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[1] The way that available data are divided into training, testing, and validation subsets can have a
significant influence on the performance of an artificial neural network (ANN). Despite numerous
studies, no systematic approach has been developed for the optimal division of data for ANN
models. This paper presents two methodologies for dividing data into representative subsets,
namely, a genetic algorithm (GA) and a self-organizing map (SOM). These two methods are
compared with the conventional approach commonly used in the literature, which involves an
arbitrary division of the data. A case study is presented in which ANN models developed using
each data division technique are used to forecast salinity in the River Murray at Murray Bridge
(South Australia) 14 days in advance. When tested on a validation data set from July 1992 to March
1998, the models developed using the GA and SOM data division techniques resulted in a reduction
in RMS error of 24.2% and 9.9%, respectively, over the conventional data division method. It was
found that a SOM could be used to diagnose why an ANN model has performed poorly, given that
the poor performance is primarily related to the data themselves and not the choice of the ANN’s
parameters or architecture. INDEX TERMS: 1871 Hydrology: Surface water quality; 1899
Hydrology: General or miscellaneous; 3210 Mathematical Geophysics: Modeling; 3299
Mathematical Geophysics: General or miscellaneous; KEYWORDS: artificial neural network, data
division, self-organizing map, genetic algorithm, forecasting, salinity model

1. Introduction

[2] Artificial neural network (ANN) models are highly flexible

function approximators that have shown their utility in a broad

range of water resources applications [e.g., American Society of

Civil Engineers (ASCE) Task Committee on Application of Artifi-

cial Neural Networks in Hydrology, 2000; Maier and Dandy,

2000]. While such flexibility provides a powerful tool for fore-

casting and prediction, there is no established methodology for the

design and successful implementation of ANNs. In a review of 43

papers on the use of ANNs for the prediction or forecasting of

water resources variables, Maier and Dandy [2000] found that in

most cases, the development of ANN models was either described

poorly or carried out incorrectly. They identified that future

research efforts should be directed toward the development of

guidelines and modeling methodologies that assist in the develop-

ment of ANN models. One of the main areas that needs to be

addressed is the issue of data division.

[3] When cross validation is used as a stopping criterion, three

data sets are needed, namely, training, testing, and validation sets.

Three data sets are also required when optimizing network archi-

tecture or internal model parameters such as the learning rate or

momentum. As pointed out by Maier and Dandy [2000], the

validation data must not be used in any capacity in the model

development process. The training data are used to find an optimal

set of connection weights, the test data are used to choose the best

network configuration, and once an optimal network has been

found, a validation set is required in order to test the true general-

ization ability of the model.

[4] Recent studies have found that the way the available data

are divided into subsets can have a significant influence on an

ANN’s performance [Maier and Dandy, 1996; Tokar and Johnson,

1999]. This is because ANNs are typically unable to extrapolate

beyond the range of the data used for training [Flood and Kartam,

1994; Minns and Hall, 1996; Tokar and Johnson, 1999]. For

adequate generalization ability the training and validation sets

must therefore be representative of the same population [Masters,

1993]. However, Maier and Dandy [2000] found that in most of

the papers they reviewed, the data were divided on an arbitrary

basis, without any consideration given to their statistical properties.

As a consequence, in many cases, the optimality of the results

presented was difficult to assess.

[5] Flood and Kartam [1994] point out that the number of

training samples can significantly influence a network’s perform-

ance. Increasing the number of training samples provides more

information about the shape of the solution surface or surfaces and

thus increases the potential level of accuracy that can be achieved

by the network. However, in most practical circumstances, data

availability and cost impose obvious limitations on the amount of

data available and hence on the size of the training set. Thus, the

proportion of samples to include in each of the subsets is an

important consideration.

[6] It has been acknowledged in the past that an ANN is

susceptible to becoming ‘‘. . .a prisoner of its training data’’ [Minns

and Hall, 1996]. During prediction, the model is likely to perform

poorly if faced with inputs that are far removed from the examples

that it saw during training. By using the widest limits of examples

during training, it is possible to prevent an ANN from the need to

extrapolate [ASCE Task Committee, 2000]. Consequently, which

samples to include in the training set is also very important.

[7] Recently, attempts have been made to ensure that the

statistical properties of each subset of data are similar. Braddock

et al. [1998] selected 3 years of data for the acceptance (validation)

set so that the mean, standard deviation, and range of these years

contained the top, bottom, and middle values of the available data.
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The training and testing sets were selected so that they were

statistically representative of the entire data set. Campolo et al.

[1999] divided daily data from January 1992 to August 1993 into

training, testing, and validation sets, taking care that the mean,

variance, maximum, and minimum values of each subset were

most similar. The proportion of data in each subset was assigned

arbitrarily, with the training, testing, and validation subsets con-

sisting of 400, 120, and 81 samples, respectively. While this

methodology determines which samples should be used in each

of the subsets, the authors provide no information on how to ensure

the similarity of the statistics. In addition, it does not solve the

problem of choosing what proportion of data to use in each subset.

[8] Tokar and Johnson [1999] created rainfall-runoff ANN

models using wet-, dry-, and average-year data to illustrate the

impact of the content of the training data on network prediction

accuracy. It was observed that the wet-year models outperformed

the dry- and average-year models based on goodness-of-fit statis-

tics. The reason given was that the wet-year models included

information on both high- and low-flow conditions. Consequently,

it was more likely that in order to predict the patterns in the test set,

an interpolation rather than an extrapolation was required.

[9] Ray and Klindworth [2000] recognized that the training and

testing sets must be representative of the same population. To

achieve this, they made their training sets large enough to represent

the full population, and data for the testing set were randomly

selected and manually checked to ensure that they had character-

istics similar to the training data. No information was provided

detailing how this was achieved.

[10] Despite these studies, no systematic approach has been

developed for the optimal division of data for ANN models.

Recently, the ASCE Task Committee [2000] discussed future

avenues of ANN research and application and noted the important

issue of data division. The lack of an established procedure led the

Task Committee to pose the following question: Can an optimal

training set be identified? The ASCE Task Committee observed

that an optimal training set would adequately represent the model-

ing domain but at the same time would employ the minimum

number of samples for achieving this objective. Repetitive data

only serve to slow down ANN training, and by keeping the training

set concise, software and hardware constraints can be satisfied

more easily [Dawson and Wilby, 1998]. The ASCE Task Commit-

tee elaborated further, stating, ‘‘Very often we may have no

alternative but to proceed with limited data. Under these circum-

stances can we say when generalization will fail so that we

understand the range of applicability of the ANN?’’ [ASCE Task

Committee, 2000, p. 135]. Conversely, it may be equally important

to ask, When a model does perform poorly, are tools available to

critically dissect the model and determine if the data sets were in

fact representative of the same population?

[11] The first objective of this paper is to present a methodology

that can be used to determine the optimal division of data for ANN

models. Two important considerations shall be addressed: (1) What

proportion of the data should be used for each of the training,

testing, and validation sets? (2) Which samples should be used in

each of the sets?

[12] The second objective is to present a technique that can be

used when data are limited, to diagnose why an ANN model has

performed poorly.

[13] Two new methods for the optimal division of available data

will be explored in this paper, and these methods will be compared

with a more conventional approach. The first method (section 2.1)

employs a genetic algorithm (GA) to divide the data so as to

minimize the statistical difference (as measured by the mean and

standard deviation) between training, testing, and validation data

sets. The second data division method (section 2.2) employs a self-

organizing map (SOM) [Kohonen, 1982], to cluster similar data

records together. An equal number of data records can then be

sampled from each cluster to produce training, testing, and vali-

dation sets with similar statistical properties while using a mini-

mum number of data records. The conventional approach to be

used for comparison simply involves arbitrarily dividing the data

into subsets without consideration of the statistical properties. This

is the approach most often employed in the literature.

[14] A case study is presented in section 3. The case study

involves the development of ANN models (section 4) which are

used to forecast salinity in the River Murray at Murray Bridge,

South Australia. The results produced by each data division

technique are presented and discussed in section 5, and the

conclusions of the study are given in section 6.

2. Methods

2.1. Data Division Using a Genetic Algorithm

[15] A genetic algorithm is a powerful optimization technique

inspired by the principles of natural evolution and selection [Gold-

berg, 1989]. GAs have been widely used in optimizing water

resources variables [e.g., Dandy et al., 1996; Simpson et al., 1994].

In this study a GA has been applied to the problem of dividing the

data into three statistically similar subsets. For example, if there are

60 data samples that must be divided into training, testing, and

validation sets consisting of 40, 10, and 10 data samples, respec-

tively, then there are

60!

40!� 10!� 10!
¼ 7:7� 1020

ways of arranging the data samples. A GA can be used to search

through this large space and determine the optimal arrangement

based on an objective function. In this study the aim is to arrange

the available data into three statistically similar subsets of fixed

size.

[16] The GA used for data division sorts the samples into

training, testing, and validation sets by using a set of random

numbers. The decision variable governing the arrangement of the

data samples is a random number seed, chosen to be in the range

[1, 100,000]. This range was selected to provide a reasonable size

search space. The GA string therefore consists of a single integer

between 1 and 100,000. The random number seed controls the

generation of a random sequence of numbers. The random number

sequence is placed alongside the data samples, and the contiguous

block of data is sorted using these random numbers. In so doing,

the data samples are arranged into subsets and the objective

function is evaluated. Penalty constraints are added to ensure that

the maximum and minimum values of each input and output

variable are included in the training set, rather than in the testing

or validation sets. As discussed in section 1, training the ANN

model on the extreme range of values available removes the need

for the network to extrapolate.

[17] To determine the ‘‘fitness’’ of each solution, an objective

function is required. In this application a suitable objective

function to minimize is the sum of the absolute difference in mean

and standard deviation values between each pair of the three

subsets.
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[18] A floating point GA was used, as experiments conducted

byMichalewicz [1994] andWright [1991] have shown that floating

point representation is faster and more consistent run to run,

provides higher precision than binary coding, and allows greater

freedom to use different mutation and crossover techniques based

on the real representation.

[19] The tournament selection scheme was used, where strings

are paired randomly and the string with the higher fitness in the

pair progresses to the next generation [Goldberg and Deb, 1991].

This scheme is referred to as a binary or two-member tournament.

Since only half of the strings progress, another tournament is held

with another set of random pairs, and the winners make up the

other half of the crossover pool for the next generation. Two copies

of the best string progress, and no copies of the worst string are

replicated. The tournament selection scheme was chosen, as it has

comparable growth ratios with other schemes but has a better time

complexity than many other selection algorithms [Goldberg and

Deb, 1991].

[20] In this application the linear crossover operator [Wright,

1991] has been used, as it avoids problems associated with real

crossover. From the two-parent random number seeds, p1 and p2,

three new random seeds are generated, namely,

1

2
p1 þ

1

2
p2;

3

2
p1 �

1

2
p2;�

1

2
p1 þ

3

2
p2:

The best two of the three random seeds are then chosen.

[21] Nonuniform mutation [Michalewicz, 1994], designed for

use with floating point GAs, was used in this procedure. If a

mutation is to occur at generation t, then a random number seed

vkis mutated to produce v0k, where

v0k ¼
vk þ� t;UB� vkð Þ
vk �� t; vk � LBð Þ

( )
if a random digit ¼ 0

if a random digit ¼ 1
ð1Þ

and LB and UB are lower and upper domain bounds of the variable

vk. As described by Michalewicz [1994], the function �(t, y)

returns a value in the range [0, y] such that the probability of �(t,

y) being close to 0 increases as t increases. This causes the operator

to uniformly search the space initially (i.e., when t is small), and

very locally at later stages, thereby increasing the probability of

generating the new number closer to its successor than a random

choice. The following function is used:

� t; yð Þ ¼ y 1� r 1� t=Tð Þð Þb
� �

; ð2Þ

where r is a random number in the range [0,1], T is the maximum

number of generations, and bis a system parameter determining the

degree of dependency on the iteration number (b = 5 was used in

this study).

[22] The data used in this procedure are scaled to the range [0,1].

The reason for this is twofold. First, the scaling prevents the inputs

with much larger values from dominating the evolutionary process.

Second, scaling to the interval [0,1], enables penalty constraints to

be included more easily (i.e., the maximum and minimum values

can be identified by the GA as the zeros and ones).

2.2. Data Division Using a Self-Organizing Map (SOM)

[23] The self-organizing map (SOM) was developed by

Kohonen [1982] and arose from attempts to model the topo-

graphically organized maps found in the cortices of the more

developed animal brains. The underlying basis behind the

development of the SOM was that topologically correct maps

can be formed in an n-dimensional array of processing elements

(PEs) that did not have this initial ordering to begin with. In this

way, input stimuli, which may have many dimensions, can come

to be represented by a one- or two-dimensional vector, which

preserves the order of the higher-dimensional data [NeuralWare,

1998].

[24] The SOM employs a type of learning commonly

referred to as competitive, unsupervised, or self-organizing, in

which adjacent cells within the network are able to interact and

develop adaptively into detectors of a specific input pattern

[Kohonen, 1990]. The SOM can be considered to be a type of neural

network because results have indicated that the adaptive processes

utilized in the SOM may be similar to the processes at work

within the brain [Kohonen, 1990].

[25] The SOM has potential extending beyond its original

purpose of modeling biological phenomena. Sorting items into

categories of similar objects is a challenging, yet frequent task. The

SOM achieves this task by nonlinearly projecting the data onto a

lower-dimensional display and by clustering these data. This

attribute has been used in a wide number of applications ranging

from engineering (including image and signal processing and

recognition, telecommunications, process monitoring and control,

and robotics) to natural sciences, medicine, humanities, economics,

and mathematics [Kaski et al., 1998].

2.2.1. The self-organizing map algorithm. [26] In

competitive learning, neurons in the network adapt gradually to

become sensitive to different input categories. The SOM network

generally consists of two layers, an input layer and a Kohonen

layer. The input layer is fully connected to the Kohonen layer,

which in most common applications is two-dimensional. None of

the PEs in the Kohonen layer is connected to another. The PEs in

the Kohonen layer measure the distance of their weights to the

input pattern. During the recall phase the Kohonen PE with the

minimum distance is the winner and has an output of 1.0, while the

other Kohonen PEs have an output of 0.0.

[27] The procedure for determining the winning PE is as

follows:

[28] The first step is to determine the extent to which the

weights of each PE match the corresponding input pattern. If the

input data have N values and are denoted by X = (xi; i = 1, . . ., N ) 2
<n, then each of the M PEs in the Kohonen layer will also have N

weight values and can be denoted by Wji = (wji; j = 1, . . ., M; i = 1,

. . ., N) 2 <n. For each of the M Kohonen PEs, the distance, such as

the Euclidean distance, is calculated using

Dj ¼ X �Wj

�� �� ¼
XN
i¼1

xi � wji

� �2" #1=2

; j ¼ 1; . . . ;M : ð3Þ

The PE with the lowest value of Dj is the winner during recall.

During training, a conscience mechanism adjusts the distances

to encourage PEs that are not winning with an average

frequency and to negatively adjust PEs that are winning at an

above average frequency. This mechanism ensures that a

uniform data distribution develops in the Kohonen layer. In

adjusting the distance, a bias Bj is added to the distance and

forms the new adjusted distance Dj. The bias is calculated

using

Bj ¼ g M � Fj � 1
� �� �

; ð4Þ
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where g is a learning coefficient, Fj is the frequency at which

the PE j has historically won, and M is the number of PEs in

the Kohonen layer. Once Bj and Dj are computed, the adjusted

distance Dj can be calculated using

D
0

j ¼ Dj þ Bj: ð5Þ

To ensure biological plausibility, lateral interaction with

neighboring PEs is enforced by applying arbitrary network

structures called neighborhood sets, Nc. Throughout the process,

all PEs within the winner’s neighborhood set will have their

weights updated, while PEs outside of this set are left intact.

The width or radius of Nc can be time variable. The updating

process to implement this procedure is given by

Wj t þ 1ð Þ ¼
Wj tð Þ þ a tð Þ  X tð Þ �Wj tð Þ

� �
Wj tð Þ

8<
:

9=
;

j 2 Nc tð Þ

j =2 Nc (t),
ð6Þ

where a is a scalar valued adaptation gain 0 < a(t) < 1 and Nc

is the neighborhood set. After the weights have been updated,

the next input is presented to the network, and the process

continues until convergence has been reached. After succes-

sively presenting different inputs to the SOM, the net effect is

that the weights reflect the topological relationship that exists

within the input data [Islam and Kothari, 2000].

2.2.2. The SOM in water resources applications. [29] The

use of the SOM in water resources applications has been fairly

limited. Applications include the estimation of rainfall rates from

infrared satellite and ground surface data [Hsu et al., 1997], the

identification of flow regimes in horizontal air-water flow in an

experimental pipeline [Cai et al., 1994], and the classification of

flood data into classes defined by representative regional

catchments [Hall and Minns, 1999].

2.2.3. Implementation of the SOM. [30] In this paper the

SOM is used to cluster the input and output data into training,

testing and validation sets that have similar statistical properties.

The SOM is implemented using the Neusciences Neuframe

software. To cluster the data, the inputs and their corresponding

output are presented to the network as the SOM’s inputs. The

software default parameters are used for the learning rate,

neighborhood size, and number of epochs. The output of the

SOM is obtained using a dynamic patterns grid, which shows a

dynamic representation of the nodes that are winning each pattern.

Each individual cell in the grid represents a node in the Kohonen

layer. There is no theoretical principle for determining the optimum

size of the Kohonen layer [Cai et al., 1994], and hence the Kohonen

layer was kept large enough to ensure that the maximum number of

clusters were formed from the training data. Once the clusters are

formed, three data records from each cluster are sampled (i.e., one

for each of the training, testing, and validation sets). In the instance

that a cluster only contains one record, then this record is placed in

the training set. If a cluster contains two records, then one record is

placed in the training set and the other is placed in the testing set.

3. Case Study

[31] The case study used to demonstrate the effect of different

data division techniques is that of forecasting salinity in the River

Murray at Murray Bridge, South Australia, 14 days in advance.

Maier and Dandy [1996] have previously developed ANN models

for this case study, and hence it provides a good benchmark for

testing the data division techniques.

[32] Adelaide is the capital of South Australia. On average, 35%

of its water supply is pumped from the River Murray via two major

pipelines. One of these is the Murray Bridge to Onkaparinga

pipeline. Water in the River Murray is prone to high levels of

salinity. From July 1975 to June 1988, the salinity in the River

Murray at Murray Bridge varied between 140 and 820 mg L�1

with an average of 400 mg L�1 [Dandy and Crawley, 1992]. In

comparison, the World Health Organisation’s maximum desirable

level for human consumption is 500 mg L�1 [World Health

Organisation, 1984]. It is estimated that the high salinity levels

cause $22 million (U.S. dollars) damage per year to domestic and

industrial users [Dwyer Leslie Pty Ltd., 1984].

[33] By forecasting salinity several weeks in advance, pumping

policies can be developed such that more water can be pumped at

times of low salinity and less water pumped at times of high

salinity. Dandy and Crawley [1992] have developed an optimiza-

tion model for obtaining an optimum pumping policy, taking

salinity into account. The model shows that the average salinity

of the water supplied to Adelaide consumers could be reduced by

about 10% if salinity was forecast several weeks in advance and

pumping policies were modified accordingly.

[34] In accordance with the ANN modeling conducted by Maier

and Dandy [1996], a forecasting period of 14 days was chosen, as

this is the minimum forecasting length required to enable short-

term adjustments to be made to the pumping schedule. ANN

models were considered to be a suitable technique for this

application because multistep forecasts are required, nonlinear

relationships are suspected, and it is difficult to prescribe the exact

mathematical relationship between the variables [Maier and

Dandy, 1996].

[35] Maier and Dandy [1996] used daily salinity, flow, and river

level data at various locations in the river for the period 1

December 1986 to 30 June 1992. Data from this period and at

the same locations were also used in this study. In addition, more

recent data for the period 1 July 1992 to 1 April 1998 were used for

validation purposes.

4. Model Development

[36] Back-propagation networks were developed using the

commercially available software package NeuralWorks Professio-

nal II/Plus [NeuralWare, 1998]. Unless stated otherwise, the

default software parameters were used, since the focus is on

evaluating the data division techniques rather than studying the

effect of varying the network’s parameters. The default values were

determined using the experience gained from developing back-

propagation networks for a variety of applications [NeuralWare,

1998].

4.1. Data Division

[37] Three different data division methods were used to

examine their effect on the ANN’s performance. In method 1, a

conventional data division technique was used, whereby the sets

were divided on an arbitrary basis and the statistical properties of the

respective data sets were not considered. This approach is consistent

with the approach that was used in many papers on the application of

ANNs to water resources variables [Maier and Dandy, 2000]. In the

salinity case study a total of 2005 data records were available, from

which 1604 records (80%) were used for calibration and 401 records
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Table 1. Method 1 Statistics of the Salinity Training, Testing, and Validation Data Sets (Data Divided Using Conventional Method)

Variable and Data Set Mean
Standard
Deviation Maximum Minimun

Interquartile
Range

Input 1: Murray Bridge salinity, ECa units
Training 588.0 172.9 931.0 261.3 291.6
Testing 515.7 212.2 862.9 262.3 444.7
Validation 694.7 213.6 1,115.7 282.2 342.1

Input 2: Mannum salinity, EC units
Training 574.5 165.7 960.4 281.1 281.7
Testing 495.2 205.0 826.6 253.2 438.4
Validation 661.4 192.4 1,075.4 269.7 265.7

Input 3: Morgan salinity, EC units
Training 572.0 170.0 921.3 176.9 320.2
Testing 498.7 201.9 798.9 258.6 420.4
Validation 670.7 205.6 1,061.3 249.4 307.4

Input 4: Waikerie salinity, EC units
Training 562.5 160.7 880.3 278.9 289.9
Testing 503.5 196.3 796.6 254.8 421.1
Validation 660.3 190.8 1,021.0 247.4 265.2

Input 5: Loxton salinity, EC units
Training 491.1 107.3 698.3 263.3 181.5
Testing 449.6 155.0 697.4 244.1 328.0
Validation 583.4 144.5 906.7 224.7 162.1

Input 6: Overland Corner flow, ML d�1

Training 19,956 21,620 85,963 1796 23,995
Testing 41,318 36,690 110,618 4764 59,893
Validation 12,678 13,477 46,664 1769 15,828

Input 7: Lock 1 Lower River level, m
Training 4.0 1.0 4.4 0.5 1.2
Testing 2.5 1.6 5.3 0.7 2.9
Validation 1.1 0.7 2.9 0.6 0.7

Output 1: Murray Bridge salinity at (t + 14) days, EC units
Training 588.8 171.6 931.0 310.6 291.6
Testing 535.9 217.6 862.9 262.3 452.6
Validation 698.3 216.5 1,115.7 282.2 353.6

aElectrical conductivity.

Table 2. Method 2 Statistics of the Salinity Training, Testing, and Validation Data Sets (Data Divided Using a Genetic Algorithm)

Variable and Data Set Mean
Standard
Deviation Maximum Minimun

Interquartile
Range

Input 1: Murray Bridge salinity, EC units
Training 596.6 197.0 1115.7 261.3 369.1
Testing 604.3 201.8 1077.8 265.8 390.9
Validation 596.4 188.4 1045.4 265.2 347.8

Input 2: Mannum salinity, EC units
Training 579.5 186.6 1075.4 253.2 344.2
Testing 578.9 188.2 1072.8 255.8 360.4
Validation 578.5 176.5 982.5 259.4 306.7

Input 3: Morgan salinity, EC units
Training 581.0 190.1 1061.3 182.8 341.0
Testing 575.8 199.2 1043.9 206.1 362.6
Validation 580.4 183.5 1022.7 176.9 333.6

Input 4: Waikerie salinity, EC units
Training 573.6 178.5 1021.0 247.4 314.4
Testing 569.7 191.7 1008.3 251.8 344.1
Validation 571.7 174.2 1005.2 257.6 295.5

Input 5: Loxton salinity, EC units
Training 503.3 130.0 906.7 224.7 218.4
Testing 502.0 142.4 900.4 228.8 247.5
Validation 502.4 126.1 857.8 244.1 200.3

Input 6: Overland Corner flow, ML d�1

Training 21,770 24,932 110,618 1769 25,349
Testing 22,816 25,785 110,056 1820 26,417
Validation 21,685 25,134 110,496 1943 24,196

Input 7: Lock 1 Lower River level, m
Training 1.6 1.2 5.3 0.5 1.3
Testing 1.6 1.2 5.3 0.5 1.3
Validation 1.6 1.2 5.3 0.5 1.3

Output 1: Murray Bridge salinity at (t + 14) days, EC units
Training 603.0 195.4 1115.7 262.3 366.7
Testing 598.1 205.7 965.7 264.4 400.3
Validation 603.0 190.3 1102.5 263.4 352.8
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(20%) were used for validation. The time order of the data was not

changed (i.e., the first 1604 records were used for calibration and the

next 401 records were used for validation). The 1604 records in the

calibration set were further divided into 1283 training records (80%)

and 321 testing records (20%). The statistical parameters for the

training, testing, and validation sets obtained using method 1 are

shown in Table 1. Note that in Tables 1, 2, and 3, river salinities are

given in electrical conductivity (EC) units of mS cm�1 at 25�C. One
milligram per liter of total dissolved solids equals approximately 0.6

EC units. From Table 1 it can be seen that the statistical parameters

vary widely between training, testing, and validation sets, and, in

general, the statistics are not in good agreement. Hypothesis tests

about the difference between the means of two samples (t test) and

about the difference in the variance of two samples (F test) were

performed. For each input and output variable, the testing and

validation data sets were compared with the training sets, and a

significance level of a = 0.05 was chosen. In the t test it was

hypothesized that there was no difference between the means of the

two data sets. Likewise, in the F test it was hypothesized that there

was no difference in the standard deviations of the two data sets. For

the data division performed in method 1, both of these hypotheses

were rejected for all of the testing and validation sets.

[38] Inmethod 2, the GAdata division technique was used.When

using this technique, it is still necessary to determine the proportion

of data to use for each of the subsets. For consistency, the same

proportion used in method 1 was employed (1283 training records,

321 testing records, and 401 validation records). The statistical

parameters for the training, testing, and validation sets obtained

using method 2 are shown in Table 2. It can be seen that the statistics

are in good agreement. Table 2 also shows that for each variable, the

training set contains the maximum and minimum values. The only

exception is the Morgan salinity variable, in which the training set

contains the maximum value but not the minimum value.

Hypothesis tests were also performed for the data sets obtained

using method 2. The null hypotheses were accepted for all

variables except that the F test null hypothesis was rejected at

the 0.05 level for the Loxton salinity test set. This suggests that

the variability in this test set was different to the training set.

With the exception of this one test set, the GA data division

technique used in method 2 was able to produce three data sets

that were representatives of the same population.

[39] Method 3 employed the SOM data division technique. This

technique avoids the need to arbitrarily select the proportion of data

to include in each subset since only a minimum number of records

are required (i.e., one record from each cluster is used for each

subset) and superfluous data records are not used in the ANN. Using

a SOM with a 10 � 10 Kohonen layer, the 2005 data samples were

clustered into 49 clusters, with each cluster consisting of more than

three records. Hence the training, testing, and validation sets each

comprised 49 records. The statistical parameters for the training,

testing, and validation sets obtained in method 3 are shown in

Table 3. Once again, in Table 3 it can be seen that the statistics are

in good agreement. The t test and F test null hypotheses were

accepted for all input and output variables in method 3. Hence the

statistics of all three data sets can be assumed to be the same.

4.2. Determination of Model Inputs

[40] Maier and Dandy [1996] found that the ANN models

trained on the input set shown in Table 4 performed the best for

this case study. Consequently, these 51 inputs were used for the

Table 3. Method 3 Statistics of the Salinity Training, Testing, and Validation Data Sets (Data Divided Using a Self-Organizing Map)

Variable and Data Set Mean
Standard
Deviation Maximum Minimun

Interquartile
Range

Input 1: Murray Bridge salinity, EC units
Training 587.7 202.4 981.7 267.2 346.8
Testing 586.5 202.5 1004.8 261.3 357.0
Validation 587.7 201.7 1047.0 263.9 333.9

Input 2: Mannum salinity, EC units
Training 575.8 191.5 966.2 281.1 345.0
Testing 577.6 191.3 992.5 282.2 327.5
Validation 588.3 192.8 1075.4 286.1 320.6

Input 3: Morgan salinity, EC units
Training 578.4 194.6 1031.8 282.8 345.0
Testing 579.8 192.0 1011.4 290.3 317.2
Validation 574.6 185.4 987.3 287.3 320.3

Input 4: Waikerie salinity, EC units
Training 570.2 184.2 937.2 278.9 327.0
Testing 569.0 181.4 943.1 284.4 314.7
Validation 567.1 176.6 946.4 293.5 301.0

Input 5: Loxton salinity, EC units
Training 494.2 132.1 777.1 263.3 236.3
Testing 496.5 129.8 783.5 279.8 214.3
Validation 494.5 129.2 784.0 274.9 218.6

Input 6: Overland Corner flow, ML d�1

Training 21,294 22,483 97,229 2240 22,595
Testing 21,518 22,886 99,065 2232 22,097
Validation 21,872 23,374 100,676 2069 23,606

Input 7: Lock 1 Lower River level, m
Training 1.6 1.0 4.5 0.6 1.2
Testing 1.6 1.0 4.6 0.6 1.1
Validation 1.6 1.0 4.7 0.6 1.1

Output 1: Murray Bridge salinity at (t + 14) days, EC units
Training 573.0 191.7 922.9 300.6 338.9
Testing 576.1 187.9 921.1 286.8 343.8
Validation 578.1 185.4 919.2 284.4 317.6
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ANN modeling. A description of how these inputs were deter-

mined is given by Maier and Dandy [1996].

[41] In the GA and SOM data division techniques (methods 2

and 3) performed in section 4.1, only the most recent values of

each variable were used. However, it is possible to also incorporate

the lags of each variable when using these two techniques.

4.3. Determination of Network Architecture

[42] The number of nodes in the input and output layers are fixed

by the number of inputs and outputs, respectively. It is common

practice to fix the number of hidden layers in the network and then

to choose the number of nodes in each of these layers. It has been

shown that only one hidden layer is required to approximate any

continuous function, given that sufficient degrees of freedom (i. e.,

connection weights) are provided [Cybenko, 1989]. Hence one

hidden layer was utilized in this study. Maier and Dandy [1998]

conducted empirical trials on the salinity data set and determined

that 30 hidden layer nodes provided optimal performance. Con-

sequently, a network with 51 nodes in the input layer, 30 hidden

layer nodes, and one node in the output layer was used for each of

the models developed in this study. To ensure that overtraining did

not occur (i.e., when the network performs well on the training data

but poorly on independent test data), the SaveBest command in

NeuralWorks Professional II/Plus was used. This command alter-

nately runs train and test commands and saves the network with the

best test results during the run. After 100 iterations, with no further

improvement in the test set results, training is stopped.

4.4. Model Validation and Performance Measures

[43] The SaveBest command uses the RMS error (RMSE)

measured on the test set to determine when to stop training the

network. Hence an independent validation set was used for all three

methods investigated, as discussed in section 4.1. The RMSE was

used as the performance measure, as it places greater emphasis on

larger forecasting errors. The average absolute percentage error

(AAPE) was also calculated for comparison.

5. Results and Discussion

[44] The RMSEs and AAPEs for each data division method are

summarized in Table 5. It can be seen that the model developed in

method 1 produced a much larger error on the testing and

validation sets than the models developed in methods 2 and 3.

However, in method 1, the model performed well on the training

set. This suggests that the arbitrary data division used in method 1

produced a training set that was not representative of the entire

population, which is in agreement with the statistics shown in

Table 1. In Table 5 it is also important to observe that unlike

method 1, methods 2 and 3 produced results that were consistent

for all three data sets. Again, this is in agreement with the statistics

obtained in Table 2 and 3. In method 2, the GA data set division

produced results with RMSEs and AAPEs that ranged from 33.9 to

39.1 EC units and from 4.7 to 5.4%, respectively. In method 3, the

SOM data set division produced results with RMSEs and AAPEs

ranging from 35.5 to 39.1 EC units and from 5.6 to 6.3%,

respectively. This is in direct contrast to the model developed in

method 1, which produced results over a much wider range,

including RMSEs and AAPEs ranging from 38.2 to 58.8 EC units

and from 5.7 to 7.8%, respectively.

[45] The above results show that the GA-based approach and

the SOM approach are suitable methods for ensuring that the

training, testing, and validation sets are representative of the same

population and hence provide an appropriate means for data

division. The SOM approach has the additional advantage that a

training set can be constructed using the minimum number of

samples. The results also show that for good performance, the data

sets need to have similar statistical properties.

[46] To understand why the ANN developed using method 1

performed poorly, it is necessary to critically dissect the model

and examine the regions of poor performance. The SOM

provides a useful technique for achieving this purpose. Figure 1

shows the validation results of the ANN developed using method 1,

with four regions of poor performance identified. The analysis

was conducted by clustering all of the input and output data

from the training, testing, and validation sets using a SOM.

Once the clusters had been formed, it was possible to examine

each region of poor performance and determine if any data

representative of that region had been included in the training

set. This was done by inspecting the clusters. If the training set

did not contain data representative of that region, then it is

expected that the model may perform poorly, since the model

had not been trained for this event.

Table 4. Summary of Model Inputs

Variable Location Lags, days Total Number

Salinity Murray Bridge 1, 3,. . ., 11 6
Salinity Mannum 1, 3,. . ., 15 8
Salinity Morgan 1, 3,. . ., 15 8
Salinity Waikerie 1, 2,. . ., 5 5
Salinity Loxton 1, 2,. . ., 5 5
Flow Overland Corner �19, �17,. . .,7 14
Level Lock 1 Lower �3, �1,. . ., 5 5
Total number of inputs 51

Table 5. Root-Mean-Square Error (RMSE) and Average Absolute Percentage Error (AAPE) for the 14-Day Forecasts

Data Set Method 1: Conventional Division Method 2: GAa Division Method 3: SOMb Division

RMSE, EC units AAPE, % RMSE, EC units AAPE, % RMSE, EC units AAPE, %

Training 38.2 5.7 39.1 5.4 39.1 6.3
Testing 51.6 7.8 33.9 4.7 37.1 5.9
Validation 58.8 7.6 38.8 5.3 35.5 5.6

aGenetic algorithm.
bSelf-organizing map.
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[47] After performing the analysis for region 1 (Figure 1), it was

found that all of the data in this region were located in a single

cluster. This single cluster only contained validation data, and

hence the observed pattern was not represented in the training set.

This explains why the model developed in method 1 was unable to

match the peak observed in region 1 of Figure 1. The data

contained in region 2 (Figure 1) were split into two clusters in

the SOM. However, both of these clusters only contained valida-

tion data. Region 3 data (Figure 1) were divided into six clusters.

Four of these clusters only contained validation data, and the

remaining two clusters contained a small amount of training data.

Region 4 data (Figure 1) were split into two clusters, both of which

Figure 1. Validation set 14-day forecast of salinity at Murray Bridge for the model developed using method 1 (May
1991 to June 1992).

Figure 2. Second validation set 14-day forecast of salinity at Murray Bridge for the model developed using
method 1 (July 1992 to March 1998).

2 - 8 BOWDEN ET AL.: DIVISION OF DATA FOR NEURAL NETWORK MODELS



contained only validation data. By using a SOM to analyze the

regions of poor performance, it was possible to verify that the

cause of the poor performance was a lack of representative data in

the training set.

[48] In a real-world scenario the developed ANN model would

need to produce forecasts based on new data, the statistics of which

are unknown. In addition, each of the data division methods

investigated produced different training, testing, and validation

sets. To fairly evaluate and compare the performance of each

technique, it was considered necessary to test each model on the

same data set. Hence a second, independent validation data set was

used, consisting of daily data from the period 15 July 1992 to 13

March 1998. The models developed in methods 1, 2, and 3 were

used to obtain 14-day forecasts for this second validation set. Plots

of the 14-day forecasts obtained from methods 1 and 2 are shown

in Figures 2 and 3, respectively. For brevity, the plot obtained from

method 3 was omitted, as it is similar to the plot obtained in

method 2.

[49] In Figures 2 and 3 the most notable regions of poor

performance have been identified as regions 1 and 2. The models

developedusing all threemethods performed poorly both in regions 1

and  2  (Figures 2 and 3),  and to investigate the cause of this poor

performance, the SOM technique was used to analyze the data. To

perform the analysis, the data from the second validation set were

combined with all of the data used in the development of the

models (i.e., the training, testing, and validation data). The SOM

was used to cluster the data, and each of the clusters was inspected.

It was discovered that all of the data from region 1 (Figures 2 and 3)

were contained in six clusters; however, all of these clusters

contained data only from the second validation set. Hence no data

representative of region 1 had been used to develop (i.e., to train,

test, or validate) any of the models. This explains why the models

developed using all three methods performed poorly on this region.

Likewise, the data from region 2 (Figures 2 and 3) were contained

in six clusters, five of which contained data only from the second

validation set. One cluster containing seven of the second vali-

dation set samples also contained training data. The models

developed using methods 2 and 3 were able to perform well on

these seven points.

[50] The performances of the three methods for the second

validation set are summarized in Table 6. To obtain a fair

representation of each model’s performance, another calculation

of the RMSEs and AAPEs was performed with the data from

regions 1 and 2 removed, since these were unique data points and

no data representative of these two regions had been used to train

the models. Even after removing regions 1 and 2, the results shown

Figure 3. Second validation set 14-day forecast of salinity at Murray Bridge for the model developed using method
2 (July 1992 to March 1998).

Table 6. Results of the Artificial Neural Networks Developed in Each Method on the Second Validation Set (RMSE and AAPE)

Data Method 1: Conventional Division Method 2: GA Division Method 3: SOM Division

RMSE, EC units AAPE, % RMSE, EC units AAPE, % RMSE, EC units AAPE, %

Second validation set 86.1 10.5 65.3 7.4 77.6 9.4
Second validation set
(regions 1 and 2 removed)

67.7 9.9 51.8 7.2 62.6 9.0
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in Table 6 are not as good as those obtained in Table 5. The larger

RMSE and AAPE values obtained on the second validation set

may be attributed to the very large size of the data set, which

comprised 2068 records. This highlights the importance of periodi-

cally retraining the ANN model at regular intervals when it is to be

used in a real-world situation.

[51] From Table 6 it can be seen that the GA data division

(method 2) performed best out of the three techniques. The SOM

data division (method 3) slightly outperformed the conventional

approach (method 1). However, it is worth pointing out that the

model developed using the SOM data division technique was only

trained on 49 data records, whereas the models developed in

methods 1 and 2 were trained using 1283 data records. The ability

of the SOM technique to outperform the conventional method,

while only using 49 training samples, provides further evidence of

its superiority at developing a representative training set with a

minimum number of samples.

[52] To investigate whether 49 training samples were able to

capture enough of the variance in the available data set, an ANN

model was developed using one data sample from each cluster for

the testing and validation sets, and all the remaining data samples

were placed in the training set. However, this only increased the

noise in the forecasts, and when tested on the second validation set,

no improvement was made over the model developed using 49

training samples. This suggests that the performance on the second

validation set could not be improved, as it contained data records

that were not represented in the original set of data. Again, in a

real-world situation, this problem could be avoided by periodically

retraining the ANN model.

6. Conclusion

[53] This paper has reported two techniques for the optimal

division of data for ANN models and compared the results with

the method most commonly employed in the literature. When

tested on the second validation set, the GA and SOM data

division techniques resulted in a reduction in RMSE of 24.2

and 9.9%, respectively, over the conventional data division

method. The GA and SOM data division techniques provide an

advantage over conventional methods in that they insure that the

training, testing, and validation sets are representative of the same

population. Given a suitable amount of data, these techniques

enable the development of a training set that extends to the edges

of the modeling domain in all dimensions. In so doing, the ANN

is able to find a generalized solution to the problem being

investigated. It is important to note that overfitting only occurs

when the training set is not totally representative of the popula-

tion [Masters, 1993]. Hence the GA and SOM division techni-

ques will reduce the likelihood of overfitting the data in the

training set. It was found that the ANN models developed using

the SOM and GA data division techniques outperformed the

conventional method.

[54] When developing a training set, it is also important that the

training samples are evenly distributed throughout the modeling

domain; otherwise training will focus on densely clustered regions

and neglect the sparsely represented regions. The SOM technique

achieves an evenly distributed training set by first dividing all of

the data into a number of clusters. By then sampling an equal

number of records from each cluster, the training, testing, and

validation set records are evenly distributed throughout the prob-

lem domain. Another advantage is that the SOM data division

technique employs the minimum number of samples for achieving

this objective and consequently avoids the problem of what

proportion of the data should be used in the training, testing, and

validation subsets. While the GA data division technique does not

automatically determine the proportion of data to use for each

subset, it does have the advantage of ensuring that the extreme

values are contained within the training set. This can be achieved

through the addition of penalty constraints.

[55] Finally, when tested on a second, independent validation

set, the models developed using methods 2 and 3 outperformed the

model developed in method 1. However, this performance was

masked by the fact that the second validation set contained new

regions of data that were not representative of the data used in the

training, testing, and validation sets. This highlights the importance

of periodic retraining of the model. The two data division methods

presented provide very useful techniques for dividing the data into

three statistically similar and representative subsets. It is important

to note that these techniques provide representative data sets that

best approximate the modeling domain based on the available data.

There can be no guarantee that the model will perform well on new

data. However, using the SOM analysis, it has been shown in this

paper that it is possible to diagnose regions of poor performance

resulting from uncharacteristic data (i.e., data that are unlike any of

the data that have been used in developing the model).
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