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Abstract
In this paper, we address the problem of optimal dividend payout strategies from
a surplus process governed by Brownian motion with drift under a drawdown con-
straint, i.e., the dividend rate can never decrease below a given fraction a of its his-
torical maximum. We solve the resulting two-dimensional optimal control problem
and identify the value function as the unique viscosity solution of the correspond-
ing Hamilton–Jacobi–Bellman equation. We then derive sufficient conditions under
which a two-curve strategy is optimal, and we show how to determine its concrete
form using calculus of variations. We establish a smooth-pasting principle and show
how it can be used to prove the optimality of two-curve strategies for sufficiently large
initial and maximum dividend rates. We also give a number of numerical illustrations
in which the optimality of the two-curve strategy can be established for instances with
smaller values of the maximum dividend rate and the concrete form of the curves can
be determined. One observes that the resulting drawdown strategies nicely interpolate
between the solution for the classical unconstrained dividend problem and that for a
ratcheting constraint as recently studied in Albrecher et al. (SIAM J. Financial Math.
13:657–701, 2022). When the maximum allowed dividend rate tends to infinity, we
show a surprisingly simple and somewhat intriguing limit result in terms of the pa-
rameter a for the surplus level above which, for a sufficiently large current dividend
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rate, a take-the-money-and-run strategy is optimal in the presence of the drawdown
constraint.
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1 Introduction and model

Assume that the surplus process of a company is given by a Brownian motion with
drift,

Xt = x + μt + σWt, (1.1)

where W is a standard Brownian motion, and μ > 0, σ > 0 are given constants.
Let (�,F , (Ft )t≥0,P) be the complete probability space generated by the Brownian
motion (Wt)t≥0. Assume further that the company uses part of the surplus to pay
dividends to the shareholders with rates in a set [0, c], where c > 0 is the maximum
dividend rate possible. Let Dt denote the rate at which the company pays dividends
at time t ; then the controlled surplus process can be written as

XD
t = Xt −

∫ t

0
Dsds.

We assume that the process (Dt )t≥0 is progressively measurable. Thus
∫ ·

0 Dsds and
correspondingly XD are continuous adapted processes. Note that since Ft = Ft−,
any adapted process is predictable.

It is a classical problem in risk theory to find a dividend strategy D = (Dt )t≥0 that
maximises the reward function given by the expected sum of discounted dividend
payments,

J (x;D) = E

[∫ τ

0
e−qsDsds

]
, (1.2)

over a set of admissible candidate strategies. Here q > 0 is a discount factor and
τ = inf{t ≥ 0 : XD

t < 0} = τx is the ruin time of the controlled process. De Finetti [15]
was the first to consider a problem of this kind for a simple random walk, and Ger-
ber [19, 20] considered extensions, including the diffusion setup (1.1) given above;
see also Shreve et al. [29]. For a finite maximum dividend rate c, this problem was
then further investigated by Jeanblanc and Shiryaev [23], Radner and Shepp [27],
Asmussen and Taksar [7] and Gerber and Shiu [21]. Since then, a lot of variants of
this problem for the process (1.1) and more general underlying risk processes have
been considered; see e.g. the surveys Albrecher and Thonhauser [4] and Avanzi [8].
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For the diffusion model (1.1), we recently studied in Albrecher et al. [1] this optimal
dividend problem under a ratcheting constraint, i.e., under the assumption that the
dividend rate can never be decreased over the lifetime of the process, which renders
the respective control problem two-dimensional, where the first dimension is the cur-
rent surplus and the second dimension is the currently employed dividend rate. One
motivation to consider that constraint was that it may be psychologically preferable
for shareholders to not experience a decrease of dividend payments, and it is interest-
ing to see to what extent such a constraint leads to an overall performance loss.

In this paper, we go one step further and allow reductions of the dividend rate over
time, but only up to a certain percentage a of the largest already exercised dividend
rate (“drawdown”). More formally, a dividend drawdown strategy D = (Dt )t≥0 with
drawdown constraint a ∈ [0,1] is one that satisfies Dt ∈ [aRt , c], where Rt is the
running maximum of the dividend rate, that is,

Rt := max{Ds : 0 ≤ s ≤ t} ∨ c;
here we denote the initial dividend rate by R0− = c. A dividend drawdown strategy
is called admissible if it is progressive with respect to the filtration (Ft )t≥0.

Define �
[0,c]
x,c,a as the set of all admissible dividend drawdown strategies with ini-

tial surplus x ≥ 0, initial running maximum dividend rate c ∈ [0, c] and drawdown
constraint a ∈ [0,1]. Given D ∈ �

[0,c]
x,c,a , the reward function of this strategy is given

by (1.2). Hence, for any triple (x, c, a), our aim in this paper is to maximise

V c
a (x, c) = sup

D∈�
[0,c]
x,c,a

J (x;D). (1.3)

Note that the limit case a = 1 corresponds to the ratcheting case (considered previ-
ously in Albrecher et al. [1]), and the limit case a = 0 corresponds to the optimisation
of bounded dividend rates without any drawdown constraint.

Drawdown phenomena have been studied in various contexts in the literature. On
the one hand, drawdown times and properties of uncontrolled stochastic processes
were investigated in quite some generality (see for instance Landriault et al. [25]
for the case of Lévy processes). In the context of control problems, drawdown con-
straints on the wealth have been considered in portfolio problems in the mathematical
finance literature; see for instance Elie and Touzi [18], Chen et al. [14] and Kardaras
et al. [24]. For a minimisation of drawdown times of a risk process through dynamic
reinsurance, see Brinker [11] and Brinker and Schmidli [12]. Our context, however,
is different, as we are interested in implementing a drawdown constraint on the pay-
ment structure of the dividend rates, i.e., as a constraint on the admissible dividend
policies. In that sense, our approach is more closely related to problems of lifetime
consumption in the mathematical finance literature; see Angoshtari et al. [5] who
extend Dusenberry’s ratcheting problem of consumption studied by Dybvig [16] to
drawdown constraints. However, the concrete model setup and embedding, and also
the involved techniques there, are very different from dividend problems of the De
Finetti type as studied in this paper.

After deriving some basic analytic properties of the value function V c
a (x, c) of

our drawdown problem in Sect. 3, we derive a Hamilton–Jacobi–Bellman equation
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for V c
a (x, c) in Sect. 4 and show that V c

a (x, c) is its unique viscosity solution with
suitable boundary conditions. We then, in Sect. 5, briefly study in more detail the
value function when one already starts at the maximal dividend rate c, which serves
as a crucial ingredient for the analysis of V c

a (x, c) in Sect. 6. Sufficient conditions
are given under which the optimal strategy for bounded dividend rates is a two-
curve strategy in the space (0,∞) × [0, c] for (x, c), which is partitioned by two
curves γ c(c) and ζ c(c) with γ c(c) < ζ c(c) for all c ∈ [0, c]. If for a given c, we
have x < γ c(c), then dividends are paid at rate ac; if γ c(c) ≤ x ≤ ζ c(c), then div-
idends are paid at rate c; finally, if x > ζc(c), then the dividend rate c is increased
immediately until x = ζ c(c1) for some c1 ∈ (c, c) (or c = c, whichever happens first)
is reached. We furthermore establish a smooth-pasting principle for these optimal
curves. In Sect. 7, it is shown that the limits of γ c(c) and ζ c(c) as c → ∞ are finite
and given by the surprisingly explicit formulas

lim
c→∞γ c(c) = μ

q
and lim

c→∞ ζ c(c) = μ

q

(
1 + 1√

a

)
. (1.4)

This nicely extends the respective limit 2μ/q of the ratcheting curve that was identi-
fied for pure ratcheting (a = 1) in [1, Lemma 5.21]. In Sect. 8, we then look further
into the limiting case and show that for sufficiently large c, one has γ c(c) ↗ γ c(c)

and ζ c(c) ↘ ζ c(c) as c → c. This enables us to establish the general optimality of
two-curve strategies whenever the current dividend rate c and the maximal dividend
rate c are sufficiently large. At the same time, the negative derivative of ζ c(c) close
to (sufficiently large) c is notably different from the pure ratcheting case (a = 1), for
which it was shown in [1] that the corresponding derivative is positive for all c close
to c (and indeed the leading term in the asymptotics of 0 < a < 1 breaks down for
a = 1 so that some sort of phase transition happens). The simplicity of the right-hand
limit in (1.4) and in particular the appearance of the square-root of the drawdown co-
efficient a in the right-hand limit are somewhat intriguing. In the absence of an upper
limit for the dividend rate, it identifies the minimum surplus level x above which,
for sufficiently large current dividend rate, it is preferable to pay out all the surplus
x immediately and generate ruin by doing so (a so-called “take-the-money-and-run”
strategy, see e.g. Loeffen and Renaud [26]), and that value does not depend on the
size of the volatility σ . Consequently, one can get some intuition on this result in the
much simpler deterministic model with σ = 0, which we therefore consider in Sect. 2
before approaching the general case σ > 0 in the rest of the paper. We give numerical
illustrations in Sect. 9, where we establish the optimality of two-curve strategies also
for smaller magnitudes of c and c by numerically showing that the sufficient condi-
tions from Sect. 6 are satisfied. We obtain the optimal curves by calculus of variation
techniques and discuss the properties of the value functions of the drawdown divi-
dend problem and their comparison to classical and ratcheting solutions for various
parameter combinations. Finally, Sect. 10 concludes. Appendix A contains the proofs
of the results of Sect. 6 together with some auxiliary lemmas, and Appendix B col-
lects some longer formulas appearing in Sects. 7 and 8 in compact form.
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2 Some intuition from the deterministic case

Assume in this section for simplicity a completely deterministic model

Xt = x + μt

with a positive drift μ > 0 (for the study of such a model in another context in the
dividend literature, see e.g. Eisenberg et al. [17]). Then a constant dividend rate c = μ

throughout time keeps the surplus at level x for all t ≥ 0 and correspondingly

E

[∫ τ

0
e−qsDsds

]
= E

[∫ ∞

0
e−qsμds

]
= μ

q

for any x > 0. Consequently, whenever the initial surplus x is larger than μ/q , pay-
ing out all the surplus at the beginning (causing immediate ruin) is preferable to any
other dividend strategy subject to the constraint c ≤ μ. At the same time, if a con-
stant dividend rate c > μ is applied, the controlled process leads to ruin at the time
t = x/(c − μ) and we obtain instead

E

[∫ τ

0
e−qsDsds

]
= E

[∫ x/(c−μ)

0
e−qsc ds

]

= c

q
(1 − e−qx/(c−μ)) = x + x

2μ − qx

2c
+ O

(
1

c2

)
.

The latter shows that whenever x > 2μ/q , if allowed to do so, paying out all the sur-
plus x immediately (and causing immediate ruin) is preferable to any other constant
dividend strategy with large c. In other words, the potential gain from later ruin and
therefore more dividend income (by exploiting the positive drift, without any risk) is
outweighed by the discounting of such later dividend payments. This can also be seen
as an intuitive explanation of the limit 2μ/q in Albrecher et al. [1, Lemma 5.21].

Let us now proceed to the case with drawdown. Assume that we start with initial
capital x > b for some b to be determined and that we pay dividends at rate c > μ

until we reach that lower level b at time t = (x − b)/(c − μ), from which time on we
reduce the dividend payments to level ac according to our drawdown constraint. In
the deterministic model of this section, this then leads to

E

[∫ τ

0
e−qsDsds

]
= c

q
(1 − e

−q x−b
c−μ ) + e

−q x−b
c−μ

a c

q
(1 − e

−q b
ac−μ ). (2.1)

Taking the derivative with respect to b and setting it to zero gives, after simple calcu-
lations, for large c the optimal level

b∗(c) = ac − μ

q
log

ac

ac − μ
= μ

q
− μ2

2aqc
+ O

(
1

c2

)
.

But if one substitutes that value of b into (2.1), an expansion at c = ∞ gives

E

[∫ τ

0
e−qsDsds

]
= x + 2axqμ − ax2q2 + μ2(1 − a)

2aq c
+ O

(
1

c2

)
. (2.2)
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The numerator in the second term is negative exactly when

x >
μ

q

(
1 + 1√

a

)
,

so that in those cases, it is preferable to immediately pay x as a lump sum dividend
and go to ruin immediately (if that is allowed) rather than following the above re-
fracting strategy, as the value x cannot be realised at any later point in time in view of
the discounting, despite the continuing deterministic income with drift μ. One may
expect that the size of the volatility does not matter when c → ∞, and indeed, as a
by-product of the results of this paper, it is shown in Sect. 7 that the same result can
be established for the general case σ > 0; cf. Proposition 7.3. Another way to state
this is the following: If one defines x∗(c) as the surplus value for which, when already
currently paying the maximum dividend rate c, one is indifferent whether to further
increase c or not, the above result establishes that limc→∞ x∗(c) = μ

q
(1 + 1/

√
a),

and it is in terms of that notation that the more general result is proved in Sect. 7.

3 Basic results

Recall the definition (1.3) of our value function V c
a (x, c) and denote by V ∞

a (x, c) the
corresponding function when there is no ceiling on dividend rates, i.e., c = ∞. It is
immediate to see that V c

a (0, c) = 0 for all c ∈ [0, c] and a ∈ [0,1].

Remark 3.1 As mentioned in the introduction, the dividend optimisation problem
without drawdown constraint has a long history; see e.g. Schmidli [28, Sect. 2.4].
Unlike the drawdown optimisation problem, the problem without the drawdown con-

straint is one-dimensional. If we denote its value function by V
c
(x), then clearly

V c
0 (x, c) = V

c
(x) and V c

a (x, c) ≤ V
c
(x) for all x ≥ 0, a ∈ [0,1] and c ∈ [0, c]. The

function V
c

is increasing, concave, twice continuously differentiable with V
c
(0) = 0

and limx→∞ V
c
(x) = c/q; so it is Lipschitz with Lipschitz constant (V

c
)′(0).

Remark 3.2 The dividend optimisation problem without any constraint was addressed
by Gerber and Shiu [21] and Schmidli [28, Sect. 2.4]. If V (x) denotes its value
function, we have V (x) = V ∞

0 (x, c) for any c > 0. Clearly, V ∞
a (x, c) ≤ V (x) for

all a ∈ [0,1]. The function V is increasing, concave, twice continuously differen-
tiable with V (0) = 0 and x ≤ V (x) ≤ x + μ/q; so it is Lipschitz with Lipschitz con-
stant V ′(0).

Proposition 3.3 It holds that V c
a (x, c) ↗ V ∞

a (x, c) as c → ∞.

Proof It is straightforward that for any c1 ≤ c2, V
c1
a (x, c) ≤ V

c2
a (x, c) ≤ V ∞

a (x, c)

for 0 ≤ c ≤ c1. For any ε > 0, take a strategy D = (Dt )t≥0 ∈ �
[0,∞)
x,c,a with ruin time τ

such that V ∞
a (x, c) ≤ J (x;D) + ε. For an increasing sequence cn → ∞ with c1 > c,
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consider Dn = (Dt ∧ cn)t≥0 ∈ �
[0,cn]
x,c,a and let τn ≥ τ be the ruin time of Dn. Then by

monotone convergence,

lim
n→∞J (x;Dn

t ) = lim
n→∞E

[∫ τn

0
e−qsDn

s ds

]
≥ lim

n→∞E

[∫ τ

0
e−qsDn

s ds

]
= J (x;D),

and so we have the result. �

We now state a straightforward result regarding the boundedness and monotonicity
of the value functions.

Proposition 3.4 In the case c < ∞, the value function V c
a (x, c) is bounded by c/q

with limx→∞ V c
a (x) = c/q , nondecreasing in x and nonincreasing in c.

Proof By Remark 3.1 and Albrecher et al. [1, Theorem 3.3], we have

V c
1 (x, c) ≤ V c

a (x, c) ≤ V
c
(x)

with limx→∞ V c
1 (x, c) = limx→∞ V

c
(x) = c/q . So V c

a is bounded by c/q with
limx→∞ V c

a (x, c) = c/q .
On the one hand, V c

a (x, c) is nonincreasing in c because given c1 < c2 ≤ c, we
have �

[0,c]
x,c2,a ⊆ �

[0,c]
x,c1,a

for any x ≥ 0. On the other hand, given 0 ≤ x1 < x2 and an ad-

missible strategy D1 ∈ �
[0,c]
x1,c,a for any c ∈ [0, c], define D2 ∈ �

[0,c]
x2,c,a as D2,t = D1.t

until the ruin time of the controlled process XD1
with XD1

0 = x1, and pay the maxi-
mum rate c afterwards. Thus J (x1;D1) ≤ J (x2;D2) and we have the result. �

Proposition 3.5 The function V ∞
a (x, c) is nondecreasing in x and nonin-

creasing in c. For the case a > 0, we have limc→∞ V ∞
a (x, c) = x. Moreover,

x ≤ V ∞
a (x, c) ≤ x + μ/q .

Proof By Propositions 3.3 and 3.4, V ∞
a (x, c) is nondecreasing in x and nonincreasing

in c. Let us now show that V ∞
a (x, c) ≥ x. The function V ∞

a (x, c) is bounded from
below by the reward function resulting from the strategy of paying a constant rate n

up to ruin. Defining τn = inf{t : x + (μ − n)t + σWt = 0}, one gets

V ∞
a (x, c) = lim

n→∞V n
a (x, c) ≥ lim

n→∞E

[∫ τn

0
e−qs nds

]

= lim
n→∞

n

q
(1 −E[e−qτn ]) = x,

where the last equality follows from Borodin and Salminen [10, Equation 2.0.1].
Finally, let us argue that limc→∞ V ∞

a (x, c) ≤ x. For any ε > 0 and for each c, take

Dc = (Dc
t )t≥0 ∈ �

[0,∞)
x,c,a such that

V ∞
a (x, c) ≤ J (x;Dc) + ε.
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Then Dc ≥ ac and the corresponding ruin time is given by

τ c = inf

{
t : x + μt + σWt −

∫ t

0
Dc

s ds = 0

}

so that

∫ τ c

0
Dc

s ds = x + μτc + σWτc ,

hence

τ c ≤ inf{s : x + (μ − ac)s + σWs ≤ 0} = inf

{
s : Ws ≤ −x + (ac − μ)s

σ

}
.

This yields for c > μ/a that τ c < ∞ a.s. and E[τ c] → 0 as c → ∞. Therefore,

lim
c→∞E

[∫ τ c

0
e−qsDc

s ds

]
≤ lim

c→∞E

[∫ τ c

0
Dc

s ds

]

= lim
c→∞E[x + μτc + σWτc ]

= x + μ lim
c→∞E[τ c] = x,

and so we have the result. �

The Lipschitz property of the function V can now be used to prove a global Lip-
schitz result on the regularity of the value function.

Proposition 3.6 In both the restricted case c < ∞ and the unrestricted case c = ∞,
we have

0 ≤ V c
a (x2, c1) − V c

a (x1, c2) ≤ K
(
(x2 − x1) + (c2 − c1)

)

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ [0, c] with c1 ≤ c2, with K = max{ e−1

q
a,1}V ′(0).

Proof In the case c < ∞, by Proposition 3.4, we have

0 ≤ V c
a (x2, c1) − V c

a (x1, c2) (3.1)

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ [0, c] with c1 ≤ c2. Let us now show that there exists
K1 > 0 such that

V c
a (x2, c) − V c

a (x1, c) ≤ K1 (x2 − x1) (3.2)

for all 0 ≤ x1 ≤ x2. Take ε > 0 and D ∈ �
[0,c]
x2,c,a such that

J (x2;D) ≥ V c
a (x2, c) − ε.
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The associated control process is given by

XD
t = x2 +

∫ t

0
(μ − Ds)ds + σWt .

Let τ be the ruin time of the process XD . Define D̃ ∈ �
[0,c]
x1,c,a as D̃t = Dt and the

associated control process

XD̃
t = x1 +

∫ t

0
(μ − Ds)ds + σWt .

Let τ̃ ≤ τ be the ruin time of the process XD̃ ; then XD
t − XD̃

t = x2 − x1 for t ≤ τ̃ .
We can write

J (x2;D) − J (x1; D̃) = E

[∫ τ

τ̃

e−qsDsds

]

= E

[
E

[∫ τ

τ̃

e−qsDsds

∣∣∣Fτ̃

]]

= E

[
E

[
e−qτ̃

∫ τ−τ̃

0
e−quDτ̃+udu

∣∣∣Fτ̃

]]

≤ E

[
E

[∫ τ−τ̃

0
e−quDτ̃+udu

∣∣∣Fτ̃

]]

≤ V c
a (x2 − x1,0). (3.3)

The last inequality of (3.3) involves a shift of stopping times and follows from Claisse
et al. [13, Theorem 2]. Indeed, the assumptions of this theorem are satisfied because
we can write our controlled process as

dXs = b(s,X,Ds)ds + σ(s,X,Ds)dWs,

where b(s, x, d) = μ − d , σ(s, x, d) ≡ σ and W is a standard Brownian motion.
Hence we have

V c
a (x2, c) − V c

a (x1, c) ≤ J (x2;D) − J (x1; D̃) + ε

≤ V c(x2 − x1,0) + ε

≤ V (x2 − x1) + ε

≤ K1(x2 − x1) + ε.

So by Remark 3.2, we have (3.2) with K1 = V ′(0).
Let us now show that given c1, c2 ∈ [0, c] with c1 ≤ c2, there exists K2 > 0 with

V c
a (x, c1) − V c

a (x, c2) ≤ K2 (c2 − c1) . (3.4)
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Take ε > 0 and D ∈ �
[0,c]
x,c1,a

such that

J (x;D) ≥ V c
a (x, c1) − ε

and denote by τ the ruin time of the process XD . Let us consider D̃ ∈ �
[0,c]
x,c2,a as

D̃t = max{Dt, ac2}, denote by XD̃ the associated controlled surplus process and
by τ ≤ τ the corresponding ruin time. We have D̃s − Ds ≤ ac2 − ac1 and so
XD

τ = XD
τ − XD̃

τ ≤ a(c2 − c1)τ . By Remark 3.2, we have

E

[∫ τ

τ

Dse
−qsds

]
= E

[
E

[
e−qτ

∫ τ

τ

Dse
−q(s−τ)ds

∣∣∣Fτ

]]

≤ E

[
E

[∫ τ−τ

0
Du+τ e

−qudu

∣∣∣Fτ

]]

≤ E[V c
a (XD

τ ,0)].
As before, the last inequality involves a shift of stopping times and follows from
Claisse et al. [13, Theorem 2]. Then

E

[∫ τ

τ

Dse
−qsds

]
≤ E[V (XD

τ )] ≤ E
[
V
(
(c2 − c1)τ

)]≤ K1E[e−qτ τ (c2 − c1)].

Hence we can write

V c
a (x, c1) − V c

a (x, c2) ≤ J (x;D) + ε − J (x; D̃)

= E

[∫ τ

0
(Ds − D̃s)e

−qsds

]
+E

[∫ τ

τ

Dse
−qsds

]
+ ε

≤ 0 +E

[∫ τ

τ

Dse
−qsds

]
+ ε

≤ K1E[ae−qτ τ (c2 − c1)] + ε

≤ K2(c2 − c1) + ε.

So we get (3.4) with K2 = K1 maxt≥0(e
−qt ta) = K1

e−1

q
a, K = K1 max{ e−1

q
a,1}. We

conclude the result from (3.1), (3.2) and (3.4).
In the case c = ∞, the result follows from Proposition 3.3. �

The following lemma states the dynamic programming principle. Its proof is sim-
ilar to the one of Azcue and Muler [9, Lemma 1.2].

Lemma 3.7 Given any stopping time τ̃ , we can write in both the restricted case c < ∞
and the unrestricted case c = ∞ that

V c
a (x, c) = sup

D∈�
[0,c]
x,c,a

E

[∫ τ∧τ̃

0
e−qsDsds + e−q(τ∧τ̃ )V c

a (XD
τ∧τ̃ ,Rτ∧τ̃ )

]
.
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We now show a Lipschitz property of h(a) = V c
a (x, c) in the drawdown constant

a ∈ [0,1], for fixed x, c and finite c.

Proposition 3.8 Given c < ∞ and a1, a2 ∈ [0,1] with a1 < a2, there exists K3 > 0
such that

0 ≤ V c
a1

(x, c) − V c
a2

(x, c) ≤ K3 (a2 − a1) ,

with K3 = V ′(0) e−1

q
c only depending on c. In the case c = ∞, V ∞

a (x, c) is continu-
ous in a ∈ [0,1].

Proof Consider first the case c < ∞. Take ε > 0 and D ∈ �
[0,c]
x,c,a1 such that

J (x;D) ≥ V c
a1

(x, c) − ε.

Consider D̃ ∈ �
[0,c]
x,c,a2 defined as D̃t = max{Dt, a2Rt }. Denote by XD̃ the associ-

ated controlled surplus process and by τ ≤ τ the corresponding ruin time. We have
0 ≤ D̃s − Ds ≤ (a2 − a1)Rs and so

XD
τ = XD

τ − XD̃
τ ≤

∫ τ

0
(a2 − a1)Rsds = (a2 − a1)τ c.

We can write

V c
a1

(x, c) − V c
a2

(x, c) = J (x;D) − J (x; D̃) + ε

= E

[∫ τ

0
e−qs(Ds − D̃s)ds

]
+E

[∫ τ

τ

e−qsDsds

]
+ ε

≤ 0 +E

[
E

[∫ τ

τ

e−qsDsds

∣∣∣Fτ

]]
+ ε

= E

[
E

[
e−qτ

∫ τ−τ

0
e−quDτ+udu

∣∣∣Fτ

]]
+ ε

≤ E
[
e−qτV

(
(a2 − a1)τc

)]+ ε

≤ E
[
e−qτV ′(0)

(
(a2 − a1)τc

)]+ ε

≤ V ′(0)
e−1

q
c(a2 − a1) + ε,

and we obtain the result with K3 = V ′(0) e−1

q
c.

In the case c = ∞, we want to show that given ε > 0 and a1 ≥ 0, there exists
δ > 0 such that if 0 < a2 − a1 < δ, then V ∞

a1
(x, c) − V ∞

a2
(x, c) < ε. Take c0 large

enough such that V ∞
a1

(x, c) − V
c0
a1 (x, c) < ε/2 and δ = ε/(2V ′(0) e−1

q
c0). Given any
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a2 ∈ (a1, a1 + δ), we have

V ∞
a1

(x, c) − V ∞
a2

(x, c) = V ∞
a1

(x, c) − V c0
a1

(x, c) + V c0
a1

(x, c)

− V c0
a2

(x, c) + V c0
a2

(x, c) − V ∞
a2

(x, c)

≤ ε/2 + V ′(0)
e−1

q
c0(a2 − a1) + 0 ≤ ε. �

Remark 3.9 For a = 0, Proposition 3.5 does not hold. Indeed, V ∞
0 (x, c) = V (x) so

that limc→∞ V ∞
0 (x, c) = V (x) > x. Although limc→∞ V ∞

a (x, c) = x for a ∈ (0,1]
and lima→0+ V ∞

a (x, c) = V ∞
0 (x, c) by Proposition 3.8, the lack of the Lipschitz

property of V ∞
a (x, c) at a = 0 makes it possible that the iterated limits

lim
c→∞

(
lim

a→0+V ∞
a (x, c)

)
= V (x) and lim

a→0+

(
lim

c→∞V ∞
a (x, c)

)
= x

do not coincide.

In the next result, we study the continuity of V c
a (x, c) with respect to c.

Proposition 3.10 Given c1, c2 ∈ [0,∞) with c1 < c2, there exists K2 > 0 such that

0 ≤ V c2
a (x, c) − V c1

a (x, c) ≤ 1

q
(c2 − c1)

for c ≤ c1.

Proof Take ε > 0 and D ∈ �
[0,c2]
x,c,a such that

J (x;D) ≥ V c2
a (x, c) − ε,

and denote the ruin time of the process XD by τ . Let us consider D̃ ∈ �
[0,c1]
x,c,a as

D̃t = min{Dt, c1} = c1I{Dt>c1} + DtI{Dt≤c1} for t ≤ τ and D̃t = c1 for t > τ , denote

by XD̃ the associated controlled surplus process and by τ ≥ τ the corresponding ruin
time. We then have Ds − D̃s ≤ c2 − c1 and can deduce

V c2
a (x, c) − V c1

a (x, c) ≤ J (x;D) + ε − J (x; D̃)

= E

[∫ τ

0
(Ds − D̃s)e

−qsds

]
−E

[∫ τ

τ

Dse
−qsds

]
+ ε

≤ E

[∫ τ

0
(Ds − D̃s)e

−qsds

]
+ ε

≤ E

[∫ τ

0
(c2 − c1)e

−qsds

]
+ ε

= (c2 − c1)

q
E[1 − e−qτ ] + ε

≤ (c2 − c1)

q
+ ε. �
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4 The Hamilton–Jacobi–Bellman equation

In this section, we introduce the Hamilton–Jacobi–Bellman (HJB) equation for the
drawdown problem. We show that the value function V defined in (1.3) is the unique
viscosity solution of the corresponding HJB equation with suitable boundary condi-
tions.

As stated in the previous section, the limit case a = 0 (no drawdown restric-
tion) has been studied for both c < ∞ and c = ∞, and the case a = 1 (ratcheting)
for c < ∞.

Define

Lκ(W)(x, c) := σ 2

2
∂xxW(x, c) + (μ − κ)∂xW(x, c) − qW(x, c) + κ.

The HJB equation associated to (1.3) for both c < ∞ and c = ∞ is given by

max
{

max
κ∈[ac,c]L

κ(u)(x, c), ∂cu(x, c)
}

= 0 for x ≥ 0 and 0 ≤ c < c. (4.1)

The inequality maxκ∈[ac,c]Lκ(u)(x, c) ≤ 0 comes from the dynamic programming
principle in Lemma 3.7, considering the strategies of paying dividends at a con-
stant rate κ ∈ [ac, c]. For these strategies, the running maximum is c. The inequality
∂cu(x, c) ≤ 0 comes from the fact that the value function is nonincreasing in c, and
it takes into account the strategies of paying dividends at a constant rate κ ∈ (c, c],
where the running maximum increases instantaneously from c to κ .

Note that because the operator Lk is linear in k, an alternative equivalent formula-
tion of (4.1) is

max{Lc(u)(x, c),Lac(u)(x, c), ∂cu(x, c)} = 0 for x ≥ 0 and 0 ≤ c < c. (4.2)

For the ratcheting case a = 1, the HJB equation correspondingly simplifies to

max{Lc(u)(x, c), ∂cu(x, c)} = 0 for x ≥ 0 and 0 ≤ c < c.

Let us introduce the usual notion of viscosity solution for the HJB equation in both
cases 0 < c < ∞ or c = ∞.

Definition 4.1 (a) A locally Lipschitz function u : [0,∞) × [0, c) → R is a viscosity
supersolution of (4.2) at (x, c) ∈ (0,∞) × [0, c) if any (2,1)-differentiable function
ϕ : [0,∞) × [0, c) →R with ϕ(x, c) = u(x, c) such that u − ϕ reaches the minimum
at (x, c) satisfies

max{Lc(ϕ)(x, c),Lac(ϕ)(x, c), ∂cϕ(x, y)} ≤ 0.

The function ϕ is called a test function for a supersolution at (x, c).
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(b) Similarly, a locally Lipschitz function u : [0,∞) × [0, c) → R is a viscosity
subsolution of (4.2) at (x, c) ∈ (0,∞) × [0, c) if any (2,1)-differentiable function
ψ : [0,∞) × [0, c) → R with ψ(x, c) = u(x, c) such that u − ψ reaches the maxi-
mum at (x, c) satisfies

max{Lc(ψ)(x, c),Lac(ψ)(x, c), ∂cψ(x, c)} ≥ 0.

The function ψ is called a test function for a subsolution at (x, c).
(c) A locally Lipschitz function u : [0,∞) × [0, c) → R is a viscosity solution of

(4.2) at (x, c) ∈ [0,∞)×[0, c) if it is both a supersolution and a subsolution at (x, c).

4.1 HJB equation with bounded dividend rates

Given a ∈ (0,1] and c < ∞, we define in the sequel, for simplicity of exposition,

�x,c := �[0,c]
x,c,a and V := V c

a . (4.3)

Here the state variables are the current surplus and the running maximum dividend
rate. The results of this subsection for the case a = 1 (ratcheting dividend constraint)
were already proved in Albrecher et al. [1].

The next result states that V is a viscosity solution of the HJB equation.

Proposition 4.2 The function V is a viscosity solution of (4.2) in (0,∞) × [0, c).

Proof Let us show first that V is a viscosity supersolution in (0,∞) × [0, c). By
Proposition 3.4, ∂cV ≤ 0 in (0,∞) × [0, c) in the viscosity sense.

Consider now (x, c) ∈ (0,∞)×[0, c) and the admissible strategy D ∈ �x,c which
pays dividends at a constant rate κ ∈ [ac, c] up to the ruin time τ . Let XD be the corre-
sponding controlled surplus process and suppose that there exists a test function ϕ for
a supersolution of (4.2) at (x, c); then ϕ ≤ V and ϕ(x, c) = V (x, c). We want to prove
that Lκ(ϕ)(x, c) ≤ 0. For that purpose, we consider an auxiliary test function for the
supersolution ϕ̃ in such a way that ϕ̃ ≤ ϕ ≤ V in [0,∞) × [0, c], ϕ̃ = ϕ in [0,2x] (so
Lκ(ϕ)(x, c) = Lκ(ϕ̃)(x, c)) and Lκ(ϕ̃)( · , c) is bounded in [0,∞). We introduce ϕ̃

because Lκ(ϕ)( · , c) may be unbounded in [0,∞). We construct ϕ̃ as follows: take
g : [0,∞) → [0,1] twice continuously differentiable with g = 0 in [2x + 1,∞) and
g = 1 in [0,2x], and define ϕ̃(y, κ) = ϕ(y, κ)g(y). Using Lemma 3.7, we obtain for
h > 0,

ϕ̃(x, c) = V (x, c) ≥ E

[∫ τ∧h

0
κe−qs ds

]
+E[e−q(τ∧h)ϕ̃(XD

τ∧h, c)].
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Hence using Itô’s formula gives

0 ≥ E

[∫ τ∧h

0
e−q s ds

]
+E[e−q(τ∧h)ϕ̃(XD

τ∧h, c) − ϕ̃(x, c)]

= E

[∫ τ∧h

0
κe−q s ds

]

+E

[∫ τ∧h

0
e−q s

(
σ 2

2
∂xxϕ̃(XD

s , c) + ∂xϕ̃(XD
s , c)(μ − κ) − qϕ̃(XD

s , c)

)
ds

]

+E

[∫ τ∧h

0
∂xϕ̃(XD

s , c)σdWs

]

= E

[∫ τ∧h

0
e−q sLκ(ϕ̃)(XD

s , c)ds

]
.

Since τ > 0 a.s.,
∣∣∣∣1h
∫ τ∧h

0
e−q sLκ(ϕ̃)(XD

s , c)ds

∣∣∣∣≤ sup
y∈[0,∞)

|Lκ(ϕ̃)(y, c)|

and

lim
h→0+

1

h

∫ τ∧h

0
e−q sLκ(ϕ̃)(XD

s , c)ds = Lκ(ϕ̃)(x, c) a.s.

We conclude via dominated convergence that Lκ(ϕ)(x, c) = Lκ(ϕ̃)(x, c) ≤ 0 for any
κ ∈ [ac, c]; so V is a viscosity supersolution at (x, c).

We skip the proof that V is a viscosity subsolution in (0,∞) × [0, c), because it
is similar to that of [1, Proposition 3.1]. �

Let us consider the function

vc : [0,∞) → [0,∞), vc(x) := V (x, c). (4.4)

The next proposition gives a comparison result for the viscosity solutions of (4.2) for
c > 0. The proof is similar to that of [1, Lemma 3.2].

Lemma 4.3 Assume that
(i) u is a viscosity subsolution and u is a viscosity supersolution of the HJB equa-

tion (4.2) for all x > 0 and all c ∈ [0, c);
(ii) u and u are nondecreasing in the variable x and Lipschitz in [0,∞) × [0, c];
(iii) u(0, c) = u(0, c) = 0, limx→∞ u(x, c) ≤ c/q ≤ limx→∞ u(x, c);
(iv) u(x, c) ≤ vc(x) ≤ u(x, c) for x ≥ 0.

Then u ≤ u in [0,∞) × [0, c).

The following characterisation theorem is a direct consequence of the previous
lemma and Propositions 3.4 and 4.2.
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Theorem 4.4 The value function V is the unique function which is nondecreasing in x

and a viscosity solution of (4.2) in (0,∞) × [0, c) with V (0, c) = 0, V (x, c) = vc(x)

and limx→∞ V (x, c) = c/q for c ∈ [0, c).

From Definition 1.3, Lemma 4.3 and Proposition 3.4 together with Proposition 4.2,
we also get the following verification theorem.

Theorem 4.5 Let {Cx,c ∈ �x,c : (x, c) ∈ [0,∞) × [0, c]} be a family of strategies. If
the function W(x, c) := J (x;Cx,c) is a viscosity supersolution of the HJB equation
(4.2) in (0,∞)×[0, c) with limx→∞ W(x, c) = c/q , then W is the value function V .
Also, if for each k ≥ 1, there exists a family {Ck

x,c ∈ �x,c : (x, c) ∈ [0,∞) × [0, c]}
of strategies such that W(x, c) := limk→∞ J (x;Ck

x,c) is a viscosity supersolution of
the HJB equation (4.2) in (0,∞)×[0, c) with limx→∞ W(x, c) = c/q , then W is the
value function V .

4.2 HJB equation with unbounded dividend rates

Let us now consider the case c = ∞ with a ∈ (0,1]. Since a is fixed, we denote
V ∞ = V ∞

a . The proof of the following result is similar to that of the case with
bounded dividend rate.

Proposition 4.6 The function V ∞ is a viscosity solution of (4.2) for any
(x, c) ∈ (0,∞) × [0,∞).

We now state a comparison result for the unbounded case.

Lemma 4.7 Assume that
(i) u is a viscosity subsolution and u is a viscosity supersolution of the HJB equa-

tion (4.2) for all x > 0 and for all c ∈ [0,∞);
(ii) u and u are nondecreasing in the variable x and Lipschitz in [0,∞)×[0,∞);
(iii) u(0, c) = u(0, c) = 0;
(iv) u(x, c) ≤ x + μ/q , x ≤ u(x, c);
(v) limc→∞ u(x, c) ≤ x ≤ limc→∞ u(x, c) for x ≥ 0.

Then u ≤ u in [0,∞) × [0,∞).

Proof Suppose there is (x0, c0) ∈ (0,∞)×(0,∞) with u(x0, c0) − u(x0, c0) > 0. Let
us define

h(c) = 1 +
(

u(x0, c0) − u(x0, c0)

2u(x0, c0)

)
e−c > 1 and us(x, c) = sh(c)u(x, c)

for any s > 1. We have

u(x0, c0) − us(x0, c0) = u(x0, c0) −
(

1 + u(x0, c0) − u(x0, c0)

2u(x0, c0)
e−c4

)
su(x0, c0)

=
(

1 − e−c s

2

)(
u(x0, c0) − su(x0, c0)

)
> 0

for s ∈ (1,2).
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Let us now show that us is a strict supersolution. We have that ϕ is a test function
for the supersolution u at (x, c) if and only if ϕs := s h(c)ϕ is a test function for the
supersolution us at (x, c). Moreover,

Lκ(ϕs)(x, c) = sh(c)Lκ (ϕ)(x, c) + κ
(
1 − sh(c)

)
< 0

for κ ∈ [ac, c], and

∂cϕ
s(x, c) ≤ −s

(
h(c) − 1

)
ϕ(x, c) < 0

since ϕ(x, c) = u(x, c) ≥ x > 0.
Take s0 > 1 such that u(x0, c0) − us0(x0, c0) > 0. We define

M := sup
x≥0,c≥0

(
u(x, c) − us0(x, c)

)
.

Let us show that

arg max
x≥0,c≥0

(
u(x, c) − us0(x, c)

) ∈ (0, b) × (0, c1) (4.5)

for some positive b and c1. Since u(x, c) ≤ x + μ
q

and x ≤ u(x, c),

u(x, c) − us0(x, c) ≤
(

x + μ

q

)
− s0h(c)x < x(1 − s0) + μ

q
< 0

for x large enough; so there exists b > x0 such that

arg max
x≥0,c≥0

(
u(x, c) − us0(x, c)

) ∈ (0, b) × (0,∞).

Besides, the function

g(c) := max
x≥0

(
u(x, c) − us0(x, c)

)= max
x∈(0,b)

(
u(x, c) − us0(x, c)

)

satisfies lim sup c→∞ g(c) ≤ 0 because limc→∞ u(x, c) ≤ x ≤ limc→∞ u(x, c) for
x ≥ 0. So there exists c1 > 0 with g(c) ≤ M

2 for c ≥ c1 and we deduce (4.5). Hence
the maximum is attained in a bounded set, that is,

0 < u(x0, c0) − us0(x0, c0) ≤ M = max
x∈(0,b)×(0,c1)

(
u(x, c) − us0(x, c)

)
.

This yields a contradiction by following the arguments of the proof of [1, Lemma 3.2].
�

As for bounded dividend rates, the following result is a direct consequence of the
previous lemma, Remark 3.5 and Proposition 4.6.

Theorem 4.8 The value function V ∞ is the unique function which is nondecreas-
ing in x and a viscosity solution of (4.2) in (0,∞) × [0,∞) with V ∞(0, c) = 0,
V ∞(x, c) − x bounded and limc→∞ V ∞(x, c) = x.
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From Definition 1.3, Lemma 4.7 and Remark 3.5 together with Proposition 4.6,
we also get the following verification theorem.

Theorem 4.9 Consider a family {Cx,c ∈ �x,c : (x, c) ∈ [0,∞) × [0,∞)} of strate-
gies. If the function W(x, c) := J (x;Cx,c) is a viscosity supersolution of the HJB
equation (4.2) in (0,∞)×[0,∞) with W(x, c) ≥ x, then W is the value function V ∞.
Also, if for each k ≥ 1, there exists a family {Ck

x,c ∈ �x,c : (x, c) ∈ [0,∞) × [0,∞)}
of strategies such that W(x, c) := limk→∞ J (x;Ck

x,c) is a viscosity supersolution of
the HJB equation (4.2) in (0,∞) × [0,∞) with W(x, c) ≥ x, then W is the value
function V ∞.

5 Refracting dividend strategies and vc

In the case 0 < c < ∞ and a ∈ (0,1), we now want to investigate further the func-
tion vc (defined in (4.4)) of paying dividends with rates κ ∈ [ac, c] in an optimal way.
The following characterisation is the one-dimensional version of Theorem 4.4.

Proposition 5.1 The function vc : [0,∞) → R is the unique viscosity solution of

max{Lc(W)(x),Lac(W)(x)} = 0

with boundary conditions W(0) = 0 and limx→∞ W(x) = c/q .

We present in this section a formula for vc, which turns out to be the reward
function of the optimal refracting strategy as derived in Albrecher et al. [3].

The functions W that satisfy Lκ(W) = 0 are given by

κ

q
+ a1e

θ1(κ)x + a2e
θ2(κ)x with a1, a2 ∈R, (5.1)

where θ1(κ) > 0 and θ2(κ) < 0 are the roots of the characteristic equation

σ 2

2
z2 + (μ − κ)z − q = 0

associated to the operator Lκ , that is,

θ1,2(κ) := κ − μ ±√(κ − μ)2 + 2qσ 2

σ 2
. (5.2)

Basic properties of θ1(κ) and θ2(κ) are that
1) θ1(κ) = −θ2(κ) if κ = μ, and θ2

1 (κ) ≥ θ2
2 (κ) if and only if κ − μ ≥ 0;

2) θ ′
1(κ) = 1

σ 2 (1 + κ−μ√
(κ−μ)2+2qσ 2

) and θ ′
2(κ) = 1

σ 2 (1 − κ−μ√
(κ−μ)2+2qσ 2

) so that

θ ′
1(κ), θ ′

2(κ) ∈ (0, 2
σ 2 ).
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The solutions of Lκ(W) = 0 with boundary condition W(0) = 0 are of the more
specific form

κ

q
(1 − eθ2(κ)x) + A(eθ1(κ)x − eθ2(κ)x) with A ∈R. (5.3)

Finally, the unique solution of Lκ(W) = 0 with boundary conditions W(0) = 0 and
limx→∞ W(x) = κ/q corresponds to A = 0, so that

W(x) = κ

q
(1 − eθ2(κ)x).

Note that this function is increasing and concave in [0,∞). In [3, Theorem 3.1], the
reward function of a ‘refracting strategy’ that pays ac when the current surplus is
below a refracting threshold b and pays c when the current surplus is above b was
shown to be

v(x, c, b) =
(

B(c, b)W0(x, c) + ac

q
(1 − eθ2(ac)x)

)
I{x<b}

+
(

c

q
+ D(c, b)eθ2(c)x

)
I{x≥b}, (5.4)

where

W0(x, c) = eθ1(ac)x − eθ2(ac)x√
(μ − ac)2 + 2qσ 2

,

B(c, b) = 1

q

aceθ2(ac)b (θ2(ac) − θ2(c)) − (1 − a)cθ2(c)

∂xW0(b, c) − θ2(c)W0(b, c)
, (5.5)

D(c, b) = B(c, b)e−θ2(c)bW0(b, c) − ac

q
e(θ2(ac)−θ2(c))b − (1 − a)c

q
e−θ2(c)b.

The optimal threshold b∗(c) is given by

b∗(c) = arg max
b≥0

v(x, c, b) (5.6)

(note that since the underlying process X has no upward jumps, that value does not
depend on x). In case (5.6) is positive, then by (5.4) the value of b satisfies

∂bB(c, b) = 0. (5.7)

From [3], we know that the threshold can be characterised as the unique b such
that v(x, c, b) is twice continuously differentiable in x = b. Since v(x, c, b∗(c))
is twice continuously differentiable with v(0, c, b∗(c)) = 0, we therefore obtain
limx→∞ v(x, c, b∗(c)) = c/q and v(x, c, b∗(c)) is also a solution of

max{Lc(W)(x),Lac(W)(x)} = 0.
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By Proposition 5.1, we have

vc(x) = v
(
x, c, b∗(c)

)
,

that is, the strategy achieving vc has a ‘refracting’ threshold structure with optimal
threshold b∗(c). Note also that since vc is twice continuously differentiable at b∗(c)
and L(vc)(b∗(c)) = Lac(vc)(b∗(c)) = 0, we have ∂xv

c(b∗(c)) = 1. Also, since

Lac(vc)(x) −Lc(vc)(x) = c(1 − a)
(
∂xv

c(x) − 1
)
,

we obtain

∂xv
c(x) ≥ 1 for x ≤ b∗(c), ∂xv

c(x) ≤ 1 for x ≥ b∗(c). (5.8)

6 Curve strategies and the optimal two-curve strategy for bounded
dividend rates

Using the formulas of the previous section, we can find the value function defined in
(4.3). The proofs of all the results of this section together with the auxiliary lemmas
used in these proofs are deferred to Appendix A. We also include in that appendix
some explicit formulas.

Remark 6.1 Before proceeding, note that this optimisation problem is only interesting
for c > qσ 2/(2μ) as for smaller values of c, we know from Asmussen and Taksar [7,
Eq. (1.8)] (translated to our notation) that even without a drawdown constraint, it is
optimal to pay dividends at the maximal rate c until the time of ruin. This is then also
the optimal strategy in our situation, as the drawdown constraint does not affect its
applicability. Indeed, and as a self-contained derivation of this result in the present
context, the reward function of that strategy fulfils

Lκ

(
c

q
(1 − eθ2(c)x)

)
(x) = (c − κ)

(
− c

q
θ2(c)e

θ2(c)x − 1

)

≤ (c − κ)

(
− c

q
θ2(c) − 1

)
≤ 0 (6.1)

for both κ = ac and κ = c. So by Proposition 5.1, vc(x) = c
q
(1 − eθ2(c)x) =: U(x, c)

and b∗(c) = 0. By Theorem 4.4, it is then sufficient to prove that

max{Lac(U)(x, c),Lc(U)(x, c), ∂cU(x, c)} ≤ 0

for any c ∈ [0, c); but this follows from (6.1).

In the rest of this paper, we therefore assume that c >
qσ 2

2μ
.

Since V (x, c) solves the HJB equation (4.2), it satisfies either Lac(V )(x, c) = 0 or
Lc(V )(x, c) = 0 or ∂cV (x, c) = 0. This suggests that the state space [0,∞) × [0, c]
is partitioned into two regions: a non-change running maximum dividend region NC∗
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in which the running maximum dividend rate c does not change, and a change divi-
dend region CH∗ in which the dividend rate exceeds c (so that the running maximum
dividend rate increases). Moreover, the region NC∗ splits into two connected sub-
regions: NC∗

ac in which the dividends are paid at the constant rate ac, and NC∗
c in

which the dividends are paid at the constant rate c.
Roughly speaking, the interior of the region NC∗

ac consists of the points (x, c)

in the state space where Lac(V )(x, c) = 0, Lc(V )(x, c) < 0 and ∂cV (x, c) < 0;
the interior of the region NC∗

c consists of the points where Lc(V )(x, c) = 0,
Lac(V )(x, c) < 0 and ∂cV (x, c) < 0; and the interior of CH∗ consists of the points
where ∂cV (x, c) = 0, Lc(V )(x, c) < 0 and Lac(V )(x, c) < 0. We introduce a family
of two-curve strategies (or limits of two-curve strategies) where the different dividend
payment regions are connected and are defined by two free boundary curves.

Consider a function γ : [0, c] → (0,∞) which is continuously differentiable, and
a function ζ : [0, c] → (0,∞) which is bounded, Riemann-integrable and càdlàg.
Define the set

B =
{
(γ, ζ ) such that γ ≤ ζ and lim

c→c− ζ(c) = ζ(c)
}
.

In the first part of this section, we define a function Wγ,ζ : [0,∞) × [0, c] → [0,∞)

for each (γ, ζ ) ∈ B. We shall see that in some sense, Wγ,ζ (x, c) is the reward function
of the two-curve strategy which pays dividends at the constant rate ac for the points
to the left of the curve R(γ ), pays dividends at the constant rate c between the curves
R(γ ) and R(ζ ), and pays more than c as dividend rate otherwise, where

R(g) = {(g(c), c
) : c ∈ [0, c]}.

Hence the curves R(γ ) and R(ζ ) split the state space [0,∞) × [0, c) into three
connected regions, namely

NCac(γ , ζ ) ={(x, c) ∈ [0,∞) × [0, c) : 0 ≤ x < γ (c)}

where dividends are paid with the constant rate ac,

NCc(γ , ζ ) ={(x, c) ∈ [0,∞) × [0, c) : γ (c) ≤ x < ζ(c)}

where dividends are paid with the constant rate c, and

CH(γ , ζ ) ={(x, c) ∈ [0,∞) × [0, c) : x ≥ ζ(c)};

cf. Fig. 1. We set NC(γ , ζ ) = NCac(γ , ζ ) ∪NCc(γ , ζ ).
In the second part of this section, we use calculus of variations to look for a pair

(γ 0, ζ 0) ∈ B which maximises the reward function Wγ,ζ among all (γ, ζ ) ∈ B.
In order to define Wγ,ζ in the non-change regions NCac(γ , ζ ) and NCc(γ , ζ ),

we need to introduce some auxiliary functions. Let us consider the set

T := {(y, z) : 0 < y ≤ z},
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Fig. 1 A two-curve strategy
with its regions

and the functions b0, b1 : T × [0,∞) × [0, c] → R defined by

b0(y, z,w, c) := b00(y, z, c) + w(e(z−y)θ1(c) − e(z−y)θ2(c)) b01(y, c)

q(θ1(c) − θ2(c))d(y, z, c)
,

b1(y, z,w, c) := b10(y, z, c) + w(e(z−y)θ1(c) − e(z−y)θ2(c)) b11(y, c)

(θ1(c) − θ2(c))d(y, z, c)
, (6.2)

where the functions d and b00, b01, b10, b11 are defined in (A.1) and (A.2) below.
In Lemma A.1 below, we show that the function d is positive so that b0 and b1 are
well defined.

In the next result, we define and study the functions Hγ,ζ and Aγ,ζ that will be
used to define Wγ,ζ .

Proposition 6.2 For any given (γ, ζ ) ∈ B, there exists a unique continuous function
Hγ,ζ : [0,∞) × [0, c] → [0,∞) with Hγ,ζ ( · , c) continuously differentiable which
satisfies for any c ∈ [0, c) that

Lac(Hγ,ζ )(x, c) = 0 for 0 ≤ x < γ (c),

Lc(Hγ,ζ )(x, c) = 0 for γ (c) ≤ x

with the boundary conditions Hγ,ζ (0, c) = 0, Hγ,ζ (x, c) = v(x, c, γ (c)) and
∂cH

γ,ζ (ζ(c), c) = 0 at the points of continuity of ζ . It is given by

Hγ,ζ (x, c) = (f10(x, c) + f11(x, c)Aγ,ζ (c)
)
I{x<γ (c)}

+
(
f20
(
γ (c), x, c

)+ f21
(
γ (c), x, c

)
Aγ,ζ (c)

)
I{x≥γ (c)}, (6.3)

where f10, f11, f20, f21 are defined in (A.3)–(A.6) below,

Aγ,ζ (c) = Aγ,ζ (c)e− ∫ c
c b1(γ (s),ζ(s),γ ′(s),s)ds

−
∫ c

c

e− ∫ t
c b1(γ (s),ζ(s),γ ′(s),s)dsb0

(
γ (t), ζ(t), γ ′(t), t

)
dt (6.4)
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Fig. 2 The value of �(x, c) in
each region

and

Aγ,ζ (c) = B(c, γ (c))√
(μ − ac)2 + 2qσ 2

, (6.5)

where the function B is defined in (5.5) and the functions b0 and b1 are defined in
(6.2). Moreover, Aγ,ζ is differentiable and satisfies

(Aγ,ζ )′(c) = b0
(
γ (c), ζ(c), γ ′(c), c

)+ b1
(
γ (c), ζ(c), γ ′(c), c

)
Aγ,ζ (c)

at the points where ζ is continuous. Moreover, it satisfies the boundary condition
(6.5).

Given (γ, ζ ) ∈ B, we define

Wγ,ζ (x, c) :=
{

Hγ,ζ (x, c) if (x, c) ∈ NC(ζ ),

Hγ,ζ (x, �(x, c)) if (x, c) ∈ CH(ζ ),
(6.6)

where Hγ,ζ is defined in Proposition 6.2 and

�(x, c) := max{h ∈ [c, c] : ζ(κ) ≤ x for κ ∈ [c,h)}
for x ≥ ζ(c) and c ∈ [0, c); cf. Fig. 2.

In Appendix A, we show by using a Feynman–Kac argument that Wγ,ζ (x, c) is a
uniform limit of reward functions of admissible strategies by constructing a sequence
of step functions ζk converging to ζ . See Definition A.2 and Lemmas A.3 and A.4.

Remark 6.3 Given a (γ, ζ ) ∈ B where ζ is not a step function, we say that Wγ,ζ is the
reward function of the two-curve strategy π(γ,ζ ) which starts with an initial surplus
x and initial running maximum dividend rate c. Then

(1) in the case 0 ≤ x < ζ(c), it follows the refracting strategy which pays ac when
the current surplus is below a refracting threshold γ (c), and pays c when the current
surplus is above γ (c), until either reaching the curve R(ζ ) or ruin (whichever comes
first);
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(2) in the case x > ζ(c), it increases immediately the dividend rate from c to
�(x, c);

(3) in the case x = ζ(c), it can be seen as the limit of admissible strategies
π

(γ,ζk)
x,c ∈ �x,c arising from Lemma A.4 in Appendix A.

We now look for the maximum of Wγ,ζ among (γ, ζ ) ∈ B. Let us see that if there
exists a pair (γ0, ζ0) ∈ B such that

Aγ0,ζ0(0) = max{Aγ,ζ (0) : (γ, ζ ) ∈ B}, (6.7)

then Wγ0,ζ0(x, c) ≥ Wγ,ζ (x, c) for all (x, c) ∈ [0,∞) × [0, c] and (γ, ζ ) ∈ B.
From Lemma A.1 and θ2 > 0 > θ1, we obtain that f11 and f21 defined in (A.4)

and (A.6) are positive, and so by (6.3) and (6.6),

arg max
(γ,ζ )∈B

Wγ,ζ (x, c) = arg max
(γ,ζ )∈B

Aγ,ζ (c).

This implies that arg max(γ,ζ )∈B Wγ,ζ (x, c) does not depend on the initial capi-
tal x. In addition, it also does not depend on the initial value c; this follows from
Lemma A.5, where we prove that the pair of functions (γ0, ζ0) which maximises
(6.7) also maximises Aγ,ζ (c) for any c ∈ [0, c). Let us now find the implicit equation
for the function Aγ0,ζ0 for (γ0, ζ0) satisfying (6.7).

Proposition 6.4 If a pair (γ0, ζ0) as in (6.7) exists, then Aγ0,ζ0(c) satisfies

b1z(c)A
γ0,ζ0(c) + b0z(c) = 0 for all c ∈ [0, c), (6.8)

b1w(c)Aγ0,ζ0(c) + b0w(c) = 0 for all c ∈ [0, c] (6.9)

b1y(c)A
γ0,ζ0(c) + b0y(c) = 0 for all c ∈ [0, c], (6.10)

where for i = 0,1,

bi(s) := bi

(
γ0(s), ζ0(s), γ

′
0(s), s

)
,

biu(s) := ∂ubi

(
γ0(s), ζ0(s), γ

′
0(s), s

)
for u ∈ {z, y,w}.

Moreover, γ0(c) = b∗(c) is the optimal threshold defined in (5.6) and

Aγ0,ζ0(c) = B(c, b∗(c))√
(μ − ac)2 + 2qσ 2

.

Proposition 6.5 Consider the functions C0 and Cij for i = 1,2 and j = 0,1,2 defined
in (A.8)–(A.11). If (γ0, ζ0) ∈ B defined in (6.7) satisfies that ζ0 is continuous and

C11
(
γ0(c), ζ0(c), c

)
C22
(
γ0(c), ζ0(c), c

) �= 0 (6.11)
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for c ∈ [0, c], then γ0 and ζ0 are infinitely differentiable and (γ0, ζ0) is a solution of
the system of ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γ ′(c) = C10(γ (c), ζ(c), c)

C11(γ (c), ζ(c), c)
,

ζ ′(c) = C20(γ (c), ζ(c), c)C11(γ (c), ζ(c), c)

C11(γ (c), ζ(c), c)C22(γ (c), ζ(c), c)

− C21(γ (c), ζ(c), c)C10(γ (c), ζ(c), c)

C11(γ (c), ζ(c), c)C22(γ (c), ζ(c), c)
,

(6.12)

with boundary conditions

γ0(c) = b∗(c) and C0
(
b∗(c), ζ0(c), c)

)= 0, (6.13)

where b∗(c) is the optimal threshold defined in (5.6).

Let us study the uniqueness of the solution of (6.12) with boundary condition
(6.13). We know that if (γ, ζ ) ∈ B is a solution, then γ (c) = b∗(c), the optimal thresh-
old defined in (5.6). In order to obtain ζ(c), we have to find a zero of C0(b

∗(c), ·, c)
in (b∗(c),∞). Let us assume that there exists a unique zero z∗(c) of C0(b

∗(c), ·, c)
in (b∗(c),∞). In the next result, we show that under this assumption, the existence
of a solution (γ, ζ ) of (6.12) implies its uniqueness.

In Sect. 7, we show that there is a unique zero z∗(c) of C0(b
∗(c), ·, c) in

(b∗(c),∞) for c large enough. Also, we check this assumption in the numerical ex-
amples for each set of parameters.

Proposition 6.6 Assume that there exists a unique zero z∗(c) of C0(b
∗(c), ·, c) in

(b∗(c),∞). If (γ1, ζ1) ∈ B and (γ2, ζ2) ∈ B are two solutions of the system (6.12) of
differential equations with boundary conditions (6.13), then (γ1, ζ1) = (γ2, ζ2).

Let us now introduce a lower bound c for the dividend rate (to be specified later),
and denote by (γ , ζ ) a solution of (6.12) in [c, c] with boundary conditions (6.13).

Remark 6.7 Since the functions Cij defined in (A.10) and (A.11) are infinitely dif-
ferentiable, a recursive argument establishes that γ and ζ are also infinitely differen-
tiable.

The next result says that the reward function Wγ,ζ satisfies a smooth-pasting prop-
erty on the two free-boundary curves. Note that this extends Albrecher et al. [1,
Prop. 5.13] from the ratcheting case with one free boundary to our present draw-
down case. For a general account on conditions for smooth-pasting when the value
function is not necessarily smooth, see e.g. Guo and Tomecek [22].

Proposition 6.8 If a pair of infinitely differentiable functions (γ, ζ ) ∈ B satisfies

∂xxW
γ,ζ
(
γ (c)+, c

)= ∂xxW
γ,ζ
(
γ (c)−, c

)
for c ∈ [c, c],

∂cxW
γ,ζ
(
ζ(c), c

)= ∂ccW
γ,ζ
(
ζ(c), c

)= 0 for c ∈ [c, c],
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then (γ, ζ ) is a solution of both (6.8) and (6.9) in [c, c] with boundary conditions
(6.13). Moreover, ∂x(W

γ,ζ )(γ (c), c) = 1 for c ∈ [c, c]. Conversely, let (γ̄ , ζ̄ ) be a
solution of (6.12) in [c, c] with boundary conditions (6.13). Then Wγ̄ ,ζ̄ satisfies the
smooth-pasting properties

∂xxW
γ̄ ,ζ̄
(
γ (c)+, c

)= ∂xxW
γ̄ ,ζ̄
(
γ (c)−, c

)
for c ∈ [c, c],

∂cxW
γ̄ ,ζ̄
(
ζ̄ (c), c

)= ∂ccW
γ̄ ,ζ̄
(
ζ̄ (c), c

)= 0 for c ∈ [c, c].

The next result shows more regularity for Wγ,ζ if ζ is strictly monotone.

Proposition 6.9 If (γ , ζ ) is a solution of (6.12) in [c, c] with boundary conditions

(6.13) and ζ ′(c) �= 0 in [c, c], then Wγ,ζ is (2,1)-differentiable.

The next theorem is the main result of this section.

Theorem 6.10 Let (γ , ζ ) be a solution of (6.12) in [c, c] with boundary conditions

(6.13) such that the function Wγ,ζ is (2,1)-differentiable and satisfies

∂cW
γ ,ζ (x, c) ≤ 0 for x ∈ [0, ζ (c)

)
,

∂xW
γ ,ζ (x, c) ≥ 1 for x ∈ [0, γ (c)

)
,

∂xW
γ ,ζ (x, c) ≤ 1 for x ∈ [γ (c), ζ (c)]

for c ∈ [c, c). Then Wγ,ζ̄ = V .

Remark 6.11 We conjecture that there is always a unique zero z∗(c) of C0(b
∗(c), ·, c)

in (b∗(c),∞) for c > qσ 2/(2μ), that there exists a solution (γ , ζ ) ∈ B of the system
of differential equations (6.12) satisfying the boundary conditions (6.13), and that
the reward function Wγ,ζ is a viscosity supersolution of the HJB equation (4.2). If
that holds, (γ , ζ ) = (γ0, ζ0) and Wγ,ζ is the value function V . Moreover, the optimal
strategy is then a two-curve strategy. In Sect. 8, we show that that this conjecture
always holds in [c, c] for c large enough and some suitable c < c, and in Sect. 9, we
also show numerically that it is true for further instances.

7 Asymptotic values as c → ∞
The symbolic computations of this section are highly involved; so we use the Wol-
fram Mathematica software to obtain Taylor expansions. Note that all results of this
section are derived for 0 < a < 1, and the resulting expressions need not necessar-
ily be applicable for the limit to a = 1, as dominant terms in the asymptotics may
change.

Recall the boundary condition C0(b
∗(c), ·, c) = 0 of the differential equation

(6.12); cf. (6.13). Note that for c >
qσ 2

2μ
, we have from Remark 6.1 that b∗(c) is
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the unique positive b satisfying (5.7). In this section, we show that there is a unique
zero z∗(c) of C0(b

∗(c), ·, c) in (b∗(c),∞) for c large enough and that

lim
c→∞

(
b∗(c), z∗(c)

)=
(

μ

q
,
μ

q

(
1 + 1√

a

))
.

We also show ↘-limc→∞ V c
a (x, c) = x for 0 < x < limc→∞ z∗(c) = μ

q
(1 + 1√

a
) and

↗-limc→∞ V c
a (x, c) = x for x > limc→∞ z∗(c) = μ

q
(1 + 1√

a
).

In the rest of the section, we denote V c
a by V c.

Proposition 7.1 It holds that limc→∞ b∗(c) = μ/q . More precisely, the Taylor expan-
sion of b∗(c) at c = ∞ is given by

b∗(c) = μ

q
− μ2 + aqσ 2

2aq

1

c
+ O

(
1

c2

)
. (7.1)

Proof We have from (5.6) that

∂bB
(
c, b∗(c)

)= 0. (7.2)

But

∂bB(c, b) = c
√

(μ − ac)2 + 2qσ 2

q(eθ1(ac)b(θ1(ac) − θ2(c)) + eθ2(ac)b(θ2(c) − θ2(ac)))2
E(c, b),

where

E(c, b) = eθ1(ac)b(a − 1)θ2(c)
(
θ2(c) − θ1(ac)

)
θ1(ac) (7.3)

+ eθ2(ac)b(1 − a)θ2(c)
(
θ2(c) − θ2(ac)

)
θ2(ac)

+ e(θ1(ac)+θ2(ac))ba
(
θ2(c) − θ2(ac)

)(
θ2(c) − θ1(ac)

)(
θ2(ac) − θ1(ac)

)
.

Let us define F0(c, b) := E(c, b)/eθ1(ac)b . The Taylor expansions of θ1(c) and θ2(c)

in (5.2) at c = ∞ are given by

θ1(c) = 2

σ 2
c − 2μ

σ 2
+ q

1

c
+ O

(
1

c2

)
,

θ2(c) = −q
1

c
− qμ

1

c2
+ O

(
1

c3

)
. (7.4)

Let us prove first that there is no sequence b∗(cn) → ∞ with cn → ∞. Using (7.4),
we obtain

lim
n→∞F0

(
cn, b

∗(cn)
)= lim

n→∞
4(a − 1)a2q

σ 4
cn(1 − e

− qb∗(cn)
acn ).
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First, let us assume that b∗(cn) = cnαn with αn → α ∈ (0,∞). Then since

1 − e− qα
a > 0 and a < 1,

0 = lim
n→∞F0

(
cn, b

∗(cn)
)= −∞,

which is a contradiction. Secondly, let us assume that b∗(cn) = cnαn with αn → ∞.

Then since e
− qb∗(cn)

acn → 0, we have 0 = limn→∞ F0(cn, b
∗(cn)) = −∞ which is also

a contradiction. Finally, let us assume that b∗(cn) = cnαn with αn → 0+. Then

0 = lim
n→∞F0

(
cn, b

∗(cn)
)= lim

n→∞
4(a − 1)a2q

σ 4

1 − e− qαn
a

αn

b∗(cn) = −∞

gives again a contradiction. Hence lim supc→∞ b∗(c) < ∞.
Let us define the function H0 : [0,∞) × (0,∞) → R as

H0(u, b) :=
{ 4(a−1)aq(qb−μ)

σ 4 for u = 0,

F0(
1
u
, b) for u > 0.

Then H0(u, b) is infinitely continuously differentiable because it is infinitely continu-
ously differentiable for u > 0 and limu→0+ F0(

1
u
, b) = 4(a−1)aq(qb−μ)/σ 4 < ∞.

Moreover, its first-order Taylor expansion at u = 0 is given by

H0(u, b) = 4(a − 1)aq(qb − μ)

σ 4

+ 2(a − 1)q − q2b2 + 2(1 − a)μ2 + aq(2bμ + σ 2))

σ 4
u + O(u2).

From (7.2), we obtain H0(u, b∗(1/u)) = 0 for u > 0. Let us show that we have
limu→0+ b∗(1/u) = μ/q . We have already seen that b∗(1/u) is bounded for u ∈ [0, ε)

for some ε > 0. Take any sequence un → 0+ with limn→∞ b∗(1/un) = b0 < ∞; then

lim
n→∞H0

(
un, b

∗(1/un)
)= H0(0, b0) = 4(a − 1)aq(qb0 − μ)

σ 4
= 0

and so b0 = μ/q . Using that ∂bH0(0, b) = 4(a−1)aq2

σ 4 �= 0, we conclude by the im-
plicit function theorem that the function h : [0,∞) → R defined as h(0) = μ

q
and

h(u) = b∗( 1
u
) for u > 0 is infinitely continuously differentiable, and the result fol-

lows. �

Proposition 7.2 There exists a unique zero z∗(c) of C0(b
∗(c), ·, c) in (b∗(c),∞) for

c large enough with limc→∞ z∗(c) = μ
q
(1 + 1√

a
). More precisely, z∗(c) is infinitely

continuously differentiable for c large enough, and its first-order Taylor expansion at
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c = ∞ is given by

z∗(c) = μ

q

(
1 + 1√

a

)
+ (1 − 2

√
a − 3a)μ2 − 3(1 + √

a3/2)qσ 2

3q
√

a3

1

c

+ O

(
1

c2

)
. (7.5)

Proof Considering the functions C0(y, z, c) defined in (A.8) and E(c, y) defined in
(7.3), we define

C̃0(y, z, c) =
(
ce2(z−y)θ1(c)+yθ1(ac)

(
θ2(c) − θ1(c)

)(
θ1(ac) − θ2(c)

)
θ ′

1(c)
)
E(c, y)

−
(
ce2(z−y)θ1(c)+yθ2(ac)

(
θ2(ac) − θ2(c)

)(
θ2(c) − θ1(c)

)
θ ′

1(c)
)
E(c, y)

+ C0(y, z, c)

(θ1(c) − θ2(c))
.

Since E(c, b∗(c)) = 0, θ2(c) − θ1(c) < 0 and d(y, z, c) > 0, we see that the property
C0(b

∗(c), z∗(c), c) = 0 is equivalent to C̃0(b
∗(c), z∗(c), c) = 0. We can write

C̃0(y, z, c) =
16∑
i=1

mi(y, z, c)egi (y,z,c), (7.6)

where the mi(y, z, c) are of the form

mi(y, z, c) = mi0(y, c) + mi1(y, c)z

and mi0(y, c), mi1(y, c) are polynomials in θ1(c), θ2(c), θ1(ac), θ2(ac), θ ′
1(c), θ ′

2(c),
θ ′

1(ac), θ ′
2(ac), y, c, a. The functions gi(y, z, c) in (7.6) are positive linear combi-

nations of (z − y)θ1(c), (z − y)θ2(c), yθ1(ac) and yθ2(ac), with the concrete form
given in Appendix B. Define

F1(y, z, c) := C̃0(y, z, c)

eg12(y,z,c)
.

Let us show first that there is no sequence (zn, cn) with zn > b∗(cn) such that
C0(b

∗(cn), zn, cn) = 0, cn → ∞ and zn → ∞. From the definitions of the exponents
gi given in Appendix B and the expressions (7.4), we have that

lim
n→∞F1

(
b∗(cn), zn, cn

)

= lim
n→∞

14∑
i=12

mi

(
b∗(cn), zn, cn

)
egi(b

∗(cn),zn,cn)−g12(b
∗(cn),zn,cn),
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because the other terms are negligible. We can write

m12,0(y, c) = 64(a − 1)a2

σ 12
c6 + O(c5), m12,1(y, c) = O(c4),

m13,0(y, c) = 64(a − 1)2a2

σ 12
c6 + O(c5), m13,1(y, c) = 128(a − 1)2a2q

σ 12
c5

+O(c4)

m14,0(y, c) = −64(a − 1)a3

σ 12
c6 + O(c5), m14,1(y, c) = −64a2(1 − 3a + 2a2)q

σ 12
c5

+O(c4)

and

g13(y, z, c) − g12(y, z, c) = −q(z − y)
1

c
+ (1 + z)O

(
1

c2

)
,

g14(y, z, c) − g12(y, z, c) = −
(

qy

a
+ q(z − y)

)
1

c
+ (1 + z)O

(
1

c2

)
.

If zn → ∞, cn → ∞ with b∗(cn) → μ
q

, we deduce that

0 = lim
n→∞F1

(
b∗(cn), zn, cn

)= lim
n→∞

64(a − 1)a2c6
n

σ 12
e
−q

zn
cn

(
e
q

zn
cn − 1 − q

zn

cn

)
.

First, assume that zn = cnαn with αn → α ∈ (0,∞). Then e−qα(eqα − 1 − qα) > 0
and a < 1 yield

0 = lim
n→∞F1

(
b∗(cn), zn, cn

)= −∞,

which is a contradiction. Secondly, assume that zn = cnαn with αn → ∞. Then since

e−qαn(eqαn − 1 − qαn) = 1 − (1 + qαn)e
−qαn −→ 1,

we have

0 = lim
n→∞F1

(
b∗(cn), zn, cn

)= −∞

which is also a contradiction. Finally, assume that zn = cnαn with αn → 0+. Then

0 = lim
n→∞F1

(
b∗(cn), zn, cn

)

= lim
n→∞

64(a − 1)a2

σ 12 q2e−qαn
eqαn − 1 − qαn

q2α2
n

z2
nc

4
n = −∞,

which is also a contradiction. Hence there is no such sequence (zn, cn).
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Using the Taylor expansions of θ1(c), θ2(c) and b∗(c) at c = ∞ given in (7.4) and
Proposition 7.1, we find that the function

H1(z, u) =
⎧⎨
⎩

32(a−1)a(a(μ−qz)2−μ2)

σ 12 for u = 0,

u4F1(b
∗( 1

u
), z, 1

u
) for u > 0

is infinitely continuously differentiable, because it is infinitely continuously differen-
tiable for u > 0 and

lim
u→0+u4F1

(
b∗(1

u

)
, z,

1

u

)
= 32(a − 1)a(a(μ − qz)2 − μ2)

σ 12 < ∞.

Moreover, its first-order power series expansion is given by

H1(z, u) = 32(a − 1)a(a(μ − qz)2 − μ2)

σ 12

− u
32(a − 1)

3σ 12

(
− 4μ3 + 3aμ(2q2z2 − 6qzμ + μ2)

+ a2(qz − μ)
(
2q2z2 − μ2 − q(zμ + 3σ 2)

))

+ O(u2).

Since the only zero of H1(z,0) in [μ
q
,∞) is μ

q
(1 + 1√

a
) and

∂zH1(z,0) = ∂z

32(a − 1)a(a(μ − qz)2 − μ2)

σ 12 = 64(1 − a)a2q(μ − qz)

σ 12 �= 0

for z ≥ μ
q

, we conclude by the implicit function theorem that there exist ε > 0
and a unique infinitely continuously differentiable function g : [0, ε) → R with
g(0) = μ

q
(1 + 1√

a
) and H1(g(u),u) = 0 for u ∈ [0, ε). In addition, g(u) is the unique

zero of H1( · , u) in a neighbourhood U of (
μ
q
(1 + 1√

a
),0). Moreover, the first-order

Taylor expansion of g at u = 0 is given by

g(u) = μ

q

(
1 + 1√

a

)
+ (2 − 4

√
aμ2 − 6a)μ2 − 3(2 + √

a3)qσ 2

6q
√

a3
u + O(u2). (7.7)

Let us now show that g(u) is the only zero of H1( · , u) in (b∗(1/u),∞) for u

small enough. If this were not the case, there would be a sequence (zn, un)n≥1 with
zn > b∗(1/un), zn �= g(un) such that un ↘ 0 and H1(zn, un) = 0. If there exists a
convergent subsequence (znk

) with znk
→ z0 ∈ [μ

q
,∞), then H1(z0,0) = 0 by conti-

nuity and so z0 = g(0) = μ
q
(1 + 1√

a
) which is a contradiction because (znk

, unk
) /∈ U

for k large enough. So zn → ∞ and this is also a contradiction. So from (7.7), we get
the result. �
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Proposition 7.3 There exists a unique zero x∗(c) of ∂cV
c(x, c) in (0,∞) for c large

enough with x∗(c) > b∗(c) and limc→∞ x∗(c) = μ
q
(1 + 1√

a
). More precisely, x∗(c)

is infinitely continuously differentiable for c large enough and its first-order Taylor
expansion at c = ∞ is given by

x∗(c) = μ

q

(
1 + 1√

a

)
+ (1 − 2

√
a − 3a)μ2 − 3(1 + √

a3)qσ 2

3
√

a3q

1

c
+O

(
1

c2

)
. (7.8)

Moreover, we have

↘ - lim
c→∞V c(x, c) = x for 0 < x <

μ

q

(
1 + 1√

a

)
,

↗ - lim
c→∞V c(x, c) = x for x >

μ

q

(
1 + 1√

a

)
.

Proof From (5.4), we have that

V c(x, c) = v
(
x, c, b∗(c)

)=
(

B
(
c, b∗(c)

)
W0(x, c) + ac

q
(1 − eθ2(ac)x)

)
I{x<b∗(c)}

+
(

c

q
+ D

(
c, b∗(c)

)
eθ2(c)x

)
I{x≥b∗(c)},

and from Proposition 7.1, we know that ↗-limc→∞ b∗(c) = μ/q .
Take x < μ/q . Then x < b∗(c) for c large enough; so we have

V c(x, c) = B
(
c, b∗(c)

)
W0(x, c) + ac

q
(1 − eθ2(ac)x)

and so

∂cV
c(x, c) = F2(x, c)

�0(b∗(c), c)
,

where

�0(b, c) = q
(
(μ − ac)2 + 2qσ 2)

×
(
ebθ1(ac)

(
θ1(ac) − θ2(c)

)+ ebθ2(ac)
(
θ2(c) − θ2(ac)

))2
> 0 (7.9)

and

F2(x, c) :=
11∑
i=1

�i

(
x, b∗(c), c

)
ehi(x,b∗(c),c).

Here �i(x, b, c) are polynomials in θ1(c), θ2(c), θ1(ac), θ2(ac), θ ′
1(c), θ ′

2(c), θ ′
1(ac),

θ ′
2(ac), x, b, c, a, and hi(x, b, c), i = 1, . . . ,11, are positive linear combinations
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of bθ1(ac), xθ1(ac), bθ2(ac) and xθ2(ac) stated in detail in Appendix B. Since
limc→∞ b∗(c) = μ/q , the Taylor expansion of F2(x, c)/c2 at c = ∞ is given by

F2(x, c)

c2
= 2a3xq(xq − 2μ)

σ 4
+ O

(
1

c

)
.

Since xq − 2μ < 0, we have ∂cV
c(x, c) < 0 for c large enough, and so we obtain

limc→∞ V c(x, c) = x+ for x <
μ
q

.
Take now x ≥ μ/q > b∗(c). Then

V c(x, c) =
(

c

q
+ D

(
c, b∗(c)

))
eθ2(c)x

and so

∂cV
c(x, c) = F3(x, c)

�0(b∗(c), c)
,

where

F3(x, c) =
8∑

i=1

�̄i

(
x, b∗(c), c

)
eki(x,b∗(c),c),

�0(b, c) is defined in (7.9), �̄i (x, b, c) are polynomials in θ1(c), θ2(c), θ1(ac), θ2(ac),
θ ′

1(c), θ
′
2(c), θ

′
1(ac), θ ′

2(ac), x, b, c, a, and ki(x, b, c), i = 1, . . . ,8, are positive linear
combinations of bθ1(ac), bθ2(ac) and (x − b)θ2(c) as detailed in Appendix B. Since
limc→∞ b∗(c) = μ/q , the Taylor expansion of F3(x, c)/ c2 at c = ∞ is given by

F3(x, c)

c2 = 2a3

σ 4

(
aq2x2 − 2aqμx + μ2(a − 1)

)

+ 4a2

3σ 4

(− 3a(2qx − 3μ)(qx − μ)μ + 5μ3 + 3qμσ 2

− a2(qx − μ)(q2x2 − 5qxμ + 4μ2 − 3qσ 2)
)1

c

+ O

(
1

c2

)
.

So F3(x
∗(c), c) = 0 yields that the Taylor expansion of x∗(c) is given by (7.8).

Finally, for c large enough, we get ∂cV
c(x, c) < 0 for x ∈ [μ

q
,

μ
q
(1 + 1√

a
)) and

∂cV
c(x, c) > 0 for x >

μ
q
(1 + 1√

a
). So the result follows. �

Remark 7.4 Note that

z∗(c) − x∗(c) = σ 2

2

1

c
+ O

(
1

c2

)
. (7.10)
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So z∗(c) > x∗(c) for c large enough, and we have asymptotic equivalence for these
two quantities when c → ∞. At the same time, the inequality z∗(c) ≥ x∗(c) can
easily be seen to hold for any c from the following argument: We have

V c(x, c) − V c−h(x, c − h) = V c(x, c) − V c(x, c − h)

+ V c(x, c − h) − V c−h(x, c − h)

≥ V c(x, c) − V c(x, c − h),

since V c(x, c) is nondecreasing in c by Proposition 3.10. Dividing by h and taking
the limit as h goes to zero, we get

∂cV
c(x, c) ≥ V c

c (x, c)
∣∣
c=c

.

Hence ∂cV
c(z∗(c), c) ≥ V c

c (z∗(c), c)
∣∣
c=c

= 0, and then the value x∗(c) where
∂cV

c( · , c) changes from negative to positive satisfies x∗(c) ≤ z∗(c).

Remark 7.5 One observes from (7.5) that for very small values of a, the coefficient
of 1/c in the asymptotic expansion is positive so that the limit μ(1 + 1/

√
a)/q is

approached from the right, whereas for larger values of a, that coefficient is negative
and the limit is approached from the left as c becomes large; see also the numerical
illustrations in Sect. 9. It may also be instructive to derive the higher-order limiting
behaviour of x∗(c) established in Proposition 7.3 in a direct way for the deterministic
case discussed in Sect. 2. Concretely, including one more term in the expansion (2.2)
gives

x + 2axqμ − ax2q2 + μ2(1 − a)

2aq c

+ μ3 + 3aμ2(μ − xq) + a2(xq − 4μ)(μ − xq)2

6a2q c2
+
(

1

c3

)
,

and substituting x = μ
q
(1 + 1√

a
)+ a0

c
(for an a0 ∈ R to be identified) into this expres-

sion gives

3
√

a3 qμa0 + μ3(2
√

a + 3a − 1)

3a2qc3
+ O

(
1

c4

)
.

This fraction equals zero for a0 = (1−2
√

a−3a)μ2

3
√

a3q
so that we obtain

x∗(c) = μ

q

(
1 + 1√

a

)
+ (1 − 2

√
a − 3a)μ2

3
√

a3q c
+ O

(
1

c2

)
,

which exactly corresponds to (7.8) for σ = 0. This formula shows that in the de-
terministic case, indeed the limit μ(1 + 1/

√
a)/q is approached from the right for

a < 1/9 and from the left for a > 1/9 as c → ∞.
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8 Optimal strategies for c large

In the next result, we show that for c large enough, there exists a unique solution of
(6.12) with boundary conditions (6.13) and that ζ ′ < 0 and γ ′ > 0 in a neighbourhood
of c. We emphasise again that for all results in this section, we assume a < 1.

Proposition 8.1 For c large enough, we can find c ∈ [0, c) such that there exists a
unique solution (γ (c), ζ (c)) of (6.12) with boundary conditions (6.13) in [c, c], and
γ is strictly increasing and ζ is strictly decreasing in [c, c], respectively.

Proof In order to prove that there exists a unique solution (γ (c), ζ (c)) of (6.12) in
[c, c] for some c < c, it suffices to show that

C11
(
b∗(c), z∗(c), c

) �= 0 and C22
(
b∗(c), z∗(c), c

) �= 0

for c large enough. Combining (7.1) and (7.5) with the formulas of C11(y, z, c) and
C22(y, z, c) given in (A.9) and (A.11), we obtain that

C11
(
b∗(c), z∗(c), c

)= −32(1 − a)2aq

σ 10
c5 + O(c4),

C22
(
b∗(c), z∗(c), c

)
e(z∗(c)−b∗(c))θ1(c) = 32(1 − a)qμ√

a σ 10
c3 + O(c2),

and so

C11
(
b∗(c), z∗(c), c

)
< 0 and C22

(
b∗(c), z∗(c), c

)
> 0

for c large enough.
In order to prove that γ (c) is increasing and ζ (c) is decreasing in [c, c] for c large

enough and some c < c, we use the differential equations (6.12) at c = c and the
power series expansion of Cij to show that

γ ′(c) = aqσ 2 + μ2

2aq

1

c2
+ O

(
1

c3

)
,

ζ ′(c) = −3qσ 4

4

1

c4
+ O

(
1

c5

)

for c large enough; so we have the result. �

In the following result, we show that the reward function Wγ,ζ of the two-curve
strategy given by the solutions of (γ , ζ ) of (6.12) with boundary conditions (6.13)
is the value function in [0,∞) × [c, c] for c large enough and some c < c. So the
optimal strategy is a two-curve strategy.

Theorem 8.2 There exist a large c > qσ 2/(2μ) and some c < c such that Wγ,ζ = V

in [0,∞) × [c, c].



376 H. Albrecher et al.

Proof By Proposition 8.1, there exist c large enough and some c < c such that
ζ ′(c) �= 0, and so by Proposition 6.9, Wγ,ζ is (2,1)-differentiable in [0,∞) × [c, c].
Using Theorem 6.10, in order to prove the result, it is sufficient to show that

∂xW
γ ,ζ (x, c) ≥ 1 for x ∈ [0, γ (c)

)
,

∂xW
γ ,ζ (x, c) ≤ 1 for x ∈ [γ (c), ζ (c)], (8.1)

∂cW
γ ,ζ (x, c) ≤ 0 for x ∈ [0, ζ (c)

)

for c ∈ [c, c). We have from Proposition 6.8 that ∂x(W
γ ,ζ )(γ (c), c) = 1 for c ∈ [c, c],

and the Taylor expansion of ∂xxv
c(x) at c = ∞ is given by

⎧⎨
⎩

− q
ac

+ q(qx−2μ)

a2c2 + O( 1
c3 ) if x < b∗(c),

− q
c

+ q(qx−2μ)

c2 + O( 1
c3 ) if x ≥ b∗(c),

which is negative so that ∂xxv
c(x) < 0 for c large enough. Since ∂xx(W

γ ,ζ )(x, c) is
continuous, there exists c < c such that ∂xx(W

γ ,ζ )(x, c) < 0 in (x, c) for c ∈ [c, c]
and x ∈ [0, ζ (c)]. We conclude that (8.1) holds for c ∈ [c, c] and c large enough.

Let us show that for c large enough and some c < c, we have ∂cW
γ ,ζ (x, c) ≤ 0 for

c ∈ [c, c] and 0 ≤ x ≤ ζ (c). We prove first that ∂cW
γ ,ζ (x, c) ≤ 0 for x ∈ [γ (c), ζ (c)].

We have

∂cW
γ ,ζ (x, c) = ∂cH

γ ,ζ (x, c)

= d

dc

(
f20
(
γ (c), x, c

))+ d

dc

(
f21
(
γ (c), x, c

))
Aγ,ζ (c)

+ f21
(
γ (c), x, c

)
(Aγ ,ζ )′(c)

= f21
(
γ (c), x, c

)(− b0
(
γ (c), x, γ ′(c), c

)

− b1
(
γ (c), x, γ ′(c), c

)
Aγ,ζ (c) + (Aγ ,ζ )′(c)

)
,

and by Lemma A.1, f21(y, x, c) > 0 for x > y. So we should prove that

G(x, c) := −b0
(
γ (c), x, γ ′(c), c

)− b1
(
γ (c), x, γ ′(c), c

)
Aγ,ζ (c) + (Aγ ,ζ )′(c) < 0

for x ∈ [γ (c), ζ (c)]. By Proposition 6.8, 0 = ∂cH
γ ,ζ (x, c) = ∂cxH

γ ,ζ (x, c), and so
we have G(ζ(c), c) = ∂xG(ζ (c), c) = 0. Then it is sufficient to prove
that ∂xxG(x, c) < 0 for x ∈ [γ (c), ζ (c)]. We first show that ∂xxG(x, c) < 0 for
x ∈ [γ (c), ζ (c)] for c large enough, and then the result follows for c ∈ [c, c] for some
c < c by continuity arguments in a compact set. Using γ (c) = b∗(c), ζ (c) = z∗(c),
(7.1) and (7.5), we obtain that the Taylor expansion at c = ∞ of

h(x, c) := ∂xxG(x, c)

e−(x−γ (c))θ1(c)−γ (c)θ1(ac)−γ (c)θ2(c)
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is given by

h(x, c) = 2(a(qx − μ)2 − μ2)

a2qσ 4

+ 12qμσ 2 − 10μ3 − 4a2(qx − μ)2(qx + 2μ) + 6a(q2x2μ + 3μ2)

3a3qσ 4

1

c

+ O

(
1

c2

)
,

and the Taylor expansion of h(z∗(c), c) at c = ∞ is given by

h
(
z∗(c), c

)= − 2μ

a
3
2 σ 2

1

c
+ O

(
1

c2

)
.

Since

∂xh(x, c) = 4(a(c − qx − μ)(qx − μ) + qxμ)

a2σ 4

1

c
+ O

(
1

c2

)

is positive and h(z∗(c), c) < 0 for c large enough, we conclude that ∂xxG(x, c) < 0
for x ∈ [γ (c), ζ (c)]. Let us show that for c large enough and some c < c, it holds that
∂cW

γ ,ζ (x, c) ≤ 0 for x ∈ [0, γ (c)] and c ∈ [c, c]. We can write

∂cW
γ ,ζ (x, c) = ∂c

(
f10(x, c) + f11(x, c)Aγ ,ζ (c)

)

= f11(x, c)

(
∂cf10(x, c)

f11(x, c)
+ ∂cf11(x, c)

f11(x, c)
Aγ ,ζ (c) + (Aγ ,ζ )′(c)

)
,

where f11(x, c) > 0; so we should prove that

G1(x, c) := ∂cf10(x, c)

f11(x, c)
+ ∂cf11(x, c)

f11(x, c)
Aγ ,ζ (c) + (Aγ ,ζ )′(c) < 0

for x ∈ [0, γ (c)]. We have shown that ∂cW
γ ,ζ (γ (c), c) < 0 so that G1(γ (c), c) < 0;

then it suffices to prove that ∂xG1(x, c) > 0 for x ∈ [0, γ (c)]. We show first
that ∂xG1(x, c) > 0 for x ∈ [0, γ (c)] for c large enough; then the result follows
for c ∈ [c, c] with some c < c by continuity arguments in a compact set. Using
γ (c) = b∗(c), (7.1) and (7.5), we obtain that the Taylor expansion at c = ∞ of

h1(x, c) := exθ1(ac)∂xG1(x, c)

is given by

h1(x, c) = x(2μ − qx)

σ 2

1

c
+ O

(
1

c2

)
,

which is positive for c large enough and x ≤ b∗(c) <
μ
q

<
2μ
q

. �
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Fig. 3 V 3
0 (x,0) (gray solid),

V 3
0.5(x,0) (dashed) and

V 3
1 (x,0) (black solid) as a

function of x

9 Numerical examples

In this section, we consider some numerical illustrations for the case q = 0.1, μ = 4
and σ = 2.

9.1 Bounded case

Let us first consider the case with an upper bound c = 3 for the dividend rate. In
this case, we are able to derive the value function and the optimal strategies for
the problem with drawdown constraints a = 0.2, a = 0.5 and a = 0.8. Indeed, they
are of two-curve type as conjectured in Remark 6.11. The obtained reward func-
tion and optimal dividend strategies then also allow us to compare them with those
for the (already previously known) extreme cases a = 0 (classical dividend prob-
lem without any constraint) and a = 1 (dividend problem with ratcheting constraint).
To obtain the value functions V c

a for each set of parameters, we proceed as fol-
lows:

1) We check that there exists a unique zero z∗(c) of C0(b
∗(c), · , c) in (b∗(c),∞).

2) We obtain the curves γ and ζ by solving numerically, by the Euler method, the
system (6.12) of ordinary differential equations with boundary conditions (6.13).

3) We check numerically that the pair (γ , ζ ) satisfies (6.11) for c ∈ [0, c]. So by
Proposition 6.6, we are approximating the unique solution (γ , ζ ). We also verify that
ζ is nondecreasing.

4) We check that the function Wγ,ζ defined in (6.6) satisfies the conditions of
Theorem 4.4. Hence Wγ,ζ is the value function V c

a , and the optimal strategy is indeed
a two-curve strategy given by (γ , ζ ) ∈ B.

Figure 3 depicts the graphs of V c
a (x,0) with c = 3 for a = 0 (no restrictions, gray

solid), a = 0.5 (dashed) and a = 1 (ratcheting, black solid) as a function of x. One
can nicely see how the drawdown case is – in terms of performance – a compromise
between the unconstrained case and the stronger constraint of ratcheting.

In order to see the impact of the drawdown restriction more clearly, we plot in
Fig. 4 the difference between V c

0 (x) (the unconstrained value function) and V c
a (x,0)
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Fig. 4 V 3
0 (x) − V 3

a (x,0) for
a = 0.2 (dotted), a = 0.5
(dashed), a = 0.8
(dotted–dashed) and a = 1
(solid)

Fig. 5 Optimal drawdown curves (γ (c), c) (dotted) and (ζ (c), c) (dashed) for a = 0.2,0.5,0.8, together
with the optimal threshold of the unconstrained problem (a = 0, solid gray) and the optimal ratcheting
curve (ξ(c), c) (a = 1, solid black)

as a function of x for increasingly restrictive drawdown levels a = 0.2 (dotted),
a = 0.5 (dashed), a = 0.8 (dotted–dashed) and finally a = 1 (ratcheting, solid). One
observes that in particular for smaller values of x, the relaxation of ratcheting towards
the drawdown constraint improves the performance of the resulting strategy quite a
bit, although the relative gap between the performance of the ratcheting and the un-
constrained cases is anyway not so big (cf. Fig. 3). The latter speaks in favour of the
consideration of such strategies, as ratcheting and drawdown may be important for
shareholders from a psychological point of view, and the efficiency loss when intro-
ducing these constraints is quite minor. In particular, if for a given initial surplus level
x, one has a target efficiency loss one is willing to accept, results like Fig. 4 can help
to identify the corresponding drawdown coefficient a that can still guarantee such a
performance.

In terms of the nature of the optimal strategy (which indeed turns out to be of
two-curve type), Fig. 5 shows the optimal drawdown curves (γ (c), c) (dotted) and
(ζ (c), c) (dashed) for a = 0.2, a = 0.5 and a = 0.8, respectively. In all plots, we
also depict the optimal threshold of the unconstrained dividend problem a = 0 (solid
gray) and the optimal ratcheting curve (ξ(c), c) for a = 1 (solid black). To that
end, recall from Asmussen and Taksar [7] that the optimal threshold for a = 0 is
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Fig. 6 The curves γ c(c) (left) and ζ
c
(c) (right) for a = 0.5 : c = 2 (solid gray), c = 3 (dotted), c = 4 = μ

(dashed) and c = 5 (solid black)

given by

1

θ1(0) − θ2(0)
log

θ2(0) (θ2(0) − θ2(c))

θ1(0) (θ1(0) − θ2(c))
,

whereas the optimal strategy in the ratcheting case is given by a one-curve strategy
which is obtained numerically according to the results in Albrecher et al. [1]. One
can nicely see how the two curves (γ (c), c) and (ζ (c), c) move towards the right as a

increases, interpolating between the unconstrained and the ratcheting cases. Note that
the resulting two-curve shapes are somewhat reminiscent of some figures obtained
in Guo and Tomecek [22] for other types of singular control problems, where also a
smooth-fit principle was established.

Notice also that the location of these curves can vary considerably as the maxi-

mally allowed dividend rate c changes. Figure 6 depicts γ c(c) and ζ
c
(c) for a = 0.5

for c growing from 2 to 5. In particular, when c is larger, the necessary surplus level x

to switch to higher dividend rates is larger as well. Figure 7 shows the corresponding
value functions for these increasing values of c (a = 0.5). Recall that while the draw-
down constraint is not a major efficiency loss when compared to the unconstrained
case for the same c (cf. Fig. 3 for the case c = 3), the size of c itself naturally has a
considerable impact on the size of the value function.
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Fig. 7 V 2
0.5(x,0) (solid gray),

V 3
0.5(x,0) (dotted), V 4

0.5(x,0)

(dashed) and V 5
0.5(x,0) (black

solid) as a function of x

Fig. 8 The boundary condition values b∗(c) (grey), z∗(c) (solid) and x∗(c) (dashed) as a function of c for
different values of a

9.2 Boundary conditions

Let us now investigate the situation when the maximally allowed dividend rate c be-
comes large. In addition to a = 0.5 and a = 0.8, we now also consider a smaller
drawdown level a = 0.07 (in order to illustrate the different monotonicity for small
values of a, cf. Remark 7.5). One finds numerically that there exists a unique zero
z∗(c) of C0(b

∗(c), · , c) in (b∗(c),∞) for any c ≥ 0. We have also found that there
exists a unique zero x∗(c) in (0,∞) of ∂cV

c( · , c) for c ≥ 5.17 for a = 0.07, for
c ≥ 3.45 for a = 0.5, and for c ≥ 2.52 for a = 0.8. Recall that we have proved
in Propositions 7.1–7.3 that limc→∞ z∗(c) = limc→∞ x∗(c) = μ(1 + 1/

√
a)/q and

limc→∞ b∗(c) = μ/q .
Figure 8 shows the curves of the boundary conditions (b∗(c), c), (z∗(c), c) and

(x∗(c), c) for a = 0.07, a = 0.5 and a = 0.8, respectively. In the case a = 0.07, one
sees how the limit μ(1+1/

√
a)/q = 191.2 (vertical dotted line) is indeed approached

from the right as c → ∞, whereas for a = 0.5 and a = 0.8, the respective limits
96.57 and 84.72 (vertical dotted line) are approached from the left; cf. Remark 7.5.
It is important to keep in mind that these plots only depict the boundary value for
each choice of c, and are not to be confused with the optimal drawdown curves in
Fig. 5. Note that x∗(c) and z∗(c) are – already for moderate values of c – almost
identical, with z∗(c) > x∗(c); see Fig. 9 for a graph of the difference z∗(c) − x∗(c)
for a = 0.07, a = 0.5 and a = 0.8, respectively. From the latter, one nicely sees
z∗(c) > x∗(c) (cf. Remark 7.4) as well as the asymptotic equivalence (7.10) of the
two quantities.
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Fig. 9 The difference z∗(c) − x∗(c) as a function of c for different values of a

Fig. 10 The boundary values z∗(c) (solid) and the optimal ratcheting boundary value ξ
c
(c) (dotted) as c

grows, for different values of a

In Fig. 5, we saw that the curve ζ
c
(c) is to the left of the ratcheting curve ξ

c
(c). At

the same time, for large values of c, we know that ζ
c
(c) must be to the right of ξ

c
(c),

as

lim
c→∞ ξ

c
(c) = 2μ

q
<

μ

q

(
1 + 1√

a

)
= lim

c→∞ z∗(c).

It is therefore of interest to see when this crossing for the limiting value takes

place. Figure 10 depicts z∗(c) (solid) and ξ
c
(c) (dotted) for a = 0.07, a = 0.5 and

a = 0.8, respectively. We see that indeed z∗(c) < ξ
c
(c) for c small, and z∗(c) > ξ

c
(c)

for c large. Moreover, we obtain numerically that the intersection point of the

curves z∗(c) and ξ
c
(c) occurs at c = 39.70 for a = 0.07, at c = 9.74 for a = 0.5,

and at c = 8.37 for a = 0.8 for the given set of parameters. That is, if c ex-
ceeds that threshold, the possibility of the drawdown increases the level of the sur-
plus above which one starts to pay the maximal dividend rate, when compared to
pure ratcheting, and it is intuitive that the difference is less pronounced as a in-
creases.

10 Conclusions

In this paper, we have addressed the problem of optimal dividends under a draw-
down constraint. We have shown that the value function can be expressed as the
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unique viscosity solution of a two-dimensional Hamilton–Jacobi–Bellman equation
and have derived conditions under which the optimal strategy is of a two-curve form.
We conjecture that these conditions are in fact always fulfilled and – using a smooth-
fit principle – have proved this for large values of current and maximal dividend
rate c and c, respectively. For concrete numerical examples, we have also proved
the optimality of two-curve strategies numerically for small values of c and c, and
have shown how to identify the resulting optimal curves. This turns out to be a very
challenging and technical task, involving the numerical solution of a highly involved
system of ordinary differential equations and its boundary conditions. We have il-
lustrated how this can be concretely implemented for a moderate size of c; for high
values of c, this is numerically difficult because the formulas involve algebraic sums
with terms with exponentials with very large exponents and the computations require
very high numerical precision. We furthermore have shown that when c tends to in-
finity, the curves converge to a finite limit, the size of which follows a surprisingly
simple and intriguing formula in terms of the square-root of the drawdown percent-
age a for any volatility parameter σ . The latter fact also allows getting some intuition
on the nature of this limit from the deterministic limit case σ = 0. Altogether, this
paper is the first to explicitly address a drawdown constraint for a control problem
in this context, and it has turned out that the resulting strategies smoothly interpo-
late between the unconstrained problem and the situation with ratcheting constraints,
allowing to get some quantitative insight in the efficiency gain when relaxing the
ratcheting. It will be interesting to see whether other dividend – and more generally
control – problems can be extended in a similar way. In particular, extending the re-
sults from the Brownian risk model to a compound Poisson surplus process may be
an interesting endeavour, which would lead to a relaxation of the ratcheting problem
studied in Albrecher et al. [2]. Another future direction of research may be to extend
the approach of the present paper to incorporate constraints on the dividend rate in
terms of an average of its previous values, for instance along the lines of Angoshtari
et al. [6].

Appendix A: Results and proofs for Sect. 6

We first state some definitions and formulas used to define the functions b0 and b1

introduced in (6.2). We set

d(y, z, c)

= e(z−y)θ1(c)+yθ2(ac)
(
θ2(c) − θ2(ac)

)− e(z−y)θ1(c)+yθ1(ac)
(
θ2(c) − θ1(ac)

)

+ e(z−y)θ2(c)+yθ2(ac)
(
θ2(ac) − θ1(c)

)+ e(z−y)θ2(c)+yθ1(ac)
(
θ1(c) − θ1(ac)

)
, (A.1)
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b11(y, z, c) = −(θ1(c) − θ2(c)
)

×
(
eyθ1(ac)

(
θ1(ac) − θ1(c)

)(
θ1(ac) − θ2(c)

)

+ eyθ2(ac)
(
θ2(c) − θ2(ac)

)(
θ2(ac) − θ1(c)

))
. (A.2)

b01(y, z, c) = c
(
θ1(c) − θ2(c)

)

×
(
aeyθ2(ac)

(
θ2(c) − θ2(ac)

)(
θ1(c) − θ2(ac)

)+ (1 − a)θ1(c)θ2(c)
)
,

b10(y, z, c)

= e(z−y)θ1(c)+yθ1(ac)

((
θ1(c) − θ2(c)

)(
θ ′

2(c) + (z − y)
(
θ2(c) − θ1(ac)

)
θ ′

1(c)

− aθ ′
1(ac)

(
1 + y

(
θ1(ac) − θ2(c)

)))

+ (θ1(ac) − θ2(c)
)(

θ ′
1(c) − θ ′

2(c)
))

− e(z−y)θ1(c)+yθ2(ac)

((
θ1(c) − θ2(c)

)(
θ ′

2(c) + (z − y)
(
θ2(c) − θ2(ac)

)
θ ′

1(c)

− aθ ′
2(ac)

(
1 + y

(
θ2(ac) − θ2(c)

)))

+ (θ2(c) − θ2(ac)
)(

θ ′
1(c) − θ ′

2(c)
))

− e(z−y)θ2(c)+yθ1(ac)

((
θ1(c) − θ2(c)

)(
θ ′

1(c) + (z − y)
(
θ1(c) − θ1(ac)

)
θ ′

2(c)

− aθ ′
1(ac)

(
1 + y

(
θ1(ac) − θ1(c)

)))

+ (θ1(c) − θ1(ac)
)(

θ ′
1(c) − θ ′

2(c)
))

+ e(z−y)θ2(c)+yθ2(ac)

((
θ1(c) − θ2(c)

)(
θ ′

1(c) + (z − y)
(
θ1(c) − θ2(ac)

)
θ ′

2(c)

− aθ ′
2(ac)

(
1 + y

(
θ2(ac) − θ1(c)

)))

+ (θ2(ac) − θ1(c)
)(

θ ′
1(c) − θ ′

2(c)
))

,
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b00(y, z, c)

= e(z−y)θ2(c)(1 − a)
((

θ1(c) − θ2(c)
)
θ1(c)

(
1 + c(z − y)θ ′

2(c)
)

+ c
(
θ1(c)θ

′
2(c) − θ ′

1(c)θ2(c)
))

− e(z−y)θ1(c)(1 − a)
((

θ1(c) − θ2(c)
)
θ2(c)

(
1 + c(z − y)θ ′

1(c)
)

+ c
(
θ1(c)θ

′
2(c) − θ ′

1(c)θ2(c)
))

− ae(z−y)θ1(c)+yθ2(ac)
((

θ1(c) − θ2(c)
)(

θ2(c) − θ2(ac)
)

× (1 + c(z − y)θ ′
1(c) + acyθ ′

2(ac)
)

+ c
(
θ1(c)θ

′
2(c) − θ ′

1(c)θ2(c)
)

+ cθ2(ac)
(
θ ′

1(c) − θ ′
2(c)

)− acθ ′
2(ac)

(
θ1(c) − θ2(c)

))

+ ae(z−y)θ2(c)+yθ2(ac)
((

θ1(c) − θ2(c)
)(

θ1(c) − θ2(ac)
)

× (1 + c(z − y)θ ′
2(c) + acyθ ′

2(ac)
)

+ c
(
θ1(c)θ

′
2(c) − θ ′

1(c)θ2(c)
)

+ cθ2(ac)
(
θ ′

1(c) − θ ′
2(c)

)− acθ ′
2(ac)

(
θ1(c) − θ2(c)

))

− (θ1(c) − θ2(c)
)2

.

Lemma A.1 The function d(y, z, c) defined in (A.1) is positive in T × [0, c], and so
b0 and b1 introduced in (6.2) are well defined.

Proof Using θ1 > 0 > θ2 and θ ′
1, θ

′
2 > 0, define g(y,h, c) = d(y, y + h, c)/ehθ2(c).

Then

g(y,0, c) = (eyθ1(ac) − eyθ2(ac))
(
θ1(c) − θ2(c)

)
> 0

for y > 0 and

∂hg(y,h, c) = (θ2(c) − θ1(c)
)
eh(θ1(c)−θ2(c))

×
(
eyθ1(ac)

(
θ2(c) − θ1(ac)

)+ eyθ2(ac)
(
θ2(ac) − θ2(c)

))
> 0

for y ≥ 0. So the result holds. �

To prove Proposition 6.2, we introduce some auxiliary formulas. Set

f10(x, c) := ca

q
(1 − eθ2(ac)x), (A.3)

f11(x, c) := eθ1(ac)x − eθ2(ac)x, (A.4)
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f20(y, x, c) := c

q(θ2(c) − θ1(c))

×
(

θ2(c) + (a − 1)eθ1(c)(x−y)θ2(c)

+ aeyθ2(ac)
(

− eθ2(c)(x−y)θ2(ac) + eθ1(c)(x−y)
(
θ2(ac) − θ2(c)

))

+ θ1(c)
(

− 1 + eθ2(c)(x−y)
(
1 + a(eyθ2(ac) − 1)

)))
, (A.5)

f21(y, x, c) := d(y, x, c)

θ1(c) − θ2(c)
. (A.6)

Proof of Proposition 6.2 As the function Hγ,ζ ( · , c) is continuously differentiable at
x = γ (c) and satisfies Hγ,ζ (0, c) = 0, Lac(Hγ,ζ )(x, c) = 0 for 0 ≤ x < γ (c) and
Lc(Hγ,ζ )(x, c) = 0 for γ (c) ≤ x, there exists by (5.1) and (5.3) a function A(c) with

Hγ,ζ (x, c) = (f10(x, c) + f11(x, c)A(c)
)
I{x<γ (c)}

+ f20
(
γ (c), x, c

)+ f21
(
γ (c), x, c)A(c)

)
I{x≥γ (c)}.

Let us find a formula for the function A(c). Since

Hγ,ζ (x, c) = v
(
x, c, γ (c)

)
,

we obtain by (5.4) that

A(c) = B(c, γ (c))√
(μ − ac)2 + 2qσ 2

.

Using that ∂cH
γ,ζ (x, c)|x=ζ(c) = 0 for all c ∈ [0, c] and that ζ(c) > γ (c), we get

0 = ∂cH
γ,ζ (x, c)|x=ζ(c) = d

dc

(
f20
(
γ (c), x, c

)+ f21
(
γ (c), x, c

)
A(c)

)∣∣∣
x=ζ(c)

=
(

d

dc

(
f20
(
γ (c), x, c

))+ d

dc

(
f21
(
γ (c), x, c

))
A(c)

+ f21
(
γ (c), x, c

)
A(c)

)∣∣∣∣
x=ζ(c)

,

and f21(y, x, c) = d(y,x,c)
θ1(c)−θ2(c)

> 0 for x > y by Lemma A.1. So we obtain

A′(c) = − d
dc

(f20(γ (c), x, c))

f21(γ (c), x, c)

∣∣∣∣
x=ζ(c)

+ − d
dc

(f21(γ (c), x, c))

f21(γ (c), x, c)

∣∣∣∣
x=ζ(c)

A(c)

= b0
(
γ (c), ζ(c), γ ′(c), c

)+ b1
(
γ (c), ζ(c), γ ′(c), c

)
A(c)

at the points where ζ is continuous, with b0 and b1 defined in (6.2). Since ζ is
Riemann-integrable, it is differentiable almost everywhere. Note that the function
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A is the unique solution of this ODE. Since the function A depends on γ and ζ , we
call it Aγ,ζ . Hence we have the result. �

Definition A.2 Let ζ : [0, c] → [0,∞) be a step function, that is,

ζ(c) :=
n−1∑
i=1

ziI[ci ,ci+1)(c)

with 0 = c1 < c2 < · · · < cn = c and zi > 0. Then the two-curve strategy defined at
the beginning of Sect. 6 and described in Fig. 1, starting with an initial surplus x and
initial running maximum dividend rate c, is given as follows:

(1) If 0 ≤ x < ζ(c), that is, (x, c) ∈NC(γ , ζ ), follow the refracting strategy which
pays at the rate ac when the current surplus is below a refracting threshold γ (c) and
at c when the current surplus is above γ (c), until either reaching the curve R(ζ ) or
ruin (whichever comes first).

(2) If x ≥ ζ(c), that is, (x, c) ∈ CH(γ , ζ ), increase immediately the dividend rate
to �(x, c) ∈ {c2, . . . , cn}; note that

�(x, c) = max{ci ≥ c : zk ≤ x for h(c) ≤ k ≤ i − 1},
where h(c) := min{h : ch ≥ c}. We denote this two-curve strategy by π(γ,ζ ).

In the next result, we show by using a Feynman–Kac argument that if ζ is a step
function, then Wγ,ζ is the reward function of a two-curve strategy. In the lemma that
follows, we show that in the general case (γ, ζ ) ∈ B, Wγ,ζ is the limit of reward
functions of two-curve strategies.

Lemma A.3 Consider (γ, ζ ) ∈ B, with ζ being a step function. Let Dx,c ∈ �
[0,c]
x,c

be the admissible strategy corresponding to the two-curve strategy π(γ,ζ ) starting in
(x, c). Calling j (x, c) := J (x;Dx,c), we obtain that j is continuous in [0,∞)×[0, c]
and j (x, c) = Wγ,ζ (x, c).

Proof We prove inductively that j (x, ci) is continuous in x for i = 1, . . . , n. First,
j ( · , ci) is differentiable in [0, zi) because it corresponds to the reward function
of a refracting dividend strategy at x = γ (ci) with a given boundary condition at
x = zi (see for instance Albrecher et al. [3, Theorem 3.1]). In the case i = n,
j (x, cn) = v(x, c, γ (c)) which is continuous in x; in the case i < n, j (x, ci) is con-
tinuous in x for x ≤ zi because

j (x, ci) = (f10(x, ci) + f11(x, ci)Ai

)
I{x<γ (ci )}

+
(
f20
(
γ (ci), x, ci

)+ f21
(
γ (ci), x, c

)
Ai

)
I{x≥γ (ci )}

for some constant Ai , and j (x, ci) = j (x, ci+1) for x ≥ zi . As j (x, c) = j (x, ci+1)

for c ∈ (ci, ci+1), we conclude that j is continuous in [0,∞) × [0, c].
Let us now show that j (x, c) satisfies the assumptions of Proposition 6.2 and so

j (x, c) = Hγ,ζ (x, c) = Wγ,ζ (x, c) for 0 ≤ x ≤ ζ(c). Indeed, it is straightforward that
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j ( · , c) = Hγ,ζ ( · , c) = v( · , c, γ (c)), j ( · , c) is continuously differentiable for any
c ∈ [0, c), Lac(j)(x, c) = 0 for 0 ≤ x < γ (c), Lc(j)(x, c) = 0 for γ (c) ≤ x ≤ ζ(c)

and j (0, c) = 0. Also ∂cj (ζ(c), c) = 0 at the points of continuity of ζ because
j (x, c) = j (x, ci+1) for x ≥ ζ(c) = zi in the case c ∈ (ci, ci+1).

From the definition of π(γ,ζ ), it is straightforward that j (x, c) = Hγ,ζ (x, �(x, c))

if x ≥ ζ(c); so we get the result. �

In the next result, we show that for any (γ, ζ ) ∈ B, the function Wγ,ζ is the uni-
form limit of reward functions of curve strategies, where the ζk are step functions
with ζk → ζ .

Lemma A.4 Given (γ, ζ ) ∈ B, there exists a sequence of right-continuous step func-
tions ζk : [0, c] → [0,∞) such that Wγ,ζk (x, c) converges uniformly to Wγ,ζ (x, c).

Proof Since ζ is a Riemann-integrable càdlàg function, we can approximate it uni-
formly by right-continuous step functions. Namely, take a sequence of finite sets
Sk = {ck

1, c
k
2, . . . , c

k
nk

} with 0 = ck
1 < ck

2 < · · · < ck
nk

= c and consider the right-
continuous step functions

ζk(c) =
nk−1∑
i=1

ζ(ck
i )I[ck

i ,ck
i+1)

with δ(Sk) = maxi=1,...,nk−1(c
k
i+1 − ck

i ) → 0. We have that ζk → ζ uniformly, and
so both Aγ,ζk → Aγ,ζ and Wγ,ζk → Wγ,ζ uniformly. �

Lemma A.5 For a given c ∈ [0, c), consider γ : [c, c] → (0,∞) which is continu-
ously differentiable and ζ : [c, c] → (0,∞) which is bounded, Riemann-integrable
and càdlàg. Define the set

Bc =
{
(γ, ζ ) such that γ ≤ ζ in [c, c] and lim

c→c− ζ(c) = ζ(c−)
}
.

If (γ0, ζ0) ∈ B satisfies (6.7), then for any c ∈ [0, c),

Aγ0,ζ0(c) = max{Aγ,ζ (c) : ζ ∈ Bc}.

Proof Given (γ, ζ ) ∈ B, we can write

Aγ,ζ (c) = Aγ,ζ (c)e− ∫ c
c b1(γ (s),ζ(s),γ ′(s),s)ds

−
∫ c

c

e− ∫ t
c b1(γ (s),ζ(s),γ ′(s),s)dsb0

(
γ (t), ζ(t), γ ′(t), t

)
dt,

Aγ,ζ (0) = −
∫ c

0
e− ∫ t

0 b1(γ (s),ζ(s),γ ′(s),s)dsb0
(
γ (t), ζ(t), γ ′(t), t

)
dt

+ (e− ∫ c
0 b1(γ (s),ζ(s),γ ′(s),s)ds)Aγ,ζ (c).
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Note that the pair (γ0|[c,c), ζ0|[c,c)) is in Bc. Indeed, given any (γ, ζ ) ∈ Bc and
any function χ : [0, c] → [0,1] which is continuously differentiable with χ = 0 in
[0, c], we define the two functions γ1(s) = γ0(s)I{0≤s<c} + γ (s)χ(s)I{c≤s≤c} and
ζ1(s) = ζ0(s)I{0≤s<c} + ζ(s)χ(s)I{c≤s≤c}. Then (γ1, ζ1) ∈ B. Moreover,

Aγ0,ζ0(0) ≥ Aγ1ζ1(0) = −
∫ c

0
e− ∫ t

0 b1(γ0(s),ζ0(s),s)dsb0
(
γ0(t), ζ0(t), t

)
dt

+ (e− ∫ c
0 b1(γ0(s),ζ0(s),s)ds)Aγχ,ζχ (c).

Hence

Aγ0,ζ0(0) ≥ −
∫ c

0
e− ∫ t

0 b1(γ0(s),ζ0(s),s)dsb0
(
γ0(t), ζ0(t), t

)
dt

+ e− ∫ c
0 b1(γ0(s),ζ0(s),s)ds sup

(γ,ζ )∈Bc,χ

Aγχ,ζχ (c)

= −
∫ c

0
e− ∫ t

0 b1(γ0(s),ζ0(s),s)dsb0
(
γ0(t), ζ0(t), t

)
dt

+ e− ∫ c
0 b1(γ0(s),ζ0(s),s)ds sup

(γ,ζ )∈Bc

Aγ,ζ (c)

≥ −
∫ c

0
e− ∫ t

0 b1(γ0(s),ζ0(s),s)dsb0
(
γ0(t), ζ0(t), t

)
dt

+ e− ∫ c
0 b1(γ0(s),ζ0(s),s)dsAγ0ζ0(c)

= Aγ0ζ0(0),

and so we have sup(γ,ζ )∈Bc
Aγ,ζ (c) = Aγ0,ζ0(c). �

Proof of Proposition 6.4 Consider any function (γ1, ζ1) ∈ B with γ1(c) = ζ1(c) = 0.
Then

Aγ0+ηγ1,ζ0+εζ1(0)

= Aγ0,ζ0(c)e− ∫ c
0 b1(γ0(t)+ηγ1(t),ζ0(t)+εζ1(t),γ

′
0(t)+ηγ ′

1(t),t)dt

−
∫ c

0
e− ∫ s

0 b1(γ0(u)+ηγ1(u),ζ0(u)+εζ1(u),γ ′
0(u)+ηγ ′

1(u),u)du

× b0
(
γ0(s) + ηγ1(s), ζ0(s) + εζ1(s), γ

′
0(s) + ηγ ′

1(s), s
)
ds.

Taking the derivative with respect to ε at η = ε = 0, we get
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0 = ∂εA
γ0+ηγ1,ζ0+εζ1(0)

∣∣
η=0,ε=0

=
∫ c

0

(
e− ∫ s

0 b1(u)dub0(s)
(∫ s

0
ζ1(u)b1z(u)du

))
ds

−
∫ c

0

(
e− ∫ s

0 b1(u)duζ1(s)b0z(s)
)
ds

− Aγ0,ζ0(c)e− ∫ c
0 b1(t)dt

∫ c

0
ζ1(s)b0z(s)ds.

Using integration by parts, we obtain
∫ c

0

(
e− ∫ s

0 b1(u)dub0(s)
(∫ s

0
ζ1(u)b1z(u)du

))
ds

=
∫ c

0

(
ζ1(s)b1z(s)

(∫ c

s

e− ∫ t
0 b1(u)dub0(t)dt

))
ds,

and so

0 =
∫ c

0
ζ1(s)

(
b1z(s)

∫ c

s

e− ∫ t
0 b1(u)dub0(t)dt − e− ∫ s

0 b1(u)dub0z(s)

− Aγ0,ζ0(c)e− ∫ c
0 b1(t)dt b0z(s)

)
ds.

Since this holds for any ζ1 with ζ1(c) = 0, we get using (6.4) that for any c ∈ [0, c),

0 = b1z(c)

∫ c

c

e− ∫ t
0 b1(u)dub0(t)dt − e− ∫ c

0 b1(u)dub0z(c)

− Aγ0,ζ0(c)e− ∫ c
0 b1(t)dt b0z(c)

= e− ∫ c
0 b1(u)du

(− b1z(c)A
γ0,ζ0(c) − b0z(c)

)
,

and so we deduce (6.8).
Taking the derivative with respect to η at η = ε = 0, we get

0 = ∂ηA
γ0+ηγ1,ζ0+εζ1(0)

∣∣
η=0,ε=0

=
∫ c

0

(
e− ∫ s

0 b1(u)dub0(s)
(∫ s

0
γ ′

1(u)b1w(u)du
))

ds

+
∫ c

0

(
e− ∫ s

0 b1(u)dub0(s)
(∫ s

0
γ1(u)b1y(u)du

))
ds

−
∫ c

0

(
e− ∫ s

0 b1(u)duγ ′
1(s)b0w(s)

)
ds −

∫ c

0

(
e− ∫ s

0 b1(u)duγ1(s)b0y(s)
)
ds

− Aγ0,ζ0(c)e− ∫ c
0 b1(t)dt

∫ c

0
γ ′

1(t)b1z(t)dt

− Aγ0,ζ0(c)e− ∫ c
0 b1(t)dt

∫ c

0
γ1(t)b1y(t)dt.
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Using integration by parts, we obtain

0 = γ1(0)

(
− b1w(0)

∫ c

0
e− ∫ t

0 b1(u)dub0(t)dt + b0w(0)

+ e− ∫ c
0 b1(t)dtAγ0,ζ0(c)b1w(0)

)

+ γ1(c)
(
−e− ∫ c

0 b1(t)dt b0w(c) − e− ∫ c
0 b1(t)dtAγ0,ζ0(c)b1w(c)

)

+
∫ c

0
γ1(s)

(
d

ds
b1w(s)

)(
e− ∫ c

s b1(t)dtAγ0,ζ0(c) −
∫ c

s

e− ∫ t
s b1(u)dub0(t)dt

)
ds

+
∫ c

0
γ1(s)

(
b1y(s)

(∫ c

s

e− ∫ t
s b1(u)dub0(t)dt − e− ∫ c

s b1(t)dtAγ0,ζ0(c)
))

ds

+
∫ c

0
γ1(s)

(
b1w(s)b0(s) + d

ds
b1w(s) − b0w(s)b1(s) − b0y(s)

)
ds.

Using that γ1(c) = 0 and (6.4), we get

0 = γ1(0)
(
b1w(0)Aγ0,ζ0(0) + b0w(0)

)

+
∫ c

0
γ1(s)e

− ∫ s
0 b1(u)du

(( d

ds
b1w(s) − b1y(s)

)
Aγ0,ζ0(s) + d

ds
b0w(s)

− b0y(s) + b1w(s)b0(s) − b0w(s)b1(s)

)
ds.

Since this holds for any γ1 with γ1(c) = 0, we obtain

(
d

ds
b1w(s)−b1y(s)

)
Aγ0,ζ0(s)+ d

ds
b0w(s)−b0y(s)+b1w(s)b0(s)−b0w(s)b1(s)=0

(A.7)
for all c ∈ [0, c] and

b1w(0)Aγ0,ζ0(0) + b0w(0) = 0.

By Lemma A.5, taking the derivative 0 = ∂ηA
γ0+ηγ1,ζ0+εζ1(c)

∣∣
η=0,ε=0, we also ob-

tain that (6.9) holds. Note that with (6.9), we have

0 = d

ds

(
b1w(s)Aγ0,ζ0(s) + b0w(s)

)

=
(

d

ds
b1w(s)

)
Aγ0,ζ0(s) + d

ds
b0w(s) + b0(s)b1w(s) − b1(s)b0w(s)

and so, from (A.7)
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0 =
(

d

ds
b1w(s)

)
Aγ0,ζ0(s) − b1y(s)A

γ0,ζ0(s) + d

ds
b0w(s) − b0y(s) + b1w(s)b0(s)

− b0w(s)b1(s)

=
(

d

ds
b1w(s)

)
Aγ0,ζ0(s) + d

ds
b0w(s) + b1w(s)b0(s) − b0w(s)b1(s)

− b1y(s)A
γ0,ζ0(s) − b0y(s)

= d

ds

(
b1w(s)Aγ0,ζ0(s) + b0w(s)

)− (b1y(s)A
γ0,ζ0(s) + b0y(s)

)

= −(b1y(s)A
γ0,ζ0(s) + b0y(s)

)
,

from which we deduce (6.10). �

To prove Proposition 6.5, we next introduce some auxiliary formulas. Set

C0(y, z, c) := b11(y, c)∂z

(
b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(
b10(y, z, c)

d(y, z, c)

)
, (A.8)

C11(y, z, c) := b11(y, c)∂y

(
(e(z−y)θ1(c) − e(z−y)θ2(c))b01(y, c)

d(y, z, c)

)

− b01(y, c)∂y

(
(e(z−y)θ1(c) − e(z−y)θ2(c))b11(y, c)

d(y, z, c)

)
, (A.9)

C10(y, z, c) := b01(y, c)∂y

(
b10(y, z, c)

d(y, z, c)

)
− b11(y, c)∂y

(
b00(y, z, c)

d(y, z, c)

)
, (A.10)

C21(y, z, c) := ∂yC0(y, z, c)

= ∂y

(
b11(y, c)∂z

(b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(b10(y, z, c)

d(y, z, c)

))
,

C22(y, z, c) := ∂zC0(y, z, c)

= ∂z

(
b11(y, c)∂z

(b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(b10(y, z, c)

d(y, z, c)

))
,

(A.11)

C20(y, z, c) := −∂cC0(y, z, c)

= −∂c

(
b11(y, c)∂z

(b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(b10(y, z, c)

d(y, z, c)

))
.

Proof of Proposition 6.5 From (6.8) and (6.9), we have

(b1wb0z − b0wb1z)
(
γ0(c), ζ0(c), γ

′
0(c), c

)= 0 for c ∈ [0, c].

From (6.2), we can write
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(b1wb0z − b0wb1z)(y, z,w, c)

= e(z−y)θ1(c) − e(z−y)θ2(c)

q (θ1(c) − θ2(c))
2 d(y, z, c)

×
(

b11(y, c)∂z

(b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(b10(y, z, c)

d(y, z, c)

))

= e(z−y)θ1(c) − e(z−y)θ2(c)

q(θ1(c) − θ2(c))2d(y, z, c)
C0(y, z, c),

which does not depend on w. So we conclude that

C0
(
γ0(c), ζ0(c), c

)= 0 for c ∈ [0, c]. (A.12)

Moreover, from Proposition 6.4, we get (6.13). From (6.9) and (6.10), we have

(b1wb0y − b0wb1y)
(
γ0(c), ζ0(c), γ

′
0(c), c

)= 0 for c ∈ [0, c],
and we can write from (6.2) that

(b1wb0y − b0wb1y)(y, z,w, c) = e(z−y)θ1(c) − e(z−y)θ2(c)

q(θ1(c) − θ2(c))2d(y, z, c)

× (wC11(y, z, c) − C10(y, z, c)
)
.

So since C11(γ0(c), ζ0(c), c) �= 0, we get the first equation of (6.12). Taking the
derivative of (A.12) with respect to c and using that ζ0 is continuous, γ0 is contin-
uously differentiable and C22(γ0(c), ζ0(c), c) �= 0, we obtain that ζ0 is continuously
differentiable and

0 = ∂yC0
(
γ0(c), ζ0(c), c

)
γ ′

0(c) + ∂zC0
(
γ0(c), ζ0(c), c

)
ζ ′

0(c)

+ ∂cC0
(
γ0(c), ζ0(c), c

)
= C21

(
γ0(c), ζ0(c), c

)
γ ′

0(c) + C22
(
γ0(c), ζ(c), c

)
ζ ′

0(c) − C20
(
γ0(c), ζ0(c), c

)
.

Using the first equation of (6.12), we get the second equation of (6.12). By a recursive
argument, we finally obtain that γ0 and ζ0 are infinitely differentiable. �

Proof of Proposition 6.6 Consider

cm = min
{
c ∈ [0, c] : (γ1(d), ζ1(c)

)= (γ2(d), ζ2(d)
)

for d ∈ [c, c]}.
Let us call

F1(y, z, c) = (C10(y, z, c)C22(y, z, c),C20(y, z, c)C11(y, z, c)

− C21(y, z, c)C10(y, z, c)
)
,

F2(y, z, c) = C11(y, z, c)C22(y, z, c)
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and F(y, z, c) = F1(y.z, c)/F2(y.z, c). Note that F1,F2 and F are infinitely differ-
entiable,

(
γ ′
i (c), ζ

′
i (c)
)= F

(
γi(c), ζi(c), c

)
for c ∈ [0, c]

and (γi(cm), ζi(cm)) = (γi(cm), ζi(cm)) for i = 1,2 and

F2
(
γ1(cm), ζ1(cm), cm

)= F2
(
γ2(cm), ζ2(cm), cm

) �= 0.

If cm = 0, we have the result. On the other hand, for cm > 0, using the Picard–
Lindelöf theorem, there exists a unique solution of (6.12) with boundary condition
ζ(cm) = ζ1(cm) in [max{cm −δ,0}, cm] for some δ > 0, which is a contradiction. �

Proof of Proposition 6.8 Take a pair of infinitely differentiable functions (γ, ζ ) ∈ B
and consider the function Hγ,ζ (x, c) introduced in Proposition 6.2. First note
that Hγ,ζ satisfies Lac(Hγ,ζ )(x, c) = 0 for 0 ≤ x ≤ γ (c), Lc(Hγ,ζ )(x, c) = 0 for
x ≥ γ (c), Hγ,ζ (0, c) = 0, ∂cH

γ,ζ (x, c)|x=ζ(c) = 0 and Hγ,ζ (x, c) = v (x, c, γ (c)).
So we have for x > γ (c) that

∂cH
γ,ζ (x, c)

= f21
(
γ (c), x, c

)(− b0
(
γ (c), x, γ ′(c), c

)− Aγ,ζ (c)b1
(
γ (c), x, γ ′(c), c

))
,

∂cxH
γ,ζ (x, c)

∣∣
x=ζ(c)

= f21
(
γ (c), ζ(c), c

)(
∂xb0

(
γ (c), x, γ ′(c), c

)∣∣
x=ζ(c)

− Aγ,ζ (c)∂xb1
(
γ (c), x, γ ′(c), c

)∣∣
x=ζ(c)

)
.

Since f21(y, x, c) = d(y, x, c)/(θ1(c) − θ2(c)) > 0 for x > y by Lemma A.1, we
obtain that ∂cxH

γ,ζ (x, c)
∣∣
x=ζ(c)

= 0 if and only if (6.8) holds for (γ, ζ ) in [c, c].
As Wγ,ζ (x, c) = Hγ,ζ (x, c) for x < ζ(c) and Wγ,ζ (x, c) = Hγ,ζ (x,C(x, c)) for
x ≥ ζ(c), we get ∂cW

γ,ζ (x, c) = 0 for x ≥ ζ(c) and hence ∂cxW
γ,ζ (ζ(c), c) = 0.

Moreover, ∂cH
γ,ζ (ζ(c), c) = 0 for c ∈ [c, c], and so

0 = d

dc

(
∂cH

γ,ζ
(
ζ(c), c

))

= ∂ccH
γ,ζ
(
ζ(c), c

)+ ∂cxH
γ,ζ
(
ζ(c), c

)
ζ ′(c)

= ∂ccH
γ,ζ
(
ζ(c), c

)
.

In all, since Wγ,ζ (x, c) = Hγ,ζ (x,C(x, c)) if x ≥ ζ(c), we get ∂ccW
γ,ζ (x, c) = 0 if

x ≥ ζ(c) and so ∂ccW
γ,ζ (ζ(c), c) = 0.

Secondly, we have that ∂yf11(y, c) �= 0, b11(y, z, c) > 0 and

− b01(y, c)

qb11(y, c)
= 1 − ∂yf10(y, c)

∂yf11(y, c)
.
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So

Aγ,ζ (c) = −∂wb0(γ (c), ζ(c), γ ′(c), c)
∂wb1(γ (c), ζ(c), γ ′(c), c)

= − b01(γ (c), c)

qb11(γ (c), c)
= 1 − ∂yf10(γ (c), c)

∂yf11(γ (c), c)
,

and then

∂x(W
γ,ζ )
(
γ (c), c

)= ∂x(W
γ,ζ )
(
γ (c)−, c

)

= ∂yf10
(
γ (c), c)

)+ Aγ,ζ (c)∂yf11
(
γ (c), c

)= 1

if and only if (6.9) holds for (γ, ζ ) in [c, c]. Note that since

LcWγ,ζ
(
γ (c)+, c

)= LacWγ,ζ
(
γ (c)−, c

)= 0

and ∂x(W
γ,ζ )(γ (c), c) = 1, we obtain

0 = LcWγ,ζ
(
γ (c)+, c

)−LacWγ,ζ
(
γ (c)−, c

)

= σ 2

2

(
∂xxW

γ,ζ
(
γ (c)+, c

)− ∂xxW
γ,ζ
(
γ (c)−, c

))
.

Therefore, when (γ̄ , ζ̄ ) is a solution of (6.12), it satisfies (6.8) and (6.9), and so

∂xxW
γ̄ ,ζ̄
(
γ (c)+, c

)= ∂xxW
γ̄ ,ζ̄
(
γ (c)−, c

)
for c ∈ [c, c],

∂cxW
γ̄ ,ζ̄
(
ζ̄ (c), c

)= ∂ccW
γ̄ ,ζ̄
(
ζ̄ (c), c

)= 0 for c ∈ [c, c]. �

Proof of Proposition 6.9 It holds that

f10(x, c)
∣∣
x=y

= f20(y, x, c)
∣∣
x=y

,

f11(x, c)
∣∣
x=y

= f21(y, x, c)
∣∣
x=y

,

∂xf10(x, c)
∣∣
x=y

= ∂xf20(y, x, c)
∣∣
x=y

,

∂xf11(x, c)
∣∣
x=y

= ∂xf21(y, x, c)
∣∣
x=y

,

∂cf10(x, c)
∣∣
x=y

= ∂cf20(y, x, c)
∣∣
x=y

,

∂cf11(x, c)
∣∣
x=y

= ∂cf21(y, x, c)
∣∣
x=y

,

∂cxf10(x, c)
∣∣
x=y

= ∂cxf20(y, x, c)
∣∣
x=y

,

∂cxf11(x, c)
∣∣
x=y

= ∂cxf21(y, x, c)
∣∣
x=y

,

∂yf20(y, x, c)
∣∣
x=y

= ∂yf21(y, x, c)
∣∣
x=y

= 0,

∂cyf20(y, x, c)
∣∣
x=y

= ∂cyf21(y, x, c)
∣∣
x=y

= 0.

By Proposition 6.8, W
γ,ζ
xx (x, c) is continuous at x = γ (c), and so Wγ,ζ is (2,1)-dif-

ferentiable for x < ζ(c).
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If ζ ′(c) > 0 in [c, c], the inverse ζ
−1

exists and �(x, c) can be written as

�(x, c) =
{

c if ζ (c) ≤ x,

ζ
−1

(x) if ζ (c) ≤ x < ζ(c).

In order to show that Wγ,ζ is (2,1)-differentiable, it is enough to prove that

∂xxW
ζ (x+, c) = ∂xxW

ζ (x−, c)

for ζ (c) ≤ x < ζ(c). We have by Proposition 6.8 that

∂xW
γ ,ζ (x+, c) = ∂xH

γ ,ζ
(
x, ζ

−1
(x)
)+ ∂cH

γ̄ ,ζ
(
x, ζ (x)

)
(ζ

−1
)′(x)

= ∂xH
γ ,ζ
(
x, ζ

−1
(x)
)

= ∂xW
γ ,ζ (x−, c).

Consequently,

∂xxW
γ ,ζ (x+, c) = ∂xxH

γ ,ζ
(
x, ζ

−1
(x)
)+ ∂cxH

γ ,ζ
(
x, ζ

−1
(x)
)
(ζ

−1
)′(x)

= ∂xxH
γ ,ζ
(
x, ζ

−1
(x)
)

= ∂xxW
γ ,ζ (x−, c).

If ζ ′(c) < 0 in [c, c], we have �(x, c) = c for x ≥ ζ (c). To show that Wγ,ζ is
(2,1)-differentiable, it is sufficient to prove that ∂xxW

ζ (x+, c) = ∂xxW
ζ (x−, c) for

x = ζ (c). Since �(x, c) = c,

Hγ,ζ
(
ζ (c), c

)= Wγ,ζ
(
ζ (c), c

)= vc
(
ζ (c)

)

so that

H
γ,ζ
x

(
ζ (c), c

)
ζ ′(c) + H

γ,ζ
c

(
ζ (c), c

)= (vc)′
(
ζ (c)

)
ζ ′(c).

Since H
γ,ζ
c (ζ (c), c) = W

γ,ζ
c (ζ (c), c) = 0 and ζ ′(c) < 0, we get

W
γ,ζ
x

((
ζ (c)

)−
, c
)

= H
γ,ζ
x

(
ζ (c), c

)= (vc)′
(
ζ (c)

)= W
γ,ζ
x

((
ζ (c)

)+
, c
)

so that H
γ,ζ
x (ζ (c), c) = (vc)′(ζ (c)). Hence, taking the derivative one more time with

respect to c, we obtain

H
γ,ζ
xx

(
ζ (c), c

)
ζ ′(c) + H

γ,ζ
xc

(
ζ (c), c

)= (vc)′′
(
ζ (c)

)
ζ ′(c).

By Proposition 6.8, H
γ,ζ
xc (ζ (c), c) = H

γ,ζ
cx (ζ (c), c) = 0 and ζ ′(c) < 0, and we get

W
γ,ζ
xx

((
ζ (c)

)−
, c
)

= H
γ,ζ
xx

(
ζ (c), c

)= (vc)′′
(
ζ (c)

)= W
γ,ζ
xx

((
ζ (c)

)+
, c
)
. �



Optimal dividends under a drawdown constraint 397

Proof of Theorem 6.10 As ζ is continuous in [c, c], there exists M = maxc∈[c,c] ζ (c).

By definition, if x ≥ M , then �(x, c) = c and Wγ,ζ (x, c) = vc(x), and therefore
limx→∞ Wγ,ζ (x, c) = limx→∞ vc(x) = c/q .

By (5.8), we have that

∂xv
c(x) ≤ 1 for x ≥ ζ (c) and ∂xv

c
(
b∗(c)

)= 1. (A.13)

Since

Lac(Wγ ,ζ )(x, c) −Lc(Wγ ,ζ )(x, c) = (c − ac)∂xW
γ ,ζ (x, c) + (ac − c)

= c(1 − a)
(
∂xW

γ ,ζ̄ (x, c) − 1
)
,

we get Lac(Wγ ,ζ )(x, c) ≤ Lc(Wγ ,ζ )(x, c) = 0 for x ∈ [γ (c), ζ (c)] and

Lc(Wγ ,ζ )(x, c) ≤ Lac(Wγ ,ζ )(x, c) = 0

for x ∈ [0, γ (c)].
By Theorem 4.4, it remains to prove that we have LacWγ ,ζ (x, c) ≤ 0 and

LcWγ ,ζ (x, c) ≤ 0 for x ≥ ζ (c), c ∈ [c, c). But

�(x, c) = max{h ∈ [c, c] : ζ (d) ≤ x for d ∈ [c,h)}

satisfies �(x, c) ≥ c, and also either �(x, c) = c or ζ (�(x, c)) = x. So we obtain
LαWγ ,ζ (x,α)

∣∣
α=�(x,c)

= 0 and then

LcWγ ,ζ (x, c) = L�(x,c)Wγ ,ζ (x, c) + (�(x, c) − c
)(

∂xW
γ ,ζ
(
x, �(x, c)

)− 1
)

= (�(x, c) − c
)(

∂xW
γ ,ζ
(
x, �(x, c)

)− 1
)

≤ 0,

because (A.13) and ∂xW
γ ,ζ (ζ (c), c) ≤ 1 for c ∈ [c, c] imply ∂xW

γ ,ζ (x, �(x, c)) ≤ 1.
Also,

Lac(Wγ ,ζ )(x, c) −Lc(Wγ ,ζ )(x, c) = c(1 − a)
(
∂xW

γ ,ζ (x, c) − 1
)

= c(1 − a)
(
∂xW

γ ,ζ
(
x, �(x, c)

)− 1
)

≤ 0

for x ≥ ζ (c), c ∈ [c, c). �
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Appendix B: Some formulas of Sects. 7 and 8

In the following, we state in a compact way some formulas referred to in Sects. 7
and 8. ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(y, z, c)

g2(y, z, c)

g3(y, z, c)

g4(y, z, c)

g5(y, z, c)

g6(y, z, c)

g7(y, z, c)

g8(y, z, c)

g9(y, z, c)

g10(y, z, c)

g11(y, z, c)

g12(y, z, c)

g13(y, z, c)

g14(y, z, c)

g15(y, z, c)

g16(y, z, c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2
0 2 0 2
1 0 0 2
1 1 0 2
0 2 1 2
1 0 1 1
1 1 1 1
1 1 1 2
0 1 2 0
0 2 2 0
0 2 2 1
1 0 2 0
1 1 2 0
1 1 2 1
0 2 1 1
0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

(z − y)θ1(c)

(z − y)θ2(c)

yθ1(ac)

yθ2(ac)

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(x, b, c)

h2(x, b, c)

h3(x, b, c)

h4(x, b, c)

h5(x, b, c)

h6(x, b, c)

h7(x, b, c)

h8(x, b, c)

h9(x, b, c)

h10(x, b, c)

h11(x, b, c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0
1 1 0 0
0 0 2 0
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 0
0 1 2 0
1 0 0 1
2 0 0 1
1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

bθ1(ac)

xθ1(ac)

bθ2(ac))

xθ2(ac)

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1(x, b, c)

k2(x, b, c)

k3(x, b, c)

k4(x, b, c)

k5(x, b, c)

k6(x, b, c)

k7(x, b, c)

k8(x, b, c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0
2 0 1
0 2 0
1 1 0
1 1 1
2 1 1
0 2 1
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ bθ1(ac)

bθ2(ac)

(x − b)θ2(c))

⎞
⎠ .
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