient
method). The goal is to accumulate the smallest possible loss as we process thesequence of inputs.
More specifically, we measure the quality of our predictions using the notion of regret, defined as

R(m) =
m

∑
i=1

( f (wi ,zi)− f (w⋆,zi)) ,

wherew⋆ = argminw∈WEz[ f (w,z)]. Regret measures the difference between the cumulative loss of
our predictions and the cumulative loss of the fixed predictorw⋆, which is optimal with respect to
the underlying distribution. Since regret relies on the stochastic inputszi , it is a random variable. For
simplicity, we focus on bounding the expected regretE[R(m)], and later use these results to obtain
high-probability bounds on the actual regret. In this paper, we restrict our discussion to convex
prediction problems, where the loss functionf (w,z) is convex inw for everyz∈ Z, andW is a
closed convex subset ofRn.

Before continuing, we note that the stochastic onlinepredictionproblem is closely related, but
not identical, to the stochasticoptimizationproblem (see, e.g., Wets, 1989; Birge and Louveaux,
1997; Nemirovski et al., 2009). The main difference between the two is in their goals: in stochastic
optimization, the goal is to generate a sequencew1,w2, . . . that quickly converges to the minimizer
of the functionF(·) =Ez[ f (·,z)]. The motivating application is usually a static (batch) problem, and
not an online process that occurs over time. Large-scale static optimization problems can always be
solved using a serial approach, at the cost of a longer running time. In online prediction, the goal
is to generate a sequence of predictions that accumulates a small loss along the way, as measured
by regret. The relevant motivating application here is providing a real-time service to users, so our
algorithm must keep up with the inputs as they arrive, and we cannot choose to slow down. In this
sense, distributed computing is critical for large-scale online prediction problems. Despite these
important differences, our techniques and results can be readily adapted to the stochastic online
optimization setting.

We model our distributed computing system as a set ofk nodes, each of which is an indepen-
dent processor, and anetworkthat enables the nodes to communicate with each other. Each node
receives an incoming stream of examples from an outside source, such as a load balancer/splitter.
As in the real world, we assume that the network has a limited bandwidth, so the nodes cannot sim-
ply share all of their information, and that messages sent over the networkincur a non-negligible
latency. However, we assume that network operations arenon-blocking, meaning that each node
can continue processing incoming traffic while network operations complete inthe background.

How well can we perform in such a distributed environment? At one extreme,an ideal (but
unrealistic) solution to our problem is to run a serial algorithm on a single “super” processor that isk
times faster than a standard node. This solution is optimal, simply because any distributed algorithm
can be simulated on a fast-enough single processor. It is well-known thatthe optimal regret bound
that can be achieved by a gradient-based serial algorithm on an arbitrary convex loss isO(

√
m)

(e.g., Nemirovski and Yudin, 1983; Cesa-Bianchi and Lugosi, 2006; Abernethy et al., 2009). At the
other extreme, a trivial solution to our problem is to have each node operatein isolation of the other
k−1 nodes, running an independent copy of a serial algorithm, without anycommunication over
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the network. We call this theno-communicationsolution. The main disadvantage of this solution
is that the performance guarantee, as measured by regret, scales poorly with the network sizek.
More specifically, assuming that each node processesm/k inputs, the expected regret per node is
O(
√

m/k). Therefore, the total regret across allk nodes isO(
√

km) - namely, a factor of
√

k worse
than the ideal solution. The first sanity-check that any distributed online prediction algorithm must
pass is that it outperforms the naı̈ve no-communication solution.

In this paper, we present thedistributed mini-batch(DMB) algorithm, a method of converting
any serial gradient-based online prediction algorithm into a parallel or distributed algorithm. This
method has two important properties:

• It can use any gradient-based update rule for serial online prediction as a black box, and
convert it into a parallel or distributed online prediction algorithm.

• If the loss functionf (w,z) is smooth inw (see the precise definition in Equation (5)), then our
method attains an asymptotically optimal regret bound ofO(

√
m). Moreover, the coefficient

of the dominant term
√

m is the same as in the serial bound, andindependentof k and of the
network topology.

The idea of using mini-batches in stochastic and online learning is not new, and has been previously
explored in both the serial and parallel settings (see, e.g., Shalev-Shwartz et al., 2007; Gimpel et al.,
2010). However, to the best of our knowledge, our work is the first to use this idea to obtain such
strong results in a parallel and distributed learning setting (see Section 7 fora comparison to related
work).

Our results build on the fact that the optimal regret bound for serial stochastic gradient-based
prediction algorithms can be refined if the loss function is smooth. In particular, it can be shown
that the hidden coefficient in theO(

√
m) notation is proportional to the standard deviation of the

stochastic gradients evaluated at each predictorwi (Juditsky et al., 2011; Lan, 2009; Xiao, 2010).
We make the key observation that this coefficient can be effectively reduced by averaging a mini-
batch of stochastic gradients computed at the same predictor, and this can bedone in parallel with
simple network communication. However, the non-negligible communication latencies prevent a
straightforward parallel implementation from obtaining the optimal serial regret bound.1 In order
to close the gap, we show that by letting the mini-batch size grow slowly withm, we can attain the
optimalO(

√
m) regret bound, where the dominant term of order

√
m is independentof the number

of nodesk and of the latencies introduced by the network.
The paper is organized as follows. In Section 2, we present a template forstochastic gradient-

based serial prediction algorithms, and state refined variance-based regret bounds for smooth loss
functions. In Section 3, we analyze the effect of using mini-batches in the serial setting, and show
that it does not significantly affect the regret bounds. In Section 4, wepresent the DMB algorithm,
and show that it achieves an asymptotically optimal serial regret bound forsmooth loss functions.
In Section 5, we show that the DMB algorithm attains the optimal rate of convergence for stochastic
optimization, with an asymptotically linear speed-up. In Section 6, we complement our theoretical
results with an experimental study on a realistic web-scale online prediction problem. While sub-
stantiating the effectiveness of our approach, our empirical results alsodemonstrate some interesting

1. For example, if the network communication operates over a minimum-depth spanning tree and the diameter of the
network scales as log(k), then we can show that a straightforward implementation of the idea of parallel variance
reduction leads to anO

(
√

mlog(k)
)

regret bound. See Section 4 for details.

167



DEKEL, GILAD -BACHRACH, SHAMIR AND X IAO

Algorithm 1: Template for a serial first-order stochastic online prediction algorithm.

for j = 1,2, . . . do
predictw j

receive inputzj sampled i.i.d. from unknown distribution
suffer lossf (w j ,zj)
defineg j = ∇w f (w j ,zj)
compute(w j+1,a j+1) = φ(a j ,g j ,α j)

end

properties of mini-batching that are not reflected in our theory. We conclude with a comparison of
our methods to previous work in Section 7, and a discussion of potential extensions and future re-
search in Section 8. The main topics presented in this paper are summarized in Dekel et al. (2011).
Dekel et al. (2011) also present robust variants of our approach,which are resilient to failures and
node heterogeneity in an asynchronous distributed environment.

2. Variance Bounds for Serial Algorithms

Before discussing distributed algorithms, we must fully understand the serial algorithms on which
they are based. We focus on gradient-based optimization algorithms that follow the template out-
lined in Algorithm 1. In this template, each prediction is made by an unspecifiedupdate rule:

(w j+1,a j+1) = φ(a j ,g j ,α j). (1)

The update ruleφ takes three arguments: an auxiliary state vectora j that summarizes all of the
necessary information about the past, a gradientg j of the loss functionf (·,zj) evaluated atw j , and
an iteration-dependent parameterα j such as a stepsize. The update rule outputs the next predic-
tor w j+1 ∈W and a new auxiliary state vectora j+1. Plugging in different update rules results in
different online prediction algorithms. For simplicity, we assume for now that the update rules are
deterministic functions of their inputs.

As concrete examples, we present two well-known update rules that fit theabove template. The
first is theprojected gradient descentupdate rule,

w j+1 = πW

(

w j −
1

α j
g j

)

, (2)

whereπW denotes the Euclidean projection onto the setW. Here 1/α j is a decaying learning rate,
with α j typically set to beΘ(

√
j). This fits the template in Algorithm 1 by defininga j to simply

bew j , and definingφ to correspond to the update rule specified in Equation (2). We note that the
projected gradient method is a special case of the more general class ofmirror descentalgorithms
(e.g., Nemirovski et al., 2009; Lan, 2009), which all fit in the template of Equation (1).

Another family of update rules that fit in our setting is thedual averagingmethod (Nesterov,
2009; Xiao, 2010). A dual averaging update rule takes the form

w j+1 = argmin
w∈W

{〈

j

∑
i=1

gi ,w

〉

+α j h(w)

}

, (3)
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where〈·, ·〉 denotes the vector inner product,h : W→R is a strongly convex auxiliary function, and
α j is a monotonically increasing sequence of positive numbers, usually set to be Θ(

√
j). The dual

averaging update rule fits the template in Algorithm 1 by defininga j to be∑ j
i=1gi . In the special case

whereh(w) = (1/2)‖w‖22, the minimization problem in Equation (3) has the closed-form solution

w j+1 = πW

(

− 1
α j

j

∑
i=1

g j

)

. (4)

For stochastic online prediction problems with convex loss functions, both ofthese update rules
have expected regret bound ofO(

√
m). In general, the coefficient of the dominant

√
m term is

proportional to an upper bound on the expected norm of the stochastic gradient (e.g., Zinkevich,
2003). Next we present refined bounds for smooth convex loss functions, which enable us to develop
optimal distributed algorithms.

2.1 Optimal Regret Bounds for Smooth Loss Functions

As stated in the introduction, we assume that the loss functionf (w,z) is convex inw for eachz∈ Z
and thatW is a closed convex set. We use‖·‖ to denote the Euclidean norm inRn. For convenience,
we use the notationF(w) = Ez[ f (w,z)] and assumew⋆ = argminw∈W F(w) always exists. Our main
results require a couple of additional assumptions:

• Smoothness- we assume thatf is L-smooth in its first argument, which means that for any
z∈ Z, the functionf (·,z) hasL-Lipschitz continuous gradients. Formally,

∀z∈ Z, ∀w,w′ ∈W, ‖∇w f (w,z)−∇w f (w′,z)‖ ≤ L‖w−w′‖ . (5)

• Bounded Gradient Variance- we assume that∇w f (w,z) has aσ2-bounded variance for any
fixed w, whenz is sampled from the underlying distribution. In other words, we assume that
there exists a constantσ≥ 0 such that

∀w∈W, Ez

[

∥

∥∇w f (w,z)−∇F(w)]
∥

∥

2
]

≤ σ2 .

Using these assumptions, regret bounds that explicitly depend on the gradient variance can be
established (Juditsky et al., 2011; Lan, 2009; Xiao, 2010). In particular, for the projected stochastic
gradient method defined in Equation (2), we have the following result:

Theorem 1 Let f(w,z) be an L-smooth convex loss function in w for each z∈ Z and assume that
the stochastic gradient∇w f (w,z) has σ2-bounded variance for all w∈W. In addition, assume
that W is convex and bounded, and let D=

√

maxu,v∈W ‖u−v‖2/2. Then usingα j = L+(σ/D)
√

j
in Equation (2) gives

E[R(m)] ≤
(

F(w1)−F(w⋆)
)

+D2L+2Dσ
√

m.

In the above theorem, the assumption thatW is a bounded set does not play a critical role. Even
if the learning problem has no constraints onw, we could always confine the search to a bounded
set (say, a Euclidean ball of some radius) and Theorem 1 guarantees an O(

√
m) regret compared to

the optimum within that set.
Similarly, for the dual averaging method defined in Equation (3), we have:
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Theorem 2 Let f(w,z) be an L-smooth convex loss function in w for each z∈ Z, assume that the
stochastic gradient∇w f (w,z) has σ2-bounded variance for all w∈ W, and let D=
√

h(w⋆)−minw∈W h(w). Then, by setting w1 = argminw∈W h(w) and α j = L+ (σ/D)
√

j in the
dual averaging method we have

E[R(m)] ≤
(

F(w1)−F(w⋆)
)

+D2L+2Dσ
√

m.

For both of the above theorems, if∇F(w⋆) = 0 (which is certainly the case ifW =R
n), then the

expected regret bounds can be simplified to

E[R(m)] ≤ 2D2L+2Dσ
√

m . (6)

Proofs for these two theorems, as well as the above simplification, are given in Appendix A. Al-
though we focus on expected regret bounds here, our results can equally be stated as high-probability
bounds on the actual regret (see Appendix B for details).

In both Theorem 1 and Theorem 2, the parametersα j are functions ofσ. It may be difficult to
obtain precise estimates of the gradient variance in many concrete applications. However, note that
any upper bound on the variance suffices for the theoretical results to hold, and identifying such a
bound is often easier than precisely estimating the actual variance. A loose bound on the variance
will increase the constants in our regret bounds, but will not change its qualitativeO(

√
m) rate.

Euclidean gradient descent and dual averaging are not the only update rules that can be plugged
into Algorithm 1. The analysis in Appendix A (and Appendix B) actually appliesto a much larger
class of update rules, which includes the family of mirror descent updates (Nemirovski et al., 2009;
Lan, 2009) and the family of (non-Euclidean) dual averaging updates (Nesterov, 2009; Xiao, 2010).
For each of these update rules, we get an expected regret bound thatclosely resembles the bound in
Equation (6).

Similar results can also be established for loss functions of the formf (w,z) +Ψ(w), where
Ψ(w) is a simple convex regularization term that is not necessarily smooth. For example, setting
Ψ(w) = λ‖w‖1 with λ > 0 promotes sparsity in the predictorw. To extend the dual averaging
method, we can use the following update rule in Xiao (2010):

w j+1 = argmin
w∈W

{〈

1
j

j

∑
i=1

gi , w

〉

+Ψ(w)+
α j

j
h(w)

}

.

Similar extensions to the mirror descent method can be found in, for example, Duchi and Singer
(2009). Using these composite forms of the algorithms, the same regret bounds as in Theorem 1
and Theorem 2 can be achieved even ifΨ(w) is nonsmooth. The analysis is almost identical to
Appendix A by using the general framework of Tseng (2008).

Asymptotically, the bounds we presented in this section are only controlled by the varianceσ2

and the number of iterationsm. Therefore, we can think of any of the bounds mentioned above as
an abstract functionψ(σ2,m), which we assume to be monotonically increasing in its arguments.

2.2 Analyzing the No-Communication Parallel Solution

Using the abstract notationψ(σ2,m) for the expected regret bound simplifies our presentation sig-
nificantly. As an example, we can easily give an analysis of the no-communication parallel solution
described in the introduction.
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Algorithm 2: Template for a serial mini-batch algorithm.

for j = 1,2, . . . do
initialize ḡ j := 0
for s= 1, . . . ,b do

definei := ( j−1)b+s
predictw j

receive inputzi sampled i.i.d. from unknown distribution
suffer lossf (w j ,zi)
gi := ∇w f (w j ,zi)
ḡ j := ḡ j +(1/b)gi

end
set(w j+1,a j+1) = φ

(

a j , ḡ j ,α j
)

end

In the näıve no-communication solution, each of thek nodes in the parallel system applies the
same serial update rule to its own substream of the high-rate inputs, and no communication takes
place between them. If the total number of examples processed by thek nodes ism, then each node
processes at most⌈m/k⌉ inputs. The examples received by each node are i.i.d. from the original
distribution, with the same variance boundσ2 for the stochastic gradients. Therefore, each node
suffers an expected regret of at mostψ(σ2,⌈m/k⌉) on its portion of the input stream, and the total
regret bound is obtain by simply summing over thek nodes, that is,

E[R(m)] ≤ kψ
(

σ2,
⌈m

k

⌉)

.

If ψ(σ2,m) = 2D2L+2Dσ
√

m, as in Equation (6), then the expected total regret is

E[R(m)] ≤ 2kD2L+2Dσk

√

⌈m
k

⌉

.

Comparing this bound to 2D2L+2Dσ
√

m in the ideal serial solution, we see that it is approximately√
k times worse in its leading term. This is the price one pays for the lack of communication in the

distributed system. In Section 4, we show how this
√

k factor can be avoided by our DMB approach.

3. Serial Online Prediction using Mini-Batches

The expected regret bounds presented in the previous section dependon the variance of the stochas-
tic gradients. The explicit dependency on the variance naturally suggeststhe idea of using averaged
gradients over mini-batches to reduce the variance. Before we presentthe distributed mini-batch
algorithm in the next section, we first analyze aserialmini-batch algorithm.

In the setting described in Algorithm 1, the update rule is applied after each input is received.
We deviate from this setting and apply the update only periodically. Lettingb be a user-defined
batch size(a positive integer), and considering everyb consecutive inputs as abatch. We define
the serial mini-batch algorithmas follows: Our prediction remains constant for the duration of
each batch, and is updated only when a batch ends. While processing theb inputs in batchj, the
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algorithm calculates and accumulates gradients and defines the average gradient

ḡ j =
1
b

b

∑
s=1

∇w f (w j ,z( j−1)b+s) .

Hence, each batch ofb inputs generates a single average gradient. Once a batch ends, the serial
mini-batch algorithm feeds ¯g j to the update ruleφ as thej th gradient and obtains the new prediction
for the next batch and the new state. See Algorithm 2 for a formal definition of the serial mini-batch
algorithm. The appeal of the serial mini-batch setting is that the update rule is used less frequently,
which may have computational benefits.

Theorem 3 Let f(w,z) be an L-smooth convex loss function in w for each z∈ Z and assume that
the stochastic gradient∇w f (w,zi) hasσ2-bounded variance for all w. If the update ruleφ has the
serial regret boundψ(σ2,m), then the expected regret of Algorithm 2 over m inputs is at most

bψ
(

σ2

b
,
⌈m

b

⌉

)

.

If ψ(σ2,m) = 2D2L+2Dσ
√

m, then the expected regret is bounded by

2bD2L+2Dσ
√

m+b.

Proof Assume without loss of generality thatb dividesm, and that the serial mini-batch algorithm
processes exactlym/b complete batches.2 LetZb denote the set of all sequences ofb elements from
Z, and assume that a sequence is sampled fromZb by sampling each element i.i.d. fromZ. Let
f̄ : W×Zb 7→ R be defined as

f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

f (w,zs) .

In other words,f̄ averages the loss functionf acrossb inputs fromZ, while keeping the prediction
constant. It is straightforward to show thatEz̄∈Zb f̄ (w, z̄) = Ez∈Z f (w,z) = F(w).

Using the linearity of the gradient operator, we have

∇w f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

∇w f (w,zs) .

Let z̄j denote the sequence(z( j−1)b+1, . . . ,zjb), namely, the sequence ofb inputs in batchj. The
vector ḡ j in Algorithm 2 is precisely the gradient of̄f (·, z̄j) evaluated atw j . Therefore the serial
mini-batch algorithm is equivalent to using the update ruleφ with the loss functionf̄ .

Next we check the properties of̄f (w, z̄) against the two assumptions in Section 2.1. First, iff is
L-smooth thenf̄ is L-smooth as well due to the triangle inequality. Then we analyze the variance of
the stochastic gradient. Using the properties of the Euclidean norm, we can write

∥

∥∇w f̄ (w, z̄)−∇F(w)
∥

∥

2
=

∥

∥

∥

∥

1
b

b

∑
s=1

(∇w f (w,zs)−∇F(w))

∥

∥

∥

∥

2

=
1
b2

b

∑
s=1

b

∑
s′=1

〈

∇w f (w,zs)−∇F(w),∇w f (w,zs′)−∇F(w)
〉

.

2. We can make this assumption since ifb does not dividem then we can pad the input sequence with additional inputs
until m/b= ⌈m/b⌉, and the expected regret can only increase.

172



OPTIMAL DISTRIBUTED ONLINE PREDICTION

Notice thatzs andzs′ are independent whenevers 6= s′, and in such cases,

E

〈

∇w f (w,zs)−∇F(w),∇w f (w,zs′)−∇F(w)
〉

=
〈

E
[

∇w f (w,zs)−∇F(w)
]

, E
[

∇w f (w,zs′)−∇F(w)
]

〉

= 0.

Therefore, we have for everyw∈W,

E
∥

∥∇w f̄ (w, z̄)−∇F(w)
∥

∥

2
=

1
b2

b

∑
s=1

E
∥

∥(∇w f (w,zs)−∇F(w))
∥

∥

2 ≤ σ2

b
. (7)

So we conclude that∇w f̄ (w, z̄j) has a(σ2/b)-bounded variance for eachj and eachw∈W. If the
update ruleφ has a regret boundψ(σ2,m) for the loss functionf overm inputs, then its regret for̄f
overm/b batches is bounded as

E

[m/b

∑
j=1

(

f̄ (w j , z̄j)− f̄ (w⋆, z̄j)
)

]

≤ ψ
(

σ2

b
,
m
b

)

.

By replacing f̄ above with its definition, and multiplying both sides of the above inequality byb,
we have

E

[m/b

∑
j=1

jb

∑
i=( j−1)b+1

(

f (w j ,zi)− f (w⋆,zi)
)

]

≤ bψ
(

σ2

b
,
m
b

)

.

If ψ(σ2,m) = 2D2L+2Dσ
√

m, then simply plugging in the general boundbψ(σ2/b,⌈m/b⌉) and
using⌈m/b⌉ ≤ m/b+1 gives the desired result. However, we note that the optimal algorithmic pa-
rameters, as specified in Theorem 1 and Theorem 2, must be changed toα j = L+(σ/

√
bD)
√

j to
reflect the reduced varianceσ2/b in the mini-batch setting.

The bound in Theorem 3 is asymptotically equivalent to the 2D2L+2Dσ
√

m regret bound for
the basic serial algorithms presented in Section 2. In other words, performing the mini-batch update
in the serial setting does not significantly hurt the performance of the update rule. On the other
hand, it is also not surprising that using mini-batches in the serial setting does not improve the
regret bound. After all, it is still a serial algorithm, and the bounds we presented in Section 2.1 are
optimal. Nevertheless, our experiments demonstrate that in real-world scenarios, mini-batching can
in fact have a very substantial positive effect on the transient performance of the online prediction
algorithm, even in the serial setting (see Section 6 for details). Such positiveeffects are not captured
by our asymptotic, worst-case analysis.

4. Distributed Mini-Batch for Stochastic Online Prediction

In this section, we show that in a distributed setting, the mini-batch idea can be exploited to obtain
nearly optimal regret bounds. To make our setting as realistic as possible, we assume that any
communication over the network incurs a latency. More specifically, we view the network as an
undirected graphG over the set of nodes, where each edge represents a bi-directional network link.
If nodesu andv are not connected by a link, then any communication between them must be relayed
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through other nodes. The latency incurred betweenu andv is therefore proportional to the graph
distance between them, and the longest possible latency is thus proportionalto the diameter ofG .

In addition to latency, we assume that the network has limited bandwidth. However, we would
like to avoid the tedious discussion of data representation, compression schemes, error correcting,
packet sizes, etc. Therefore, we do not explicitly quantify the bandwidthof the network. Instead,
we require that the communication load at each node remains constant, and does not grow with the
number of nodesk or with the rate at which the incoming functions arrive.

Although we are free to use any communication model that respects the constraints of our net-
work, we assume only the availability of a distributed vector-sum operation. This is a standard3

synchronized network operation. Each vector-sum operation begins with each node holding a vec-
tor v j , and ends with each node holding the sum∑k

j=1v j . This operation transmits messages along a
rooted minimum-depth spanning-tree ofG , which we denote byT : first the leaves ofT send their
vectors to their parents; each parent sums the vectors received from his children and adds his own
vector; the parent then sends the result to his own parent, and so forth;ultimately the sum of all
vectors reaches the tree root; finally, the root broadcasts the overall sum down the tree to all of the
nodes.

An elegant property of the vector-sum operation is that it uses each up-link and each down-link
in T exactly once. This allows us to start vector-sum operations back-to-back. These vector-sum
operations will run concurrently without creating network congestion on any edge ofT . Further-
more, we assume that the network operations arenon-blocking, meaning that each node can continue
processing incoming inputs while the vector-sum operation takes place in the background. This is
a key property that allows us to efficiently deal with network latency. To formalize how latency
affects the performance of our algorithm, letµ denote the number of inputs that are processed by the
entire system during the period of time it takes to complete a vector-sum operation across the entire
network. Usuallyµ scales linearly with the diameter of the network, or (for appropriate network
architectures) logarithmically in the number of nodesk.

4.1 The DMB Algorithm

We are now ready to present a general technique for applying a deterministic update ruleφ in a
distributed environment. This technique resembles the serial mini-batch technique described earlier,
and is therefore called thedistributed mini-batchalgorithm, or DMB for short.

Algorithm 3 describes a template of the DMB algorithm that runs in parallel on each node in the
network, and Figure 1 illustrates the overall algorithm work-flow. Again, let b be a batch size, which
we will specify later on, and for simplicity assume thatk dividesb andµ. The DMB algorithm
processes the input stream in batchesj = 1,2, . . ., where each batch containsb+ µ consecutive
inputs. During each batchj, all of the nodes use a common predictorw j . While observing the firstb
inputs in a batch, the nodes calculate and accumulate the stochastic gradients of the loss functionf
at w j . Once the nodes have accumulatedb gradients altogether, they start a distributed vector-sum
operation to calculate the sum of theseb gradients. While the vector-sum operation completes in
the background,µ additional inputs arrive (roughlyµ/k per node) and the system keeps processing
them using the same predictorw j . The gradients of these additionalµ inputs are discarded (to this
end, they do not need to be computed). Although this may seem wasteful, we show that this waste
can be made negligible by choosingb appropriately.

3. For example, all-reduce with the sum operation is a standard operation inMPI.
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Algorithm 3: Distributed mini-batch (DMB) algorithm (running on each node).

for j = 1,2, . . . do
initialize ĝ j := 0
for s= 1, . . . ,b/k do

predictw j

receive inputz sampled i.i.d. from unknown distribution
suffer lossf (w j ,z)
computeg := ∇w f (w j ,z)
ĝ j := ĝ j +g

end
call the distributed vector-sum to compute the sum of ˆg j across all nodes
receiveµ/k additional inputs and continue predicting usingw j

finish vector-sum and compute average gradient ¯g j by dividing the sum byb
set(w j+1,a j+1) = φ

(

a j , ḡ j ,α j
)

end

1 2 . . . k

w j

w j+1

b

µ

Figure 1: Work flow of the DMB algorithm. Within each batchj = 1,2, . . ., each node accumulates
the stochastic gradients of the firstb/k inputs. Then a vector-sum operation across the
network is used to compute the average across all nodes. While the vector-sum operation
completes in the background, a total ofµ inputs are processed by the processors using the
same predictorw j , but their gradients are not collected. Once all of the nodes have the
overall average ¯g j , each node updates the predictor using the same deterministic serial
algorithm.
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Once the vector-sum operation completes, each node holds the sum of theb gradients collected
during batchj. Each node divides this sum byb and obtains the average gradient, which we denote
by ḡ j . Each node feeds this average gradient to the update ruleφ, which returns a new synchronized
predictionw j+1. In summary, during batchj each node processes(b+µ)/k inputs using the same
predictorw j , but only the firstb/k gradients are used to compute the next predictor. Nevertheless,
all b+µ inputs are counted in our regret calculation.

If the network operations are conducted over a spanning tree, then an obvious variants of the
DMB algorithm is to let the root apply the update rule to get the next predictor,and then broadcast
it to all other nodes. This saves repeated executions of the update rule ateach node (but requires
interruption or modification of the standard vector-sum operations in the network communication
model). Moreover, this guarantees all the nodes having the same predictoreven with update rules
that depends on some random bits.

Theorem 4 Let f(w,z) be an L-smooth convex loss function in w for each z∈ Z and assume that
the stochastic gradient∇w f (w,zi) hasσ2-bounded variance for all w∈W. If the update ruleφ has
the serial regret boundψ(σ2,m), then the expected regret of Algorithm 3 over m samples is at most

(b+µ)ψ
(

σ2

b
,

⌈

m
b+µ

⌉)

.

Specifically, ifψ(σ2,m) = 2D2L+2Dσ
√

m, then setting the batch size b= m1/3 gives the expected
regret bound

2Dσ
√

m+2Dm1/3 (LD+σ
√

µ)+2Dσm1/6+2Dσµm−1/6+2µD2L. (8)

In fact, if b= mρ for anyρ ∈ (0,1/2), the expected regret bound is2Dσ
√

m+o(
√

m).

To appreciate the power of this result, we compare the specific bound in Equation (8) with
the ideal serial solution and the naı̈ve no-communication solution discussed in the introduction. It
is clear that our bound is asymptotically equivalent to the ideal serial boundψ(σ2,m)—even the
constants in the dominant terms are identical. Our bound scales nicely with the network latency and
the cluster sizek, becauseµ (which usually scales logarithmically withk) does not appear in the
dominant

√
m term. On the other hand, the naı̈ve no-communication solution has regret bounded

by kψ
(

σ2,m/k
)

= 2kD2L+2Dσ
√

km(see Section 2.2). If 1≪ k≪m, this bound is worse than the
bound in Theorem 4 by a factor of

√
k.

Finally, we note that choosingb asmρ for an appropriateρ requires knowledge ofm in advance.
However, this requirement can be relaxed by applying a standard doubling trick (Cesa-Bianchi and
Lugosi, 2006). This gives a single algorithm that does not takem as input, with asymptotically
similar regret. If we use a fixedb regardless ofm, the dominant term of the regret bound becomes
2Dσ

√

log(k)m/b; see the following proof for details.

Proof Similar to the proof of Theorem 3, we assume without loss of generality thatk dividesb+µ,
we define the function̄f : W×Zb 7→ R as

f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

f (w,zs) ,
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and we use ¯zj to denote thefirst b inputsin batch j. By construction, the function̄f is L-smooth and
its gradients haveσ2/b-bounded variance. The average gradient ¯g j computed by the DMB algorithm
is the gradient off̄ (·, z̄j) evaluated at the pointw j . Therefore,

E

[m/(b+µ)

∑
j=1

(

f̄ (w j , z̄j)− f̄ (w⋆, z̄j)
)

]

≤ ψ
(

σ2

b
,

m
b+µ

)

. (9)

This inequality only involve the additionalµ examples in counting the number of batches asm/b+µ.
In order to count them in the total regret, we notice that

∀ j, E
[

f̄ (w j , z̄j) |w j
]

= E

[

1
b+µ

j(b+µ)

∑
i=( j−1)(b+µ)+1

f (w j ,zi)

∣

∣

∣

∣

w j

]

,

and a similar equality holds for̄f (w⋆,zi). Substituting these equalities in the left-hand-side of
Equation (9) and multiplying both sides byb+µ yields

E

[m/(b+µ)

∑
j=1

j(b+µ)

∑
i=( j−1)(b+µ)+1

(

f (w j ,zi)− f (w⋆,zi)
)

]

≤ (b+µ)ψ
(

σ2

b
,

m
b+µ

)

.

Again, if (b+µ) dividesm, then the left-hand side above is exactly the expected regret of the DMB
algorithm overmexamples. Otherwise, the expected regret can only be smaller.

For the concrete case ofψ(σ2,m) = 2D2L+2Dσ
√

m, plugging in the new values forσ2 andm
results in a bound of the form

(b+µ)ψ
(

σ2

b
,

⌈

m
b+µ

⌉)

≤ (b+µ)ψ
(

σ2

b
,

m
b+µ

+1

)

≤ 2(b+µ)D2L+2Dσ

√

m+
µ
b

m+
(b+µ)2

b
.

Using the inequality
√

x+y+z≤ √x+
√

y+
√

z, which holds for any nonnegative numbersx, y
andz, we bound the expression above by

2(b+µ)D2L+2Dσ
√

m+2Dσ
√

µm
b

+2Dσ
b+µ√

b
.

It is clear that withb=Cmρ for anyρ ∈ (0,1/2) and any constantC> 0, this bound can be written
as 2Dσ

√
m+o(

√
m). Lettingb= m1/3 gives the smallest exponents in theo(

√
m) terms.

In the proofs of Theorem 3 and Theorem 4, decreasing the variance by a factor ofb, as given
in Equation (7), relies on properties of the Euclidean norm. For serial gradient-type algorithms that
are specified with different norms (see the general framework in Appendix A), the variance does not
typically decrease as much. For example, in the dual averaging method specified in Equation (3), if
we useh(w) = 1/(2(p−1))‖w‖2p for somep∈ (1,2], then the “variance” bounds for the stochastic

gradients must be expressed in the dual norm, that is,E‖∇w f (w,z)−∇F(w)‖2q ≤ σ2, whereq =
p/(p−1) ∈ [2,∞). In this case, the variance bound for the averaged function becomes

E
∥

∥∇w f̄ (w, z̄)−∇F(w)
∥

∥

2
q ≤ C(n,q)

σ2

b
,
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whereC(n,q) = min{q−1,O(log(n))} is a space-dependent constant.4 Nevertheless, we can still
obtain a linear reduction inb even for such non-Euclidean norms. The net effect is that the regret
bound for the DMB algorithm becomes 2D

√

C(n,q)σ
√

m+o(
√

m).

4.2 Improving Performance on Short Input Streams

Theorem 4 presents an optimal way of choosing the batch sizeb, which results in an asymptotically
optimal regret bound. However, our asymptotic approach hides a potential shortcoming that occurs
whenm is small. Say that we know, ahead of time, that the sequence length ism= 15,000. More-
over, say that the latency isµ= 100, and thatσ = 1 andL = 1. In this case, Theorem 4 determines
that the optimal batch size isb∼ 25. In other words, for every 25 inputs that participate in the
update, 100 inputs are discarded. This waste becomes negligible asb grows withm and does not
affect our asymptotic analysis. However, ifm is known to be small, we can take steps to improve
the situation.

Assume for simplicity thatb divides µ. Now, instead of running a single distributed mini-
batch algorithm, we runc= 1+µ/b independent interlaced instances of the distributed mini-batch
algorithm on each node. At any given moment,c− 1 instances are asleep and one instance is
active. Once the active instance collectsb/k gradients on each node, it starts a vector-sum network
operation, awakens the next instance, and puts itself to sleep. Note that each instance awakens after
(c−1)b= µ inputs, which is just in time for its vector-sum operation to complete.

In the setting described above,c different vector-sum operations propagate concurrently through
the network. The distributed vector sum operation is typically designed suchthat each network
link is used at most once in each direction, so concurrent sum operationsthat begin at different
times should not compete for network resources. The batch size should indeed be set such that the
generated traffic does not exceed the network bandwidth limit, but the latency of each sum operation
should not be affected by the fact that multiple sum operations take place atonce.

Simply interlacingc independent copies of our algorithm does not resolve the aforementioned
problem, since each prediction is still defined by 1/c of the observed inputs. Therefore, instead of
using the predictions prescribed by the individual online predictors, we use their average. Namely,
we take the most recent prediction generated by each instance, averagethese predictions, and use
this average in place of the original prediction.

The advantages of this modification are not apparent from our theoretical analysis. Each in-
stance of the algorithm handlesm/c inputs and suffers a regret of at most

bψ
(

σ2

b
,1+

m
bc

)

,

and, using Jensen’s inequality, the overall regret using the average prediction is upper bounded by

bcψ
(

σ2

b
,1+

m
bc

)

.

The bound above is precisely the same as the bound in Theorem 4. Despite this fact, we conjecture
that this method will indeed improve empirical results when the batch sizeb is small compared to
the latency termµ.

4. For further details of algorithms usingp-norm, see Xiao (2010, Section 7.2) and Shalev-Shwartz and Tewari(2011).
For the derivation ofC(n,q) see for instance Lemma B.2 in Cotter et al. (2011).
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5. Stochastic Optimization

As we discussed in the introduction, thestochastic optimizationproblem is closely related, but not
identical, to the stochastic online prediction problem. In both cases, there is a loss functionf (w,z)
to be minimized. The difference is in the way success is measured. In online prediction, success is
measured by regret, which is the difference between the cumulative loss suffered by the prediction
algorithm and the cumulative loss of the best fixed predictor. The goal of stochastic optimization is
to find an approximate solution to the problem

minimize
w∈W

F(w), Ez[ f (w,z)] ,

and success is measured by the difference between the expected loss ofthe final output of the
optimization algorithm and the expected loss of the true minimizerw⋆. As before, we assume that
the loss functionf (w,z) is convex inw for anyz∈ Z, and thatW is a closed convex set.

We consider the samestochastic approximationtype of algorithms presented in Algorithm 1,
and define the final output of the algorithm, after processingm i.i.d. samples, to be

w̄m =
1
m

m

∑
j=1

w j .

In this case, the appropriate measure of success is the optimality gap

G(m) = F(w̄m)−F(w⋆) .

Notice that the optimality gapG(m) is also a random variable, because ¯wm depends on the random
samplesz1, . . . ,zm. It can be shown (see, e.g., Xiao, 2010, Theorem 3) that for convexloss functions
and i.i.d. inputs, we always have

E[G(m)] ≤ 1
m
E[R(m)] .

Therefore, a bound on the expected optimality gap can be readily obtained from a bound on the
expected regret of the same algorithm. In particular, iff is anL-smooth convex loss function and
∇w f (w,z) hasσ2-bounded variance, and our algorithm has a regret bound ofψ(σ2,m), then it also
has an expected optimality gap of at most

ψ̄(σ2,m) =
1
m

ψ(σ2,m) .

For the specific regret boundψ(σ2,m) = 2D2L+ 2Dσ
√

m, which holds for the serial algorithms
presented in Section 2, we have

E[G(m)] ≤ ψ̄(σ2,m) =
2D2L

m
+

2Dσ√
m

.

5.1 Stochastic Optimization using Distributed Mini-Batches

Our template of a DMB algorithm for stochastic optimization (see Algorithm 4) is very similar to
the one presented for the online prediction setting. The main difference is that we do not have to
process inputs while waiting for the vector-sum network operation to complete. Again letb be the
batch size, and the number of batchesr = ⌊m/b⌋. For simplicity of discussion, we assume thatb
dividesm.
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Algorithm 4: Template of DMB algorithm for stochastic optimization.

r ←
⌊

m
b

⌋

for j = 1,2, . . . , r do
reset ˆg j = 0
for s= 1, . . . ,b/k do

receive inputzs sampled i.i.d. from unknown distribution
calculategs = ∇w f (w j ,zs)
calculate ˆg j ← ĝ j +gi

end
start distributed vector sum to compute the sum of ˆg j across all nodes
finish distributed vector sum and compute average gradient ¯g j

set(w j+1,a j+1) = φ
(

a j , ḡ j , j
)

end
Output: 1

r ∑r
j=1w j

Theorem 5 Let f(w,z) be an L-smooth convex loss function in w for each z∈ Z and assume that
the stochastic gradient∇w f (w,z) hasσ2-bounded variance for all w∈W. If the update ruleφ used
in a serial setting has an expected optimality gap bounded byψ̄(σ2,m), then the expected optimality
gap of Algorithm 4 after processing m samples is at most

ψ̄
(

σ2

b
,
m
b

)

.

If ψ̄(σ2,m) = 2D2L
m + 2Dσ√

m , then the expected optimality gap is bounded by

2bD2L
m

+
2Dσ√

m
.

The proof of the theorem follows along the lines of Theorem 3, and is omitted.
We comment that the accelerated stochastic gradient methods of Lan (2009), Hu et al. (2009)

and Xiao (2010) can also fit in our template for the DMB algorithm, but with more sophisti-
cated updating rules. These accelerated methods have an expected optimalitybound ofψ̄(σ2,m) =
4D2L/m2+ 4Dσ/

√
m, which translates into the following bound for the DMB algorithm:

ψ̄
(

σ2

b
,
m
b

)

=
4b2D2L

m2 +
4Dσ√

m
.

Most recently, Ghadimi and Lan (2010) developed accelerated stochastic gradient methods for
strongly convex functions that have the convergence rateψ̄(σ2,m) = O(1)

(

L/m2+ σ2/νm
)

, where
ν is the strong convexity parameter of the loss function. The correspondingDMB algorithm has a
convergence rate

ψ̄
(

σ2

b
,
m
b

)

= O(1)

(

b2L
m2 +

σ2

νm

)

.

Apparently, this also fits in the DMB algorithm nicely.
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The significance of our result is that the dominating factor in the convergence rate is not affected
by the batch size. Therefore, depending on the value ofm, we can use large batch sizes without
affecting the convergence rate in a significant way. Since we can run theworkload associated with
a single batch in parallel, this theorem shows that the mini-batch technique is capable of turning
many serial optimization algorithms into parallel ones. To this end, it is important to analyze the
speed-up of the parallel algorithms in terms of the running time (wall-clock time).

5.2 Parallel Speed-Up

Recall thatk is the number of parallel computing nodes andm is the total number of i.i.d. samples
to be processed. Letb(m) be the batch size that depends onm. We define atime-unit to be the
time it takes a single node to process one sample (including computing the gradient and updating
the predictor). For convenience, letδ be the latency of the vector-sum operation in the network
(measured in number of time-units).5 Then the parallel speed-up of the DMB algorithm is

S(m) =
m

m
b(m)

(

b(m)
k +δ

) =
k

1+ δ
b(m)k

,

wherem/b(m) is the number of batches, andb(m)/k+ δ is the wall-clock time byk processors
to finish one batch in the DMB algorithm. Ifb(m) increases at a fast enough rate, then we have
S(m)→ k asm→ ∞. Therefore, we obtain an asymptotically linear speed-up, which is the ideal
result that one would hope for in parallelizing the optimization process (see Gustafson, 1988).

In the context of stochastic optimization, it is more appropriate to measure the speed-up with
respect to the same optimality gap, not the same amount of samples processed.Let ε be a given
target for the expected optimality gap. Letmsrl(ε) be the number of samples that the serial algorithm
needs to reach this target and letmDMB(ε) be the number of samples needed by the DMB algorithm.
Slightly overloading our notation, we define the parallel speed-up with respect to the expected
optimality gapε as

S(ε) =
msrl(ε)

mDMB(ε)
b

(

b
k +δ

)

. (10)

In the above definition, we intentionally leave the dependence ofb on m unspecified. Indeed, once
we fix the functionb(m), we can substitute it into the equation̄ψ(σ2/b,m/b) = ε to solve for the exact
form of mDMB(ε). As a result,b is also a function ofε.

Since bothmsrl(ε) and mDMB(ε) are upper bounds for the actual running times to reachε-
optimality, their ratioS(ε) may not be a precise measure of the speed-up. However, it is difficult in
practice to measure the actual running times of the algorithms in terms of reachingε-optimality. So
we only hopeS(ε) gives a conceptual guide in comparing the actual performance of the algorithms.
The following result shows that if the batch sizeb is chosen to be of ordermρ for anyρ ∈ (0,1/2),
then we still have asymptotic linear speed-up.

Theorem 6 Let f(w,z) be an L-smooth convex loss function in w for each z∈Z and assume that the
stochastic gradient∇w f (w,z) hasσ2-bounded variance for all w∈W. Suppose the update ruleφ
used in the serial setting has an expected optimality gap bounded byψ̄(σ2,m) = 2D2L

m + 2Dσ√
m . If the

5. The relationship betweenδ andµ defined in the online setting (see Section 4) is roughlyµ= kδ.
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batch size in the DMB algorithm is chosen as b(m) = Θ(mρ), whereρ ∈ (0,1/2), then we have

lim
ε→0

S(ε) = k.

Proof By solving the equation
2D2L

m
+

2Dσ√
m

= ε ,

we see that the following number of samples is sufficient for the serial algorithm to reachε-
optimality:

msrl(ε) =
D2σ2

ε2

(

1+

√

1+
2Lε
σ2

)2

.

For the DMB algorithm, we use the batch sizeb(m) = (θσ/DL)mρ, with someθ > 0, to obtain the
equation

2b(m)D2L
m

+
2Dσ√

m
=

2Dσ
m1/2

(

1+
θ

m1/2−ρ

)

= ε. (11)

We usemDMB(ε) to denote the solution of the above equation. ApparentlymDMB(ε) is a monotone
function ofε and limε→0mDMB(ε) = ∞. For convenience (with some abuse of notation), letb(ε) to
denoteb(mDMB(ε)), which is also monotone inε and satisfies limε→0b(ε) = ∞. Moreover, for any
batch sizeb> 1, we havemDMB(ε)≥msrl(ε). Therefore, from Equation (10) we get

limsup
ε→0

S(ε)≤ lim
ε→0

k

1+ δ
b(ε)k

= k.

Next we show liminfε→0S(ε)≥ k. For anyη > 0, let

mη(ε) =
4D2σ2(1+η)2

ε2 .

which is monotone decreasing inε, and can be seen as the solution to the equation

2Dσ
m1/2

(1+η) = ε.

Comparing this equation with Equation (11), we see that, for anyη > 0, there exists anε′ such that
for all 0< ε≤ ε′, we havemDMB(ε)≤mη(ε). Therefore,

liminf
ε→0

S(ε) ≥ lim
ε→0

msrl(ε)
mη(ε)

k

1+ δ
b(ε)k

= lim
ε→0

(

1+
√

1+ 2Lε
σ2

)2

4(1+η)2

k

1+ δ
b(ε)k

=
1

(1+η)2k.

Since the above inequality holds for anyη > 0, we can takeη → 0 and conclude that
liminf ε→0S(ε)≥ k. This finishes the proof.

For accelerated stochastic gradient methods whose convergence rateshave a similar dependence
on the gradient variance (Lan, 2009; Hu et al., 2009; Xiao, 2010; Ghadimi and Lan, 2010), the batch
sizeb has a even smaller effect on the convergence rate (see discussions after Theorem 5), which
implies a better parallel speed-up.
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6. Experiments

We conducted experiments with a large-scale online binary classification problem. First, we ob-
tained a log of one billion queries issued to the Internet search engine Bing.Each entry in the log
specifies a time stamp, a query text, and the id of the user who issued the query(using a temporary
browser cookie). A query is said to behighly monetizableif, in the past, users who issued this
query tended to then click on online advertisements. Given a predefined listof one million highly
monetizable queries, we observe the queries in the log one-by-one and attempt to predict whether
the next query will be highly monetizable or not. A clever search engine could use this prediction to
optimize the way it presents search results to the user. A prediction algorithm for this task must keep
up with the stream of queries received by the search engine, which calls for a distributed solution.

The predictions are made based on the recent query-history of the current user. For example,
the predictor may learn that users who recently issued the queries “island weather” and “sunscreen
reviews” (both not highly monetizable in our data) are likely to issue a subsequent query which is
highly monetizable (say, a query like “Hawaii vacation”). In the next section, we formally define
how each input,zt , is constructed.

First, letn denote the number of distinct queries that appear in the log and assume that we have
enumerated these queries,q1, . . . ,qn. Now definext ∈ {0,1}n as follows

xt, j =

{

1 if queryq j was issued by the current user during the last two hours,

0 otherwise.

Let yt be a binary variable, defined as

yt =

{

+1 if the current query is highly monetizable,

−1 otherwise.

In other words,yt is the binary label that we are trying to predict. Before observingxt or yt , our
algorithm chooses a vectorwt ∈ R

n. Thenxt is observed and the resulting binary prediction is the
sign of their inner product〈wt ,xt〉. Next, the correct labelyt is revealed and our binary prediction is
incorrect ifyt〈wt ,xt〉 ≤ 0. We can re-state this prediction problem in an equivalent way by defining
zt = ytxt , and saying that an incorrect prediction occurs when〈wt ,zt〉 ≤ 0.

We adopt the logistic loss function as a smooth convex proxy to the error indicator function.
Formally, definef as

f (w,z) = log2

(

1+exp(−〈w,z〉)
)

.

Additionally, we introduced the convex regularization constraint‖wt‖ ≤C, whereC is a predefined
regularization parameter.

We ran the synchronous version of our distributed algorithm using the Euclidean dual averaging
update rule (4) in a cluster simulation. The simulation allowed us to easily investigatethe effects of
modifying the number of nodes in the cluster and the latencies in the network.

We wanted to specify a realistic latency in our simulation, which faithfully mimics the behavior
of a real network in a search engine datacenter. To this end, we assumedthat the nodes are connected
via a standard 1Gbs Ethernet network. Moreover, we assumed that the nodes are arranged in a
precomputed logical binary-tree communication structure, and that all communication is done along
the edges in this tree. We conservatively estimated the round-trip latency between proximal nodes
in the tree to be 0.5ms. Therefore, the total time to complete each vector-sum network operation
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Figure 2: The effects of of the batch size when serial mini-batching on average loss. The mini-
batches algorithm was applied with different batch sizes. The x-axis presents the number
of instances observed, and the y-axis presents the average loss. Notethat the caseb= 1
is the standard serial dual-averaging algorithm.

is log2(k) ms, wherek is the number of nodes in the cluster. We assumed that our search engine
receives 4 queries per ms (which adds up to ten billion queries a month). Overall, the number of
queries discarded between mini-batches isµ= 4log2(k).

In all of our experiments, we use the algorithmic parameterα j = L+ γ
√

j (see Theorem 2).
We set the smoothness parameterL to a constant, and the parameterγ to a constant divided by

√
b.

This is becauseL depends only on the loss functionf , which does not change in DMB, whileγ
is proportional toσ, the standard deviation of the gradient-averages. We chose the constants by
manually exploring the parameter space on a separate held-out set of 500million queries.

We report all of our results in terms of the average loss suffered by the online algorithm. This
is simply defined as(1/t)∑t

i=1 f (wi ,zi). We cannot plot regret, as we do not know the offline risk
minimizerw⋆.

6.1 Serial Mini-Batching

As a warm-up, we investigated the effects of modifying the mini-batch sizeb in a standard serial
Euclidean dual averaging algorithm. This is equivalent to running the distributed simulation with a
cluster size ofk= 1, with varying mini-batch size. We ran the experiment withb= 1,2,4, . . . ,1024.
Figure 2 shows the results for three representative mini-batch sizes. Theexperiments tell an in-
teresting story, which is more refined than our theoretical upper bounds. While the asymptotic
worst-case theory implies that batch-size should have no significant effect, we actually observe that
mini-batching accelerates the learning process on the first 108 inputs. On the other hand, after 108

inputs, a large mini-batch size begins to hurt us and the smaller mini-batch sizes gain the lead. This
behavior is not an artifact of our choice of the parametersγ andL, as we observed a similar behavior
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Figure 3: Comparing DBM with the serial algorithm and the no-communication distributed algo-
rithm. Results for a large cluster ofk= 1024 machines are presented on the left. Results
for a small cluster ofk= 32 machines are presented on the right.

for many different parameter setting, during the initial stage when we tuned the parameters on a
held-out set.

Similar transient behaviors also exist for multi-step stochastic gradient methods (see, e.g., Polyak,
1987, Section 4.3.2), where the multi-step interpolation of the gradients also gives the smoothing
effects as using averaged gradients. Typically such methods convergefaster in the early iterations
when the iterates are far from the optimal solution and the relative value of thestochastic noise is
small, but become less effective asymptotically.

6.2 Evaluating DBM

Next, we compared the average loss of the DBM algorithm with the average loss of the serial
algorithm and the no-communication algorithm (where each cluster node works independently). We
tried two versions of the no-communication solution. The first version simply runsk independent
copies of the serial prediction algorithm. The second version runsk independent copies of the
serial mini-batch algorithm, with a mini-batch size of 128. We included the secondversion of the
no-communication algorithm after observing that mini-batching has significantadvantages even in
the serial setting. We experimented with various cluster sizes and various mini-batch sizes. As
mentioned above, we set the latency of the DBM algorithm toµ= 4log2(k). Taking a cue from
our theoretical analysis, we set the batch size tob= m1/3 ≃ 1024. We repeated the experiment for
various cluster sizes and the results were very consistent. Figure 3 presents the average loss of the
three algorithms for clusters of sizesk = 1024 andk = 32. Clearly, the simple no-communication
algorithm performs very poorly compared to the others. The no-communication algorithm that uses
mini-batch updates on each node does surprisingly well, but is still outperformed quite significantly
by the DMB solution.
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Figure 4: The effects of increased network latency. The loss of the DMBalgorithm is reported with
different latencies as measured byµ. In all cases, the batch size is fixed atb= 1024.

6.3 The Effects of Latency

Network latency results in the DMB discarding gradients, and slows down thealgorithm’s progress.
The theoretical analysis shows that this waste is negligible in the asymptotic worst-case sense. How-
ever, latency will obviously have some negative effect on any finite prefix of the input stream. We
examined what would happen if the single-link latency were much larger than our 0.5ms estimate
(e.g., if the network is very congested or if the cluster nodes are scatteredacross multiple datacen-
ters). Concretely, we set the cluster size tok = 1024 nodes, the batch size tob = 1024, and the
single-link latency to 0.5,1,2, . . . ,512 ms. That is, 0.5ms mimics a realistic 1Gbs Ethernet link,
while 512ms mimics a network whose latency between any two machines is 1024 times greater,
namely, each vector-sum operation takes a full second to complete. Note that µ is still computed as
before, namely, for latency 0.5 ·2p, µ= 2p4log2(k) = 2p ·40. Figure 4 shows how the average loss
curve reacts to four representative latencies. As expected, convergence rate degrades monotonically
with latency. When latency is set to be 8 times greater than our realistic estimate for1Gbs Ethernet,
the effect is minor. When the latency is increased by a factor of 1024, the effect becomes more
noticeable, but still quite small.

6.4 Optimal Mini-Batch Size

For our final experiment, we set out to find the optimal batch size for our problem on a given cluster
size. Our theoretical analysis is too crude to provide a sufficient answerto this question. The
theory basically says that settingb = Θ(mρ) is asymptotically optimal for anyρ ∈ (0,1/2), and
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Figure 5: The effect of different mini-batch sizes (b) on the DBM algorithm. The DMB algorithm
was applied with different batch sizesb = 8, . . . ,4096. The loss is reported after 107

instances (left), 108 instances (middle) and 109 instances (right).

that b = Θ(m1/3) is a pretty good concrete choice. We have already seen that larger batchsizes
accelerate the initial learning phase, even in a serial setting. We set the cluster size tok = 32 and
set batch size to 8,16, . . . ,4096. Note thatb = 32 is the case where each node processes a single
example before engaging in a vector-sum network operation. Figure 5 depicts the average loss after
107,108, and 109 inputs. As noted in the serial case, larger batch sizes (b= 512) are beneficial at
first (m= 107), while smaller batch sizes(b= 128) are better in the end (m= 109).

6.5 Discussion

We presented an empirical evaluation of the serial mini-batch algorithm and its distributed version,
the DMB algorithm, on a realistic web-scale online prediction problem. As expected, the DMB
algorithm outperforms the näive no-communication algorithm. An interesting and somewhat unex-
pected observation is the fact that the use of large batches improves performance even in the serial
setting. Moreover, the optimal batch size seems to generally decrease with time.

We also demonstrated the effect of network latency on the performance ofthe DMB algorithm.
Even for relatively large values ofµ, the degradation in performance was modest. This is an encour-
aging indicator of the efficiency and robustness of the DMB algorithm, evenwhen implemented in
a high-latency environment, such as a grid.

7. Related Work

In recent years there has been a growing interest in distributed online learning and distributed opti-
mization.

Langford et al. (2009) address the distributed online learning problem, with a similar motivation
to ours: trying to address the scalability problem of online learning algorithms which are inherently
sequential. The main observation Langford et al. (2009) make is that in manycases, computing the
gradient takes much longer than computing the update according to the online prediction algorithm.
Therefore, they present a pipeline computational model. Each worker alternates between computing
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the gradient and computing the update rule. The different workers are synchronized such that no
two workers perform an update simultaneously.

Similar to results presented in this paper, Langford et al. (2009) attempted to show that it is
possible to achieve a cumulative regret ofO(

√
m) with k parallel workers, compared to theO

(√
km
)

of the näıve solution. However their work suffers from a few limitations. First, their proofs only hold
for unconstrained convex optimization where no projection is needed. Second, since they work in a
model where one node at a time updates a shared predictor, while the other nodes compute gradients,
the scalability of their proposed method is limited by the ratio between the time it takes to compute
a gradient to the time it takes to run the update rule of the serial online learning algorithm.

In another related work, Duchi et al. (2010) present a distributed dual averaging method for
optimization over networks. They assume the loss functions are Lipschitz continuous, but their gra-
dients may not be. Their method does not need synchronization to averagegradients computed at
the same point. Instead, they employ a distributed consensus algorithm on all the gradients gen-
erated by different processors at different points. When applied to the stochastic online prediction
setting, even for the most favorable class of communication graphs, with constant spectral gaps
(e.g., expander graphs), their best regret bound isO

(√
kmlog(m)

)

. This bound is no better than one
would get by runningk parallel machines without communication (see Section 2.2).

In another recent work, Zinkevich et al. (2010) study a method where each node in the network
runs the classic stochastic gradient method, using random subsets of the overall data set, and only
aggregate their solutions in the end (by averaging their final weight vectors). In terms of online
regret, it is obviously the same as runningk machines independently without communication. So a
more suitable measure is the optimality gap (defined in Section 5) of the final averaged predictor.
Even with respect to this measure, their expected optimality gap does not showadvantage over
runningk machines independently. A similar approach was also considered by Nesterov and Vial
(2008) and an experimental study of such a method was reported in Harrington et al. (2003).

A key difference between our DMB framework and many related work is that DMB does not
consider distributed comuting as a constraint to overcome. Instead, our novel use of the variance-
based regret bounds can exploit parallel/distributed computing to obtain the asymptotic optimal
regret bound. Beyond the asymptotic optimality of our bounds, our work has other features that set
it apart from previous work. As far as we know, we are the first to propose a general principled
framework for distributing many gradient-based update rule, with a concrete regret analysis for the
large family of mirror descent and dual averaging update rules. Additionally, our work is the first to
explicitly include network latency in our regret analysis, and to theoretically guarantee that a large
latency can be overcome by setting parameters appropriately.

8. Conclusions and Further Research

The increase in serial computing power of modern computers is out-paced by the growth rate of
web-scale prediction problems and data sets. Therefore, it is necessary to adopt techniques that can
harness the power of parallel and distributed computers.

In this work we studied the problems of distributed stochastic online prediction and distributed
stochastic optimization. We presented a family of distributed online algorithms with asymptotically
optimal regret and optimality gap guarantees. Our algorithms use the distributedcomputing infras-
tructure to reduce the variance of stochastic gradients, which essentially reduces the noise in the
algorithm’s updates. Our analysis shows that asymptotically, a distributed computing system can
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perform as well as a hypothetical fast serial computer. This result is far from trivial, and much of
the prior art in the field did not show any provable gain by using distributed computers.

While the focus of this work is the theoretical analysis of a distributed online prediction algo-
rithm, we also presented experiments on a large-scale real-world problem. Our experiments showed
that indeed the DMB algorithm outperforms other simple solutions. They also suggested that im-
provements can be made by optimizing the batch size and adjusting the learning rate based on
empirical measures.

Our formal analysis hinges on the fact that the regret bounds of many stochastic online update
rules scale with the variance of the stochastic gradients when the loss function is smooth. It is
unclear if smoothness is a necessary condition, or if it can be replaced witha weaker assumption.
In principle, our results apply in a broader setting. For any serial updaterule φ with a regret bound
of ψ(σ2,m) =Cσ

√
m+o(

√
m), the DMB algorithm and its variants have the optimal regret bound

of Cσ
√

m+o(
√

m), provided that the boundψ(σ2,m) applies equally to the functionf and to the
function

f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

f (w,zs) .

Note that this result holds independently of the network sizek and the network latencyµ. Extending
our results to non-smooth functions is an interesting open problem. A more ambitious challenge is
to extend our results to the non-stochastic case, where inputs may be chosen by an adversary.

An important future direction is to develop distributed learning algorithms that perform robustly
and efficiently on heterogeneous clusters and in asynchronous distributed environments. This direc-
tion has been further explored in Dekel et al. (2011). For example, onecan use the following simple
reformulation of the DMB algorithm in a master-workers setting: each workerprocess inputs at its
own pace and periodically sends the accumulated gradients to the master; the master applies the
update rule whenever the number of accumulated gradients reaches a certain threshold and broad-
casts the new predictor back to the workers. In a dynamic environment, where the network can be
partitioned and reconnected and where nodes can be added and removed, a new master (or masters)
can be chosen as needed by a standard leader election algorithm. We refer the reader to Dekel et al.
(2011) for more details.

A central property of our method is that all of the gradients in a batch must betaken at the
same prediction point. In an asynchronous distributed computing environment (see, e.g., Tsitsiklis
et al., 1986; Bertsekas and Tsitsiklis, 1989), this can be quite wasteful. Inorder to reduce the
waste generated by the need for global synchronization, we may need to allow different nodes to
accumulate gradients at different yet close points. Such a modification is likely to work since the
smoothness assumption precisely states that gradients of nearby points aresimilar. There have been
extensive studies on distributed optimization with inaccurate or delayed subgradient information,
but mostly without the smoothness assumption (e.g., Nedić et al., 2001; Nedić and Ozdaglar, 2009).
We believe that our main results under the smoothness assumption can be extended to asynchronous
and distributed environments as well.
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Appendix A. Smooth Stochastic Online Prediction in the Serial Setting

In this appendix, we prove expected regret bounds for stochastic dual averaging and stochastic mir-
ror descent applied to smooth loss functions. In the main body of the paper,we discussed only the
Euclidean special case of these algorithms, while here we present the algorithms and regret bounds
in their full generality. In particular, Theorem 1 is a special case of Theorem 9, and Theorem 2 is a
special case of Theorem 7.

Recall that we observe a stochastic sequence of inputsz1,z2, . . ., where eachzi ∈ Z. Before
observing eachzi we predictwi ∈W, and suffer a lossf (wi ,zi). We assumeW is a closed convex
subset of a finite dimensional vector spaceV with endowed norm‖ · ‖. We assume thatf (w,z) is
convex and differentiable inw, and we use∇w f (w,z) to denote the gradient off with respect to its
first argument.∇w f (w,z) is a vector in the dual spaceV ∗, with endowed norm‖ · ‖∗.

We assume thatf (·,z) is L-smooth for any realization ofz. Namely, we assume thatf (·,z) is
differentiable and that

∀z∈ Z, ∀w,w′ ∈W, ‖∇w f (w,z)−∇w f (w′,z)‖∗ ≤ L‖w−w′‖ .

We defineF(w) = Ez[ f (w,z)] and note that∇wF(w) = Ez[∇w f (w,z)] (see Rockafellar and Wets,
1982). This implies that

∀w,w′ ∈W, ‖∇wF(w)−∇wF(w′)‖∗ ≤ L‖w−w′‖ .

In addition, we assume that there exists a constantσ≥ 0 such that

∀w∈W, Ez[‖∇w f (w,z)−∇wEz[ f (w,z)]‖2∗]≤ σ2 .

We assume thatw⋆ = argminw∈W F(w) exists, and we abbreviateF⋆ = F(w⋆).
Under the above assumptions, we are concerned with bounding the expected regretE[R(m)],

where regret is defined as

R(m) =
m

∑
i=1

( f (wi ,zi)− f (w⋆,zi)) .

In order to present the algorithms in their full generality, we first recall theconcepts of strongly
convex function and Bregman divergence.

A functionh : W→ R∪{+∞} is said to beµ-strongly convexwith respect to‖ · ‖ if

∀α ∈ [0,1], ∀u,v∈W, h(αu+(1−α)v)≤ αh(u)+(1−α)h(v)− µ
2

α(1−α)‖u−v‖2 .

If h is µ-strongly convex then for anyu∈ domh, andv∈ domh that is sub-differentiable, then

∀s∈ ∂h(v), h(u)≥ h(v)+ 〈s,u−v〉+ µ
2
‖u−v‖2 .
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(See, e.g., Goebel and Rockafellar, 2008.) If a functionh is strictly convex and differentiable (on an
open set contained in domh), then we can defined the Bregman divergence generated byh as

dh(u,v) = h(u)−h(v)−〈∇h(v), u−v〉 .

We often drop the subscripth in dh when it is obvious from the context. Some key properties of the
Bregman divergence are:

• d(u,v)≥ 0, and the equality holds if and only ifu= v.

• In generald(u,v) 6= d(v,u), andd may not satisfy the triangle inequality.

• The followingthree-point identityfollows directly from the definition:

d(u,w) = d(u,v)+d(v,w)+ 〈∇h(v)−∇h(w),u−v〉 .

The following inequality is a direct consequence of theµ-strong convexity ofh:

d(u,v)≥ µ
2
‖u−v‖2 . (12)

A.1 Stochastic Dual Averaging

The proof techniques for the stochastic dual averaging method are adapted from those for the accel-
erated algorithms presented in Tseng (2008) and Xiao (2010).

Let h : W→ R be a 1-strongly convex function. Without loss of generality, we can assume that
minw∈W h(w) = 0. In the stochastic dual averaging method, we predict eachwi by

wi+1 = argmin
w∈W

{〈

i

∑
j=1

g j ,w

〉

+(L+βi+1)h(w)

}

, (13)

whereg j denotes the stochastic gradient∇w f (w j ,zj), and (βi)i≥1 is a sequence of positive and
nondecreasing parameters (i.e.,βi+1≥ βi). As a special case of the above, we initializew1 to

w1 = argmin
w∈W

h(w) . (14)

We are now ready to state a bound on the expected regret of the dual averaging method, in the
smooth stochastic case.

Theorem 7 The expected regret of the stochastic dual averaging method is bounded as

∀m, E[R(m)]≤ (F(w1)−F(w⋆))+(L+βm)h(w
⋆)+

σ2

2

m−1

∑
i=1

1
βi
.

The optimal choice ofβi is exactly of order
√

i. More specifically, letβi = γ
√

i, whereγ is a
positive parameter. Then Theorem 7 implies that

E[R(m)]≤ (F(w1)−F(w⋆))+Lh(w⋆)+

(

γh(w⋆)+
σ2

γ

)√
m.
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Choosingγ = σ/
√

h(w⋆) gives

E[R(m)]≤ (F(w1)−F(w⋆))+Lh(w⋆)+
(

2σ
√

h(w⋆)
)√

m.

If ∇F(w⋆) = 0 (this is certainly the case ifW is the whole space), then we have

F(w1)−F(w⋆)≤ L
2
‖w1−w⋆‖2≤ Lh(w⋆).

Then the expected regret bound can be simplified as

E[R(m)]≤ 2Lh(w⋆)+
(

2σ
√

h(w⋆)
)√

m.

To prove Theorem 7 we require the following fundamental lemma, which can be found, for
example, in Nesterov (2005), Tseng (2008) and Xiao (2010).

Lemma 8 Let W be a closed convex set,ϕ be a convex function on W, and h be µ-strongly convex
on W with respect to‖ · ‖. If

w+ = argmin
w∈W

{

ϕ(w)+h(w)
}

,

then
∀w∈W, ϕ(w)+h(w)≥ ϕ(w+)+h(w+)+

µ
2
‖w−w+‖2.

With Lemma 8, we are now ready to prove Theorem 7.
Proof First, we define the linear functions

ℓi(w) = F(wi)+ 〈∇F(wi),w−wi〉, ∀ i ≥ 1,

and (using the notationgi = ∇ f (wi ,zi))

ℓ̂i(w) = F(wi)+ 〈gi ,w−wi〉= ℓi(w)+ 〈qi ,w−wi〉,

where
qi = gi−∇F(wi).

Therefore, the stochastic dual averaging method specified in Equation (13) is equivalent to

wi = argmin
w∈W

{

i−1

∑
j=1

ℓ̂ j(w)+(L+βi)h(w)

}

.

Using the smoothness assumption, we have (e.g., Nesterov 2004, Lemma 1.2.3)

F(wi+1) ≤ ℓi(wi+1)+
L
2
‖wi+1−wi‖2

= ℓ̂i(wi+1)+
L+βi

2
‖wi+1−wi‖2−〈qi ,wi+1−wi〉−

βi

2
‖wi+1−wi‖2

≤ ℓ̂i(wi+1)+
L+βi

2
‖wi+1−wi‖2+‖qi‖∗‖wi+1−wi‖−

βi

2
‖wi+1−wi‖2

= ℓ̂i(wi+1)+
L+βi

2
‖wi+1−wi‖2−

(

1
√

2βi
‖qi‖∗−

√

βi

2
‖wi+1−wi‖

)2

+
‖qi‖2∗
2βi

≤ ℓ̂i(wi+1)+
L+βi

2
‖wi+1−wi‖2+

‖qi‖2∗
2βi

. (15)
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Next we use Lemma 8 withϕ(w) = ∑i−1
j=1 ℓ̂ j(w) andµ= (L+βi),

i−1

∑
j=1

ℓ̂ j(wi+1)+(L+βi)h(wi+1)≥
i−1

∑
j=1

ℓ̂ j(wi)+(L+βi)h(wi)+
L+βi

2
‖wi+1−wi‖2,

Combining the above inequality with Equation (15), we have

F(wi+1) ≤ ℓ̂i(wi+1)+
i−1

∑
j=1

ℓ̂ j(wi+1)+(L+βi)h(wi+1)−
i−1

∑
j=1

ℓ̂ j(wi)− (L+βi)h(wi)+
‖qi‖2∗
2βi

≤
i

∑
j=1

ℓ̂ j(wi+1)+(L+βi+1)h(wi+1)−
i−1

∑
j=1

ℓ̂ j(wi)− (L+βi)h(wi)+
‖qi‖2∗
2βi

,

where in the last inequality, we used the assumptionsβi+1 > βi > 0 andh(wi+1)≥ 0. Summing the
above inequality fromi = 1 to i = m−1, we have

m

∑
i=2

F(wi) ≤
m−1

∑
i=1

ℓ̂i(wm)+(L+βm)h(wm)+
m−1

∑
i=1

‖qi‖2∗
2βi

≤
m−1

∑
i=1

ℓ̂i(w
⋆)+(L+βm)h(w

⋆)+
m−1

∑
i=1

‖qi‖2∗
2βi

≤
m−1

∑
i=1

ℓi(w
⋆)+(L+βm)h(w

⋆)+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1

〈qi ,w
⋆−wi〉

≤ (m−1)F(w⋆)+(L+βi)h(w
⋆)+

m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1

〈qi ,w
⋆−wi〉.

Therefore,

m

∑
i=2

(

F(wi)−F(w⋆)
)

≤ (L+βm)h(w
⋆)+

m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1

〈qi ,w
⋆−wi〉. (16)

Notice that eachwi is a deterministic function ofz1, . . . ,zi−1, so

Ezi

(

〈qi ,w
⋆−wi〉 |z1, . . . ,zi−1

)

= 0

by recalling the definitionqi = ∇ f (wi ,zi)−∇F(wi). Taking expectation of both sides of Equa-
tion (16) with respect toz1, . . . ,zm, and adding the termF(w1)−F(w⋆), we have

E

m

∑
i=1

(

F(wi)−F(w⋆)
)

≤ F(w1)−F(w⋆)+(L+βm)h(w
⋆)+

m−1

∑
i=1

σ2

2βi
.

Theorem 7 is proved by further noticing

E f (wi ,zi) = EF(wi), E f (w⋆,zi) = F(w⋆), ∀ i ≥ 1,

which are due to the fact thatwi is a deterministic function ofz0, . . . ,zi−1.
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A.2 Stochastic Mirror Descent

Variance-based convergence rates for the stochastic Mirror Descent methods are due to Juditsky
et al. (2011), and were extended to an accelerated stochastic Mirror Descent method by Lan (2009).
For completeness, we adapt their proofs to the context of regret for online prediction problems.

Again leth : W→R be a differentiable 1-strongly convex function with minw∈W h(w) = 0. Also
let d be the Bregman divergence generated byh. In the stochastic mirror descent method, we use
the same initialization as in the dual averaging method (see Equation (14)) and then we set

wi+1 = argmin
w∈W

{

〈gi ,w〉+(L+βi)d(w,wi)
}

, i ≥ 1.

As in the dual averaging method, we assume that the sequence(βi)i≥1 to be positive and nonde-
creasing.

Theorem 9 Assume that the convex set W is closed and bounded. In addition assumed(u,v) is
bounded on W and let

D2 = max
u,v∈W

d(u,v).

Then the expected regret of the stochastic mirror descent method is bounded as

E[R(m)]≤ (F(w1)−F(w⋆))+(L+βm)D
2+

σ2

2

m−1

∑
i=1

1
βi
.

Similar to the dual averaging case, using the sequence of parametersβi = (σ/D)
√

i gives the
expected regret bound

E[R(m)]≤ (F(w1)−F(w⋆))+LD2+(2σD)
√

m.

Again, if ∇F(w⋆) = 0, we haveF(w1)− F(w⋆) ≤ (L/2)‖w1−w⋆‖2 ≤ Lh(w⋆) ≤ LD2, thus the
simplified bound

E[R(m)]≤ 2LD2+(2σD)
√

m.

We note that here we have stronger assumptions than in the dual averagingcase. These as-
sumptions are certainly satisfied by using the standard Euclidean distanced(u,v) = (1/2)‖u− v‖22
on a compact convex setW. However, it excludes the case of using the KL-divergenced(u,v) =
∑n

i=1ui log(ui/vi) on the simplex, because the KL-divergence is unbounded on the simplex. Nev-
ertheless, it is possible to remove such restrictions by considering other variants of the stochastic
mirror descent method. For example, if we use a constantβi that depends on the prior knowledge
of the number of total steps to be performed, then we can weaken the assumption and replaceD in
the above bounds by

√

h(w⋆). More precisely, we have

Theorem 10 Suppose we know the total number of steps m to be performed by the stochastic mirror
descent method ahead of time. Then by using the initialization in Equation (14)and the constant
parameter

βi =
σ

√

2h(w⋆)

√
m,

we have the expected regret bound

E[R(m)]≤ (F(w1)−F(w⋆))+Lh(w⋆)+σ
√

2h(w⋆)
√

m.
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Theorem 10 is essentially the same as a result in Lan (2009), who also developed an accelerated
versions of the stochastic mirror descent method. To prove Theorem 9 and Theorem 10 we need the
following standard Lemma, which can be found in Chen and Teboulle (1993), Lan et al. (2011) and
Tseng (2008).

Lemma 11 Let W be a closed convex set,ϕ be a convex function on W, and h be a differentiable,
strongly convex function on W. Let d be the Bregman divergence generated by h. Given u∈W, if

w+ = argmin
w∈W

{

ϕ(w)+d(w,u)
}

,

then
ϕ(w)+d(w,u)≥ ϕ(w+)+d(w+,u)+d(w,w+).

We are ready to prove Theorem 9 and Theorem 10.
Proof We start with the inequality in Equation (15). Using Equation (12) withµ= 1 gives

F(wi+1)≤ ℓ̂i(wi+1)+(L+βi)d(wi+1,wi)+
‖qi‖2∗
2βi

. (17)

Now using Lemma 11 withϕ(w) = ℓ̂i(w) yields

ℓ̂i(wi+1)+(L+βi)d(wi+1,wi)≤ ℓ̂i(w
⋆)+(L+βi)d(w

⋆,wi)− (L+βi)d(w
⋆,wi+1).

Combining with Equation (17) gives

F(wi+1) ≤ ℓ̂i(w
⋆)+(L+βi)d(w

⋆,wi)− (L+βi)d(w
⋆,wi+1)+

‖qi‖2∗
2βi

= ℓi(w
⋆)+(L+βi)d(w

⋆,wi)− (L+βi+1)d(w
⋆,wi+1)+(βi+1−βi)d(w

⋆,wi+1)

+
‖qi‖2∗
2βi

+ 〈qi ,w
⋆−wi〉

≤ F(w⋆)+(L+βi)d(w
⋆,wi)− (L+βi+1)d(w

⋆,wi+1)+(βi+1−βi)D
2

+
‖qi‖2∗
2βi

+ 〈qi ,w
⋆−wi〉,

where in the last inequality, we used the definition ofD2 and the assumption thatβi+1 ≥ βi . Sum-
ming the above inequality fromi = 1 to i = m−1, we have

m

∑
i=2

F(wi) ≤ (m−1)F(w⋆)+(L+β1)d(w
⋆,w1)− (L+βm)d(w

⋆,wm)+(βm−β1)D
2

+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1

〈qi ,w
⋆−wi〉.

Notice thatd(w⋆,wi)≥ 0 andd(w⋆,w1)≤ D2, so we have

m

∑
i=2

F(wi)≤ (m−1)F(w⋆)+(L+βm)D
2+

m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1

〈qi ,w
⋆−wi〉.
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The rest of the proof for Theorem 9 is similar to that for the dual averaging method (see arguments
following Equation (16)).

Finally we prove Theorem 10. From the proof of Theorem 9 above, we see that ifβi = βm is a
constant for alli = 1, . . . ,m, then we have

E

m

∑
i=2

(F(wi)−F(w⋆))≤ (L+βm)d(w
⋆,w1)+

σ2

2

m−1

∑
i=1

1
βi
.

Notice that for the above result, we do not need to assume boundedness of W, nor boundedness of
the Bregman divergenced(u,v). Since we usew1 = argminw∈W h(w) and assumeh(w1) = 0 (with-
out loss of generality), it followsd(w⋆,w1)≤ h(w⋆). Plugging inβm = (σ/

√

2h(w⋆))
√

mgives the
desired result.

Appendix B. High-Probability Bounds

For simplicity, the theorems stated throughout the paper involved bounds on theexpected regret,
E[R(m)]. A stronger type of result is a high-probability bound, whereR(m) itself is bounded with
arbitrarily high probability 1− δ, and the bound having only logarithmic dependence onδ. Here,
we demonstrate how our theorems can be extended to such high-probability bounds.

First, we need to justify that the expected regret bounds for the online prediction rules discussed
in Appendix A have high-probability versions. For simplicity, we will focus ona high-probability
version of the regret bound for dual averaging (Theorem 7), but exactly the same technique will
work for stochastic mirror descent (Theorem 9 and Theorem 10). With these results in hand, we
will show how our main theorem for distributed learning using the DMB algorithm(Theorem 4)
can be extended to a high-probability version. Identical techniques will work for the other theorems
presented in the paper.

Before we begin, we will need to make a few additional mild assumptions. First, we assume
that there are positive constantsB,G such that| f (w,z)| ≤ B and‖∇w f (w,z)‖ ≤G for all w∈W and
z∈ Z. Second, we assume that there is a positive constantσ̂ such that Varz( f (w,z)− f (w⋆,z))≤ σ̂2

for all w∈W (note thatσ̂2 ≤ 4B2 always holds). Third, thatW has a bounded diameterD, namely
‖w−w′‖ ≤ D for all w,w′ ∈W.

Under these assumptions, we can show the following high-probability version of Theorem 7.

Theorem 12 For any m and anyδ ∈ (0,1], the regret of the stochastic dual averaging method is
bounded with probability at least1−δ over the sampling of z1, . . . ,zm by

R(m)≤ (F(w1)−F(w⋆))+(L+βm)h(w
⋆)+

σ2

2

m−1

∑
i=1

1
βi

+2log(2/δ)
(

DG+
2G2

β1

)

√

√

√

√

1+36
G2σ2 ∑m

i=1
1
β2

i
+D2σ2m

log(2/δ)

+4log(2/δ)B

√

1+
18mσ̂2

log(2/δ)
.
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Proof The proof of the theorem is identical to the one of Theorem 7, up to Equation(16):

m

∑
i=2

(

F(wi)−F(w⋆)
)

≤ (L+βm)h(w
⋆)+

m−1

∑
i=1

‖qi‖2
2βi

+
m−1

∑
i=1

〈qi ,w
⋆−wi〉. (18)

In the proof of Theorem 7, we proceeded by taking expectations of bothsides with respect to the
sequencez1, . . . ,zm. Here, we will do things a bit differently.

The main technical tool we use is a well-known Bernstein-type inequality for martingales (e.g.,
Cesa-Bianchi and Lugosi, 2006, Lemma A.8), an immediate corollary of whichcan be stated as fol-
lows: supposex1, . . . ,xm is a martingale difference sequence with respect to the sequencez1, . . . ,zm,
such that|xi | ≤ b, and let

v=
m

∑
i=1

Var(xi |z1, . . . ,zi−1).

Then for anyδ ∈ (0,1), it holds with probability at least 1−δ that

m

∑
i=1

xi ≤ blog(1/δ)

√

1+
18v

log(1/δ)
. (19)

Recall the definitionqi = ∇ f (wi ,zi)−∇F(wi), and letσ2
i = E[‖qi‖2]. Note thatσ2

i ≤ σ2. We
will first use this result for the sequence

xi =
‖qi‖2−σ2

i

2βi
+ 〈qi ,w

⋆−wi〉.

It is easily seen thatEzi [xi |z1, . . . ,zi−1] = 0, so it is indeed a martingale difference sequence w.r.t.
z1, . . . ,zm. Moreover,|〈qi ,w⋆−wi〉| ≤ D‖qi‖ ≤ 2DG, ‖qi‖2 ≤ 4G2. In terms of the variances, let
Varzi andEzi be shorthand for the variance (resp. expectation) overzi conditioned overz1, . . . ,zi−1.
Then

Varzi (xi)≤ 2Varzi

(‖qi‖2−σ2
i

2βi

)

+2Varzi (〈qi ,w
⋆−wi〉)

≤ 1
2
Ezi

(‖qi‖4
β2

i

)

+2Ezi [(〈qi ,w
⋆−wi〉)2]

≤ 2G2
Ezi

(‖qi‖2
β2

i

)

+2‖w⋆−wi‖2Ezi [‖qi‖2]

≤ 2G2 σ2
i

β2
i

+2D2σ2
i ≤ 2G2 σ2

β2
i

+2D2σ2.

Combining these observations with Equation (19), we get that with probability at least 1−δ,

m−1

∑
i=1

‖qi‖2−σ2

βi
+ 〈qi ,w

⋆−wi〉 ≤
(

2DG+
4G2

β1

)

log(1/δ)

√

√

√

√

1+36
G2σ2 ∑m

i=1
1
β2

i
+D2σ2m

log(1/δ)
. (20)

A similar type of bound can be derived for the sequencexi = ( f (wi ,zi)− f (w⋆,zi))−
(F(wi)−F(w⋆)). It is easily verified to be a martingale difference sequence w.r.t.z1, . . . ,zm, since

E [( f (wi ,zi)− f (w⋆,zi))− (F(wi)−F(w⋆)) |z1, . . . ,zi−1] = 0.
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Also,
|( f (wi ,zi)− f (w⋆,zi))− (F(wi)−F(w⋆))| ≤ 4B,

and

Varzi

((

f (wi ,zi)− f (w⋆,zi)
)

−
(

F(wi)−F(w⋆)
))

= Varzi

(

f (wi ,zi)− f (w⋆,zi)
)

≤ σ̂2 .

So again using Equation (19), we have that with probability at least 1−δ that

m

∑
i=1

( f (wi ,zi)− f (w⋆,zi))− (F(wi)−F(w⋆))≤ 4Blog(1/δ)

√

1+
18mσ̂2

log(1/δ)
. (21)

Finally, addingF(w1)−F(w⋆) to both sides of Equation (18), and combining Equation (20) and
Equation (21) with a union bound, the result follows.

Comparing the theorem to Theorem 7, and assuming thatβi = Θ(
√

i), we see that the bound has
additionalO(

√
m) terms. However, the bound retains the important property of having the dominant

terms multiplied by the variancesσ2, σ̂2. Both variances become smaller in the mini-batch setting,
where the update rules are applied over averages ofb such functions and their gradients. As we did
earlier in the paper, let us think of this bound as an abstract functionψ(σ2, σ̂2,δ,m). Notice that
now, the regret bound also depends on the function varianceσ̂2, and the confidence parameterδ.

Theorem 13 Let f is an L-smooth convex loss function. Assume that the stochastic gradient
∇w f (w,zi) is bounded by a constant and hasσ2-bounded variance for all i and all w, and that
f (w,zi) is bounded by a constant and hasσ̂2-bounded variance for all i and for all w. If the update
rule φ has a serial high-probability regret boundψ(σ2, σ̂2,δ,m). then with probability at least1−δ,
the total regret of Algorithm 3 over m examples is at most

(b+µ)ψ
(

σ2

b
,
σ̂2

b
,δ,1+

m
b+µ

)

+O

(

σ̂
√

(

1+
µ
b

)

log(1/δ)m
)

.

Comparing the obtained bound to the one in Theorem 4, we note that we pay anadditional
O(
√

m) factor.
Proof The proof closely resembles the one of Theorem 4. We let ¯zj denote the firstb inputs on
batch j, and definef̄ as the average loss on these inputs. Note that for anyw, the variance of̄f (w, z̄j)
is at mostσ̂2/b, and the variance of∇w f̄ (w,z) is at mostσ2/b. Therefore, with probability at least
1−δ, it holds that

m̄

∑
j=1

(

f̄ (w j , z̄j)− f̄ (w⋆, z̄j)
)

≤ ψ
(

σ2

b
,
σ̂2

b
,δ,m̄

)

. (22)

wherem̄ is the number of inputs given to the update ruleφ. Let Z j denote the set of all examples
received between the commencement of batchj and the commencement of batchj +1, including
the vector-sum phase in between (b+µ examples overall). In the proof of Theorem 4, we had that

E
[(

f̄ (w j , z̄j)− f̄ (w⋆, z̄j)
)

|w j
]

= E

[

1
b+µ ∑

z∈Z j

( f (w j ,zi)− f (w⋆,zi))
∣

∣

∣
w j

]

,
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and thus theexpected valueof the left-hand side of Equation (22) equals the total regret, divided by
b+µ. Here, we need to work a bit harder. To do so, note that the sequence of random variables

(

1
b ∑

z∈z̄j

(

f (w j ,z)− f (w⋆,z)
)

)

−
(

1
b+µ ∑

z∈Z j

(

f (w j ,z)− f (w⋆,z)
)

)

,

indexed byj, is a martingale difference sequence with respect toZ1,Z2, . . .. Moreover, conditioned
on Z1, . . . ,Z j−1, the variance of each such random variable is at most 4σ̂2/b. To see why, note
that the first sum has conditional varianceσ̂2/b, since the summands are independent and each has
varianceσ̂2. Similarly, the second sum has conditional varianceσ̂2/(b+µ) ≤ σ̂2/b. Applying the
Bernstein-type inequality for martingales discussed in the proof of Theorem 12, we get that with
probability at least 1−δ,

m̄

∑
j=1

1
b+µ ∑

z∈Z j

(

f (w j ,z)− f (w⋆,z)
)

≤
m̄

∑
j=1

1
b ∑

z∈z̄j

(

f (w j ,z)− f (w⋆,z)
)

+O

(

σ̂
√

m̄log(1/δ)
b

)

,

where theO-notation hides only a (linear) dependence on the absolute bound over| f (w,z)| for all
w,z, that we assume to hold.

Combining this and Equation (22) with a union bound, we get that with probabilityat least 1−δ,

m̄

∑
j=1

∑
z∈Z j

(

f (w j ,z)− f (w⋆,z)
)

≤ (b+µ)ψ
(

σ2

b
,
σ̂2

b
,δ,

m
b+µ

)

+O

(

(b+µ)σ̂
√

m̄log(1/δ)
b

)

.

If b+µ dividesm, thenm̄= m/(b+µ), and we get a bound of the form

(b+µ)ψ
(

σ2

b
,
σ̂2

b
,δ,

m
b+µ

)

+O

(

σ̂
√

(

1+
µ
b

)

log(1/δ)m
)

.

Otherwise, we repeat the ideas of Theorem 3 to get the regret bound.
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