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Abstract

A modified Hamilton-Jacobi-Bellman (HJB) equation is derived for
the problem of optimal dividend payment under a ruin constraint, for
discrete time and state space. This equation has a classical solution, and
a verification argument is given which shows that the solution is the value
function of the problem, and that the maximizer in the HJB equation
defines the optimal dividend payment strategy in feedback form.

1 Introduction and Summary

Consider the following stylized model for insurance business: X1,X2, ... the total
sum of claims per period are iid nonnegative integer valued, c the total premium
per period is a positive integer, and the initial surplus s is a non negative integer.
The reserve R(t) of the company without dividend payment evolves as R(0) = s
and

R(t+ 1) = R(t) + c−Xt+1, t ≥ 0.
Throughout the paper we assume that P{Xt > c} > 0 and that c > E[Xt]; we
have a risky insaurance business, and the premium has a positive safety loading.
As a measure of stability we use the infinite time ruin probability

ψ0(s) = P{R(t) < 0 for some t ≥ 0}
which satisfies the equation

ψ0(s) = E[ψ0(s+ c−X)].

We consider the situation in which dividends d(t) are paid at the beginning of
period t+1, t ≥ 0. If F(t) is the σ−field generated by R(h), h ≤ t, then d(t) is an
F(t)−measurable nonnegative random variable. As a measure of profitability
we use expected accumulated discounted dividends:

ud(s) = E

⎡
⎣
τd−1X

t=0

vtd(t)

⎤
⎦ .
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With dividend payment the reserve is Rd(t) defined by Rd(0) = s and

Rd(t+ 1) = Rd(t)− d(t) + c−Xt+1, t ≥ 0. (1)

In the upper index of summation we use τd as the ruin time in the risk process
Rd(t), i.e.

τd = inf{t ≥ 0 : Rd(t) < 0},

where the infimum is +∞ in case Rd(t) ≥ 0 for all t ≥ 0. The ruin probability
of the reserve Rd(t) is denoted by

ψd(s) = P{τd <∞}.

There is a tradeoff between stability and profitability: Minimizing ruin probabil-
ity means no dividend payment, d(t) ≡ 0 or ud(s) = 0, and the reserve process
R(t) goes to +∞. Maximizing ud(s) leads to a dividend payment scheme for
which ruin is certain,

ψd(s) = 1 for all s ≥ 0,
and the reserve process Rd(t) remains bounded (see Bühlmann (1996, chapter
6.4) and references given there, as well as Gerber (1979)).
We shall solve the problem of optimal dividend payment under a ruin con-

straint, i.e. for 0 < α ≤ 1 and initial surplus fixed we shall derive an optimal
dividend payment scheme d(t) for which

ψd(s) ≤ α (2)

and for which ud(s) is maximal in the class of all dividend payment schemes
satisfying the constraint (2). This is done using a modified Hamilton-Jacobi-
Bellman (HJB) equation and via the construction of the process of optimal
admissible ruin probabilities.
The HJB equation for the value function u(s) of the problem to maximize

profitability is
u(s) = sup

δ
{δ + vE[u(s− δ + c−X)]}, (3)

where the supremum is taken over all 0 ≤ δ ≤ s. The optimal strategy is then
defined via (1) and

d(t) = δ(Rd(t)),

where δ = δ(s) is the maximizer in (3).
The modified HJB for the value function u(s, α) under the constraint (2) is

u(s, α) = sup
δ,β
{δ + vE[u(s− δ + c−X,β(X))]}, (4)

where the supremum is taken over all 0 ≤ δ ≤ s and functions β(x) satisfying
E[β(X)] ≤ α and

ψ0(s− δ + c− x) ≤ β(x) ≤ 1.
If there is no admissible pair (δ, β), then the supremum is interpreted as zero.
Below we will show that equation (4) has a solution, and that the supremum is
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attained at certain values δ = δ(s, α) and β(x) = β(s, α;x). With these values
the process of optimal admissible ruin probabilities b(t), t ≥ 0, is defined as
b(0) = α and

b(t+ 1) = β(Rd(t), b(t);Xt+1), t ≥ 0, (5)

and the optimal dividend payment strategy is defined through

d(t) = δ(Rd(t), b(t)), t ≥ 0. (6)

In the next section we show that d(t) is an admissible strategy satisfying the
constraint (2), and that d(t) maximizes profitability under this constraint. The
process b(t), t ≥ 0, is a martingale with mean α satisfying

b(t+ 1) ≥ ψ0(Rd(t)− d(t) + c−Xt+1) = ψ0(Rd(t+ 1)), t ≥ 0.

The strategy d(t) is path dependent: for t ≥ 0 the value d(t) depends on Rd(t−
1), b(t).
Earlier approaches to optimal dividend payment without constraints or with

different constraints can be found in Bühlmann’s book (1996), in Gerber (1979
and 1981), and in Paulsen (2003). The Lagrange multiplier method used in
Altman (1999) does not seem to work in the infinite horizon situation considered
here. Hipp and Schmidli (2003) compute optimal dividend strategies satisfying
(2) of the form

d(t) =

½
0 if Rd(t) ≤ c(s, α)
M if Rd(t) > c(s, α)

(7)

for compound risk processes R(t) in continuous time, and for exponentially dis-
tributed claim sizes. These strategies are optimal only in the class of strategies
having form (7). They show that optimal strategies within the class of all ad-
missible strategies satisfying (2) can be derived from a modified HJB, adjusted
to the Lundberg model:

0 = min[sup
β
{λE[u(s+ c−X,β(X))− u(s, α)]− ρu(s, α) (8)

+ cus(s, α)− λ(E[β(X)]− α)uα(s, α)}, 1].

Again, the supremum is taken over all functions β(x) satisfying the following
constraint:

β(x) ≥ ψ0(s− x).

2 Statements and proofs

For notational convenience we define d(t) = 0 as soon as t ≥ τd, and that the
risk processes are stoppet at τd : Rd(t) = Rd(τd) for all t ≥ τd.We first observe
that we may restrict δ = δ(s, α) to the set 0, ..., s.
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Lemma 1 For arbitrary dividend payment strategy d(t) with values in [0, s]
there exists a strategy g(t) with τg = τd and

E

" ∞X

i=1

vig(i)

#

≥ E

" ∞X

i=1

vid(i)

#

.

Proof. Let D(t) = d(1) + ... + d(t) be the accumulated dividend payments,
and define g(t) as the increments of G(t) = [D(t)], the smallest integer ≥ D(t).
Then

Rg(t) = [Rd(t)]

and hence for integer claims and positive integral initial surplus s we have
τg = τd. Furthermore, with

ai = vi−1 − vi ≥ 0

we have

∞X

i=1

vid(i) =
∞X

i=1

∞X

j=i

ajd(i) =

∞X

j=1

aj

jX

i=1

d(i) =
∞X

j=1

ajD(j) ≤

∞X

j=1

aj [D(j)] =
∞X

i=1

vig(i).

For the existence of a solution to (4) as well as for the numerical calculation
we use the functions un(s, α) defined recursively as u0(s, α) = 0 and

un+1(s, α) = sup
δ,β
{δ + vE[un(s− δ + c−X,β(X))]}, (9)

where the supremum is taken over all 0 ≤ δ ≤ s and functions β(x) satisfying
E[β(X)] ≤ α and

ψ0(s− δ + c− x) ≤ β(x) ≤ 1.
We define these functions for s = 0, 1, 2, ... and 0 < α ≤ 1.

Lemma 2 a) For n ≥ 0 and 0 < α ≤ 1,s ≥ 0 we have

un(s, α) ≤ un+1(s, α) ≤ s+
c

1− v
.

b) There exists a solution to equation (4), and this solution is unique.
c) If s and α are fixed and if d(t), t ≥ 0, is an arbitrary admissible dividend

payment strategy satisfying the constraint (2), then

E

" ∞X

i=0

vid(i)

#

≤ u(s, α).
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d) For ε > 0, s ≥ 0, and 0 < α ≤ 1 there exists an admissible dividend
payment strategy d(t), t ≥ 0, with corresponding ruin time τd satisfying P{τd <
∞} ≤ α and

E

" ∞X

i=0

vid(i)

#

≥ u(s, α)− ε.

e) If vP{X < c} > 1/2 then for s ≥ 0 the function α→ u(s, α) is continuous
on (0, 1].
f) If vP{X < c} > 1/2 then the supremum δ, β in equation (4) is attained

at values δ(s, α) and β(s, α;x). Furthermore,

E

" ∞X

i=0

vid(i)

#

= u(s, α).

g) The maximizer δ = δ(s, α) in (9) satisfies δ ≤ s(α), where s(α) = max{k :
ψ0(k) ≥ α}.

Proof. a) By induction. The relation u0(s, α) ≤ u1(s, α) is obvious. Assume
now that un(s, α) ≥ un−1(s, α). Then

un+1(s, α) = sup
δ,β
{δ + vE[un(s− δ + c−X,β(X))]}

≥ sup
δ,β
{δ + vE[un−1(s− δ + c−X,β(X))]}

= un(s, α).

Furthermore, if un(s, α) ≤ s+ c/(1− v), then

un+1(s, α) = sup
δ,β
{δ + vE[un(s− δ + c−X,β(X))]}

≤ sup
δ,β
{δ + v(s− δ + c−E[X] + c/(1− v))]}

≤ sup
δ,β
{δ + v(s− δ) + c+ cv/(1− v))]}

≤ s+ c/(1− v).

b) Since un(s, α) is a non decreasing sequence of functions which are bounded
from above, there exists a function u(s, α) which is the pointwise limit of
un(s, α). By dominated convergence, we have for δ, β fixed

E[un(s− δ + c−X,β(X))]→ E[u(s− δ + c−X,β(X))]

and hence

u(s, α) ≥ un+1(s, α) = sup
δ,β
{δ + vE[un(s− δ + c−X,β(X))]}

≥ δ + vE[un(s− δ + c−X,β(X))]
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and n→∞ together yield

u(s, α) ≥ sup
δ,β
{δ + vE[u(s− δ + c−X,β(X))]}.

On the other hand, un(s, α) ≤ u(s, α) implies

sup
δ,β
{δ + vE[u(s− δ + c−X,β(X))]}

≥ sup
δ,β
{δ + vE[un(s− δ + c−X,β(X))]}

= un(s, α),

and the last term converges to u(s, α). Uniqueness of the solution for equation
(4) follows from the fact that the operator

Tu(s, α) = sup
δ,β
{δ + vE[u(s− δ + c−X,β(X))]}

is a contraction: for functions u1(s, α) and u2(s, α) we have

|Tu1(s, α)− Tu2(s, α)| ≤ v sup{|u1(y, α)− u2(y, α)| : 0 ≤ y ≤ s, 0 ≤ α ≤ 1}.

To see this, choose δ∗ and β∗ (depending on ε, s, α) such that

Tu1(s, α) ≤ δ∗ + vE[u1(s− δ + c−X,β∗(X))] + ε.

Then

Tu1(s, α)− Tu2(s, α) ≤ δ∗ + vE[u1(s− δ + c−X,β∗(X))]

−δ∗ − vE[u2(s− δ + c−X,β∗(X))] + ε

≤ v sup{|u1(y, α)− u2(y, α)| : 0 ≤ y ≤ s, 0 ≤ α ≤ 1}+ ε.

Since ε > 0 was arbitrary and u1(s, α), u2(s, α) can be interchanged, we obtain
the above inequality.
c) Let Rd(t) and τd be the risk process and the ruin time corresponding to

the dividend payment strategy d(t), respectively. For t = 0, 1, 2, ... let

bd(t) = P{τd <∞ | F(t)}.

The process bd(t), t ≥ 0, is a martingale, i.e.

E[bd(t+ 1) | F(t)] = bd(t).

Since the sigma-field F(t + 1) is generated by F(t) and Xt+1, b
d(t + 1) can be

written as a function βd - depending on F(t) - of x for which

E[βd(X)] = bd(t).

The above expectation is taken over the claim size X with fixed values for
Rd(0), ..., Rd(t). If τd > t then

bd(t+ 1) = P{Rd(h) < 0 for some h ≥ t+ 1| F(t+ 1)},
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and since ruin is more probable with dividend payments,

bd(t+ 1) ≥ ψ0(Rd(t+ 1)).

So the function βd(x) satisfies

βd(x) ≥ ψ0(Rd(t)− d(t) + c− x).

Now for t = 0, 1, 2... define

F (t) = E

"Ã
tX

i=0

vid(i) + vt+1u(Rd(t+ 1), bd(t+ 1))

!

1{τd>t}

#

.

We show that F (t) is non decreasing, i.e. F (t) ≤ F (t− 1). Consider

E
£¡
d(t) + vu(Rd(t+ 1), bd(t+ 1))

¢
1{τd>t} | F(t)

¤

= d(t) + vE[u(Rd(t)− d(t) + c−X,βd(X))].

This is not larger than

sup
δ,β
{δ + vE[u(Rd(t)− δ + c−X,β(X))],

where the supremum is taken over 0 ≤ δ ≤ s and functions β(x) with E[β(X)] =
bd(t) and

β(x) ≥ ψ0(Rd(t)− δ + c− x).

This supremum equals u(Rd(t), bd(t)), and hence

E
£¡
d(t) + vu(Rd(t+ 1), bd(t+ 1))

¢
1{τd>t} | F(t)

¤
≤ u(Rd(t), bd(t)).

Inserting this into the definition of F (t) we obtain

F (t) = E

"Ã
t−1X

i=0

vid(i) + vt{d(t) + vu(Rd(t+ 1), bd(t+ 1))

!

1{τd>t}

#

≤ E

"Ã
t−1X

i=0

vid(i) + vtu(Rd(t), bd(t))

!

1{τd>t}

#

= F (t− 1).

With the same argument we obtain that

F (0) ≤ u(Rd(0), bd(0)) = u(s, bd(0)) ≤ u(s, α).

This implies the assertion:

E

" ∞X

i=0

vid(i)

#

= E

" ∞X

i=0

vid(i)1{τd=∞}

#

+E

" ∞X

i=0

vid(i)1{τd<∞}

#

= lim
t→∞

F (t),
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using the relation u(s, α) = 0 for s < 0 on the set {τd <∞} and

vt+1u(Rd(t), bd(t))→ 0

on the set {τd =∞}.
d) Let ξ = ε(1 − v), and let δ(s, α) and β(s, α;x) be chosen such that

E[β(s, α;X)] = α, β(s, α, x) ≥ ψ0(s− δ(s, α) + c− x), and

δ(s, α) + vE[u(s− δ(s, α) + c−X,β(s, α;X))] ≥ u(s, α)− ξ.

For s, α fixed, define the process of running ruin probabilities bd(t) and the div-
idend payment strategy d(t) as in (5) and (6). Then, with τd the corresponding
ruin time of the process Rd(t),

E[
¡
d(t) + vu(Rd(t+ 1), bd(t+ 1))

¢
1{τd>t}] =

δ + vE[u(Rd(t)− δ + c−X,β(X))1{τd>t] =: I,

where δ = δ(Rd(t), bd(t)) and β(x) = β(Rd(t), bd(t);x). From

I ≥ u(Rd(t), bd(t))− ξ

we obtain that the functions F (t) defined above (but with a different strategy
d(t)) satisfy F (t) ≥ F (t− 1)− ξvt−1 and hence

E

" ∞X

i=0

vid(i)

#

≥ F (0)− ξ/(1− v) = u(s, α)− ε.

This proves the statement in d).
For the proof of e) we first show that under the assumption vP (X < c) > 1/2

the following holds: for arbitrary dividend payment strategy d(t) with P{τd <
∞} > ψ0(s) we can find a strategy f(t) with

P{bf (t) > ψ0(Rf (t))} > 0, t = 0, 1, 2, ...

satisfying

E

" ∞X

i=0

vid(i)

#

≤ E

" ∞X

i=0

vif(i)

#

.

Assume that t0 is the smallest integer for which

P{bd(t0) > ψ0(Rd(t0))} = 0.

Since bd(0) = P{τd <∞} > ψ0(s) = ψ0(Rd(0)) we have t0 > 0. From P{bd(t0−
1) > ψ0(Rd(t0−1))} > 0 we derive P{d(t0−1) > 0} > 0. On the set {d(t0−1) >
0} we let

f(t0 − 1) = d(t0 − 1)− 1,
f(t) = 1 if Xt < c, t ≥ t0,

f(t) = d(t) elsewhere.
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Then τf ≥ τd, and

E

" ∞X

i=0

vif(i)

#

−E

" ∞X

i=0

vid(i)

#

≥
∞X

i=t0

viP{X < c}i = vt0−1
vP{X < c}

1− vP{X < c}
− vt0−1 > 0.

Now we can prove continuity of the function g : α → u(s, α) for fixed s.
Since g is zero on the interval 0 < α ≤ ψ0(s) and non decreasing on 0 < α ≤ 1
we need to show that there is no α0 ∈ (ψ0(s), 1] and ε > 0 such that for all
α < α0 we have g(α) < g(α0)− ε. Assume that we can find such values. Then
there exists a dividend strategy d(t) satisfying ψd(s) = α0 > ψ0(s) such that
for all α < α0 we have

E

" ∞X

i=0

vid(i)

#

> g(α0)− ε.

Then we can find a dividend strategy f(t) for which

E

" ∞X

i=0

vid(i)

#

≤ E

" ∞X

i=0

vif(i)

#

satisfying P{bf (t) > ψ0(Rf (t))} > 0, t = 0, 1, 2, ...Choose T sufficiently large
such that

E

" ∞X

i=T

vif(i)

#

< ε/2

and define the dividend strategy f1(t) by f1(t) = f(t)1{t<T}. Then ψf1(s) <

ψf (s) (this follows from P{bf (T ) > ψ0(Rf (T ))} > 0) and

E

" ∞X

i=0

vif1(i)

#

≥
" ∞X

i=0

vif(i)

#

− ε/2

which is contradictory.
e) Fix s and α. The sup over δ is always attained at some δ∗ since it is a sup

over a finite number of values. Let βn(x) be a sequence of functions with

u(s, α) = lim
n
{δ∗ + vE[u(s− δ∗ + c−X,βn(X))]}.

There exists a subsequence along which the functions converge pointwise: βni(x)→
β(x). Then by continuity and boundedness of a→ u(s, a) we obtain our assetion

u(s, α) = δ∗ + vE[u(s− δ∗ + c−X,β(X))].

Let d(t) be the strategy defined with the maximizers δ(s, α), β(s, α;x) in (4).
Then as in c) we can show that the expected accumulated discounted dividends
d(t) are given by u(s, α). Instead of an inequality we use equality since the sup
is attained at the maximizers.
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3 Numerical example

Here we consider the special case of a skip free risk process: c = 1, P{X1 =
0} = 1 − P{X1 = 2} = 0.7. Using the iteration (9) we computed the func-
tions u(s, α), β1(s, α) = β(s, α; 1) (the value for β2(s, α) = β(s, α; 2) can be
derived from the martingale condition), and δ(s, α). For α ≤ ψ0(s) we have set
β(s, α; 1) = 1. From the numerical results we derive the following conjectures:

1. δ(s, α) = s− s(α).

2. β2(s, α) = ψ0(s(α)− 1) is independent of s as soon as ψ0(s− 1) ≤ α.

3. uα(s, α) =∞ at the point α(s) = inf{a : u(s, a) > 0}.

The figure shows the value functions u(s, α) for s = 0, ..., 10, computed with
a step size of ∆ = 1/450 (i.e. u(s, α) is approximated at the points k∆, k =
0, ..., 450), and the range of s is restricted to s ≤ 20. On the x−axis α runs from
0 to 1. For each value of s a separate curve is shown, the top curves belonging
to large values of s.
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