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a b s t r a c t

We analyze the optimal dividend payment problem in the dual model under constant transaction costs.
We show, for a general spectrally positive Lévy process, an optimal strategy is given by a (c1, c2)-policy
that brings the surplus process down to c1 whenever it reaches or exceeds c2 for some 0 ≤ c1 < c2. The
value function is succinctly expressed in terms of the scale function. A series of numerical examples are
provided to confirm the analytical results and to demonstrate the convergence to the no-transaction cost
case, which was recently solved by Bayraktar et al. (2013).
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1. Introduction

We solve the optimal dividend problem under fixed transaction

costs in the so-called dualmodel, inwhich the surplus of a company

is driven by a Lévy process with positive jumps (spectrally positive

Lévy process). This is an appropriate model for a company driven

by inventions or discoveries. The casewithout transaction costs has

recently been well-studied; see Avanzi et al. (2007), Bayraktar and

Egami (2008), Avanzi and Gerber (2008), and Avanzi et al. (2011).

In particular, in Bayraktar et al. (2013), we show the optimality of

a barrier strategy (reflected Lévy process) for a general spectrally

positive Lévy process of bounded or unbounded variation.

A strategy is assumed to be in the form of impulse control;

whenever dividends are accrued, a constant transaction costβ > 0

is incurred. As opposed to the barrier strategy that is typically

∗ Corresponding author. Tel.: +81 6 6368 1527.

E-mail addresses: erhan@umich.edu (E. Bayraktar), a.kyprianou@bath.ac.uk

(A.E. Kyprianou), kyamazak@kansai-u.ac.jp (K. Yamazaki).

optimal for the no-transaction cost case, we shall pursue the
optimality of the so-called (c1, c2)-policy that brings the surplus
process down to c1 whenever it reaches or exceeds c2 for some
0 ≤ c1 < c2 < ∞. While, as in Loeffen (2009), Thonhauser
and Albrecher (2011), an optimal strategy may not lie in the set
of (c1, c2)-policies for the spectrally negative Lévy case, we shall
show that it is indeed so in the dual model for any choice of
underlying spectrally positive Lévy process. As a related work, we
refer the reader to a compound Poisson dual model by Yao et al.
(2011) where transaction costs are incurred for capital injections.
In inventory control, the optimality of similar policies, called (s, S)-
policies, is shown to be optimal in Benkherouf and Bensoussan
(2009), Bensoussan et al. (2005) for amixture of a Brownianmotion
and a compound Poisson process and in Yamazaki (2013) for a
general spectrally negative Lévy process.

Following Bayraktar et al. (2013), we take advantage of the
fluctuation theory for the spectrally positive Lévy process (see e.g.
Bertoin (1996), Doney (2007) and Kyprianou (2006)). The expected
net present value (NPV) of dividends (minus transaction costs)
under a (c1, c2)-policy until ruin is first written in terms of the
scale function. We then show the existence of the maximizers

0167-6687/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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0 ≤ c∗
1 < c∗

2 < ∞ that satisfy the continuous fit (resp. smooth
fit) at c∗

2 when the surplus process is of bounded (resp. unbounded)
variation and that the derivative at c∗

1 is one when c∗
1 > 0 and is

less than or equal to one when c∗
1 = 0. These properties are used

to verify the optimality of the (c∗
1 , c

∗
2 )-policy.

In order to evaluate the analytical results and to examine the
connectionwith the no-transaction cost case developed by Bayrak-
tar et al. (2013), we conduct a series of numerical experiments
using Lévy processes with positive i.i.d. phase-type jumps with
or without a Brownian motion (Asmussen et al., 2004). We shall
confirm the existence of themaximizers 0 ≤ c∗

1 < c∗
2 < ∞ and ex-

amine the shape of the value function at c∗
1 and c∗

2 .We further com-
pute for a sequence of unit transaction costs and confirm that, as
β ↓ 0, the value function as well as c∗

1 and c∗
2 converges to the ones

obtained for the no-transaction cost case in Bayraktar et al. (2013).

The rest of the paper is organized as follows. Section 2 gives a
mathematical model of the problem. In Section 3, we compute the
expected NPV of dividends under the (c1, c2)-policy via the scale
function. Section 4 shows the existence of 0 ≤ c∗

1 < c∗
2 < ∞

that maximize the expected NPV over c1 and c2. Section 5 verifies
the optimality of the (c∗

1 , c
∗
2 )-policy. We conclude the paper with

numerical results in Section 6.

2. Mathematical formulation

Wewill denote the surplus of a company by a spectrally positive
Lévy process X = {Xt; t ≥ 0} whose Laplace exponent is given by

ψ(s) := logE


e−sX1


= cs +
1

2
σ 2s2

+



(0,∞)

(e−sz − 1 + sz1{0<z<1})ν(dz), s ≥ 0 (2.1)

where ν is a Lévy measure with the support (0,∞) that satisfies
the integrability condition



(0,∞)
(1 ∧ z2)ν(dz) < ∞. It has paths

of bounded variation if and only if σ = 0 and


(0,1)
z ν(dz) < ∞.

In this case, we write (2.1) as

ψ(s) = ds +



(0,∞)

(e−sz − 1)ν(dz), s ≥ 0

with d := c +


(0,1)
z ν(dz); the resulting drift of the process is −d.

We exclude the trivial case in which X is a subordinator (i.e., X has
monotone paths a.s.). This assumption implies that d > 0 when X
is of bounded variation.

Let Px be the conditional probability under which X0 = x (also
let P ≡ P0), and let F := {Ft : t ≥ 0} be the filtration generated
by X . Using this, the drift of X is given by

µ := E[X1] = −ψ ′(0+). (2.2)

In order to make sure the problem is non-trivial and well-defined,
we assume throughout the paper that this is finite.

Assumption 2.1. We assume that µ ∈ (−∞,∞).

A (dividend) strategy π :=


Lπt ; t ≥ 0


is given by a non-
decreasing, right-continuous and F-adapted pure jump process
starting at zero in the form Lπt =



0≤s≤t 1Lπs with 1Lt = Lt −
Lt−, t ≥ 0. Corresponding to every strategy π , we associate a
controlled surplus process Uπ = {Uπt : t ≥ 0}, which is defined by

Uπt := Xt − Lπt , t ≥ 0,

where Uπ0− = x is the initial surplus and Lπ0− = 0. The time of ruin
is defined to be

σ π := inf


t > 0 : Uπt < 0


.

A lump-sum payment cannot bemore than the available funds and
hence it is required that

1Lπt ≤ Uπt− +1Xt , t ≤ σ π a.s. (2.3)

Let Π be the set of all admissible strategies satisfying (2.3). The
problem is to compute, for q > 0, the expected NPV of dividends
until ruin

vπ (x) := Ex

 σπ

0

e−qtd



Lπt −


0≤s≤t

β1{1Lπs >0}



, x ≥ 0,

where β > 0 is the unit transaction cost, and to obtain an admissi-
ble strategy that maximizes it, if such a strategy exists. Hence the
(optimal) value function is written as

v(x) := sup
π∈Π

vπ (x), x ≥ 0. (2.4)

3. The (c1, c2)-policy

We aim to prove that a (c∗
1 , c

∗
2 )-policy is optimal for some c∗

2 >

c∗
1 ≥ 0. For c2 > c1 ≥ 0, a (c1, c2)-policy, πc1,c2 :=



L
c1,c2
t ; t ≥ 0



,
brings the level of the controlled surplus processU c1,c2 := X−Lc1,c2

down to c1 whenever it reaches or exceeds c2. Let us define the
corresponding expected NPV of dividends as

vc1,c2(x) := Ex



 σc1,c2

0

e−qtd



L
c1,c2
t −



0≤s≤t

β1
{1L

c1,c2
s >0}





,

x ≥ 0, (3.1)

where σc1,c2 := inf


t > 0 : U
c1,c2
t < 0



is the corresponding ruin

time. In this section, we shall express these in terms of the scale

function.

3.1. Scale functions

Fix q > 0. For any spectrally positive Lévy process, there exists
a function called the q-scale function

W (q) : R → [0,∞),

which is zero on (−∞, 0), continuous and strictly increasing on
[0,∞), and is characterized by the Laplace transform:
 ∞

0

e−sxW (q)(x)dx =
1

ψ(s)− q
, s > Φ(q),

where

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}.

Here, the Laplace exponent ψ in (2.1) is known to be zero at the
origin and convex on [0,∞); thereforeΦ(q) is well-defined and is
strictly positive as q > 0. We also define, for x ∈ R,

W
(q)
(x) :=

 x

0

W (q)(y)dy,

Z (q)(x) := 1 + qW
(q)
(x),

Z
(q)
(x) :=

 x

0

Z (q)(z)dz = x + q

 x

0

 z

0

W (q)(w)dwdz.

Notice that because W (q) is uniformly zero on the negative half-
line, we have

Z (q)(x) = 1 and Z
(q)
(x) = x, x ≤ 0. (3.2)
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Let us define the first down- and up-crossing times, respectively,
by

τ−
a := inf {t > 0 : Xt < a} and

τ+
b := inf {t > 0 : Xt > b} , a, b ∈ R.

(3.3)

Then we have for any b > 0

Ex



e−qτ−
0 1

τ+
b
>τ−

0





=
W (q)(b − x)

W (q)(b)
,

Ex



e−qτ+
b 1

τ+
b
<τ−

0





= Z (q)(b − x)− Z (q)(b)
W (q)(b − x)

W (q)(b)
.

(3.4)

Notice for the case of spectrally negative Lévy process starting at x,
analogous results hold by replacing b − xwith x.

Fix a ≥ 0 and define ψa(·) as the Laplace exponent of X under
P
a with the change of measure

dP
a

dP









Ft

= exp(aXt − ψ(a)t), t ≥ 0; (3.5)

see p. 213 of Kyprianou (2006). It is given for all s > −a by

ψa(s) :=



aσ 2 + c −

 1

0

u(e−au − 1)ν(du)



s

+
1

2
σ 2s2 +



(0,∞)

(e−su − 1 + su1{0<u<1})e
−au ν(du).

If W
(q)
a and Z

(q)
a are the scale functions associated with X under

P
a (or equivalently with ψa(·)), then, by Lemma 8.4 of Kyprianou

(2006),

W (q−ψ(a))
a (x) = e−axW (q)(x), x ∈ R, (3.6)

which is well-defined even for q ≤ ψ(a) by Lemmas 8.3 and 8.5 of
Kyprianou (2006).

Remark 3.1. (1) Regarding the asymptotic behavior near zero, we
have that

W (q)(0) =



0, if X is of unbounded variation,
1

d
, if X is of bounded variation,

(3.7)

and

W (q)′(0+) := lim
x↓0

W (q)′(x)

=



















2

σ 2
, if σ > 0,

∞, if σ = 0 and ν(0,∞) = ∞,

q + ν(0,∞)

d2
, if X is compound Poisson.

(3.8)

(2) If X is of unbounded variation, it is known that W (q) is
C1(0,∞); see, e.g., Chan et al. (2011). Hence,
(a) Z (q) is C1(0,∞) and C0(R) for the bounded variation case,

while it is C2(0,∞) and C1(R) for the unbounded variation
case, and

(b) Z
(q)

is C2(0,∞) and C1(R) for the bounded variation case,
while it is C3(0,∞) and C2(R) for the unbounded variation
case.

(3) As in (8.18) and Lemma 8.2 of Kyprianou (2006),

W (q)′(y)

W (q)(y)
≤

W (q)′(x)

W (q)(x)
, y > x > 0,

where W (q)′ is understood as the right-derivative if it is not

differentiable. In all cases,W (q)′(x−) ≥ W (q)′(x+) for all x > 0.

3.2. The expected NPV of dividends for the (c1, c2)-policy

Now we obtain (3.1) using the scale function. By the strong
Markov property, it must satisfy, for every 0 ≤ x < c2 and
0 ≤ c1 < c2,

vc1,c2(x) = Ex



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− c1 − β)



+ Ex



e
−qτ+

c2 1{τ+
c2
<τ−

0
}



v̄c1,c2 , (3.9)

where v̄c1,c2 := vc1,c2(c1). Solving for x = c1, we have

v̄c1,c2 =
Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− c1 − β)



1 − Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}

 ,

0 ≤ c1 < c2. (3.10)

The Laplace transform Ex



e
−qτ+

c −vX
τ
+
c 1{τ+

c <τ
−
0

}



, q, v > 0, was

computed in Corollary 3 of Ivanovs and Palmowski (2012). The

following result is the derivative of this transform at v = 0.

Lemma 3.1. For 0 ≤ x < c,

Ex



e−qτ+
c 1{τ+

c <τ
−
0

}Xτ+
c



= −R(q)(c − x)+



c −
µ

q



Z (q)(c − x)

−



c −
µ

q



Z (q)(c)− R(q)(c)



W (q)(c − x)

W (q)(c)
,

where

R(q)(y) := Z
(q)
(y)−

µ

q
, y ∈ R.

By this lemma, (3.4) and (3.10), we can write

v̄c1,c2 =
f (c1, c2)

g(c1, c2)
, 0 ≤ c1 < c2, (3.11)

where

f (c1, c2) := −R(q)(c2 − c1)+



c2 −
µ

q



Z (q)(c2 − c1)

−



c2 −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)(c2 − c1)

W (q)(c2)

− (c1 + β)



Z (q)(c2 − c1)− Z (q)(c2)
W (q)(c2 − c1)

W (q)(c2)



= −R(q)(c2 − c1)+



c2 − c1 − β −
µ

q



Z (q)(c2 − c1)

−



c2 − c1 − β −
µ

q



Z (q)(c2)− R(q)(c2)



×
W (q)(c2 − c1)

W (q)(c2)
(3.12)

and

g(c1, c2) := 1 − Z (q)(c2 − c1)+ Z (q)(c2)
W (q)(c2 − c1)

W (q)(c2)
. (3.13)
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4. Candidate strategies

Using the results in the previous section, we now have an
analytical expression for (3.1) or equivalently (3.9). For 0 ≤ x < c2
and 0 ≤ c1 < c2, this expression reduces to

vc1,c2(x) = −R(q)(c2 − x)+



c2 −
µ

q



Z (q)(c2 − x)

−



c2 −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)(c2 − x)

W (q)(c2)

+ (v̄c1,c2 − c1 − β)



Z (q)(c2 − x)− Z (q)(c2)
W (q)(c2 − x)

W (q)(c2)



= −R(q)(c2 − x)+ γ (c1, c2)Z
(q)(c2 − x)

−G(c1, c2)
W (q)(c2 − x)

W (q)(c2)
, (4.1)

where

γ (c1, c2) := v̄c1,c2 + c2 − c1 − β −
µ

q
,

G(c1, c2) := γ (c1, c2)Z
(q)(c2)− R(q)(c2).

(4.2)

For x ≥ c2, we have

vc1,c2(x) = x − c1 − β + v̄c1,c2 . (4.3)

In view of (4.3), a necessary condition for a (c1, c2)-policy to

be optimal is that c1 and c2 maximize v̄c1,c2 − c1. In this section,

we first obtain the first-order conditions by computing its partial

derivatives with respect to c1 and c2 and then show the existence

of finite-valuedmaximizers. In the rest of the paper, the derivative

is understood as the right-derivative when the scale functionW (q)

fails to be differentiable on (0,∞).

4.1. First-order conditions

Lemma 4.1. For every 0 ≤ c1 < c2,

∂

∂c2
(v̄c1,c2 − c1) =

∂

∂c2
v̄c1,c2 = −

G(c1, c2)

g(c1, c2)

∂

∂c2

W (q)(c2 − c1)

W (q)(c2)
.

Proof. Differentiating (3.12), we obtain

∂

∂c2
f (c1, c2) = −Z (q)(c2 − c1)+ Z (q)(c2 − c1)

+



c2 − c1 − β −
µ

q



qW (q)(c2 − c1)

−



c2 − c1 − β −
µ

q



qW (q)(c2)

+ Z (q)(c2)− Z (q)(c2)



W (q)(c2 − c1)

W (q)(c2)

−



c2 − c1 − β −
µ

q



Z (q)(c2)− R(q)(c2)



×
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)

= −



c2 − c1 − β −
µ

q



Z (q)(c2)− R(q)(c2)



×
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)
.

On the other hand, differentiating (3.13) yields

∂

∂c2
g(c1, c2) = −qW (q)(c2 − c1)+ qW (q)(c2)

W (q)(c2 − c1)

W (q)(c2)

+ Z (q)(c2)
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)

= Z (q)(c2)
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)
.

Using the last two equations along with (3.11), we have

g(c1, c2)
∂

∂c2
v̄c1 ,2 =

∂

∂c2
f (c1, c2)− v̄c1,c2

∂

∂c2
g(c1, c2)

= −



c2 − c1 − β −
µ

q



Z (q)(c2)− R(q)(c2)



×
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)
− v̄c1,c2Z

(q)(c2)

×
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)

= −G(c1, c2)
∂

∂c2

W (q)(c2 − c1)

W (q)(c2)
. �

Lemma 4.2. For 0 < c1 < c2,

∂

∂c1
(v̄c1,c2 − c1) =

∂

∂c1



f (c1, c2)− c1g(c1, c2)

g(c1, c2)



=
1

g(c1, c2)



−H(c1, c2)+ G(c1, c2)
W (q)′(c2 − c1)

W (q)(c2)



,

where

H(c1, c2) := q


γ (c1, c2)W
(q)(c2 − c1)− W

(q)
(c2 − c1)



.

Proof. By (3.12) and (3.13),

f (c1, c2)− c1g(c1, c2)

= −R(q)(c2 − c1)+



c2 − c1 − β −
µ

q



Z (q)(c2 − c1)

−



c2 − c1 − β −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)(c2 − c1)

W (q)(c2)

− c1 + c1Z
(q)(c2 − c1)− c1Z

(q)(c2)
W (q)(c2 − c1)

W (q)(c2)

= −R(q)(c2 − c1)− c1 +



c2 − β −
µ

q



Z (q)(c2 − c1)

−



c2 − β −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)(c2 − c1)

W (q)(c2)
,

and hence its derivative equals

∂

∂c1
[f (c1, c2)− c1g(c1, c2)]

= qW
(q)
(c2 − c1)−



c2 − β −
µ

q



qW (q)(c2 − c1)

+



c2 − β −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)′(c2 − c1)

W (q)(c2)
.
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Because ∂g(c1, c2)/∂c1 = qW (q)(c2 − c1)− Z (q)(c2)
W (q)′ (c2−c1)

W (q)(c2)
and

by (3.11),

g(c1, c2)
∂

∂c1



f (c1, c2)− c1g(c1, c2)

g(c1, c2)



=
∂

∂c1
[f (c1, c2)− c1g(c1, c2)] − (v̄c1,c2 − c1)

∂

∂c1
g(c1, c2)

= qW
(q)
(c2 − c1)−



c2 − β −
µ

q



qW (q)(c2 − c1)

+



c2 − β −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)′(c2 − c1)

W (q)(c2)

− (v̄c1,c2 − c1)



qW (q)(c2 − c1)− Z (q)(c2)
W (q)′(c2 − c1)

W (q)(c2)



= −H(c1, c2)+ G(c1, c2)
W (q)′(c2 − c1)

W (q)(c2)
. �

Remark 4.1. The first-order conditions obtained above are for
(4.3). However, these are in fact the same for (4.1) for any 0 ≤ x <
c2. Differentiating the first equality of (4.1),

∂

∂c1
vc1,c2(x) =

∂

∂c1
(v̄c1,c2 − c1 − β)

×



Z (q)(c2 − x)− Z (q)(c2)
W (q)(c2 − x)

W (q)(c2)



,

0 < c1 < c2, (4.4)

whose sign is the same as that of ∂(v̄c1,c2 − c1)/∂c1 thanks to (3.4)
which guarantees that the expression inside the square brackets is
positive. Moreover, by differentiating (4.1) and by Lemma 4.1, for
0 ≤ c1 < c2,

∂

∂c2
vc1,c2(x) = −G(c1, c2)

∂

∂c2

W (q)(c2 − x)

W (q)(c2)

+



Z (q)(c2 − x)− Z (q)(c2)
W (q)(c2 − x)

W (q)(c2)



∂

∂c2
v̄c1,c2

= −G(c1, c2)



1 +
Z (q)(c2 − x)− Z (q)(c2)

W (q)(c2−x)

W (q)(c2)

g(c1, c2)





×
∂

∂c2

W (q)(c2 − x)

W (q)(c2)
,

whose sign is the same as that of ∂v̄c1,c2/∂c2 due to item (3) of
Remark 3.1.

4.2. Existence and some properties of maximizers

Now we are ready to show that the maximizers of v̄c1,c2 − c1
exist. We will also describe equations that can be used to identify
these points.

Lemma 4.3. We have sup0≤c1<c2
(v̄c1,c2 − c1) = sup0≤c1<c2≤C (v̄c1,c2

− c1) for sufficiently large C < ∞.

Proof. By Lemma 3.1 and (3.4), for any c2 > c1 ≥ 0,

Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



= −R(q)(c2 − c1)+



c2 − β −
µ

q



Z (q)(c2 − c1)

−



c2 − β −
µ

q



Z (q)(c2)− R(q)(c2)



W (q)(c2 − c1)

W (q)(c2)
,

and hence

∂

∂c2
Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



= −



c2 − β −
µ

q



Z (q)(c2)− R(q)(c2)



∂

∂c2

W (q)(c2 − c1)

W (q)(c2)

= −A(c2)W
(q)(c2 − c1)



W (q)′(c2 − c1)

W (q)(c2 − c1)
−

W (q)′(c2)

W (q)(c2)



, (4.5)

where A(c) :=


c − β − µ

q



Z(q)(c)

W (q)(c)
− R(q)(c)

W (q)(c)
, c > 0. It follows

from Exercise 8.5 of Kyprianou (2006) and Proposition 2 of Avram
et al. (2007) that Z (q)(c)/W (q)(c) → q/Φ(q) ∈ (0,∞) and
R(q)(c)/W (q)(c) → q/Φ(q)2 ∈ (0,∞) as c ↑ ∞, respectively.
As a result, A(c) ↑ ∞ and hence there exists B < ∞ such that

A(c) > 0, c ≥ B. (4.6)

Now because
W (q)′ (c2−c1)

W (q)(c2−c1)
− W (q)′ (c2)

W (q)(c2)
> 0 by Remark 3.1(3), we have

∂Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



/∂c2 < 0 for any c2 > c1 ≥ B.

Hence for any fixed c1 ≥ B,

sup
c2:c2>c1

Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



= lim
c2↓c1

Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



= (c1 − β)− A(c1)W
(q)(0).

Now by the definition of v̄c1,c2 as in (3.10), for any fixed c1 ≥ B,

sup
c2:c2>c1

(v̄c1,c2 − c1)

= sup
c2:c2>c1

−c1 + Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



1 − Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}



≤ sup
c2:c2>c1

−c1 + sup
c2:c2>c1

Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



1 − Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}



≤ sup
c2:c2>c1

−β − A(c1)W
(q)(0)

1 − Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}

 ,

which is negative by (4.6). On the other hand, because c1 = 0 and
c2 > 0 attain v̄c1,c2 − c1 = 0, we have

sup
(c1,c2):c2>c1≥0

(v̄c1,c2 − c1) = sup
(c1,c2):c2>c1≥0,c1≤B

(v̄c1,c2 − c1). (4.7)

Now fix c1 ≤ B and c2 ≥ B + δ for any δ > 0. Then

v̄c1,c2 − c1 =
−c1 + Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}(Xτ+

c2
− β)



1 − Ec1



e
−qτ+

c2 1{τ+
c2
<τ−

0
}



≥
−B − β

1 − EB



e−qτ+
B+δ1{τ+

B+δ<τ
−
0

}

 =: M > −∞.
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By Lemma 4.1 and Remark 3.1(3),

∂

∂c2
v̄c1,c2 = −

G(c1, c2)

g(c1, c2)

∂

∂c2

W (q)(c2 − c1)

W (q)(c2)

= −



v̄c1,c2 + c2 − c1 − β −
µ

q



Z (q)(c2)

W (q)(c2)

−
R(q)(c2)

W (q)(c2)



W (q)(c2 − c1)

g(c1, c2)

×



W (q)′(c2 − c1)

W (q)(c2 − c1)
−

W (q)′(c2)

W (q)(c2)



≤ −



M + c2 − β −
µ

q



Z (q)(c2)

W (q)(c2)
−

R(q)(c2)

W (q)(c2)



×
W (q)(c2 − c1)

g(c1, c2)



W (q)′(c2 − c1)

W (q)(c2 − c1)
−

W (q)′(c2)

W (q)(c2)



.

Using Remark 3.1(3) and the fact that (M + c2 − β − µ

q
)

Z(q)(c2)

W (q)(c2)
−

R(q)(c2)

W (q)(c2)

c2↑∞
−−−→ ∞, it follows that there exists a sufficiently large

constant C such that

sup
c1≤B,c2≥C

∂

∂c2
v̄c1,c2 ≤ 0.

Combining the last inequality with (4.7) completes the proof. �

Lemma 4.4. Fix any c1 ≥ 0, limc2↓c1 G(c1, c2) < 0.

Proof. We have

γ (c1, c2)
c2↓c1
−−−→















−∞, if X is of unbounded variation,

Z (q)(c1)
−1



−
W (q)(c1)

W (q)(0)
β + R(q)(c1)



,

if X is of bounded variation.

When X is of unbounded variation limc2↓c1 G(c1, c2) = −∞ while
when X is of bounded variation, by (4.2), limc2↓c1 G(c1, c2) =

−W (q)(c1)

W (q)(0)
β < 0. �

This lemma, together with Lemma 4.1 and Remark 3.1(3),
implies that, for any fixed c1 ≥ 0, ∂v̄c1,c2/∂c2 is negative near
c1; consequently there exists v̄c1,c1 := limc2↓c1 v̄c1,c2 (which can
be shown to be −∞ when X is of unbounded variation). Because
v̄c1,c2 − c1 is continuous and we have a compact domain {(c1, c2) :
0 ≤ c1 ≤ c2, 0 ≤ c2 ≤ C} for large C by Lemma 4.3, we have a
maximum. Furthermore, Lemmas 4.1 and 4.4 show that if c1 and c2
maximize v̄c1,c2 − c1, it must hold that c2 is away from c1.

Lemma 4.5. Suppose c1 and c2 maximize v̄c1,c2−c1. ThenG(c1, c2) =
0 and H(c1, c2) ≥ 0. In particular, if c1 > 0, we must have
H(c1, c2) = 0.

Proof. By Lemmas 4.3 and 4.4, c2 ∈ (c1,∞). Hence, by Lemma 4.1,
we must have G(c1, c2) = 0. On the other hand, by Lemma 4.2,

∂

∂c1
(v̄c1,c2 − c1) = −

H(c1, c2)

g(c1, c2)
.

If H(c1, c2) < 0, the derivative is positive and it violates the
assumed optimality. In particular, if c1 ∈ (0, c2), then the
derivative must vanish and hence H(c1, c2) = 0. �

Combining the above arguments, we arrive at the following
proposition.

Proposition 4.1. There exist (c1, c2) that maximize v̄c1,c2 − c1 and
satisfy the following two properties.

(1) 0 < c2 < ∞ and G(c1, c2) = 0;
(2) either 0 < c1 < c2 with H(c1, c2) = 0, or c1 = 0 with

H(0, c2) ≥ 0.

Remark 4.2. Suppose c1 and c2 are such that H(c1, c2) ≥ 0 and
G(c1, c2) = 0. Then, γ (c1, c2) > 0. To see why this is so, by
Lemma 4.4, G(c1, c2) = 0 implies that c1 < c2 and, together with

H(c1, c2) ≥ 0, we have γ (c1, c2) ≥ W
(q)
(c2 − c1)/W

(q)(c2 − c1)
> 0.

5. Verification of optimality

By Proposition 4.1, there exist 0 ≤ c∗
1 < c∗

2 < ∞ such that
G(c∗

1 , c
∗
2 ) = 0 and either

Case 1 c∗
1 > 0 with H(c∗

1 , c
∗
2 ) = 0, or

Case 2 c∗
1 = 0 with H(0, c∗

2 ) ≥ 0.

We will show that such a (c∗
1 , c

∗
2 )-policy describes an optimal

policy (and as a result the conditions written in terms of H and
G are both necessary and sufficient for (c∗

1 , c
∗
2 ) to be optimal).

Propositions 5.1 and 5.2 will play a key role.
By substituting G(c∗

1 , c
∗
2 ) = 0 in (4.1),

vc∗
1
,c∗
2
(x) =







−R(q)(c∗
2 − x)+ γ (c∗

1 , c
∗
2 )Z

(q)(c∗
2 − x),

0 ≤ x < c∗
2 ,

x − c∗
1 − β + v̄c∗

1
,c∗
2
, x ≥ c∗

2 .

In fact, by (3.2) and by the definition of γ (c∗
1 , c

∗
2 ) as in (4.2), we can

write for any x ≥ 0,

vc∗
1
,c∗
2
(x) = −R(q)(c∗

2 − x)+ γ (c∗
1 , c

∗
2 )Z

(q)(c∗
2 − x). (5.1)

It is clear that it is continuous at c∗
2 . Regarding its differentiability,

we have

v′
c∗
1
,c∗
2
(x) = Z (q)(c∗

2 − x)− γ (c∗
1 , c

∗
2 )qW

(q)(c∗
2 − x), (5.2)

whose limit equals

v′
c∗
1
,c∗
2
(c∗

2−) = 1 − γ (c∗
1 , c

∗
2 )qW

(q)(0). (5.3)

Because v′
c∗
1
,c∗
2
(c∗

2+) = 1, the differentiability at c∗
2 is satisfied if

and only if X is of unbounded variation by (3.7) and Remark 4.2.
We summarize these observations in the lemma below.

Lemma 5.1 (Smoothness at c∗
2 ). The function vc∗

1
,c∗
2
(·) is continuous

(resp. differentiable) at c∗
2 when X is of bounded (resp. unbounded)

variation.

Remark 5.1. Differentiating (5.2) further,

v′′
c∗
1
,c∗
2
(x) = −qW (q)(c∗

2 − x)+ γ (c∗
1 , c

∗
2 )qW

(q)′(c∗
2 − x), (5.4)

for a.e. x ∈ (0, c∗
2 ) and its limit as x ↑ c∗

2 equals

v′′
c∗
1
,c∗
2
(c∗

2−) = −qW (q)(0)+ γ (c∗
1 , c

∗
2 )qW

(q)′(0+). (5.5)

These results on the second derivative are used in deriving
Propositions 5.1 and 5.2 below.

By Remark 3.1(2) and Lemma5.1, the function vc∗
1
,c∗
2
is C0(0,∞)

and C1((0,∞)\{c∗
2 }) (resp. C

1(0,∞) and C2((0,∞)\{c∗
2 })) when

X is of bounded (resp. unbounded) variation.
LetL be the infinitesimal generator associatedwith the process

X applied to a sufficiently smooth function f

Lf (x) := −cf ′(x)+
1

2
σ 2f ′′(x)

+



(0,∞)



f (x + z)− f (x)− f ′(x)z1{0<z<1}



ν(dz).

Here Lvc∗
1
,c∗
2
(·)makes sense anywhere on (0,∞) \ {c∗

2 }.
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Proposition 5.1. (1) (L − q)vc∗
1
,c∗
2
(x) = 0 for 0 < x < c∗

2 ,

(2) (L − q)vc∗
1
,c∗
2
(x) ≤ 0 for x > c∗

2 .

Proof. (1) By Proposition 2 of Avram et al. (2007) and as in the
proof of Theorem 8.10 of Kyprianou (2006), the processes

e
−q(t∧τ−

0
∧τ+

c∗
2
)
Z (q)(Xt∧τ−

0
∧τ+

c∗
2

) and

e
−q(t∧τ−

0
∧τ+

c∗
2
)
R(q)(Xt∧τ−

0
∧τ+

c∗
2

), t ≥ 0,

are martingales. Thanks to the smoothness of Z (q) and R(q) on
(0, c∗

2 ) (see Remark 3.1(2)), we obtain (L − q)R(q)(y) = (L −

q)Z (q)(y) = 0 for any 0 < y < c∗
2 . This step is similar to the proof

of Theorem 2.1 in Bayraktar et al. (2013). This implies claim (1) in
view of (5.1).
(2) Suppose X is of bounded variation. By (5.3) and Remarks 3.1(1)
and 4.2,

v′
c∗
1
,c∗
2
(c∗

2−) < 1 = v′
c∗
1
,c∗
2
(c∗

2+).

Because σ = 0, d > 0 and vc∗
1
,c∗
2
(·) is continuous at c∗

2 , (1) implies

(L− q)vc∗
1
,c∗
2
(c∗

2+) < 0. Because, on (c∗
2 ,∞),Lvc∗

1
,c∗
2
is a constant

and qvc∗
1
,c∗
2
is increasing in view of (5.1), claim (2) follows for the

bounded variation case.
Suppose X is of unbounded variation. By (5.5) and Re-

marks 3.1(1) and 4.2,

v′′
c∗
1
,c∗
2
(c∗

2−) = γ (c∗
1 , c

∗
2 )qW

(q)′(0+) > 0 = v′′
c∗
1
,c∗
2
(c∗

2+).

Because vc∗
1
,c∗
2
is differentiable at c∗

2 , we must have (L − q)vc∗
1
,c∗
2

(c∗
2+) < 0. Again, because (L − q)vc∗

1
,c∗
2
is decreasing on (c∗

2 ,∞),

(2) is proved for the unbounded variation case as well. �

Proposition 5.2. For any x > y ≥ 0, it holds that vc∗
1
,c∗
2
(x) −

vc∗
1
,c∗
2
(y) ≥ x − y − β .

In order to show this proposition, we take advantage of the slope
of vc∗

1
,c∗
2
at c∗

1 . By (5.2),

v′
c∗
1
,c∗
2
(c∗

1 ) = Z (q)(c∗
2 − c∗

1 )− γ (c∗
1 , c

∗
2 )qW

(q)(c∗
2 − c∗

1 )

= 1 − H(c∗
1 , c

∗
2 ).

When c∗
1 = 0, the derivative is understood as the right-derivative.

Hence we arrive at the following.

Lemma 5.2 (Slope at c∗
1 ). For both Cases 1 and 2, v′

c∗
1
,c∗
2
(c∗

1+) ≤ 1.

In particular, for Case 1, v′
c∗
1
,c∗
2
(c∗

1 ) = 1.

Lemma 5.3. For any x ∈ (0,∞) \ {c∗
2 }, v

′
c∗
1
,c∗
2
(x) < 1 if and only if

x ∈ (c∗
1 , c

∗
2 ).

Proof. Because v′
c∗
1
,c∗
2
(x) = 1 on (c∗

2 ,∞), we shall focus on x ∈

(0, c∗
2 ). Rewriting (5.4),

v′′
c∗
1
,c∗
2
(x) = −qW (q)(c∗

2 − x)J(x), 0 < x < c∗
2 , (5.6)

where J(x) := 1 − γ (c∗
1 , c

∗
2 )

W (q)′ (c∗
2
−x)

W (q)(c∗
2
−x)

. By Remarks 3.1(3) and 4.2,

J(·) is decreasing on (0, c∗
2 ), and hence there exists a unique level

c̄ ∈ [0, c∗
2 ] such that (5.6) is negative if and only if x < c̄. In other

words, there are three possibilities

(i) vc∗
1
,c∗
2
is strictly concave on (0, c∗

2 ),

(ii) vc∗
1
,c∗
2
is strictly concave on (0, c̄) and strictly convex on (c̄, c∗

2 ),

(iii) vc∗
1
,c∗
2
is strictly convex on (0, c∗

2 ).

Case 1: Suppose c∗
1 > 0withH(c∗

1 , c
∗
2 ) = 0. By Lemma 5.2, (5.3)

and Remark 4.2,

v′
c∗
1
,c∗
2
(c∗

2−) ≤ 1 = v′
c∗
1
,c∗
2
(c∗

1 ). (5.7)

Therefore we can safely rule out (iii) andwemust have either (i) or
(ii) with c∗

1 < c̄ < c∗
2 . For (i) (thus v

′
c∗
1
,c∗
2
is decreasing on (0, c∗

2 )),

given x ∈ (0, c∗
2 ), v

′
c∗
1
,c∗
2
(x) < 1 if and only if x ∈ (c∗

1 , c
∗
2 ). Now

suppose (ii) with c∗
1 < c̄ < c∗

2 . Then by the concavity on (0, c̄)
and 1 = v′

c∗
1
,c∗
2
(c∗

1 ), we have v′
c∗
1
,c∗
2
> 1 on (0, c∗

1 ) and v
′
c∗
1
,c∗
2
< 1

on (c∗
1 , c̄). For x ∈ (c̄, c∗

2 ), by the convexity on (c̄, c∗
2 ) and (5.7),

1 ≥ v′
c∗
1
,c∗
2
(c∗

2−) ≥ v′
c∗
1
,c∗
2
(x).

Case 2: Suppose c∗
1 = 0 with H(0, c∗

2 ) ≥ 0. In view of (5.2) and
the definition of H(0, c∗

2 ), we must have that v′
0,c∗

2
(0+) ≤ 1. This

together with v′
0,c∗

2
(c∗

2−) ≤ 1 shows that v′
0,c∗

2
(x) < 1 on (0, c∗

2 )

for any of (i)–(iii). �

By Lemma 5.3,

inf
x>y

[vc∗
1
,c∗
2
(x)− vc∗

1
,c∗
2
(y)− (x − y − β)]

= vc∗
1
,c∗
2
(c∗

2 )− vc∗
1
,c∗
2
(c∗

1 )− (c∗
2 − c∗

1 − β) = 0,

and as a result the claim in Proposition 5.2 follows immediately.
Next, we will verify the optimality of the (c∗

1 , c
∗
2 )-policy.

Theorem 5.1. We have vc∗
1
,c∗
2
(x) = supπ∈Π vπ (x) for every x ≥ 0

and the (c∗
1 , c

∗
2 )-policy is optimal.

Proof. Here we only provide a sketch of a proof since it is similar
to that of Lemma 6 of Loeffen (2009). To verify the optimality of
(c∗

1 , c
∗
2 ) we only need to show that vc∗

1
,c∗
2
(x) ≥ vπ (x), x ≥ 0, for

all π ∈ Π . But this result follows from applying the Itô formula
to vc∗

1
,c∗
2
(Uπt ) for an arbitrary π ∈ Π , using Propositions 5.1

and 5.2 and then passing to the limit using Fatou’s lemma. Here
one should be careful in applying the Itô formula since the value
function vc∗

1
,c∗
2
may not be smooth enough at c∗

2 to apply the usual

version. When X of unbounded variation, we use Theorem 3.2 of
Peskir (2007), which shows that the smooth fit principle (which
we proved in Lemma 5.1) is enough to kill the local time terms
thatmight accumulate around c∗

2 ; see also Theorem IV.71 of Protter
(2005), or Exercise 3.6.24 of Karatzas and Shreve (1991). On the
other hand, when X is of bounded variation recall from Lemma 5.1
that the value function is only continuous. However, in this case
we do not need the smoothness of the value function at c∗

2 , simply
because the first derivative term is integrated against the Lebesgue
measure which is a diffusemeasure. We could also directly use the
first part of Theorem 6.2 of Øksendal and Sulem (2007). �

Weconclude this section by showing the uniqueness of (c∗
1 , c

∗
2 );

recall that the existence was proved in Proposition 4.1.

Proposition 5.3. The maximizer (c∗
1 , c

∗
2 ) is unique.

Proof. Suppose (c∗
1 , c

∗
2 ) and (ĉ

∗
1 , ĉ

∗
2 ) bothmaximize v̄c1,c2 − c1. We

shall show that they must be equal.
By Lemma 4.5, both (c∗

1 , c
∗
2 ) and (ĉ

∗
1 , ĉ

∗
2 ) satisfy Case 1 or Case 2

and by Theorem 5.1 we have

vc∗
1
,c∗
2
(x) = vĉ∗

1
,ĉ∗
2
(x) = sup

π∈Π
vπ (x) x ≥ 0. (5.8)

We first show that c∗
2 = ĉ∗

2 . Indeed, by Lemma 5.3, v′
c∗
1
,c∗
2
(x) < 1

on (c∗
1 , c

∗
2 ) and v

′
ĉ∗
1
,ĉ∗
2
(x) < 1 on (ĉ∗

1 , ĉ
∗
2 ) while v′

c∗
1
,c∗
2
(x) = 1 on

(c∗
2 ,∞) and v′

ĉ∗
1
,ĉ∗
2
(x) = 1 on (ĉ∗

2 ,∞). Hence if c∗
2 ≠ ĉ∗

2 , it would

contradict with (5.8) for the points between c∗
2 and ĉ∗

2 .
In order to show c∗

1 = ĉ∗
1 , we appeal to the identity vc1,c2(c2)−

vc1,c2(c1) = c2 − c1 −β , which holds for any 0 ≤ c1 < c2 for which
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Fig. 1. For the case σ = 1: (left) v̄c1,c2 − c1 with respect to c1 and c2 , (right) the value function vc∗
1
,c∗
2
as a function of x.

vc1,c2 is continuous at c2. This together with (5.8) and c∗
2 = ĉ∗

2

shows vc∗
1
,c∗
2
(ĉ∗

1 ) − vc∗
1
,c∗
2
(c∗

1 ) = ĉ∗
1 − c∗

1 . If ĉ
∗
1 ≠ c∗

1 , by the mean

value theorem, there exists a point between these at which v′
c∗
1
,c∗
2

is one; however, this contradicts Lemma 5.3. This completes the
proof. �

6. Numerical examples

In this section, we confirm the results numerically using the
spectrally positive Lévy process with i.i.d. phase-type distributed
jumps (Asmussen et al., 2004) of the form

Xt − X0 = −dt + σBt +

Nt


n=1

Zn, 0 ≤ t < ∞,

for some d ∈ R and σ ≥ 0. Here B = {Bt; t ≥ 0} is a standard
Brownianmotion,N = {Nt; t ≥ 0} is a Poisson processwith arrival
rate λ, and Z = {Zn; n = 1, 2, . . .} is an i.i.d. sequence of phase-
type-distributed random variables with representation (m,α, T );
see Asmussen et al. (2004). The processes N, B and Z are assumed
to be mutually independent. Its Laplace exponent (2.1) is then

ψ(s) = ds +
1

2
σ 2s2 + λ



α(sI − T )−1
t − 1



,

which is analytic for every s ∈ C except at the eigenvalues of T .
Suppose {−ξi,q; i ∈ Iq} is the set of the roots of the equalityψ(s) =
q with negative real parts, and if these are assumed distinct, then
the scale function can be written

W (q)(x) =
eΦ(q)x

ψ ′(Φ(q))
−


i∈Iq

Ci,qe
−ξi,qx, x ≥ 0, (6.1)

where

Ci,q :=
s + ξi,q

q − ψ(s)









s=−ξi,q

= −
1

ψ ′(−ξi,q)
;

see Egami and Yamazaki (2012). Here {ξi,q; i ∈ Iq} and {Ci,q; i ∈

Iq} are possibly complex-valued.

In our example, we shall choose a phase-type distribution

which does not have a completely monotone density. Recall that,

in the spectrally negative counterpart (Loeffen, 2009), the (c1, c2)-

policy may fail to be optimal if the Lévy density is not completely

monotone. On the other hand, in the dual model, there is no
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Fig. 2. For the case with σ = 0: (left) v̄c1,c2 − c1 with respect to c1 and c2 , (right) the value function vc∗
1
,c∗
2
as a function of x.

restriction on the Lévy measure. We assumem = 6 and

T =















−5.6546 0.0000 0.0000 0.0000 0.0000 0.0000

0.6066 −5.6847 0.0000 0.0166 0.0089 5.0526

0.2156 4.3616 −5.6485 0.9162 0.1424 0.0126

5.6247 0.0000 0.0000 −5.6786 0.0000 0.0000

0.0107 0.0000 0.0000 5.7247 −5.7420 0.0000

0.0136 0.0000 0.0000 0.0024 5.7022 −5.7183















,

α =















0.0000

0.0007

0.9961

0.0000

0.0001

0.0031















,

which give an approximation of the Weibull distribution with
density function f (x) = αγ αxα−1 exp {−(γ x)α} for α = 2
and γ = 1, obtained using the EM-algorithm; see Egami and
Yamazaki (2012) regarding the approximation performance of the
corresponding scale function. Throughout this section, we let q =
0.05 and let other parameters vary so as to see their impacts on the
optimal strategy and the value function.

In our first experiment, we let d = 2, σ = 0 or σ = 1 with

Case 1: β = 4 and λ = 3
Case 2: β = 4 and λ = 1

and obtain the optimal strategies/value functions and confirm the
analytical results obtained in the previous sections. We choose
these parameters so that c∗

1 > 0 for Case 1 and c∗
1 = 0 for Case 2.

Figs. 1 and 2 show the results forσ = 1 andσ = 0, respectively.
In both figures, we plot in the left column v̄c1,c2 − c1 with respect
to c1 and c2 and in the right column the value function vc∗

1
,c∗
2
(·)

as a function of the initial value x. Recall that the values (c∗
1 , c

∗
2 )

are those that maximize v̄c1,c2 − c1. As can be suggested from the
contour map of v̄c1,c2 − c1, there exists a unique global maximum
and hence Newton’s method is a reasonable choice of computing
the maximizer (c∗

1 , c
∗
2 ). For the plots of the value functions, the

circles indicate the points (c∗
1 , vc∗1 ,c

∗
2
(c∗

1 )) and (c
∗
2 , vc∗1 ,c

∗
2
(c∗

2 )) and

the dotted lines the 45° lines passing through these points.
In view of these figures, the continuity/smoothness at c∗

2 is
readily confirmed; it appears to be differentiable for the caseσ = 1
(in other words, the value function is tangent to the 45° line) while
it is continuous for the case σ = 0. The non-differentiability for
σ = 0 is apparent in view of Case 2 in Fig. 2. At c∗

1 , the value
function is indeed tangent to the 45° line if c∗

1 > 0, while for the
case c∗

1 = 0, we see that the slope is less than one. These results are
consistent with Proposition 4.1. It is also confirmed that the slope
of vc∗

1
,c∗
2
is smaller than 1 only at those points inside [c∗

1 , c
∗
2 ], which

verifies Lemma 5.3 and Proposition 5.2.
In our second experiment, we take β ↓ 0 and see if the value

function converges to the one under no-transaction costs as in
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Fig. 3. Convergence as β ↓ 0.

Bayraktar et al. (2013):

v̂a∗(x) :=



−R
(q)
(a∗ − x), if µ > 0,

x, if µ ≤ 0,
(6.2)

for any x ≥ 0, with the optimal barrier level

a∗ :=









Z
(q)
−1



µ

q



> 0 if µ > 0,

0 if µ ≤ 0.

We let λ = 3 and consider the caseµ > 0 (by choosing d = 2) and
also the case µ < 0 (by choosing d = 3).

Fig. 3 plots for each case the value function vc∗
1
,c∗
2
(·) for β =

10, 5, 1, 0.5, 0.1 (dotted) together with the no-transaction case
v̂a∗(·) (solid) as in (6.2). The circles on the plots indicate the points
(c∗

1 , vc∗1 ,c
∗
2
(c∗

1 )), (c
∗
2 , vc∗1 ,c

∗
2
(c∗

2 )) and also (a∗, v̂a∗(a
∗)). It is easy to

see that the value function is monotone in β (uniformly in x),
and converges to the no-transaction cost case as β ↓ 0. The
convergences of both c∗

1 and c∗
2 to a∗ are also observed. In fact, one

can prove the convergence of value functions using the stability of
viscosity solutions.

Proposition 6.1. Let vβ denote the value function corresponding to
the dividend payment problem when the fixed transaction cost is

β (defined as above), and v̂ the value function when there are no-
transaction costs. Then vβ converges to v̂ uniformly as β ↓ 0.

Proof. From the definition of the problem, vβ ≤ v̂ and vβ is de-
creasing in β and hence it has a point-wise limit, which we will
call ṽ. The proof is completed if we can show that ṽ is a viscosity
super-solution of the variational inequality that corresponds to the
problem without transaction costs. But this is an immediate con-
sequence of the stability result of the viscosity solutions (see e.g.
Theorem 6.8 of Touzi (2013) and Theorem 1 of Barles and Imbert
(2008)), since we can obtain the variational inequality in the no-
transaction case by taking a limit in the casewith transaction costs.

To get to uniformconvergence frompoint-wise convergencewe
just proved, we appeal to Dini’s theorem to first show it on com-
pacts. This indeed holds because we already know that (vβ) and v̂
are continuous functions and vβ ↑ v̂ as β ↓ 0. Now, because the
slopes of (vβ) and v̂ are all one above c∗

2 and a∗, respectively, and
because c∗

2 can be shown to be bounded for any small β (thanks
to the convergence c∗

2 to a∗ as β ↓ 0 or modifying the proof of
Lemma 4.3), the uniform convergence holds. �

We also observe in the figures that for µ < 0, c∗
1 = 0. This can

be shown analytically for any β > 0.

Corollary 6.1. If µ ≤ 0, we must have c∗
1 = 0.
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Proof. By the nature of the problem the value function vc∗
1
,c∗
2
is

dominated by that of the no-transaction cost case. By (6.2), we
must have vc∗

1
,c∗
2
(x) ≤ x for any x ≥ 0. Moreover, because

vc∗
1
,c∗
2
(0) = 0, v′

c∗
1
,c∗
2
(0+) < 1 and hence, in view of the proof of

Lemma 5.3, we must have c∗
1 = 0. �
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