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Abstract:
We characterize the value function of maximizing the total discounted utility of dividend
payments for a compound Poisson insurance risk model when strictly positive transaction
costs are included, leading to an impulse control problem. We illustrate that well known
simple strategies can be optimal in the case of exponential claim amounts. Finally we
develop a numerical procedure to deal with general claim amount distributions.

1 Control problem with transaction costs

Let (Ω,F , P ) be a probability space carrying all the stochastic quantities defined below.
The uncontrolled risk reserve process R = (Rt)t≥0 of an insurance portfolio in the Cramér-
Lundberg model is given by

Rt = x + ct −
Nt
∑

n=1

Yi,

where N = (Nt)t≥0 is a homogeneous Poisson process with intensity λ > 0. The sequence

of claim amounts is {Yi}
iid
∼ FY , where FY is a probability distribution on (0,∞) with a

continuous distribution function. We assume {Yi} to be independent of the claim counting
process N = (Nt)t≥0. The deterministic components are the initial capital x and the
premium intensity c.
As an extension of the classical model, assume that the insurance company is allowed to
pay out dividends to its shareholders, but with the constraint that for every payment z a
transaction cost (1− k)z + K has to be paid, which consists of a proportional cost (1− k)z
(with k ∈ (0, 1)) and a fixed amount K > 0 (see e.g. [4], where this type of transaction
costs is used in a different model context). Consequently, the value of a payment of size z
is reduced to kz − K. This can also be interpreted as a tax payment on the dividend with
rate 1 − k, which has to be paid directly at the payment. One immediately observes that
only payments of size greater than a := K/k are reasonable and only a finite number of
actions in bounded time intervals will be feasible. The following definition taken from Korn
[12] fixes the class of appropriate control strategies.

Definition 1.1. An impulse control S = {(τi, Zi)}i∈N is a sequence of increasing interven-
tion times τi and associated control actions Zi, which fulfills the following four conditions:
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• 0 ≤ τi ≤ τi+1 a.s. for all i ∈ N,

• τi is a stopping time with respect to the filtration Ft = σ{RS
s− | s ≤ t} for t ≥ 0,

• Zi is measurable with respect to Fτi
,

• P (limi→∞ τi ≤ T ) = 0 for all T ≥ 0.

Denote with S∗ the set of impulse controls and with S∗
n the set for which at most n inter-

ventions are used (τn+1 = ∞). The controlled process RS = (RS
t )t≥0 for S ∈ S∗, is then

defined by

RS
t = x + ct −

Nt
∑

n=1

Yn −
∞
∑

i=1

I{τi<t}Zi.

In particular we have RS
τi

= RS
τi−−Zi. The time of ruin of the controlled reserve is denoted

by τS = inf{t > 0 | RS
t < 0} for a strategy S ∈ S∗, whereas τ denotes the time of ruin of the

uncontrolled reserve. After the event of ruin the free reserve process is stopped, RS
t = RS

τS

for t ≥ τS .
Following [4], we model the utility of the shareholders by a power function. Then, in our
context, the value of a dividend strategy S is of the form

VS(x) = Ex

(

∞
∑

i=1

e−δτiu(Zi)I{τi<τS}

)

,

where δ > 0 is a constant discount factor and u(z) = 1
γ
(kz − K)γ with γ ∈ (0, 1].

As mentioned above we need some further constraints on S∗ to formulate a reasonable
optimization problem, namely Zi > a and RS

τi
= RS

τi− − Zi ≥ 0, thus Zi ∈ (a,RS
τi−]. In

the terminology of [6], K(x) = {y | y ∈ (a, x]} denotes the set of applicable actions at some
point x ≥ 0 with K(x) = ∅ for x ∈ [0, a].
We call the set of admissible controls S and Sn, respectively. The maximization problem
consists of identifying

V (x) = sup
S∈S

VS(x). (1)

In [6], Davis develops a general theory of optimal impulse control for piecewise deterministic
Markov processes and refers to articles by Lenhart [14] and G

‘
atarek [7] on that topic. Cade-

nillas et al. [4] look at the maximization problem (1) for a mean-reverting diffusion process
and solve the problem by calculating an explicit solution to the associated quasi-variational
inequalities. Other examples from finance dealing with portfolio optimization under various
types of transaction costs are Korn [11, 12] and Irle and Saß [9]. Although similar in flavor,
these results are not directly applicable in the present situation, since either the bounds on
the value functions or the class of considered processes differ substantially from our setup.
The papers by Bensoussan et al. [3] and Benkherouf & Bensoussan [2] deal with inventory
models with diffusion and compound Poisson demand with ordering policies. While upward
impulses are used in these papers, a dividend payment as described above is a downward
impulse, so that these models can not be interpreted as a dividend problem in an insurance
context. They rather correspond to the problem of minimizing capital injections, where the
investor is allowed to give upward impulses to the reserve process in order to avoid ruin, see

2



Kulenko & Schmidli [13]. Furthermore such inventory models do not include the complica-
tion of a ruin event which affects the dividend problem.
For diffusion risk reserve processes, dividend maximization problems including transaction
costs are for example investigated by Jeanblanc-Picqué & Shiryaev [10], Paulsen [16, 17]
or He & Liang [8]. In [15] Loeffen studies the dividend maximization problem including
transaction costs and linear utility for spectrally-negative Lévy processes (including the
compound Poisson reserve process or jump-diffusions) by probabilistic means and gives a
condition when a strategy of a simple form is the optimal one.1

In this paper we tackle the control problem (1) by analytical means and develop a con-
cise theoretical framework for its solution. In Section 2, basic properties such as linear
boundedness and continuity of the value function are derived. These results are used in
Section 3 to characterize the value function as a fixed point of an associated optimal stop-
ping operator. In Section 4 the problem is studied from the viewpoint of quasi-variational
inequalities and we prove that the value function is the smallest solution to this set of in-
equalities. These inequalities are then used in Section 5 to derive an optimal strategy in
the case of exponentially distributed claim amounts and a fixed parameter set. Finally the
construction of a numerical procedure for getting approximations of the optimal value for
general claim amount distributions is illustrated.

2 Properties of the Value Function

In this section some basic properties of the value function are proved. We can derive
immediately that V is increasing, because for 0 ≤ y ≤ x we have that K(y) ⊂ K(x), so
that by the definition of the value function V and the utility function u we get that with
identical intervention times always a higher pay-off can be realized. The definition of the
set of admissible strategies S implies V ≥ 0 for all x ≥ 0. The next lemma identifies further
properties of V .

Lemma 2.1. V is locally Lipschitz-continuous and bounded by a linear function.

Proof. Let x > y ≥ 0 and Sǫ
x = {(τi, Zi)}i∈N be an ǫ-optimal strategy for initial capital x

(V (x) ≤ VSx(x) + ǫ). We define the strategy Sy for an initial capital y in the following way.
As long as RSy stays below x, pay out nothing and if x is reached, apply strategy Sǫ

x.
Let θx denote the first time when RSy hits x. On {θx < τSy}, we get Sy = {(τi + θx, Zi)}i∈N

and because the sum of stopping times is a stopping time, Sy is admissible. We have

0 ≤ V (x) − V (y) ≤ V (x) − VSy(y) ≤ V (x) − (V (x) − ǫ)Ey

(

e−δθxI{θx<τSy}

)

= V (x)(W (x) − W (y)) + ǫW (y). (2)

The function W is defined as W (y) := Ey

(

e−δθxI{θx<τSy}

)

and it is a differentiable solution

1We point out that there is a paper by Zou et al. [22] published in an earlier issue of this journal that
deals with the dividend maximization problem for linear utility and both fixed and proportional transaction
costs for a risk reserve of jump-diffusion type. However, although stated otherwise, the authors actually
construct a solution for the problem when payments continue after ruin. This leads them to the conclusion
that a certain strategy of a simple form is optimal for every claim size distribution, which is in contradiction
with [15] where an example with Gamma distributed claim amounts is presented for which such a simple
strategy is in fact not optimal.
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(see proof of Lemma 2.48, page 91 of [20]) to

0 = cW ′(y) + λ

∫ y

0
W (y − z)dFY (y) − (δ + λ)W (y).

Further, by definition W (y) ≤ W (x) = 1.
Therefore we get from (2) that 0 ≤ V (x) − V (y) ≤ V (x)C(x)(x − y) + ǫ, where C(x) is a
local constant depending on W ′(x). Because this inequality holds for every ǫ > 0, we have
V (x) − V (y) ≤ C∗(x)(x − y), where C∗(x) is another local constant.
From that we obtain that V is locally Lipschitz continuous on [0,∞), and consequently that
V is differentiable almost everywhere. Because of the Lipschitz continuity on compact sets,
the above calculations give bounds for V ′(x) which is therefore integrable on compact sets.
This yields that V is absolutely continuous, see [21].
The next step is to determine a linear bound for V . Because u(z) is linearly bounded,
u(z) ≤ mz + n for some m, n ∈ R

+, we have

V (x) = sup
S∈S

Ex

(

∞
∑

i=1

e−δτiu(Zi)I{τi<τS}

)

≤ sup
S∈S

Ex

(

∞
∑

i=1

e−δτi(mZi + n)I{τi<τS}

)

.

Using the process LS = (LS
t )t≥0 defined by

LS
t =

∞
∑

n=1

Zi I{τi<t∧τS},

we can bound the second sum for a fixed strategy S by

m

∫ τS

0
e−δtdLS

t + n

∫ ∞

0
e−δtdt. (3)

Notice that the process LS represents the accumulated dividend payments due to the ad-
missible impulse strategy S and is an admissible dividend strategy for the classical dividend
maximization problem without transaction costs as well, see Azcue & Muler [1]. Let V c(x)
denote this classical value function. We obtain by the above mentioned relation that

V (x) ≤ mV c(x) +
n

δ
.

Since V c(x) is linearly bounded (see Proposition 2.1 of [1]), we get a linear bound for
V (x).

Let us define an operator M acting on a function f by

Mf(x) = sup
y∈K(x)

{u(y) + f(x − y)}. (4)

It gives the optimal value of an intervention at some surplus height x ≥ 0. Because of the
definition of the set of admissible strategies S, we have K(x) = ∅ for 0 ≤ x ≤ a, in which
case we define Mf = 0. For negative arguments x < 0 there also can not be an admissible
intervention. Correspondingly we set throughout Mf = 0 whenever x < 0.
The definitions of the set S and V by (1) give that

V (x) ≥ MV (x)

holds for all x ≥ 0 and indicate that at points x′ where it would be optimal to intervene,
V (x′) = MV (x′) should hold. The next lemma presents basic properties of Mf : [0,∞) →
[0,∞) for a suitable function f .
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Lemma 2.2. Let f be an increasing, continuous and linearly bounded function, then Mf , as
defined in (4), is (as a function in x ∈ [0,∞)) also bounded by a linear function, increasing
and continuous.

Proof. Let x > a and m, n ∈ R such that f(x) ≤ mx + n. We have,

Mf(x) = sup
y∈(a,x]

{u(y) + f(x − y)} ≤ sup
y∈(a,x]

{u(y) + m(x − y) + n} ≤ mx + u(x) + n

≤ m1x + n1, for some m1, n1 ∈ R,

where we use that also u(x) is linearly bounded by kx + u
(

K+1
k

)

for every x. The case
x ≤ a needs no special treatment because Mf(x) = 0.

Let x > x̄ > a and let y∗ ∈ (a, x̄] such that supȳ∈(a,x̄] {u(ȳ) + f(x̄ − ȳ)} ≤ u(y∗)+f(x̄−y∗)+ǫ
for some ǫ > 0. Then

Mf(x) − Mf(x̄) = sup
y∈(a,x]

{u(y) + f(x − y)} − sup
ȳ∈(a,x̄]

{u(ȳ) + f(x̄ − ȳ)}

≥ sup
y∈(a,x̄]

{u(y) + f(x − y)} − sup
ȳ∈(a,x̄]

{u(ȳ) + f(x̄ − ȳ)}

≥ u(y∗) + f(x − y∗) − u(y∗) − f(x̄ − y∗) ≥ 0,

where the last but one inequality holds because ǫ > 0 can be chosen arbitrarily small.
For proving the continuity, fix some ǫ > 0. Because f and u are continuous, we can choose
δ1 > 0 such that for 0 < x − x̃ < δ1/2 (x, x̃ > a) and |y′ − ỹ| < δ1/2 we have that
|u(y′) − u(ỹ)| < ǫ/3 and |f(x − y′) − f(x̃ − ỹ)| < ǫ/3 hold. We will state the definitions
of y′ and ỹ immediately (the last inequality is based on the continuity of f , the fact that
|x − y′ + (−x̃ + ỹ)| < δ1 and an appropriate choice of δ1).
We choose y′ ∈ (a, x] such that Mf(x) ≤ u(y′) + f(x− y′) + ǫ/3. Because x − x̃ < δ1/2 we
can choose a ỹ ∈ (a, x̃] with |y′ − ỹ| < δ1/2. Then we have

0 ≤ Mf(x) − Mf(x̃) ≤
ǫ

3
+ u(y′) + f(x − y′) − u(ỹ) − f(x̃ − ỹ) < ǫ.

The continuity of f and u hence ensures the continuity of Mf for x ∈ [0, a].

3 Characterization of V

In this section we will characterize V as a fixed point to a related optimal stopping operator.
The proof uses a construction which allows to interpret V as a gain when applying iterated
optimal stopping.
Such a characterization is inspired by Davis [6], where such a fixed point characterization is
shown for a minimization problem with a bounded pay-off function u. Korn [11] uses this
approach to characterize the solution of a portfolio optimization problem with an underlying
diffusion process.
Let T denote the set of a.s. finite stopping times with respect to {Ft}t≥0.

Remark 3.1. In the sequel of this section, an optimal stopping operator with stopping
times from the class T is defined. But notice that when looking at the original problem,
the stopping times (part of admissible strategies) do not have to be in T (as the use of τn+1

5



in the definition of Sn demonstrates). However, this has no consequences, since the linear
bounds of V and MV indicate that, due to discounting, the use of an unbounded stopping
time results in a profit equal to zero.

The following operator gives the value of the related optimal stopping problem,

Mf(x) = sup
θ∈T

Ex

(

e−δθ Mf(Rθ)
)

. (5)

Since the free reserve process is stopped at ruin, Mf(Rθ) = 0 if θ ≥ τ .
At first we have to develop some basic properties of the operator M.

Lemma 3.1. Let f be an increasing, linearly bounded and continuous function, then the
same holds for Mf as a function in x ∈ [0,∞).

Proof. We start with deriving the linear bound, using Mf(x) ≤ mx + n and Rθ ≤ x + cθ,

0 ≤ Mf(x) = sup
θ∈T

Ex

(

e−δθ Mf(Rθ)
)

≤ sup
θ∈T

Ex

(

e−δθ(m(x + cθ) + n)
)

≤ mx + n + sup
θ∈T

Ex

(

e−δθcθ
)

≤ mx + n +
c

eδ
.

The monotonicity of Mf follows by the monotonicity of Mf .
Now let 0 < x − x′ = δ1 and let Rx and Rx′

be the uncontrolled processes starting at the
indicated points with times of ruin τ(x), τ(x′). If we look pathwise on these processes we
get that Rx

t (ω)− Rx′

t (ω) = δ1 for each ω ∈ Ω as long as t < τ(x′) ≤ τ(x). Now let θ∗ be an
ǫ-optimal stopping time for initial capital x. Then we derive

0 ≤ Mf(x) −Mf(x′) ≤ E

(

e−δθ∗Mf(Rx
θ∗) − e−δθ∗Mf(Rx′

θ∗)
)

+ ǫ. (6)

At this point we have to distinguish three cases:

1. θ∗ ≥ τ(x) ≥ τ(x′): here we have Mf(Rx
θ∗) = Mf(Rx′

θ∗) = 0,

2. θ∗ < τ(x′) ≤ τ(x): here Rx
θ∗ − Rx′

θ∗ = δ1,

3. τ(x′) ≤ θ∗ < τ(x): here we have that Mf(Rx′

θ∗) = 0 and Rx
τ(x′) ≤ δ1 because Rx′

τ(x′) =

Rx′

θ∗ .

The above observations show that we only have to take care of the Cases 2 and 3. Case 2
is described by the set of all paths

Pδ1 = {ω ∈ Ω | Rx
t (ω) ≥ δ1 for all t ∈ [0, θ∗]} .

Case 3 then is described by

P = {ω ∈ Ω | Rx
t (ω) ≥ 0 ∀ t ∈ [0, θ∗] and ∃ s ∈ [0, θ∗] such that Rx

s < δ1} .
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Let t∗ be the smallest time such that Rx
t∗ < δ1, then t∗ = τ(x′). We derive that the

right-hand side of (6) is smaller or equal to

E

(

IPδ1

(

Mf(Rx
θ∗) − Mf(Rx′

θ∗)
))

+ E (IPMf(Rx
θ∗)) + ǫ ≤

E

(

IPδ1

(

Mf(Rx
θ∗) − Mf(Rx′

θ∗)
))

+ E

(

IPMf
(

Rx
τ(x′)+(θ∗−τ(x′))

))

+ ǫ

= E

(

IPδ1

(

Mf(Rx
θ∗) − Mf(Rx′

θ∗)
))

+ E

(

E

(

IP Mf
(

Rx
τ(x′)+(θ∗−τ(x′))

)
∣

∣

∣
Fθ∗−τ(x′)

))

+ ǫ

≤ E

(

IPδ1

(

Mf(Rx
θ∗) − Mf(Rx′

θ∗)
))

+ Mf(δ1) + ǫ. (7)

The last inequality holds due to the strong Markov property of the uncontrolled process Rx

and because on P we have that Rx
τ(x′) < δ1. Now we can use that Mf is continuous and an

appropriate choice of δ1 (i.e. letting δ1 → 0) gives the continuity of Mf in x′.

Now we are able to prove the main result of this section. It verifies the proposed connection
between V and the implicit optimal stopping problem.

Theorem 3.2. Let v0(x) = 0 for all x ∈ [0,∞) and define functions vn : [0,∞) → [0,∞)
by vn(x) = Mvn−1(x) for x ∈ [0,∞) and vn(x) = 0 for x < 0. Then the following holds:

lim
n→∞

vn(x) = V (x) ∀x ∈ [0,∞),

V (x) = MV (x). (8)

Proof. Note that v0 = 0 is equal to the payoff of a strategy with no intervention. Now look
at v1(x),

v1(x) = Mv0(x) = sup
θ∈T

Ex

(

e−δθ sup
y∈(a,Rθ ]

{u(y) + v0(Rθ − y)}

)

= sup
θ∈T

Ex

(

e−δθu(Rθ)I{Rθ>a}

)

≥ v0.

If only one intervention is allowed, followed by a gain equal to zero, it is optimal to pay out
the whole reserve at the best stopping time, therefore v1(x) = supS∈S1

VS(x).
Define the sequence of functions {vn}n∈N by vn(x) = Mvn−1(x). The properties of the
operator M (see Lemma 3.1) and v0 guarantee monotonicity, continuity and linear bound-
edness of the functions vn for all n ∈ N by induction.
Assume that vn−1(x) = supS∈Sn−1

VS(x), then

vn(x) = sup
θ∈T

Ex

(

e−δθ sup
y∈(a,Rθ ]

{u(y) + vn−1(Rθ − y)}

)

= sup
θ∈T

Ex

(

e−δθ sup
y∈(a,Rθ ]

{

u(y) + sup
S∈Sn−1

VS(Rθ − y)

})

. (9)

In (9), at most n decisions are taken, so that clearly vn(x) ≤ supS∈Sn
VS(x). On the other

hand, let S∗ = {(τ∗
i , Z∗

i )}1≤i≤n ∈ Sn be an ǫ-optimal strategy within Sn, then we get

sup
S∈Sn

VS(x) < ǫ + VS∗(x) = ǫ + Ex

(

e−δτ∗
1 u(Z∗

1 )I{τ∗
1

<τS∗} + e−δτ∗
1

n
∑

i=2

e−δ(τ∗
i −τ∗

1
)u(Z∗

i )I{τ∗
i <τS∗}

)

≤ ǫ + Ex

(

e−δτ∗
1 u(Z∗

1 )I{τ∗
1

<τS∗} + e−δτ∗
1 vn−1(Rτ∗

1
− Z∗

1 )
)

≤ ǫ + vn(x).
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Consequently vn(x) = supS∈Sn
VS(x) holds for all n ∈ N by induction.

Because vn(x) ≤ V (x) and the monotonicity of {vn(x)}n∈N for all x ∈ [0,∞), we get that
the sequence converges pointwise to some function, limn→∞ vn(x) = v∗(x).
As a last step we have to show that v∗(x) = V (x).
For that purpose, let S = {(τi, Zi)}i∈N ∈ S and define Sn = {(τi, Zi)}1≤i≤n ∈ Sn, so that
Sn is equal to S up to the nth intervention and hence

∣

∣

∣
VS(x) − VSn(x)

∣

∣

∣
= Ex

(

∞
∑

i=n+1

e−δτiu(Zi)I{τi<τS}

)

.

Since V is linearly bounded the sum has finite expectation and converges for n = 0 with
probability 1. Therefore we get that for n → ∞ the right-hand side converges to zero by
dominated convergence. Finally we have

V (x) = sup
S∈S

VS(x) = sup
S∈

S

n∈N
Sn

VS(x).

For the fixed point property, just observe

vn+1(x) = sup
θ∈T

Ex

(

e−δθMvn(Rθ)
)

, (10)

MV (x) = sup
y∈(a,x]

{u(y) + sup
n∈N

vn(x − y)} (11)

= sup
n∈N

Mvn(x).

Because vn ≤ vn+1, we have that Mvn is increasing in n, and dominated convergence in
(10) yields V (x) = MV (x).

Remark 3.2. Let w be a positive, absolutely continuous and linearly bounded function.
Suppose w is another fixed point of M. We have w ≥ v0 = 0 and assuming w ≥ vn we get
by induction and the monotonicity of M,

w − vn+1 = Mw −Mvn ≥ 0.

Therefore w ≥ vn holds for all n ∈ N and consequently w ≥ V .

This theorem provides a characterization of the value function V defined by (1) as the
smallest fixed point of an optimal stopping operator. The constructive nature of the proof
shows that the optimal impulse control can be approximated by iterated solutions of optimal
stopping problems.

4 A QVI point of view

We observed above that at points x ≥ 0 where it would be optimal to intervene, we should
have MV (x) − V (x) = 0. On the other hand, if it would be optimal not to intervene in an
open interval around a point x, conditioning on the first claim occurrence in a small time
interval [0, h] and letting h → 0 should result in

LV (x) = cV ′(x) + λ

(
∫ x

0
V (x − y) dFY (y) − V (x)

)

− δV (x) = 0.
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These observations motivate heuristically the so-called quasi-variational-inequalities (QVI):

LV ≤ 0,

MV − V ≤ 0,

(LV )(MV − V ) = 0,

or equivalently

max {LV,MV − V } = 0. (12)

This equation will allow for a better computability of V than the characterization through
iterated optimal stopping of the last section. But first one has to determine if and in which
sense V is a solution to (12).

Proposition 4.1. The value function V fulfills the QVI (12) a.e.

Proof. From the definition of V in (1) we immediately get MV (x) − V (x) ≤ 0. Further,
Theorem 3.2 shows that

V (x) = sup
θ∈T

Ex

(

e−δθ sup
y∈(a,Rθ ]

{u(y) + V (Rθ − y)}

)

such that at a point where it is optimal to intervene we have V (x) = MV (x).
Let θ ∈ T and Sθ ⊂ S be the set of admissible impulse strategies without an intervention
before time θ. By the Markov property of the uncontrolled reserve R = (Rt)t≥0 and the
definition of V (x) we have that

V (x) ≥ sup
S∈Sθ

VS(x) = Ex

(

e−δθV (Rθ)I{θ<τ}

)

.

Consequently we get for some h > 0 and T1 being the time of the first claim occurrence,

V (x) ≥ Ex

(

e−δ(T1∧h)V (RT1∧h)
)

and after some manipulations

0 ≥
V (x + ch) − V (x)

ch
−

1 − e−h(δ+λ)

h
V (x + ch) +

1

h

∫ h

0
λe−t(δ+λ)

∫ x+ct

0
V (x + ct − y) dFY (y)dt.

Using the absolute continuity of V , which implies the existence of V ′ a.e., we can take the
limit h → 0 and obtain

0 ≥ cV ′(x+) − (δ + λ)V (x) + λ

∫ x

0
V (x − y) dFY (y). (13)

On the other hand we get, starting at x − ch̃, for some sufficiently small h̃ > 0,

0 ≥ cV ′(x−) − (δ + λ)V (x) + λ

∫ x

0
V (x − y) dFY (y). (14)

The left-hand sides of (13) and (14) coincide a.e., but we can state LV ≤ 0 for x ≥ 0 in
general, by either fixing the right-hand or left-hand derivative as the density of V , denoted
by V ′.
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Now we want to determine the behaviour of V around some point x where it is not optimal
to intervene (of course (0, a) is an interval of such points) and indeed we can follow the
classical proof of the fact that the probability of ruin is differentiable as long as FY is
continuous (see [19]).
Since MV (x)− V (x) is continuous and negative for such points, we can choose some h > 0
small enough such that for initial capital x′ ∈ (x− ch, x + ch) an immediate intervention is
not optimal. We get, again by conditioning on the first claim occurrence before time h > 0,

V (x) = e−(δ+λ)hV (x + ch) +

∫ h

0
λe−(δ+λ)t

∫ x+ct

0
V (x + ct − y) dFY (y) dt,

which results in

c
V (x + ch) − V (x)

ch
=

1 − e−(δ+λ)h

h
V (x + ch) −

1

h

∫ h

0
λe−(δ+λ)t

∫ x+ct

0
V (x + ct − y) dFY (y) dt.

Because V is continuous and linearly bounded, the limit h → 0 of the right-hand side exists,
therefore V is differentiable from the right with

cV ′(x+) = (δ + λ)V (x) − λ

∫ x

0
V (x − y)dFY (y).

For initial capital x − ch, we can proceed as before to derive

cV ′(x−) = (δ + λ)V (x) − λ

∫ x−

0
V (x − y)dFY (y).

If Y has a continuous distribution function, we get that V ′ exists in x and that LV (x) = 0
for x.
From now on choose either of the one-sided derivatives of V as density and denote it by V ′.
Since V , because it is absolutely continuous and linearly bounded, is in the domain of the
generator of the uncontrolled reserve. This has the consequence that for a bounded stopping
time θ the following equality holds:

V (x) = Ex

(

e−δθV (Rθ)

−

∫ θ

0
e−δs

[

cV ′(Rs−) − (δ + λ)V (Rs−) + λ

∫ Rs−

0
V (Rs− − y) dFY (y)

]

ds

)

.

Combining this expression for V (x) with its fixed point property (8), we get

0 = sup
θ∈T

Ex

(

e−δθ (MV (Rθ) − V (Rθ))

+

∫ θ

0
e−δs

[

cV ′(Rs−) − (δ + λ)V (Rs−) + λ

∫ Rs−

0
V (Rs− − y) dFY (y)

]

ds

)

. (15)

Of course the first summand in the above equation is smaller or equal to zero (at optimal
intervention times it is optimal to jump). Further we know from above that LV ≤ 0.
Therefore we obtain - in the case where immediate stopping is not optimal and as we have
seen above - that LV = 0 when the argument runs through non-intervention areas, such
that the second summand is equal to zero.
Summarizing, at points where it is optimal to pay out optimal lump sums (at optimal
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stopping times) the relation V (x) = MV (x) holds. Between such actions (after the ith
intervention, the fixed point argument can be applied again starting at RS∗

τi+), the process
follows the dynamics of the uncontrolled reserve and because of the above observations
LV (x) = 0 is fulfilled at points where MV (x)−V (x) < 0. Therefore V fulfills (12) a.e..

For the moment, let g be an increasing, absolutely continuous and linearly bounded solution
to the QVI (12), as V is. We can define in an abstract way the following admissible impulse
control:

Definition 4.1 (QVI control). The strategy Sg ∈ S defined by

τ g
1 = inf

{

t > 0 | Mg(RSg

t ) = g(RSg

t )
}

,

Zg
1 = argmax

{

u(z) + g(RSg

τ
g
1

− z) | z ∈ (a,RSg

τ
g
1

]
}

and for n ≥ 2

τ g
n = inf

{

t > τ g
n−1 | Mg(RSg

t ) = g(RSg

t )
}

,

Zg
n = argmax

{

u(z) + g(RSg

τ
g
n
− z) | z ∈ (a,RSg

τ
g
n
]
}

.

is called QVI control.

Remark 4.1. We see from the definition of the QVI control that the ith intervention takes
place at time τ g

i which only takes the knowledge of RSg

τ
g
i −

into account (an intervention has

to be decided before observing a possible claim at the same time). Note that g and Mg
are continuous and RSg

has càdlàg paths between interventions. Because of the relation
to the optimal stopping problem given by (5), we have that τi−1 < τi, as otherwise the
decision at τi−1 cannot be optimal (this relation is pointed out in the proof of the following
proposition). Finally, the prescribed choice of Zg

i > a (a maximizer exists because u and
V are continuous) and the fact that at most (x + cT )/a interventions in the time interval
[0, T ] can be done, ensure the admissibility of such a strategy Sg.

We can state the following verification theorem.

Proposition 4.2. The strategy SV is optimal and V ≥ VS for all S ∈ S. Further, we have
that V is the smallest increasing, absolutely continuous and linearly bounded solution to the
QVI (12).

Proof. Let RS = (RS
t )t≥0 denote the free reserve controlled by a strategy S = {(τi, Zi)i∈N} ∈

S and let τS be the associated time of ruin. By following the dynamics of the uncontrolled
reserve between interventions and taking the dividend payments into account, we get the
following

Ex

(

e−δ(t∧τS )V (RS
t∧τS )

)

= V (x)

+Ex

(

∞
∑

i=1

Iτi<(t∧τS)

∫ τi

τi−1

e−δs

(

cV ′(RS
s−) − (δ + λ)V (RS

s−) + λ

∫ RS
s−

0
V (RS

s− − y)dFY (y)

)

ds

)

+ Ex

(

∞
∑

i=1

e−δτi
(

V (RS
τi
− Zi) − V (RS

τi
)
)

Iτi<(t∧τS )

)

. (16)

11



Because V solves the QVI (12) (LV ≤ 0) and for a general strategy S we have V (RS
τi

) ≥
u(Zi) + V (RS

τi
− Zi), we arrive at

Ex

(

e−δ(t∧τS )V (RS
t∧τS )

)

+ Ex

(

∞
∑

i=1

e−δτiu(Zi)Iτi<(t∧τS)

)

≤ V (x).

Letting t → ∞ and using the linear boundedness of V , we get by bounded and monotone
convergence

VS(x) ≤ V (x).

Looking at the strategy SV , we get V (RSV

τV
i

) = u(ZV
i )+V (RSV

τV
i

−ZV
i ) and for s ∈ (τV

i−1, τ
V
i )

we have

LV (RSV

s− ) = 0.

From (16) we obtain as above that VSV (x) = V (x) which proves the optimality of this
strategy.
Similarly, as done for V in the derivation of (15), one can obtain for every fixed point g of
the operator M (5), which is dominating V , that it is a solution to (12). On the other hand,
we have to prove that a solution to (12) is a fixed point of (5) and therefore dominates V .
From now on let g be an increasing, absolutely continuous and linearly bounded solution to
the QVI (12) and Sg the associated QVI control. We observe that for s < τ g

1 the reserve
controlled by Sg follows the dynamics of the uncontrolled reserve and that g is in the domain
of its generator,

g(x) = Ex

(

e−δτ
g
1 g(Rτ

g
1

) −

∫ τ
g
1

0
e−δsLg(Rs−)ds

)

. (17)

We have by construction of Sg that the integral part of the right hand side is equal to zero.
Now, in view of (5),

Mg(x) = sup
θ∈T

Ex

(

e−δθ Mg(Rθ)
)

.

Observe from (12) that in general Mg(Rθ) ≤ g(Rθ). But for θ = τ g
1 we have Mg(Rτ

g
1

) =
g(Rτ

g
1

). Therefore we conclude from (17) that

g(x) = Ex

(

e−δτ
g
1 Mg(Rτ

g
1

)
)

= sup
θ∈T

Ex

(

e−δθ Mg(Rθ)
)

holds, i.e. g is a fixed point of M, and therefore dominates V . We have proven that V
is the smallest solution to the QVI (12) in the set of increasing, absolutely continuous and
linearly bounded functions.

5 Computations

5.1 Strategies of the form b = {b1, b2}

From other results on impulse control problems for diffusion processes (e.g. [4], [10] and
[17]) one knows that strategies of the following type could be optimal: below a certain level
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b2 > a the process is not controlled, when hitting this level (from below) a fixed amount is
paid out as dividend. This fixed amount can be represented as another level 0 ≤ b1 < b2−a
such that the payment is of size b2 − b1. Let the value of such a strategy b = {b1, b2} be
Vb(x). We get for x < b2 by the Markov property and by the continuously increasing paths
of the uncontrolled reserve process that

Vb(x) = Ex

(

e−δθ(b2)
)

Vb(b2),

where θ(w) = inf{t > 0 | Rt = w and Rs ≥ 0 for 0 ≤ s ≤ t}. From e.g. [20] we
know that f(x) = Ex

(

e−δθ(b2)
)

is the unique solution to Lf = 0 and f(b2) = 1. Using
Vb(b2) = u(b2 − b1) + Vb(b1) we get

Vb(b2) =
u(b2 − b1)

1 − f(b1)
.

It remains to deal with the case x > b2. In the related literature usually the continuation
u(x − b1) + Vb(b1) is chosen. But in our utility framework, and from an optimization point
of view (and a numerical example below), the choice sup{x−b2<z<x−a} u(z)+Vb(x−z) seems
to be more appropriate. Fixing b we have

Vb(x) =

{

f(x)u(b2−b1)
1−f(b1) , x ≤ b2,

sup{x−b2<z<x−a} u(z) + f(x − z)u(b2−b1)
1−f(b1) , x > b2.

In [15], Loeffen derives similar expressions for values of such strategies, for the case γ = 1, in
terms of scale functions of spectrally negative Lévy processes. In order to find a maximizing
strategy within this restricted class, he proposes to maximize u(b2−b1)

1−f(b1) over admissible pairs

b = {b1, b2}. Furthermore he shows that if the Lévy measure has a log-convex density, then
there exists a strategy b∗ = {b∗1, b

∗
2} which is optimal in the set of all admissible strategies.

But notice that for Gamma distributed claims he gives an example where a b = {b1, b2}
strategy can not be optimal.
In the case of a mean-reverting diffusion risk reserve process and γ ∈ (0, 1], additional strong
assumptions for the optimality of a b = {b1, b2} strategy are needed, see [4]. Paulsen [17]
proves for a general diffusion risk reserve model and linear utility that if an optimal strategy
exists, it is of the b = {b1, b2} type.

For exponentially distributed claim amounts it is possible to compute Vb(x) for some b =
{b1, b2}, up to the supremum continuation, explicitly. Because of the results from [15] we
know that for γ = 1 and exponentially distributed claim amounts a certain b = {b1, b2}
strategy is the optimal one. For 0 < γ < 1 such a result is not proven up to now, but one
expects that the general methods used in [15] should also be applicable for this case. With
the QVI formulation of Section 4 one can at least show for certain parameter sets that such
a strategy is optimal.
For instance, for c = 2.5, λ = 1, δ = 0.03, k = 0.99, K = 0.1, γ = 0.7 and Exp(2)
distributed claims the strategy given by b∗ = (4.61, 4.95) is indeed optimal (by verifying
that Vb∗ fulfills the QVI (12)).
Figure 1 shows the value function Vb∗ for these parameters and Figure 2 shows the difference
of the possible continuations from b∗2 onwards. One observes that the supremum continuation
improves the common one.
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5.2 A numerical scheme - policy iteration

For getting (approximate) solutions to the optimization problem for claim amount distribu-
tions beyond the exponential distribution, we implement a policy iteration algorithm (also
known as Howard algorithm) for this specific problem. The idea is mainly based on Rogers
[18] and Chancelier et al. [5].
At first we need to fix a discretization width h > 0 and some N ∈ N for approximating V
on the interval [0, hN ]. Note that a strategy divides the set {0, h, . . . ,Nh} into two parts A
(points at which no dividends are paid) and B (points at which a certain dividend is paid).
Let us denote B as active set and A as non-active set. The starting point of the algorithm
is an admissible strategy S0 ∈ S (with associated A0 and B0) and its associate value v0,
which we can in the best case compute explicitly (a simple type of strategy as introduced
above seems to be appropriate in most cases). If

max {Lv0,Mv0 − v0} = 0

holds, one is finished. If not, we go through each point i h ∈ A0, 0 ≤ i ≤ N and check if
v0(ih) ≤ Mv0(ih) holds. If this is the case, this point is moved to B1 and in the end we set
A1 = {0, h, . . . , hN} \ B1 (updating active and non-active sets). In the following step we
compute v1 as a solution to

cf ′(x) − (δ + λ)v0(x) + λ

∫ x

0
f(x − y) dFY (y) = 0, (18)

for x ∈ A and set v1(x) = Mv0(x) for x ∈ B1 (note that as suggested by Rogers for solving
a classical control problem, using −(δ + λ)v0(x) instead of −(δ + λ)f(x) in (18) makes
the procedure for solving the integro-differential equation more stable). This algorithm
gives us an admissible strategy S1, taking the local maximizers from Mv0 and its value
v1 into account. Iterating this procedure (maybe up to a number n of iterations such that
supx∈{0,h,...,hN} (vn(x) − vn−1(x)) is smaller than a specified level) gives us an approximation
of V and some sort of recommendable admissible strategy. For verifying this procedure one
can plug the constructed solution into the QVI (12) for getting some sort of numerical
verification, but notice that because of the numerical local maximizers and the non-local
structure of the first part of the QVI, this can become a vague statement.
Of course it will be hard, or even impossible to determine the optimal strategy exactly, but
one will at least get a good guess of the structure of the optimal policy and an approximation
for V . The constructed sequence of values of admissible strategies is increasing and bounded

14



2 4 6 8 10
x

4

6

8

10

12

VHxL

Figure 3: Value functions of iterated and best simple strategy

by the value function of the optimization problem, which itself is linearly bounded, and
therefore it converges. Because at every step an admissible strategy is constructed, the
procedure converges (formally) to the correct (the smallest) solution of (12).

Remark 5.1. When calculating the solution in the nth step of the algorithm, vn−1 and the
payoff Mvn−1 are known and one determines vn as a solution to

max {Lvn,Mvn−1 − vn} = 0.

This is the way one proceeds when calculating V via the iterated optimal stopping charac-
terization when writing the optimal stopping problem in a QVI form. This representation
can be made rigorous by the same means as used in Section 4 for proving the QVI represen-
tation of V . When doing this computation formally in an exact way one needs to determine
optimal active and non-active sets at each step while policy iteration adapts these sets from
one iteration to another.

By these means we are able to demonstrate that as in the classical dividend maximization
problem for the compound Poisson model (see [1] or [20]), it is possible that the optimal
strategy is of a band structure. Figure 3 and 4 show the value function (full line: policy
iterated one, dotted line: best b = {b1, b2} strategy) and its associated band type strategy
for the following set of parameters: c = 21.4, λ = 10, δ = 0.1, k = 0.95, K = 0.05, γ = 0.9
and Erlang(2, 1) distributed claim amounts. For the linear utility case this parameter set
turns out to admit no b = {b1, b2} type optimal strategy, see [15]. In Figure 4 positive values
mark the action set whereas zero values mark the non action set. The depicted heights of
the action points are the heights of the (approximative) optimal dividend payments.
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