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Optimal Domains for Kernel Operators via Interpolation
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Abstract. The problem of finding optimal lattice domains for kernel operators with values in
rearrangement invariant spaces on the interval [0,1] is considered. The techniques used are based on
interpolation theory and integration with respect to C([0, 1])–valued measures.

1. Introduction

Given a continuous linear operator T between spaces E and X, there arise situations
when T has a natural extension (still with values in X) to a larger space F into which
E is continuously embedded (e. g. as in the Riesz representation theorem for C(K)–
spaces). A basic problem in this regard is to identify the optimal F within a particular
class of spaces. Recently Edmunds, Kerman and Pick have studied this problem
for the Sobolev embedding; see [12]. Our aim here is to study this “optimal extension
procedure” for particular kinds of operators T and spaces E and X.

More precisely, let E be a Banach function space on [0,1] and X be a Banach
space. We will denote by [T, X] the optimal lattice domain for T , that is, the maximal
Banach function space (containing E) to which T can be extended as a continuous
linear operator, in the sense that any other Banach function space F to which T
can be extended, is continuously embedded in [T, X]. Under certain conditions we
associate to the operator T (linear, but not necessarily continuous) a vector mea-
sure ν with values in X such that E is continuously embedded into the space L1(ν) of
ν–integrable functions (see Section 2 for the definition) and that the integration opera-
tor f �→ ∫

f dν extends T from E to the bigger domain space L1(ν). In this case, L1(ν)
is the optimal lattice domain for T within the class of Banach function spaces with
absolutely continuous norm. We will identify the situations in which [T, X] = L1(ν),
with the advantage, in this case, that the role of the properties of ν (which come
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from T ) and X in determining the space L1(ν), hence also the space [T, X], are well
understood; see Section 3.

Our attention will be focused on the case when T takes its values in a function
space X on [0,1] and is generated by a kernel. That is, suppose there is a measurable
function K : [0, 1]× [0, 1]→ R such that Tf(x) =

∫ 1

0
f(y)K(x, y) dy, for each function

f in the domain of T ; denote T by TK in this case. The measure ν associated to the
operator T

K
is given by ν(A)(x) =

∫
A

K(x, y) dy, for each Borel set A. In Section 4
we determine properties of K which ensure that ν takes its values in C([0, 1]). Then ν
is also σ–additive as an X–valued measure for any Banach function space X on [0,1];
denote ν by νX in this case.

Many interesting kernels of the above kind occur. In the theory of semigroups of
operators, for instance, the Gauss–Weierstrass kernel (on the circle) [9, §I.10], and the
kernel K(x, y) = exp(−λ(y − x))χ[x,1](y), where λ is a real constant, arising from the
nilpotent left translation semigroup [14], are well known. Other important examples
are the kernel of the Riemann–Liouville fractional integral K(x, y) = |x − y|α−1, for
0 < α < 1, and the Volterra kernel K(x, y) = χ∆(x, y), where ∆ = {(x, y) ∈ [0, 1]2 :
0 ≤ y ≤ x}.

Our main interest is in identifying the extended spaces
[
T

K
, X

]
for large classes of

kernels K and spaces X. This is the purpose of Section 5, where the methods of
interpolation theory and vector integration play a crucial role. Attention is focused
on kernels K which are non–negative and monotone. In these cases it is possible to
identify precisely the spaces

[
TK , X

]
when either X = C([0, 1]) or X = L1([0, 1]). If

K additionally satisfies a certain constraint, then a precise description of
[
TK , X

]
is

also possible for an extensive class of spaces X. For instance, suppose that K is non–
negative and monotone and X =

(
L1, L∞)

ρ
is any rearrangement invariant space on

[0,1]. Then, with equivalence of norms,
[
TK , X

]
is the interpolation space

(
L1

ω, L1
ξ

)
ρ

(for the definition of these spaces, see Section 2), where the weights are given by
ξ(y) = K(1, y) and ω(y) =

∫ 1

0
K(x, y) dx. Moreover, if, in addition, X has absolutely

continuous norm, then
[
TK , X

]
= L1

(
νX

)
. We note that the required constraint holds

for the Volterra kernel and the kernel generated by the nilpotent left translation semi-
group, but not for all non–negative, monotone kernels; see Section 5. The types of
conditions imposed on the kernel K and the space X are essentially optimal. Coun-
terexamples are exhibited when K fails to satisfy the constraint condition mentioned
above, or the norm in X is not absolutely continuous. We end by considering the
classical fractional integral operator, which has no monotonicity properties.

2. Preliminaries

Throughout the paper, B is the σ–algebra of all Borel subsets of [0,1]. The Banach
space C([0, 1]) consists of all continuous, R–valued functions on [0,1] equipped with
the supremum norm. All functions are R–valued and all Banach spaces are over R.

A Banach function space X on [0,1] is a Banach space of integrable functions on
[0,1], which contains the simple functions and satisfies g ∈ X with ‖g‖ ≤ ‖f‖ whenever
f ∈ X and |g| ≤ |f |. So L∞([0, 1]) ⊂ X ⊂ L1([0, 1]) continuously; [17, 1.b.17]. It is



Curbera and Ricker, Optimal Domains for Kernel Operators 49

rearrangement invariant if it satisfies the Fatou property and f ∈ X implies that g ∈ X
with ‖g‖ = ‖f‖ whenever g and f are equimeasurable; [2, II.4.1]. In particular, if f∗ is
the decreasing rearrangement of f ∈ X, then f∗ ∈ X with ‖f∗‖ = ‖f‖. An important
property of Banach function spaces is absolute continuity of the norm: order bounded,
increasing sequences are norm convergent; [2, I.3.1].

We recall the K–method of Peetre. If (X0 , X1) is a compatible pair of Banach
spaces, then the K–functional of f ∈ X0 + X1 is, for t > 0,

K(t, f ; X0, X1) = inf{‖f0‖ + t ‖f1‖ : f = f0 + f1; f0 ∈ X0, f1 ∈ X1} .

From a rearrangement invariant norm ρ on [0,1] (see [2, I.1.1 and II.4.1]) we can
generate interpolation spaces (X0, X1)ρ; see [2, V.1.18 and V.1.13]. These spaces have
the monotonicity property. Indeed, let (Y0, Y1) be another pair of Banach spaces. If f ∈
(X0 , X1)ρ and for every t>0 we have K(t, g; Y0, Y1)≤K(t, f ; X0, X1) then, g∈ (Y0, Y1)ρ

and ‖g‖(Y0,Y1)ρ
≤ ‖f‖(X0,X1)ρ

; see [2, V.(1.47) and V.1.19]. Every rearrangement
invariant space X on [0,1] arises as X =

(
L1, L∞)

ρ
for a suitable ρ; see [2, V.1.17].

We briefly recall the theory of integration of real functions with respect to a vector
measure due to Bartle, Dunford and Schwartz [1]. Let (Ω, Σ) be a measurable
space, X a Banach space and ν : Σ → X a countably additive vector measure. A
measurable set A is ν–null if ν(B) = 0 for every measurable set B ⊂ A. The integral of
a simple function f =

∑n
1 aiχAi over a set A is defined by

∫
A

f dν =
∑n

1 aiν(A∩Ai). A
measurable function f : Ω → R is integrable with respect to ν if there exists a sequence
{fn} of simple functions converging ν–a. e. to f , for which the sequence

{ ∫
A fn dν

}
converges in the norm of X for each A ∈ Σ. Let X∗ be the dual space of X and, for
each x∗ ∈ X∗, denote the R–valued measure A �→ 〈x∗, ν(A)〉 by x∗ν and its variation
measure by |x∗ν |. The ν–integrable functions form a linear space in which

‖f‖ν = sup
{∫

|f | d|x∗ν | : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}

is a seminorm. Identifying functions which differ in a ν–null set, we obtain a Banach
space (of classes) of ν–integrable functions, denoted by L1(ν). It is a Banach function
space for the ν–a. e. order and has absolutely continuous norm. Simple functions are
dense in L1(ν) and the ν–essentially bounded functions are contained in L1(ν). The
integration operator from L1(ν) to X is defined by f �→ ∫

f dν . It is a continuous linear
operator of norm at most one. Observe that no assumptions have been made on the
variation of the measure ν in the definition of L1(ν). For more details concerning L1(ν)
see [5], [6], [18]. In particular, we point out that such spaces L1(ν) can, in general,
be quite different to the classical L1–spaces of scalar measures and may be difficult to
identify explicitly, [7]. Indeed, every Banach lattice with absolutely continuous norm
and having a weak unit

(
e. g. L2([0, 1])

)
is the L1–space of some vector measure, [5,

Theorem 8].

In general we will follow the notation in [2], [11] and [17].
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3. Optimal lattice domains for operators

Let T be a linear operator defined on a Banach function space E and taking values
in a Banach space X. We will denote by [T, X] the maximal Banach function space
(containing E) to which T can be extended as a continuous linear operator, still with
values in X. This maximality is to be understood in the following sense. There is
a continuous linear extension of T (which we still denote by T ) T : [T, X] → X,
and if T has a continuous, linear extension T̃ : F → X, where F is a Banach function
space, then F is continuously embedded in [T, X]. The space [T, X] is then the optimal
lattice domain for T . If we consider the class of Banach function spaces with absolutely
continuous norm, then we have the space [T, X]a, which is the absolutely continuous
optimal lattice domain for T .

In the next result, under certain conditions we associate to the operator T a vector
measure ν with values in X. The space L1(ν) is then the absolutely continuous optimal
lattice domain for T .

Theorem 3.1. Let E be a Banach function space over a finite measure space
(Ω, Σ, λ), X be a Banach space and T : E → X be a linear operator with the property
that Tfn → Tf weakly in X whenever {fn} ⊂ E is a positive sequence increasing
λ–a.e. to f ∈ E. Then there exists a countably additive vector measure ν : Σ → X
such that E is continuously embedded in L1(ν) and the integration operator from L1(ν)
to X extends T .

Proof . Define ν : Σ → X by ν(A) = T
(
χA

)
. It is additive since T is linear. Let (Ai)

be disjoint measurable sets. Then 0 ≤ χ∪n
1 Ai , for n ∈ N, increases to χ∪Ai ∈ E. By

hypothesis T (χ∪n
1 Ai) =

∑n
1 ν(Ai) converges weakly to T (χ∪Ai) = ν(∪Ai) in X. So,

ν is weakly countably additive. Hence, ν is countably additive by the Orlicz–Pettis
theorem; see [11, I.4.4].

We will use an equivalent definition of integrability with respect to a vector measure,
given by Lewis in [15]. Namely, a function f is ν–integrable if and only if

∫ |f | d|x∗ν | <
∞, for every x∗ ∈ X∗, and for each A ∈ Σ there exists an element of X, denoted by∫

A
f dν , such that

〈
x∗,

∫
A

f dν
〉

=
∫

A
f dx∗ν , for every x∗ ∈ X∗.

Let f be in E. Since E is a lattice we can assume that f ≥ 0. Let {fn} be a sequence
of non–negative simple functions increasing to f . Let A be a measurable set. Since
fnχA increases to fχA, the sequence T

(
fnχA

)
converges weakly to T

(
fχA

)
in X. For

any simple function S =
∑n

1 aiχBi we see that

T
(
SχA

)
=

n∑
1

aiT
(
χA∩Bi

)
=

n∑
1

aiν(A ∩ Bi) =
∫

SχA dν =
∫

A

S dν .

Fix x∗ ∈ X∗. Then
〈
x∗, T

(
fnχA

)〉
converges to

〈
x∗, T

(
fχA

)〉
and hence,

〈
x∗, T

(
fnχA

)〉
=

∫
A

fn d(x∗ν) −→ 〈
x∗, T

(
fχA

)〉
.

Let B0, B1 be the Hahn decomposition of the real measure x∗ν . Replacing A with
A ∩ Bj , j = 0, 1, we see that

∫
A∩Bj

fn d(x∗ν) → 〈
x∗, T

(
fχA∩Bj

)〉
. Accordingly,
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A

fn d|x∗ν |} is convergent. Since {fn} increases to f it follows that f is integrable
with respect to the measure |x∗ν | and〈

x∗, T
(
fχA

)〉
= lim

n

∫
A

fn d(x∗ν) =
∫

A

f d(x∗ν) .

Hence, f is in L1(ν) and Tf =
∫

f dν . The embedding of E into L1(ν) is continuous
since it is positive and linear between Banach lattices; see [17, p. 2]. �

Remark 3.2. The assumptions of the theorem hold if E has absolutely continuous
norm and T is continuous and linear. They also hold for E = L∞(λ) and T weak∗–
to–weak continuous. Continuity of T alone does not suffice in general; consider the
identity operator on L∞([0, 1]). The result can be extended to σ–finite measure spaces,
or even general measure spaces provided E contains a weak unit (see [17, p. 9]), that
is, a function ϕ > 0, λ–a. e. In this case the measure ν is defined by ν(A) = T

(
ϕχA

)
and the embedding from E into L1(ν) is f �→ f/ϕ.

Corollary 3.3. Given the conditions of the above theorem, the space L1(ν) is the
absolutely continuous optimal lattice domain for T .

Proof . Suppose that T has a continuous, linear extension T̃ : F → X, where F is
a Banach function space having absolutely continuous norm. By Remark 3.2 there is
a vector measure ν̃ such that T̃ can be extended to the space L1(ν̃), in which F is
continuously embedded. But, the measures ν̃ and ν coincide. So, F is continuously
embedded in L1(ν). Since L1(ν) has absolutely continuous norm ([5, Theorem 1]) it
follows that [T, X]a = L1(ν). �

Remark 3.4. The interest in the identification of the space [T, X]a as L1(ν), stems
from the fact that the interplay between the properties of a vector measure, the Banach
space where it takes its values and the resulting space L1(ν), are well understood; see
[6].

Remark 3.5. Theorem 3.1 provides an integral representation for certain operators
defined on a function space via integration with respect to a vector measure. This
representation even applies in cases where the Bochner or Pettis integrals do not
exist.

For instance, consider the Volterra operator T : L∞([0, 1]) → C([0, 1]), namely
Tf(x) =

∫ x

0
f(y) dy. Theorem 3.1 shows that T has the integral representation Tf =∫

f dν for the measure ν given by ν(A)(x) =
∫ x

0
χA(y) dy; see Example 4.3 below and

also [20, Proposition 3.1]. However, there is no Bochner or Pettis integrable function
G : [0, 1] → C([0, 1]) such that Tf =

∫
[0,1]

f(t)G(t) dt; see [11, p. 73].
Another such example is given by the fractional integral. For 0 < α < 1, following

the definition of Riemann and Liouville, the fractional integral of order α of a
function f at a point x ∈ [0, 1] is given by

Iαf(x) =
∫ 1

0

f(t)
|x − t|1−α

dt
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up to a constant Γ(α)−1 which we will omit

)
whenever it is defined. We can consider

Iα as an operator Iα : L∞([0, 1]) → C([0, 1]). Applying Theorem 3.1 we obtain the
measure ν given by ν(A)(x) =

∫
A
|x − y|α−1 dy, see Example 4.6 below. We can also

consider the fractional integral as an operator Iα : L∞([0, 1]) → Lp([0, 1]). Again
by Theorem 3.1, Iα(f) =

∫
f dν

Lp , where ν
Lp denotes ν considered as taking its

values in Lp([0, 1]). This can be done for any 1 ≤ p ≤ ∞. However, in general
there is no Bochner or Pettis integrable function G : [0, 1] → Lp([0, 1]) such that
Iα(f) =

∫
[0,1]

f(t)G(t) dt since, in this case, G(t) must be the t–translate of the function
|x|α−1. This requires the restriction (1 − α)p < 1.

4. Kernel measures taking values in C([0, 1])

Let K : [0, 1]×[0, 1] → R be a measurable function such that, for every x ∈ [0, 1], the
function Kx : y �→ K(x, y), y ∈ [0, 1], is integrable with respect to Lebesgue measure
m in [0,1]. Then, for every A ∈ B, there is an R–valued function, that we denote by
ν(A), defined by

ν(A) : x �−→
∫

A

Kx(y) dy , x ∈ [0, 1] .

Due to the additivity of the integral, we have an additive set function ν on B associated
with the kernel K.

The following proposition identifies the connection between properties of the kernel
K and those of its associated measure ν . This result will be applied to some relevant
kernels, which we discuss throughout the paper.

Proposition 4.1. Let K be a kernel with the above properties and ν be its associated
additive set function.

(a) ν takes its values in C([0, 1]) if and only if Kxn → Kx0 weakly in L1([0, 1])
whenever x0 ∈ [0, 1] and xn → x0. In this case ν is necessarily countably additive.

(b) ν is countably additive, takes its values in C([0, 1]) and has relatively compact
range if and only if Kxn → Kx0 in the norm of L1([0, 1]) whenever x0 ∈ [0, 1] and
xn → x0.

(c) Suppose that ν is C([0, 1])–valued. Then ν has bounded variation if and only if
the set {Kx : x ∈ [0, 1]} is order bounded in L1([0, 1]).

Proof . (a) The function ν(A) is continuous at x0 ∈ [0, 1] if and only if
∫

A Kxn(y) dy →∫
A

Kx0(y) dy whenever xn → x0. For fixed xn → x0 this condition holds for every set
A precisely when Kxn converges weakly to Kx0 in L1([0, 1]); see [10, Corollary p. 91].

Consider the map x �→ Kx from [0,1] to L1([0, 1]). Since it is continuous for the
weak topology, the set {Kx : x ∈ [0, 1]} is weakly compact in L1([0, 1]). Hence, by the
Dunford–Pettis theorem (see [10, p. 93]), it is uniformly integrable: given any ε > 0
there exists δ > 0 such that if m(A) < δ, then

∫
A
|Kx(y)| dy < ε for every x ∈ [0, 1].

It follows that ‖ν(A)‖∞ = supx

∣∣∫
A

Kx(y) dy
∣∣ ≤ ε, whenever m(A) < δ. Accordingly,

ν is additive and absolutely continuous with respect to Lebesgue measure. Hence ν is
countably additive.



Curbera and Ricker, Optimal Domains for Kernel Operators 53

(b) Since norm convergence implies weak convergence we have (a). So we have only
to consider relative compactness of the range of ν . Consider the inequality

1
2

∥∥Kx1 − Kx2

∥∥
1

≤ sup
A

∣∣∣∣∫
A

(
Kx1(y) − Kx2(y)

)
dy

∣∣∣∣ ≤ ∥∥Kx1 − Kx2

∥∥
1
,

and the Ascoli–Arzelà theorem. If the set {ν(A) : A ∈ B} is relatively compact in
C([0, 1]), then it is equicontinuous. It follows that the map x �→ Kx from [0,1] to
L1([0, 1]) is norm continuous. Conversely, the countable additivity of ν implies that
its range is a bounded subset of C([0, 1]). From the previous inequality, if the map
x �→ Kx is norm continuous, then the set {ν(A) : A ∈ B} is equicontinuous. Hence, it
is relatively compact in C([0, 1]).

(c) Let f ∈ L1([0, 1]) be such that, for every x ∈ [0, 1], we have |Kx| ≤ f a. e.. Then
ν has bounded variation since

‖ν(A)‖∞ ≤ sup
0≤x≤1

∫
A

|Kx(y)| dy ≤
∫

A

f(y) dy .

Conversely, suppose ν has bounded variation. Let |ν | denote the variation of ν . Since
|ν | is countably additive and m(A) = 0 implies |ν |(A) = 0, it follows that |ν | is
absolutely continuous with respect to m. Let g ∈ L1([0, 1]) be the Radon–Nikodym
derivative of |ν | with respect to m. Fix x ∈ [0, 1]. For a measurable set A let B =
{y ∈ A : Kx(y) ≥ 0} and C = A \ B. Then∫

A

|Kx(y)| dy =
∫

B

Kx(y) dy −
∫

C

Kx(y) dy

≤ ‖ν(B)‖∞ + ‖ν(C)‖∞
≤

∫
A

g(y) dy .

This holds for every set A. Hence |Kx| ≤ g a. e., for every x ∈ [0, 1]. �

Remark 4.2. A sufficient condition for guaranteeing that ν is C([0, 1])–valued,
countably additive and has relatively compact range, is that {Kx : x ∈ [0, 1]} is
uniformly integrable and Kxn converges to Kx0 a. e. whenever x0 ∈ [0, 1] and xn → x0.
A consequence of a theorem of De la Vallée–Poussin is useful in this regard.
Namely, a subset H of L1([0, 1]) is uniformly integrable if and only if there exists an
Orlicz function space Y on [0,1] such that H is bounded in Y and ‖χA‖Y ∗ → 0 as
m(A) → 0; see [19, I.2.2].

Example 4.3. The classical Volterra operator in C([0, 1]) is given by the kernel
K(x, y) = χ∆(x, y) where ∆ =

{
(x, y) ∈ [0, 1]2 : 0 ≤ y ≤ x

}
. The associated

measure ν is countably additive, has relatively compact range and bounded variation
in C([0, 1]).

Example 4.4. Arising from nilpotent left translation semigroups (see [14, §19.4])
we have the kernel K(x, y) = exp(−λ(y − x))χ[x,1](y), where λ is a real constant. The
associated measure ν is countably additive, has relatively compact range and bounded
variation in C([0, 1]).
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Example 4.5. The kernel K(x, y) = arctan(y/x) for x 
= 0 and K(0, y) = π/2,
arises (when restricted to [0, 1]× [0, 1]) from the Poisson semigroup, [14, p. 579]. The
associated measure ν is countably additive, has relatively compact range and bounded
variation in C([0, 1]).

Example 4.6. The fractional integral, for 0 < α < 1, is generated by the kernel
K(x, y) = |x − y|α−1, y 
= x. The associated measure ν is countably additive with
values in C([0, 1]) and has relatively compact range. This follows from Remark 4.2
since supx ‖Kx‖Lp < ∞ if (1 − α)p < 1. Choosing p > 1, we have

∥∥χA

∥∥
Lp′ → 0 as

m(A) → 0. We note that ν does not have bounded variation since supx |K(x, y)| = ∞,
for every y ∈ [0, 1].

5. Non–negative and monotone kernels

Throughout this section K will be a kernel on [0, 1]× [0, 1] satisfying the conditions
of the previous section, that is, all functions Kx = K(x, ·) are Lebesgue integrable on
[0,1]. We denote by T

K
the operator associated to the kernel K and defined by

TK f(x) =
∫ 1

0

f(y)K(x, y) dy , x ∈ [0, 1] ,

for any function f for which it is meaningful to do so. We will suppose that the measure
ν associated to K takes its values in C([0, 1]) and, hence is countably additive; see
Proposition 4.1 and Remark 4.2.

The kernel K is called non–decreasing if the family {Kx : x ∈ [0, 1]} is non–
decreasing, in the sense that Kx1 ≤ Kx2 a. e. on [0,1] whenever 0 ≤ x1 ≤ x2 ≤ 1.
Similarly, we have non–increasing kernels. Kernels with these properties abound. The
Volterra kernel of Example 4.3 is non–decreasing, as are the Volterra convolution ker-
nels of the form K(x, y) = φ(x−y)χ[0,x](y), considered in [8]. The kernels of Example
4.4 (for λ < 0) and Example 4.5 are non–increasing.

Proposition 5.1. Let K be a kernel and ν its associated C([0, 1])–valued measure.
(a) L1(ν) ⊂ [

T
K

, C([0, 1])
]

and if f ∈ L1(ν), then
∫

f dν = T
K

f ∈ C([0, 1]).
(b) If K is non–negative, then

[
TK , C([0, 1])

]
= L1(ν).

(c) If, in addition, K is non–decreasing, then
[
TK , C([0, 1])

]
= L1

ξ where the weight
ξ(y) = K(1, y).

Proof . (a) Observe that no assumptions are made concerning the sign of K. We
first check that TK is well defined as a linear operator from L∞([0, 1]) into C([0, 1]).
Let f ≥ 0 belong to L∞([0, 1]) and {fn} be a sequence of simple functions increasing
to f . Then f is also ν–essentially bounded, and hence f ∈ L1(ν). By the dominated
convergence theorem for vector measures [1, Theorem 2.8],

{ ∫
fn dν

}
converges to∫

f dν in C([0, 1]). For a fixed x ∈ [0, 1], by considering the sets {y : K(x, y) ≥ 0} and
{y : K(x, y) ≤ 0}, it follows that T

K
fn(x) converges to T

K
f(x). Since fn are simple∫

fn dν = TK fn. We deduce that TK f =
∫

f dν ∈ C([0, 1]).
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Arguing as before, we see that if now {fn} is a positive sequence increasing to
f ∈ L∞([0, 1]), then T

K
fn converges to T

K
f weakly in C([0, 1]) (in fact in the norm).

We can then apply Theorem 3.1, choosing E = L∞([0, 1]), X = C([0, 1]), and T = TK ,
and deduce that the integration operator extends TK to the space L1(ν).

(b) Let f ∈ [
TK , C([0, 1])

]
. Then TK (|f |χA) ∈ C([0, 1]) for every measurable set A.

Let {fn} be a sequence of non–negative simple functions increasing to |f |. Since fn

are simple functions, T
K

(
fnχA

)
=

∫
A

fn dν ∈ C([0, 1]). Since K is non–negative, by
the monotone convergence theorem

{
T

K

(
fnχA

)}
is a sequence of continuous functions

that increases pointwise to the function T
K

(|f |χA

)
. This last function is continuous

by assumption, so by Dini’s theorem the convergence is uniform. Hence, for every A,
the sequence

{ ∫
A

fn dν
}

is convergent in C([0, 1]), so f ∈ L1(ν).
(c) In view of (b), we will check that L1(ν) = L1

ξ . Let f ∈ L1(ν). Then
∫ |f | dν =

TK |f | ∈ C([0, 1]). Since K is non–negative, the measure ν is non–negative in the
sense that ν(A) is a non–negative function in C([0, 1]), for every set A. Hence, since
C([0, 1])∗ is a lattice, we have

‖f‖L1(ν) = sup
‖x∗‖≤1

∫
|f | d|x∗ν | = sup

0≤x∗, ‖x∗‖≤1

∫
|f | d(x∗ν) =

∥∥∥∥ ∫
|f | dν

∥∥∥∥
∞

=
∥∥TK |f | ∥∥∞ .

Since K is non–negative and non–decreasing, we have

‖TK |f | ‖∞ = sup
0≤x≤1

∫
|f(y)|K(x, y) dy =

∫
|f(y)|K(1, y) dy = ‖f‖L1

ξ
.(5.1)

Hence f ∈ L1
ξ . Now suppose f ∈ L1

ξ . Let {fn} be a sequence of simple functions
increasing to |f |. For a set A, by applying (5.1) to (fm−fn)χA, with m > n, we deduce
that the sequence

{
TK

(
fnχA)

}
is convergent in C([0, 1]). Since

∫
A fn dν = TK

(
fnχA

)
we have, |f | ∈ L1(ν) and so also f ∈ L1(ν). �

Let X be a Banach function space on [0,1]. Then C([0, 1]) is continuously embedded
in X. The measure ν is then also X–valued and countably additive in X; it is denoted
by ν

X
in this case. Observe that for a Banach function space X, absolute continuity of

the norm together with the Fatou property are equivalent to the condition that norm
bounded, increasing sequences are convergent. For further equivalences see [17, 1.c.4].

Proposition 5.2. Let K be a kernel and X be a Banach function space on [0, 1].
(a) L1(ν

X
) ⊂ [

T
K

, X
]

and if f ∈ L1
(
ν

X

)
, then

∫
f dν

X
= T

K
f ∈ X.

(b) If K is non–negative, then
[
T

K
, X

]
=

{
f : T

K
|f | ∈ X

}
.

(c) If, in addition, X has absolutely continuous norm, then
[
T

K
, X

]
= L1

(
ν

X

)
.

Proof . (a) The result follows from Proposition 5.1(a) since C([0, 1]) is continuously
embedded in X.

(b) If f ∈ [
T

K
, X

]
, then |f | ∈ [

T
K

, X
]

and hence, T
K
|f | ∈ X. Conversely, let

T
K
|f | ∈ X and |g| ≤ |f |. Since K is non–negative T

K
|g| ≤ T

K
|f |, and X being

a Banach function space, TK |g| ∈ X. So
{
f : TK |f | ∈ X

}
is a lattice ideal, where

‖f‖ := ‖TK |f |‖X is a complete norm, which makes TK continuous. Hence
{
f : TK |f | ∈

X
} ⊂ [TK , X].
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(c) Assume T
K
|f | ∈ X. Let {fn} be a sequence of non–negative simple functions

increasing to |f |, and A be a measurable set. Since K is non–negative, by the monotone
convergence theorem the sequence

{
TK

(
fnχA

)}
increases pointwise to the function

TK

(|f |χA

)
. Since TK

(
fnχA

) ≤ TK

(|f |χA

) ≤ TK |f | ∈ X, from the absolute continuity
of the norm of X we deduce that

{
TK

(
fnχA

)}
converges in X. Since TK

(
fnχA

)
=∫

A
fn dνX ∈ X, it follows that f ∈ L1

(
νX

)
. �

The part of the proof in Proposition 5.1(c) establishing ‖f‖L1(ν) =
∥∥TK |f | ∥∥ is

general. That is, a similar argument shows that if K is any non–negative kernel
and X is any Banach function space on [0,1], in which case X∗ is a lattice, then
‖f‖L1(ν

X
) =

∥∥TK |f | ∥∥
X

, for f ∈ L1
(
νX

)
.

Remark 5.3. We have seen that L1
(
ν

X

) ⊂ [
T

K
, X

]
is always valid, with equality if

X has absolutely continuous norm. Without this condition on X equality may fail to
hold. Let X be the Zygmund space Lexp, where ‖f‖ = sup0<t<1 f∗∗(t) (1 − log t)−1;
see [2, IV.6.1]. It does not have absolutely continuous norm. Consider the measure
ν associated to the Volterra kernel K of Example 4.3. The corresponding operator
is the antiderivative T

K
f(x) =

∫ x

0
f . Then, for f(x) = (1 − x)−1 we have T

K
f(x) =

− log(1−x) which belongs to X. However f 
∈ L1
(
νX

)
. Indeed, the bounded functions

fn = min{f, n} belong to L1
(
νX

)
. Since

∫
fn dνX = TK fn and the sequence

{
TK fn

}
is not convergent in X, we deduce that f 
∈ L1

(
νX

)
.

We now consider the measure ν as being L1([0, 1])–valued. We will denote νL1 simply
by ν1 .

Proposition 5.4. Let K be a non–negative kernel. Then
[
T

K
, L1([0, 1])

]
=

L1(ν1) = L1
ω, where the weight ω(y) =

∫ 1

0
K(x, y) dx.

Proof . The first equality follows from Proposition 5.2(c) since L1([0, 1]) has abso-
lutely continuous norm. Let f ∈ L1(ν1). Then

‖f‖L1(ν1) =
∥∥T

K
|f | ∥∥

1
=

∫ 1

0

∫ 1

0

|f(y)|K(x, y) dy dx =
∫ 1

0

|f(y)|ω(y) dy = ‖f‖L1
ω

.

Hence, f ∈ L1
ω. Assume now that f ∈ L1

ω . Arguing as in the proof of Proposition
5.1(c) it follows that f ∈ L1(ν1). �

Proposition 5.5. Let K be a non–negative kernel and X be a rearrangement invari-
ant space on [0, 1], say X = (L1, L∞)ρ. Then

(
L1

ω, L1(ν)
)
ρ

is continuously embedded
in

[
T

K
, X

]
.

Proof . Let f be in
(
L1

ω, L1(ν)
)
ρ
. Proposition 5.4 and the interpolation property of

the spaces
(
L1

ω, L1(ν)
)
ρ

and
(
L1, L∞)

ρ
with respect to the couples

(
L1

ω , L1(ν)
)

and(
L1, L∞)

for the operator T
K

(see [2, V.1.19]), imply that T
K
|f | ∈ X =

(
L1, L∞)

ρ

and
∥∥T

K
|f | ∥∥

X
≤ ‖f‖(L1

ω,L1(ν))ρ
. �

In general, the inclusion
(
L1

ω, L1(ν)
)
ρ
⊂ [

TK , X
]

as in Proposition 5.5 is proper; see
Remark 5.7 and Example 5.15 below. However, under suitable monotonicity conditions
on K equality does occur, as given in Theorem 5.11 and Theorem 5.12 below.
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Proposition 5.6. Let K be a non–negative, non–decreasing kernel with the property
that there exists a constant β > 0 such that, for every t > 0 and every y ∈ [0, 1]

(∗)
∫ 1

max{0,1−t}
K(x, y) dx ≥ β · min

{∫ 1

0

K(x, y) dx; t · K(1, y)
}

.

Let X =
(
L1, L∞)

ρ
be a rearrangement invariant space on [0, 1]. Then

[
TK , X

]
is

continuously embedded in
(
L1

ω, L1
ξ

)
ρ
.

Proof . We calculate K–functionals with respect to the pair
(
L1([0, 1]), C([0, 1])

)
. A

result of Gagliardo shows that it is the same as calculating them with respect to
the pair

(
L1([0, 1]), L∞([0, 1])

)
; see [2, V.1. (1.32)].

Let f ≥ 0. Then TK f is a non–decreasing function. Hence, its decreasing rearrange-
ment

(
TK f

)∗(x) = TK f(1 − x) for x ∈ [0, 1] and
(
TK f

)∗ = 0 on (1,∞). Accordingly,
we have by [2, II.6.2] that

K
(
t, TK f ; L1, L∞)

=
∫ min{1,t}

0

TK f(1 − x) dx

=
∫ min{1,t}

0

∫ 1

0

f(y)K(1 − x, y) dy dx

=
∫ 1

0

f(y)
∫ min{1,t}

0

K(1 − x, y) dx dy

=
∫ 1

0

f(y)
∫ 1

max{0,1−t}
K(x, y) dx dy .

The K–functional of f with respect to
(
L1

ω, L1
ξ

)
is given by (see [4, (3.1.39) p. 307])

K
(
t, f ; L1

ω, L1
ξ

)
=

∫ 1

0

f(y)min{ω(y), t · ξ(y)} dy

=
∫ 1

0

f(y)min
{∫ 1

0

K(x, y)dx; t · K(1, y)
}

dy .

From condition (∗), there exists β > 0 such that for every t > 0

β · K(
t, f ; L1

ω, L1
ξ

) ≤ K
(
t, TK f ; L1, L∞)

.(5.2)

Let f ∈ [
T

K
, X

]
, with f ≥ 0. Then T

K
f ∈ X =

(
L1, L∞)

ρ
. From (5.2) and the

monotonicity of the norm ρ, we see that f ∈ (
L1

ω, L1
ξ

)
ρ

and

β · ‖f‖(L1
ω ,L1

ξ
)ρ

≤ ∥∥T
K

f
∥∥

X
. �

Remark 5.7. The Volterra kernel of Example 4.3 is non–negative, non–decreasing
and satisfies (∗) in Proposition 5.6, where β = 1 works. For Volterra convolution
kernels of the form K(x, y) = φ(x − y)χ[0,x](y), condition (∗) has been studied in
terms of the function φ; see [8].

For non–negative, non–increasing kernels K a corresponding result holds.
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Proposition 5.8. Let K be a non–negative and non–increasing kernel. Let X =(
L1, L∞)

ρ
be a rearrangement invariant space on [0, 1].

(a)
[
T

K
, C([0, 1])

]
= L1(ν) = L1

η where the weight η(y) = K(0, y).
(b) Suppose that K has the property that there exists a constant β > 0 such that, for

every t > 0 and every y ∈ [0, 1]

(∗∗)
∫ min{1,t}

0

K(x, y) dx ≥ β · min
{∫ 1

0

K(x, y)dx; t · K(0, y)
}

.

Then [TK , X] is continuously embedded in
(
L1

ω, L1
η

)
ρ
.

Remark 5.9. Using the monotonicity properties of the kernel K, it can be seen
that conditions (∗) and (∗∗) have the following equivalent expressions, which are more
convenient for computational purposes;

(∗) inf

{∫ 1

1−t
K(x, y) dx∫ 1

0
K(x, y) dx

: y ∈ [0, 1], t =

∫ 1

0
K(x, y) dx

K(1, y)

}
> 0 ,

(∗∗) inf

{∫ t

0
K(x, y) dx∫ 1

0
K(x, y) dx

: y ∈ [0, 1], t =

∫ 1

0
K(x, y) dx

K(0, y)

}
> 0 .

Remark 5.10. The following example shows that, for a non–negative monotone
kernel, when condition (∗) or (∗∗) does not hold, then the conclusion of Proposition
5.6 or Proposition 5.8(b) may fail to hold. The kernel K(x, y) = arctan(y/x) of
Example 4.5 is non–negative and non–increasing but it fails to satisfy (∗∗). Let ν be
the measure associated to K and X be the Lorentz space Lp,1([0, 1]), with 1 < p < ∞.
The measure νX has a Bochner integrable derivative y ∈ [0, 1] �→ G(y) ∈ Lp,1([0, 1]),
given by G(y)(x) = arctan(y/x), for x ∈ (0, 1]. The variation measure |νX | of νX

is the measure with density ‖G(y)‖p,1 =
∫ 1

0
x1/p−1 arctan(y/x) dx, with respect to

Lebesgue measure. Consider the function f(y) = (y log(1/y))−1−1/p near zero. Since
‖G(y)‖p,1 ∼ y1/p, for y ∈ [0, 1], and

∫ 1

0
f(y)y1/p dy < ∞, it follows that f belongs to

the space L1(|ν
X
|). A result of Lewis gives that L1(|ν

X
|) ⊂ L1

(
ν

X

)
[16, Theorem

4.1]. Since X = Lp,1([0, 1]) has absolutely continuous norm, from Proposition 5.2,
L1(νX ) = [TK , X]. Hence f ∈ [TK , X].

From Proposition 5.1 and Proposition 5.4 we have that L1(ν) = L1([0, 1]), with
equivalence of norms, and L1

(
ν1

)
= L1

ω where ω(y) =
∫ 1

0
arctan(y/x) dx. Re-

call, in the usual notation of the K–method, that Lp,1([0, 1]) =
(
L1, L∞)

1−1/p,1
.

From an interpolation result of Stein and Weiss (see [3, 5.4.1]), we have that(
L1

ω , L1([0, 1])
)
1−1/p,1

= L1
(
ω1/p

)
. Since

∫ 1

0 arctan(y/x) dx ∼ y log(1/y), we have

∫ 1

0

(y log(1/y))−1−1/p

( ∫ 1

0

arctan(y/x) dx

)1/p

dy = ∞ ,

and deduce that the function f is not in
(
L1

ω, L1([0, 1])
)
1−1/p,1

.
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Combining Proposition 5.5 and Proposition 5.6 we are now able to give a precise
description of the spaces

[
T

K
, X

]
and L1

(
ν

X

)
for certain kernels K and spaces X.

Theorem 5.11. Let K be a kernel whose associated measure ν takes its values in
C([0, 1]). Assume K is non–negative, non–decreasing and satisfies property (∗). Let
X =

(
L1, L∞)

ρ
be a rearrangement invariant space on [0, 1]. Then, with equivalence

of norms, [
TK , X

]
=

(
L1

ω, L1
ξ

)
ρ
,

where the weights are given by ξ(y) = K(1, y) and ω(y) =
∫ 1

0
K(x, y) dx. If, in addi-

tion, X has absolutely continuous norm, then [T
K

, X] = L1
(
ν

X

)
.

Combining Proposition 5.5 and Proposition 5.8 we obtain the corresponding result
for non–negative and non–increasing kernels.

Theorem 5.12. Let K be a kernel whose associated measure ν takes its values in
C([0, 1]). Assume K is non–negative, non–increasing and satisfies property (∗∗). Let
X =

(
L1, L∞)

ρ
be a rearrangement invariant space on [0, 1]. Then, with equivalence

of norms, [
TK , X

]
=

(
L1

ω, L1
η

)
ρ
,

where the weights are given by η(y) = K(0, y) and ω(y) =
∫ 1

0
K(x, y) dx. If, in

addition, X has absolutely continuous norm, then [T
K

, X] = L1
(
ν

X

)
.

Remark 5.13. The sharpness of condition (∗) follows from the fact:
If K is a non–negative, non–decreasing kernel such that for all rearrangement invari-

ant spaces X =
(
L1, L∞)

ρ
the spaces

[
TK , X

]
and

(
L1

ω, L1
ξ

)
ρ

are uniformly isomorphic,
then K satisfies condition (∗).

The proof of this fact follows the lines of [8, Theorem 2]. An analogous result for
non–increasing kernels and condition (∗∗) also holds.

Remark 5.14. The procedure for applying Theorem 5.11 or Theorem 5.12 starts
by identifying the spaces L1

ω and L1
ξ, and then checking that either the condition (∗)

or (∗∗) holds, depending on the monotonicity properties of K. Next the K–functional
with respect to the pair

(
L1

ω, L1
ξ

)
has to be computed. This can be done via the known

formula which we have already used; see [4, (3.1.39) p. 307]. Finally the corresponding
rearrangement invariant norm determines the space

[
T

K
, X

]
.

For example, the kernel K(x, y) = exp(−λ(y − x))χ[x,1](y) of Example 4.4 is
non–negative, non–increasing for λ < 0 and satisfies (∗∗), so 5.12 applies. Since
ω(y) =

(
1 − e−λy

)
/λ and η(y) = e−λy, on [0,1], we have that L1

ω = L1(ydy) and
L1

η = L1([0, 1]), with equivalence of norms. The K–functional is then K
(
t, f ; L1

ω, L1
η

)
=∫ 1

0
f(y)min{y, t} dy. Consider, for instance, the case when X is a Lorentz space
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Lp,q([0, 1]), with 1 < p < ∞ and 1 ≤ q < ∞. Then the corresponding space[
T

K
, X

]
= L1

(
ν

X

)
is precisely the space of functions f satisfying∫ ∞

0

(
t1/p−1

∫ 1

0

|f(y)|min{y, t} dy

)q
dt

t
< ∞ ;

see [2, V.1.7]. This implies that the norm of
[
TK , X

]
is equivalent to

∫ 1

0 |f(y)| y1/p dy.

Example 5.15. The fractional integral operator Iα exhibits interesting behavior
with respect to the properties considered above.

(a) When no monotonicity conditions are assumed on the kernel, then the conclusion
of Proposition 5.6 may fail. The kernel of the fractional integral is non–negative, but
has no monotonicity properties. Let ν be the associated measure; see Example 4.6.
From the results above we have that [Iα, C([0, 1])] = L1(ν),

[
Iα, L1([0, 1])

]
= L1([0, 1]),

with equivalent norms, and [Iα, X] =
{
f : Iα |f | ∈ X

}
. It will be shown that for

fs = χ[0,s] and a suitable choice of X =
(
L1, L∞)

ρ
, we have

lim
s→0

‖fs‖(L1
ω,L1(ν))ρ

‖fs‖[Iα,X]
= ∞ .(5.3)

Direct computation shows that Iαfs(x) ≤ (2s/α)xα−1. Hence, for X = Lp([0, 1]) with
1 ≤ p < (1 − α)−1 we have, for a constant C > 0 depending on α, that

‖fs‖[Iα,X] = ‖Iαfs‖X ≤ Cs .(5.4)

Since the spaces L1([0, 1]) and L1(ν) are lattices, it follows from [4, (3.9.10) p. 467]
that

K
(
t, fs; L1([0, 1]), L1(ν)

)
= inf

A⊂[0,1]

{∥∥fsχAc

∥∥
1

+ t · ∥∥fsχA

∥∥
L1(ν)

}
= inf

A⊂[0,1]

{
m([0, s] ∩ Ac) + t · sup

0≤x≤1

∫
[0,s]∩A

|x− y|α−1 dy

}
≥ inf

A⊂[0,1]

{
m([0, s] ∩ Ac) + t · sup

0≤x≤s

∫
[0,s]∩A

|x − y|α−1 dy

}
≥ inf

A⊂[0,1]

{
m([0, s] ∩ Ac) + t · sα−1m([0, s] ∩ A)

}
.

Either m([0, s] ∩ Ac) ≥ s/2 or m([0, s] ∩ A) ≥ s/2. Hence, we deduce for every t > 0,
that

K
(
t, fs; L1([0, 1]), L1(ν)

) ≥ 1
2

min{s, tsα} =
∫ t

0

g∗s = K
(
t, gs; L1, L∞)

,

where gs = 1
2 sαχ[0,s1−α]. For X = Lp([0, 1]) with 1 ≤ p < ∞, the monotonicity

property of the interpolation functor implies that

‖fs‖(L1
ω,L1(ν))ρ

≥ ‖gs‖Lp =
1
2

sαs(1−α)/p .(5.5)
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From (5.4) and (5.5), if 1 < p < (1 − α)−1, we deduce (5.3). Observe that, since
X = Lp([0, 1]) for 1 < p < (1 − α)−1 has absolutely continuous norm, then [Iα, X] =
L1

(
νX

)
, so this example shows also that L1

(
νX

)
is not continuously embedded in(

L1
ω , L1(ν)

)
ρ
.

(b) The fractional integral operator Iα is interesting for another reason. In general,
the L1–space of a vector measure is not rearrangement invariant. One such non–
trivial example is given by the space of functions on [0,1] whose Rademacher–Fourier
coefficients, on every measurable set, belong to �2, [7]. Another such example is the
space [Iα, C([0, 1])] = L1(ν), for ν the measure associated to Iα. To see that L1(ν) is
not rearrangement invariant we proceed as follows.

For n ≥ 1 consider the function S(t) =
∑2n

1 χIi , for the intervals Ii =
[

i−1
2n , i−1

2n + 1
4n

]
.

We want to estimate

‖S‖L1(ν) = sup
0≤x≤1

∫ 1

0

S(t)
|x− t|1−α

dt .

For 0 ≤ x ≤ 1 we have∫ 1

0

S(t)
|x − t|1−α

dt =
∫ x

0

S(x − u)
u1−α

du +
∫ 1−x

0

S(x + u)
u1−α

du ≤ 2
∫ 1

0

S(t)
t1−α

dt .

Hence,

sup
0≤x≤1

∫ 1

0

S(t)
|x − t|1−α

dt ∼
∫ 1

0

S(t)
t1−α

dt .

We now estimate∫ 1

0

S(t)
t1−α

dt =
2n∑
i=1

∫ (i−1)2−n+4−n

(i−1)2−n

dt

t1−α
=

1
2nα

(
1

α2nα
+ ∆n

)
,

where

∆n =
2n∑
i=2

∫ (i−1)+2−n

i−1

dt

t1−α
∼ 1

α2n(1−α)
.

Since S∗(t) = χ[0,2−n], we have ‖S∗‖L1(ν) =
∫ 1

0 S∗(t)tα−1 dt = 1/(α2αn). Hence, we
conclude that

‖S‖L1(ν)

‖S∗‖L1(ν)
∼ 1

2nα
+

1
2n(1−α)

.

For every n ∈ N the functions S and S∗ are in L1(ν). But, as n → ∞, the ratio of
their norms in L1(ν) goes to zero. Hence, the norm in the space L1(ν) is not equivalent
to a rearrangement invariant norm.

(c) The problem of optimal rearrangement invariant domains has been considered
by Edmunds, Kerman and Pick for the Sobolev embedding; see [12]. In our setting,
consider the fractional integral with values in C([0, 1]). If p > 1/α and f ∈ Lp([0, 1])
then Iαf ∈ C([0, 1]). Hardy and Littlewood proved that for 1 < p < 1/α, if
f ∈ Lp([0, 1]) then Iαf ∈ Lq([0, 1]), for q = p

1−pα [13, Theorem 4]. In the limiting
case, if we want Iαf to be continuous, then necessarily q = ∞, that is, p = 1/α.
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But, this is not true as Hardy and Littlewood observed [13, 3.5.(iv)]. Hence,
all spaces Lp([0, 1]) for p > 1/α are in [Iα, C([0, 1])] = L1(ν), but L1/α([0, 1]) is
not. Even though L1(ν) is not rearrangement invariant, it is possible to identify the
largest rearrangement invariant space included in L1(ν), namely the Lorentz space
L1/α,1([0, 1]).

To see this, let f be in L1/α,1([0, 1]). Assume that f ≥ 0 and let {fn} be a sequence
of non–negative simple functions increasing to f . Let g(t) = |t|α−1 and gx(t) =
|x− t|α−1 be its translate by x. Consider these functions on the interval [0, 1] and for
x ∈ [0, 1]. They belong to the space L1/(1−α),∞([0, 1]), where they are bounded, and
‖gx‖1/(1−α),∞ ≤ 21−α for every x ∈ [0, 1] (observe that translation is not continuous
in this space). Hence, by Hölder’s inequality, for m > n we have∥∥∥∥ ∫

A

(fm − fn) dν

∥∥∥∥
∞

= sup
0≤x≤1

∫
A

fm(t) − fn(t)
|x − t|1−α

dt ≤ 21−α ‖fm − fn‖1/α,1 .

This last expression tends to zero, since L1/α,1([0, 1]) has absolutely continuous norm.
So, for every set A the integrals {∫

A
fn dν} converge in C([0, 1]). Hence, f ∈ L1(ν).

Moreover, the embedding is continuous since
(|x− t|α−1

)∗ ≤ 21−αtα−1, and hence

‖f‖L1(ν) ≤ sup
0≤x≤1

∫ 1

0

f∗(t)
(

1
|x − t|1−α

)∗
dt = 21−α ‖f‖1/α,1 .

Let f ∈ L1(ν) be such that its decreasing rearrangement f∗ ∈ L1(ν). Then

‖f∗‖L1(ν) = sup
0≤x≤1

∫ 1

0

f∗(t)
|x− t|1−α

dt =
∫ 1

0

f∗(t)
t1−α

dt = ‖f‖1/α,1 ,

i. e. f ∈ L1/α,1([0, 1]). So, L1/α,1([0, 1]) is the largest rearrangement invariant space
in L1(ν).
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