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Adjoint-based iterative methods are employed in order to compute linear
optimal disturbances in a spatially growing boundary layer around an elliptic
leading edge. The Lagrangian approach is used where an objective function
is chosen and constraints are assigned. The optimisation problem is solved
using power iterations combined with a matrix-free formulation, where the
state is marched forward in time with a standard DNS solver and backward
with the adjoint solver until a chosen convergence criterion is fulfilled. We
consider the global and the upstream localised optimal initial condition leading
to the largest possible energy amplification at time T . We found that the two-
dimensional initial condition with the largest potential for growth is a Tolmien-
Schlichting-like wave packet that includes the Orr mechanism and is located
inside the boundary layer, downstream of the leading edge. Three-dimensional
disturbances induce streaks by the lift-up mechanism. Localised optimal initial
condition enables us to better study the effects of the leading edge; with this
approach we propose a new method to study receptivity. Two-dimensional
upstream disturbances, are inefficient at triggering an unstable eigenmode. The
three-dimensional disturbances instead induce elongated streamwise streaks;
both the global and upstream localised disturbances give significant growth.
This advocates for high receptivity to three-dimensional disturbances.

1. Introduction

The flat plate boundary layer has been a test-bed for various approaches when
studying hydrodynamic stability. Its relevance arises from the fact that, even if
is a fairly simple flow, it contains features of many external flows; thus it is good
model for them. In stability studies further simplified versions of the general
case are often used with approximations like the locally-parallel assumption
with a Fourier decomposition in the streamwise direction (Butler & Farrell
1992; Reddy & Henningson 1993) or slowly varying flow, with parabolized
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equations (Andersson et al. 1999; Luchini 2000; Levin & Henningson 2003;
Tempelmann et al. 2010)). Two and three-dimensional disturbances have been
studied using global modes, and offer an accurate representation of the stability
of the growing boundary layer (Åkervik et al. 2008). However the effect of the
leading edge has not been considered so far.

Recently, with the development of the time-stepper technique, it has be-
come possible to tackle more complicated flow cases with two and three-
dimensional disturbances. Essentially stability studies are possible for any type
of flow case and/or geometry for which a direct numerical simulation is feasi-
ble. The only requirement is a numerical solver of the time-dependent linearised
Navier-Stokes equations and the corresponding adjoint problem. This the ap-
proach first adopted by Tuckerman & Barkley (2000) and later by Barkley et al.
(2008), Blackburn et al. (2008) and Theofilis (2011) to cite a few names.

This project is an extension to previous work by Monokrousos et al. (2010)
where optimal disturbances were computed for the case of the flat plate bound-
ary layer. Here we take a step further and include the leading edge of the plate
while we still retain a fairly high Reynolds number where typically transitional
or even turbulent flow is observed. In particular we focus on the effect of the
leading edge, how it can change the optimal disturbances and how the boundary
layer can be optimally excited by disturbances coming from the outside.

The flow case, for the chosen parameters is classified as noise amplifier, in
contrast to an oscillator. It is characterised by convectively instabilities when
studied with the local approach. From the global point of view the flow is
asymptotically stable to linear disturbances. Hence it is more relevant to look
at the transient growth problem or non-modal analysis.

2. Formulation

The equations to be solved are the linearised Navier-Stokes in the incompress-
ible regime:

∂tu + (U · ∇)u + (u · ∇)U = −∇p+Re−1∆u + g, (1)

∇ · u = 0.

The Lagrangian approach is used where an objective function is chosen and
constraints are assigned. We are looking for stationary points of the Lagrange
functional with respect to the different design variables where optimality is
fulfilled. The method is equivalent to finding the leading eigenpair of composite
direct and adjoint Navier-Stokes evolution operator. The quantity we choose
to maximise, i.e. the objective function, is the disturbance kinetic energy at
the final time

J (u) = (u(T ),u(T )). (2)

The chosen constrains are the demand for u to satisfy the linearised Navies-
Stokes and, since we work in the linear framework, we force our initial condition
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to unit energy. Hence the Lagrangian functional is written as:

L(u,u∗, γ) = J −
∫ T

0

(u∗, (∂t −A)u) dt− γ ((u(0),u(0)) − 1) . (3)

To solve the optimisation problem a matrix-free method is employed, where
the state is marched forward in time with a standard direct numerical solver
and backward with the corresponding adjoint solver until a chosen convergence
criterion is fulfilled.

The problem is initialised with a random field, usually noise. The governing
equations are iterated until the action of the combined forward and backward
time marching corresponds to pure stretching of the initial condition, i.e. p0 =
λq0, with q0 being the initial perturbation, p0 the final field from the adjoint
solution and λ a scalar. At convergence q0 is the optimal disturbance and also
an eigenvector of the operator H†H where H corresponds to the direct operator
and H† to the adjoint: H†Hq0 = λq0. The action of H therefore amounts to
integrating the linearised Navier-Stokes equations to final time T , where T
becomes a parameter of the optimisation.

A similar procedure is applied to find the optimal initial condition localised
upstream of the leading edge that undergoes the largest possible amplification
as it travels downstream, penetrating the boundary layer. With this approach,
we propose a systematic and direct method to compute the receptivity of the
boundary layer to external disturbances as the computed optimal modes can
be used as a projection basis to quantify the ability of incoming free-stream
disturbances to initiate perturbations in the boundary layer. The formulation
for localised optimal disturbances was first developed by Monokrousos et al.
(2010). The optimisation problem is slightly different from the one described
above. The new Lagrangian reads

L(u,u∗, γ) = (u(T ),u(T )) −
∫ T

0

(u∗, (∂t −A)u) dt

−γ ((u(0),u(0))Λ − 1) − (ψ,∇ · u(0))Λ (4)

where the initial condition must exist only inside the sub-domain Λ. Addi-
tionally the optimal perturbation must be divergence-free. The inner product
defined by (·, ·)Λ corresponds to an integral in Λ. For the full derivation we
refer to Monokrousos et al. (2010).

3. Numerical approach

3.1. Numerical code

The governing equations are solved with the spectral element code Nek5000,
developed by Tufo & Fischer (2001). The equations are solved by a weighted
residual spectral element method (Patera 1984), which allows multi-domain
decomposition while preserving high order accuracy. Inside each sub-domain,
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refereed to as spectral element, the fields are represented by a spectral decom-
position to Legendre polynomials and the grid points follow the Gauss-Lobatto
Legendre distribution. For further details see Fischer et al. (2008).

The optimisation problem for the optimal initial condition is validated
against previous results from Monokrousos et al. (2010).

3.2. Flow case

We consider a flow around a flat plate with an elliptic leading edge. The leading
edge is a modified super-ellipse:

(y

b

)2

= 1 −
(
a− x

a

)p

where p = 2 +
(x

a

)2

. (5)

that has zero curvature at the juncture with the flat section so that no distur-
bances are introduced by the plate itself. The ratio a

b defines the bluntness and
is chosen here a

b = 6 which corresponds to a relatively blunt shape, Schrader

et al. (2010). The Reynolds number of the flow is Re = bU
ν based on the half

thickness of the plate (b), the free-stream velocity (U) and the kinematic vis-
cosity of the fluid (ν). Most of the results presented correspond to Reynolds
number Re = 3000. We also include few results for a case of lower Reynolds
number, Re = 1000. In some cases we also provide the Reynolds number based
on the distance from the leading edge Rex = xU

ν where x is the distance from
the leading edge.

In figure 1a) and 1b) the two velocity components of the base flow are
shown. Since the flow is globally stable, the base flow is computed marching in
time the full non-linear Navier-Stokes equations until a steady state is obtained.
The boundary conditions are computed by solving the Euler equations in a
domain much larger than our computational domain. A strong deceleration
of the flow is observed near the stagnation point, immediately downstream a
strong vertical velocity component. Further downstream a thin boundary layer
is developing. The computational box extends downstream up to 100 − 200
units (plate half-with b) depending on the case. For a validation of the base
flow see Schrader et al. (2010).

3.3. Resolution

Since we are using the spectral element method, we decompose our domain
in several, relatively large elements. In particular, we used polynomial order
10, which implies 100 points per element for the 2D case and 1000 for the
3D. The total number of elements depends on the length of the box. We run
the 2D cases in a longer box (in order to be able to observe an unstable wave
packet) using 3040 elements, 19 in the direction normal to the plate and 160
along the plate. The total number of points is 304000. In the 3D cases the
computational box was typically shorter and thus we used 124 elements in the
streamwise direction. However we needed 3 elements in the spanwise direction
to resolve the modulation of the Fourier modes and this gives a total number of
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Figure 1. Contours of the streamwise (a) and wall-normal
(b) velocity components of the base flow for Re = 3000. The
plot has equal scaling in the two directions. c) Element grid
(without the Gauss-Lobatto Legendre points)

elements of 7068. For 3D elements the total number of points is thus 7068000.
In both cases we cluster the elements both in the wall-normal direction near
the wall and along the plate near the area of the leading edge. A section of the
computational grid located around the leading edge is shown in figure 1c).

4. Results

We investigate the disturbances that give the largest transient energy growth.
In order to determine the structure in question we loop over different optimi-
sation times. Additionally since the base flow is homogeneous in the spanwise
direction, disturbances of different spanwise periodicity are considered sepa-
rately. Owing to the cost of each optimisation loop, relatively few cases are
considered. However, we are confident that the optimal structures are captured
and the essential physical mechanisms are included.
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Figure 2. Disturbance energy vs optimisation times for Re =
1000 (a) and Re = 3000 (b) and 2D disturbances.

4.1. Optimal initial conditions

First we consider optimal initial condition where no assumptions are made
about the location. Two and three dimensional cases are studied.

4.1.1. Two-dimensional optimal initial conditions

Two different cases are investigated for the two-dimensional disturbances, one
that corresponding to high (Re = 3000) and low (Re = 1000) Reynolds number.

In figure 2 the disturbance energy growth is shown for the two cases for
various optimisation times. The red line is the energy envelope. Figure 2a)
shows results for low Reynolds number (Re = 1000) where the boundary layer
is locally stable all the way down to the outflow. Here the Reynolds number
based on the distance to the leading edge is Rex = 105. Hence the only way
to have energy growth is through the Orr-mechanism. Anything that acts on
a longer time scale will only give energy decay.

Figure 2b) reports results for the higher Reynolds number (Re = 3000).
In this case we observe that locally unstable Tolmien-Schlichting (TS) wave
packets are generated and amplify exponentially as they are convected down-
stream. The maximum time for energy growth is here governed by the down-
stream extension of the computational box; indeed a longer box would allow
longer optimisation times and more space for the exponential instability to
grow. Additionally, we note a local maximum for short optimisation times
which corresponds again to a pure Orr-mechanism which is active on small
time scales. The energy decay seen for large optimisation time is due to the
fact that these disturbances gradually exit our computational domain and thus
their measurable energy decay.

In figure 3 the spatial structures of the optimal disturbances are shown for
the two Reynolds numbers where the optimal times are T = 12 (Re = 1000) and
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Figure 3. Spatial structures for optimal initial condition
and the corresponding responses. Re = 1000, initial condi-
tion: a) streamwise component, b) wall-normal component;
response: c) streamwise component, d) wall-normal compo-
nent. Re = 3000, initial condition: e) streamwise component,
f) wall-normal component; response: g) streamwise compo-
nent, h) wall-normal component.

T = 300 (Re = 3000). The structures look rather similar, Orr-structures gen-
erating wave-packets, in both cases (also seen by Monokrousos et al. (2010) and

Åkervik et al. (2008)). However, in the low-Reynolds number case, the energy
of the wave-packet decays after the initial increase. Additionally the distur-
bance is initiated further downstream (relative to the high-Reynolds number
case) close to the outflow, exploiting the higher Reynolds number.

4.1.2. Three-dimensional optimal initial conditions

Considering three dimensional disturbances, one additional parameter enters
the problem, namely the spanwise wavenumber β. To determine the optimal
β we need to loop over an additional parameter, as we do for the optimisation
time. This leads to a two-dimensional parameter space we need to explore.

In figure (4) we plot iso-contours of energy growth for different optimisation
times T and spanwise wavenumbers β. We see a clear peak at T = 90 and
β = 2.0. To understand the physical mechanisms behind it we consider the
spatial distribution of the disturbance velocities. The three components of the
optimal initial condition are shown in figure 5a) and the corresponding response
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Figure 4. Contours of energy gain for different final times
and spanwise wavenumbers. The Reynolds number is Re =
3000.

Initial disturbance Response
Streamwise 6.3 % 91.3%
Wall-normal 28.6% 1.8 %

Spanwise 65.1% 6.9%

Table 1. The table shows the component-wise energy content
of each component for the initial and final condition. The
energy growth was G = 1.3 · 103

in 5b) while the component-wise energy content is shown in table 1. The time
evolution of the three components of the disturbance energy of the perturbation
is shown in figure 6.

In table 1 we can see the strong component-wise energy transfer which im-
plies that the lift-up mechanism is active: streamwise vortices induce stream-
wise streaks inside the boundary layer. Similar results were obtained by Ander-
sson et al. (1999) using the boundary layer equations and by Monokrousos et al.
(2010) in the global framework without the leading edge. The flow structures
are plotted in figure 5b). Additionally we can see that the Orr-mechanism with
the characteristic upstream leaning structures contribute to some energy gain.

For longer optimisation times a rapid decay of the amplification is observed
due to the limited box size, as seen in figure (4). As we increase the optimisation
time, the disturbance is forced to move upstream in order to avoid leaving the
domain within that time and at some point it goes upstream from the plate,
towards the area of the flow where there is not shear. On the other hand for
short times, the lift-up mechanism does not have enough time to fully exploit
the shear of the boundary layer.
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a) b)

Figure 5. Optimal initial condition (a) and the correspond-
ing flow response (b). Streamwise, wall-normal and spanwise
velocities are shown from the top to bottom. The energy
growth is G = 1.3 · 103, the Reynolds number, Re = 3000.
The Reynolds number at the outflow based on the distance
from the leading edge is Rex = 300000.

As mentioned above the reported Reynolds number is defined using the
free-stream velocity, the half-width of the plate and the fluid viscosity. This
implies that all lengths and wavenumbers are scaled with the half-width of
the plate. In order to compare with the results from previous studies like
Monokrousos et al. (2010), where the wavenumber is scaled with the displace-
ment thickness, the length is multiplied with the ratio of the two Reynolds
numbers since the free-stream velocity and the viscosity are equal in both cases.
In those units the optimal wavenumber is β∗ = 0.67 which is comparable to
the value retrieved by Monokrousos et al. (2010) (β∗ = 0.55). We should also
mention that a variation is to be expected due to the inclusion of the leading
edge in the computation.

4.2. Localised optimal initial conditions

We study optimal initial conditions that are forced to be localised in space.
The used method is extensively described in Monokrousos et al. (2010). These
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Figure 6. Disturbance energy versus time for the optimal ini-
tial condition. Three velocity components are shown, stream-
wise (blue), spanwise (red) and wall-normal (green). The Rey-
nolds number is Re = 3000. The Reynolds number as the
outflow based on the distance from the leading edge is Rex =
300000.

type of optimals allow us to study how a disturbance optimally penetrates the
boundary layer around the curved leading edge and subsequently generates a
perturbation that can have a strong growth downstream inside the boundary
layer.

4.2.1. Two-dimensional disturbances

First we study two-dimensional disturbances. We enforce the initial perturba-
tions to exist in a sub-domain upstream from the leading edge, and thereafter
the optimisation procedure gives the optimal spatial distribution inside the
sub-domain. In this way we can specifically study the receptivity features.
The results we obtained for this case were much in line with Schrader et al.
(2010). The upstream-localised disturbances are proven to be rather ineffi-
cient in penetrating the boundary layer. They loose a lot of energy during the
initial phase and furthermore, the disturbance generated inside the boundary
layer consists of a wavepacket characterised by a relatively high streamwise
wavenumber larger than that corresponding to the unstable TS-wave. Conse-
quently the exponential instability is not efficiently initiated resulting a weak
growth in the process.

It appears that the optimisation procedure favours a stable wave-packet
over the unstable since it probably has better penetration properties (for this
bluntness). In other words, waves of spatial scale of the unstable modes pene-
trate inefficiently the boundary layer.

To enhance the growth of the wave-packet we would need a much longer
computational domain with sufficient space for it to grow exponentially but
this would render this computation very expensive.
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Figure 7. Contours of energy gain for different final times
and spanwise wavenumbers (localised initial condition). The
Reynolds number is Re = 3000.

4.2.2. Three-dimensional disturbances

As before, we perform a parametric study to find the optimal time and span-
wise wavenumber β. In figure (4) iso-contours of energy growth for different
optimisation times and spanwise wavenumbers are shown for the case of the up-
stream localised disturbance. The red dot corresponds to the maximum. The
optimal disturbance occurs for T = 125 and β = 2.8. Comparing the values to
the non-localised optimal we see two main differences. First the optimisation
time is longer and also β is higher. The increased time was expected since the
perturbation spends some time upstream from the leading edge and during the
penetration phase.

We have seen already that the receptivity to purely two-dimensional distur-
bances is very weak. That can possibly explain why the optimal β is increased
for the upstream localised case, it may become less optimal with respect to the
lift-up mechanism but at the same time is less damped by the presence of the
leading edge. The two trends seem to balance at β = 2.8 (β∗ = 0.93).

The physical mechanisms pertaining the energy growth appear to be the
same with the exception that the Orr-mechanism is not present. This is at-
tributed to the fact that there is no shear where the perturbation is initiated
hence no energy can be gained from an upstream leaning structure.

The spatial distribution of the upstream localised optimal initial condition
is shown in figure 8a) and the corresponding response in 8b); in figure 9 we
plot the full time evolution of the three components of the energy of the per-
turbation. We can see that most of the energy of the perturbation lays on the
plane normal to the streamwise direction and also the streamwise structure is
almost constant implying streamwise vortices that generate streaks inside the
boundary layer.
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a) b)

Figure 8. Localised optimal initial condition (a) and the cor-
responding flow response (b). The three components are shown
in the vertical order streamwise, wall-normal and spanwise.
The energy growth was G = 1.2 · 102. The Reynolds number
is Re = 3000. The Reynolds number as the outflow based on
the distance from the leading edge is Rex = 300000.

Initial disturbance Response
Streamwise 17.7 % 93.6%
Wall-normal 36.7% 1.8 %

Spanwise 45.6% 4.6%

Table 2. The table shows the component-wise energy content
of each component for the initial and final condition. The
energy growth was G = 1.2 · 102

We note that as the vortices convect downstream in front of the leading
edge slowly decay without much happening in the dynamics, similar to what
is observed in decaying turbulence. However once they reach the area with
strong shear, near the stagnation point (T ≈ 20), they quickly start to trans-
form energy from the streamwise vortices to the streamwise streaks and through
the lift-up effect to extract energy from the mean shear. It is thus important
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Figure 9. Disturbance energy versus time for the optimal lo-
calised initial condition. Three velocity components are shown,
streamwise (blue), spanwise (red) and wall-normal (green).
The Reynolds number is Re = 3000. The Reynolds number
as the outflow based on the distance from the leading edge is
Rex = 300000.

to include the leading-edge effect in receptivity. The total energy growth is
substantially weaker relative to the non-localised optimals. This can be at-
tributed to a few reasons. In this case the Orr-mechanisms can not contribute
and secondarily the lift-up effect is happening further upstream relative to the
non-localised case which corresponds to lower Reynolds number and thus lower
transient growth potential, see Andersson et al. (1999).

5. Conclusions

We have applied a Lagrange multiplier technique using the direct and adjoint
linearised Navier-Stokes equations in order to quantify the disturbance growth
potential in a flow around a flat plate with an elliptic leading edge at moder-
ately high Reynolds. We consider the optimal initial condition leading to the
largest possible energy amplification at time T . Additionally we compute the
localised optimal disturbance upstream from the leading edge. This method
can be used to create modal basis and project free-stream disturbances i.e. a
direct method for computing receptivity coefficients for externally excited flows.
The optimisation framework adopted does not restrict us to assume slow vari-
ation of the base flow in the streamwise direction, common to both the first
order approximation of the Orr-Sommerfeld-Squire formulation and the more
advanced Parabolized Stability Equations approximation; moreover, it allows
us to include curved geometries and fully three dimensional configurations.

We found that the two-dimensional initial condition with the largest po-
tential for growth is a TS-like wave packet that includes the Orr mechanism in



100 A. Monokrousos, L. Brandt, C. Mavriplis and D. S. Henningson

their initial phase and is located inside the boundary layer, downstream from
the leading edge. Its growth is linked to the exponentially unstable eigenmodes
of the Blasius boundary layer and it is limited by the streamwise extent of the
computational box. The three dimensional case shows a peak in the energy
much earlier in time (and space) for spanwise wavenumber β = 2.0, relevant
to the well understood lift-up mechanism. This number is in close agreement
with earlier studies of similar nature.

The localised optimal initial conditions are more interesting since they allow
for better understanding of the effects of the leading edge and its receptivity
properties. Disturbances are placed upstream in the free-stream. We found that
the two-dimensional upstream disturbances are rather inefficient at triggering
an unstable wave-packet which can exploit the convective instability of the
boundary layer. The flow around the leading edge has a strong effect on these
type of disturbances, i.e. it has a strong damping effect and the later evolution
of the disturbance is dominated by this effect. In particular a stable wave-
packet is generated and its energy just decays as it propagates downstream
inside the boundary layer. This indicates that an unstable wave-packet would
be so strongly damped by the leading edge flow that is never favoured by the
optimisation.

The three-dimensional disturbances though are exploiting the lift up mech-
anism very efficiently at a very early stage. The generated streaks are located
further from the wall than the TS-wave and thus do not suffer from the loss
of energy due to diffusion close to the wall. Additionally their streamwise
wavenumber is very low and does not seem to be heavily affected by the low
local Reynolds number in the area. This mechanism is proven to be very robust.

6. Acknowledgements

The authors wish to thank Dr. Lars-Uve Schrader for providing the mesh
generator and for many fruitful discussions. Computer time provided by SNIC
(Swedish National Infrastructure for Computing) is gratefully acknowledged.
The present work is supported by the Swedish Research Council (VR) which
is gratefully acknowledged.



References
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