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Abstract

We present the problem of planning mobile tours of inspectors on
German motorways to enforce the payment of the toll for heavy good
trucks. This is a special type of vehicle routing problem with the ob-
jective to conduct as good inspections as possible on the complete net-
work. In addition, the crews of the tours have to be scheduled. Thus,
we developed a personalized crew rostering model. The planning of
daily tours and the rostering are combined in a novel integrated ap-
proach and formulated as a complex and large scale Integer Program.
The paper focuses first on different requirements for the rostering and
how they can be modeled in detail. The second focus is on a bicrite-
rion analysis of the planning problem to find the balance between the
control quality and the roster acceptance. On the one hand the tour
planning is a profit maximization problem and on the other hand the
rostering should be made in a employee friendly way. Finally, compu-
tational results on real-world instances show the practicability of our
method.

1 Introduction

One of the most important and basic planning problems in Combinatorial Op-
timization and Operations Research is the Vehicle Routing Problem (VRP),

1This work was funded by the Federal Office for Goods Transport (BAG)
2Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin-Dahlem, Germany, Email

{borndoerfer, sagnol, schlechte, swarat}@zib.de

1



see [14] for an overview. The main problem is in most cases to determine a
set of tours to meet given demands. In this paper we will present a model to
set up tours as well, but combined with another optimization problem, the
Crew Rostering.

The background of the studied problem is that the increase of individual
traffic requires from public authorities to spend much investments on exten-
sions or on maintenance of the road network. Therefore in many countries
tolls were introduced, especially on motorways, to finance the growing in-
vestments. We focus here on the case of Germany where a distance-based
toll on motorways and on some federal roads was introduced in 2005. All
trucks with more than 12 tonnes vehicle weight have to pay a toll depending
on their route distance and their emission class.

The enforcement of the toll is the responsibility of the German Federal
Office for Goods Transport (BAG). It is both done by 300 stationary con-
trol gantries and by tours of about 300 mobile control teams on the entire
motorway network. The teams, also called control groups, consist mostly of
two inspectors, but in some cases of only one. Each team can only control
toll roads in its associated control area, close to their depot. Germany is
subdivided into 21 of those control areas.

In general, the tours should guarantee a network-wide control that takes
given spatial and time dependent traffic distributions into account. We will
model this problem using a space-time network and formulate a correspond-
ing optimization problem as an Integer Program (IP). To that end we divide
the network into sections. A section is a subpart of the network with length
of approx. 50-70 kilometers, where a team can be assigned to for a control
during a certain time interval, e.g., four hours. Furthermore for each inspec-
tor the personalized sequence of controls during several weeks, called roster,
has to fulfill several restrictions. Therefore, our challenge is to integrate and
to optimize the vehicle routing and the personalized crew rostering. To the
best of our knowledge this is the first optimization approach to toll enforce-
ment where both the tours and the detailed rosters of the crews are computed
simultaneously. A typical problem instance is to produce a monthly schedule
for one control region with personal data and resources given, e.g., inspectors
with working time accounts, feasible routes, vacations, and so on.

The paper is structured as follows: In Section 2, we present our plan-
ning problem in general. Section 3 defines a graph formulation for the tour
planning and Section 4 defines a rostering model of the crews, respectively.
There we will focus on how different legal and organisational requirements
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are modeled in the rostering part. In Section 5 we will discuss the bicrite-
ria nature of the integrated model in order to analyse the relation between
control quality and roster acceptance. Finally, we present results from the
real world application at the BAG in Section 6 and provide a conclusion and
directions for future research in Section 7.

2 The Toll Enforcement problem

In classical Vehicle Routing problems a set of given demands or tasks has to
be met. This is not the case in our approach. Since the number of teams is
fixed, a maximization problem with limited resources has to be solved. But
there are also problem characteristics that occur in basic VRPs as well. For
example, there is a length restriction for all tours according to daily working
time limitations. We have chosen as our main objective that controls should
be planned in order to maximize the number of controlled vehicles. In a
companion work we have proposed a game theoretic approach that takes into
account the behaviour of drivers and fare evaders to distribute the controls
in a more strategical way, see [2] and [1]. We plan to integrate this planning
strategy in our optimization model in a follow-up work.

If we assign a profit value to each section, then our problem relates to a
Team Orienteering Problem or a Selective Vehicle Routing Problem, see [5].
In the case of only one vehicle this is known as the Orienteering Problem, a
variant of the TSP with profits. For a recent publication on the Orienteering
Problem we refer the reader to [15] and for the more general case of the TSP
with profit see Feillet et al. [8] for a literature survey.

Additionally, the profit values vary during different time intervals. Hence,
not only the sections of a tour must be set, but also the starting time and the
duration of a section control. For example, it might be useful to control one
section in the rush hour and another one during the night. An appropriate
approach to collect a profit in our setting is then to set the profit to the
number of trucks that pass through a motorway section during some time
interval. This rewards a control of highly utilized sections more than of
sections with low traffic. Another important requirement is that controls
should cover the complete network and not concentrate only on the section
with the most traffic. This will be both guaranteed by minimum control
quota constraints for each network section and by constraints that prohibit
parallel controls on the same sections at the same time.
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The planning of routes for mobile toll enforcement is not the only problem
to solve in our application. In addition, the duties of the inspectors should be
scheduled. Therefore, we have a relevant problem extension in comparison
to classical VRPs. Most of the solutions of VRPs result in a set of tours.
Then drivers are assigned to the tours in a subsequent step. The feasibility
of crew assignments is not part of the classical algorithms. The same holds
for Team Orienteering problems, where the publications deal not with the
case that the problem has to be solved on each day over several weeks with
the same crews. But in the toll control setting it is not possible to ignore
the availability of crews. There are only a few drivers that can perform a
planned tour. Because the sections of the tour can only be controlled by a
team that has its home depot not too far away from the control section, since
each tour must start and end at the home depot of its associated team. Thus,
sequential approaches to plan the tours independently of the crews will fail.

If we assign a crew to each tour, it must fit within a feasible crew roster,
respecting all legal rules, over a time horizon of several weeks. Minimum rest
times, daily working times, vacations or maximal amounts of consecutive
working days are examples of important requirements for the planning of
rosters. Hence, a personalized duty roster planning must be used in our
application. Therefore, we developed a novel integrated approach, that leads
to a new type of vehicle routing problems.

To the best knowledge of the authors there is no optimization approach
to toll enforcement in the literature yet. Related publications deal with
scheduling of highway patrols [9], or with the scheduling of security teams in
mass transit railway networks [12]. We have called our optimization problem
Toll Enforcement Problem (TEP) and it is first introduced in [4]. In [3] a
case study is presented, that shows the benefit of using the TEP for the
planning of toll enforcement. In the following, the previous work is extended
into several directions. There is a more extensive view on the modeling power
of our graph-theoretic approach for the roster optimization. Moreover, the
bicriterion nature of the problem is analysed in more detail with a main
focus of the concept of Pareto-optimality. And finally, our algorithm is now
used at the BAG in a pilot operation, such that we can present a broader
variety of instances with even faster solution times compared to our previous
publications. We give in the next two sections a more detailed presentation
of the TEP with a main focus on duty sequencing rules for the inspector
roster planning.
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Figure 1: Construction of the tour planning graph.

3 The Tour Planning Problem

To determine the daily routes we use a time-expanded graph model. It is
based on a division of the network into sections and on transfer edges between
those sections. An edge links two sections that have at least one motorway
junction in common. This guarantees that there are no deadhead trips be-
tween parts of the control tour. For each time step there exists a copy of
each section node and the arcs connect either the same or neighbored sec-
tions between two time steps t and t+1. The size of the resulting space-time
graph D, called Tour Planning Graph, mainly depends on the chosen time
discretization ∆. Each duty has a duration of eight hours in our simplified
model, i.e., by excluding the setup and postprocessing time. If we then con-
sider both the length of the sections and the duration of a duty, only values of
two or four hours are appropriate for ∆. In the traditional manual planning
approach ∆ = 4h is used. This corresponds to the control of one section then
a break and then a second control section. If we add two depot nodes d1 and
d2, a feasible control tour corresponds to a d1-d2-path in D. In Figure 1 a
small example of a network with four sections and ∆ = 4h is presented. The
thick path shows a exemplary chosen tour.

The Tour Planning Problem (TPP) correlates then to a Multi-Commodity
Flow Problem in D. It is formulated by an IP based on path variables. Since
each control team can only control some local sections, it is still possible to
generate all paths by a simple enumeration. As explained in the previous
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Figure 2: Excerpt of an Inspector Roster Graph with one inspector, three
time periods and four days.

section, a profit value is assigned to each node in D that could be covered
by a tour. Hence, one can see the TPP as a special team orienteering prob-
lem. Beside the network cover constraints (see Section 2) the most important
constraints are the natural restriction of at most one tour per day for each
team and the interdiction to control with too many teams the same section
at the same time. A more detailed description on the graph model and the
resulting IP can be found in [4, 3].

4 Duty Roster Planning for Inspectors

The second task in the TEP is the planning of the rosters, called the Inspector
Rostering Problem (IRP). There, the objective is to penalize some feasible
but inappropriate sequences of duties. We formulate the IRP again as a
Multi-Commodity flow problem in a directed graph D̃ = (Ṽ = (V̂ ∪{s, t}), Ã)
with two artificial start and end nodes s, t. The nodes v̂ ∈ V̂ represent duties
as a pair of day and time period. The arcs (u, ṽ) ∈ Ã ⊆ Ṽ ×Ṽ model a feasible
sequence of two duties according to legal rules. Therefore, we call the arcs
in the model Duty Sequence Arcs. By Ãm we name all arcs representing
duty arcs of inspector m ∈ M . We call this graph Inspector Roster Graph.
Therefore for each inspector its roster corresponds to exactly one s-t path,
called roster path. Figure 2 shows a small part of an Inspector Roster Graph.
There duty sequence arcs of one inspector between four days are shown.
Three different time periods (E[arly], D[ay] and L[ate]) for the duties can
be chosen and the other nodes indicate days-off or holidays. The thick path
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exemplary shows a potential roster path for this inspector.
This problem is again modeled by an Integer Program, but based on arc

variables, as we will discuss later in this section. Our model is similar to the
approach in [6] and also related to set partitioning approaches like in [11].
The main difference in our approach is that no duties or activities are given.
In the TEP the control tours correspond to the duties in the classical models,
but they are calculated in the same step when the rosters are generated by
connecting the two IPs via coupling constraints. In the following it will be
shown how some examplary chosen requirements on crew rostering can be
modeled.

The most important requirement for a duty roster is to respect minimum
rest times between two subsequent duties. The German Working Hours Act
(Arbeitszeitgesetz) lays down 11 hours as minimum rest times. This is a
local decision in our model since there is a conflict between two duties if
the precendent duty ends less than 11 hours earlier than the seconds starts.
A graph based approach, as it is used here, is very suitable to resolve this
conflict. It can simply be modeled there by only setting arcs between two
duty nodes, if the head node duty starts at the earliest 11 hours after the
tail node duty has ended. This has the advantage that we do not need
any rest time constraints in our model. It is the main algorithmic aspect
and contribution in this paper that we try to model as many constraints as
possible as local decisions in our graph model. This is a key issue to reduce
the high complexity of the integrated problem to get a final optimization
problem to solve that is as small as possible. According to this modeling of
rest times it is a simple observation that D̃ is acyclic and almost no arcs exist
between duty nodes belonging to the same day.

A similar regulation is valid for the rest time when there are days off in
between. In case of a time-off there should be at least two days off to ensure a
sufficient rest time for the inspectors. This is also modeled by duty sequence
arcs. Therefore, a one-day-duty-off would be represented by sequence arcs
between nodes on day j and nodes on day j + 2. Then a two-days-off is
accordingly modeled by arcs between nodes of day j and day j + 3. To
prevent “short weekends”, i.e., only one day-off, no arcs between days j and
j + 2 are generated. As a consequence if an inspector has a duty on day j,
then his next duty cannot be on day j + 2.

Another important issue of the model is to take annual leave days or
weeks into account. Suppose an inspector m has a leave day on a certain
day, e.g., on a Wednesday. At this day inspector m must not be assigned
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to a duty. To this purpose for the respective day a “vacation duty”-node is
generated. All arcs of Ãm, which start or end at a node belonging to this
Wednesday, are incident to this node. Hence, it is not possible to define a
path in D̃ with any other than the vacation node on this Wednesday.

An additional relevant consideration for the inspectors is that duties must
not start at arbitrary points of time during the day. Therefore, we define a
Duty Type by its start and end time and only duties corresponding to one
of the pre-defined duty types may be scheduled. This can easily be modeled
since each potential duty corresponds to a node in the roster graph. We
explained above that a node is defined by a specific day and a time period.
Hence, only nodes whose time period corresponds to feasible duty types are
generated. In addition, the duty types also define the duration of a duty and
hence guarantee that daily working time limitations are respected.

Naturally, there are also requirements that can not only be respected
by the construction of the graph. To that end, we briefly present some
parts from the Integer Programming formulation for the rostering problem to
discuss further requirements that are modeled by the IP. For a more detailed
presentation of the IP model we refer the reader to our previous publications.
There it is also described how both the tour planning model and the rostering
are connected by coupling constraints to an integrated formulation. Since a
flow based formulation is used for the IRP, a variable xm

u,v is introduced

for each arc (u, v) ∈ Ã and inspector m. This leads to the following IP
formulation:
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min
∑

m∈M

∑

(u,v)∈Ã

cu,vx
m
u,v (1)

∑

v

xm
s,v = 1, ∀m ∈ M, (2)

∑

k

xm
v,k −

∑

u

xm
u,v = 0, ∀v ∈ V̂ ,m ∈ M, (3)

∑

(u,v)∈Ãm

ωux
m
u,v + am ≤ um, ∀m ∈ M, (4)

∑

(u,v)∈Ãm

ωux
m
u,v + am ≥ ℓm, ∀m ∈ M, (5)

xm
u,v ∈ {0, 1}, ∀(u, v) ∈ Ã,m ∈ M. (6)

The objective function (1) minimizes the costs of the rosters. The costs are
represented by penalties on the duty sequence arcs. We will discuss later
what kind of penalties are present in the model. The next constraints (2)
and (3) represent the flow value and the flow conservation for the inspectors.
Constraints (4) and (5) involve the working time of the inspectors. They will
be discussed in the next paragraph. And last but not least the integrality
constraints for the flow variables (6) are given.

In the following, the observance of working hours of the inspectors is dis-
cussed. It is very important that their average working time is approximately
kept. In the IP model this is done by constraints (4) and (5). At the begin-
ning of the planning horizon the current account value am of each inspector
m ∈ M is given. At the end of the planning horizon a feasible interval for
the working time account is given with bounds ℓm and um. Each duty u

on the roster path of m consumes some working time ωu and therefore the
constraints bound the length of the roster paths. Kohl and Karisch [11] call
this kind of rule a horizontal rule according to the fact, that in many rotas
the roster of an inspector is displayed in a single row and only one roster is
involved by this rule. In contrast to that they name constraints as vertical
rules if they affect several rosters. An example for a vertical rule are so-called
Duty Mix -Constraints. They guarantee a pre-defined mix of the duty types.
An important purpose of them is to give upper bounds on certain duty types
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in percentage of all generated duties, e.g., for duty types corresponding to
overnight duties.

The objective is to minimize a cost factor that belongs to the duty se-
quence arcs. But in contrast to classical duty rostering approaches the objec-
tive is not to minimize the cost of the duties itself but to penalize unfavorable
duty sequences. To that end, let us look at a typical week of one inspector,
having duties from Monday to Friday, each starting at 8am. Next, we as-
sume a second week again starting at 8am from Monday to Wednesday, but
on Thursday and Friday at 10am. In this case we have a change in the duty
starting time between Wednesday and Thursday.

A change of the duty starting time on two subsequent days is called a
rotation. Since in our example the duty on Thursday starts later than on
Wednesday, this is an example of a forward rotation. According to this def-
inition the case that a duty on a subsequent day starts earlier than on the
day before is called backward rotation. See our previous example and assume
the case that the duty on Thursday starts at 6am. Then we have a backward
rotation. In the case that the previous duty does not end after 7pm on the
day before, this backward rotation is feasible with respect to the miminum
rest time. Backward rotations can only occur, if they do not violate the mini-
mum rest time between the corresponding duties. Even though rotations are
legally feasible they should be avoided. It is particularly known for backward
rotations that they alter the human biorythms and affect the sleep [10].

5 Bicriteria Optimization

After the presentation of both subproblems with a detailed view on the mod-
eling of duty sequencing rules it can be concluded that the model has two
objectives: on the one hand the rewards of the sections to control and on the
other hand the costs for the rotations. This poses the interesting question
about the relationship of the two objectives or more general, how to come to
a decision if there are several objectives. This is also an important question
that arises in real-world planning of toll enforcements and in a lot of other
planning problems. The planners at the BAG must balance between severals
objectives. On the one side an overall and efficient toll control must be set up
but on the other side it is essential to take the matters of the employees into
account. This leads us to the important field of Multicriteria Optimization,
see [7] for an overview.
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But the strength of an algorithmic planning method, as it is presented
here, lays exactly in the case when there are several criterias to decide.
Namely, it is possible to use different parameter settings and focuses on
objectives to execute several optimization runs for a planning scenario. This
results in control plans that have different focuses on objectives. Then the
planner can compare the different solutions and to choose one as the best. In
manual planning methods a comparison of alternatives is not possible since it
takes a long time to generate even one plan. For the TEP the following ques-
tions are relevant: Do the objectives coincide, do they contradict and what
is the overall optimum of the integrated model? We analyse those questions
with the well-known concept of Pareto optimality [13].

Definition 1 (Pareto optimality). Let maxx∈X(f1(x), f2(x)) be a bi-objective
problem. A feasible solution x̂ is called Pareto optimal, if there is no other
solution x such that fi(x) ≥ fi(x̂) for i = 1, 2 and fi(x) > fi(x̂) for at least
one i ∈ {1, 2}.

A feasible solution x̂ is called weakly Pareto optimal, if for all other
solutions x ∈ X holds, that f1(x̂) ≥ f1(x) or f2(x̂) ≥ f2(x).

Since our problem is a bi-objective problem we restrict our definition
of Pareto-optimality to this case. In the following we want to find (weak)
Pareto-optimal solutions for the TEP and investigate some properties of these
solutions. The first step is the analysis of the Pareto front of one exemplary
chosen problem instance to get an indicator for the Pareto front of TEP
instances. To this purpose the bi-objective problem is transformed into a
single objective optimization problem by the weighted sum approach [13].
The first part of the weighted objective relates to the Tour Planning model,
that was briefly described in Section 3 and in more detail in [4]. By P we
denote the set of paths in the IP model. For all p ∈ P, wp ≥ 0 gives the profit
of p. This relates to the sum of the time-dependent profits of all controlled
sections, that belong to the tour that corresponds to the path p in the graph.
The binary variable zp indicates if p is chosen in a solution or not. Therefore,
we introduce a parameter λ ∈ [0, 1] and change the objective function to:

max (1− λ)
∑

p∈P

wpzp − λ
∑

m∈M

∑

(u,v)∈Ã

c(u,v)x
m
(uv) (7)

The second part was presented as part of the duty rostering model (1).
For our test we choose an instance r1-may (corresponding to a German

control area called r1 for the month of may). This instance involves 21
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Figure 3: Pareto frontier of instance r1-may, on the x-axis weight factors λ
and on the y-axis the control profit on the left and the number of rotation
on the right in reverse direction.

inspectors, 17 control sections and 6 duty types. The resulting MIP (before
presolve) has then 7738 constraints, 96526 variables and 1233369 nonzeros.
We varied the weight parameter λ for several values including the extremal
ones. The tests were done on a Dell Power Edge M620 computer with an
8-core Intel Xeon CPU of 2,70 GHz using Cplex 12.5 with 8 threads and
default parameter settings. Since this instance was quite easy, each run with
a different value of λ was solved to optimality within two hours.

In Figure 3 one can see the results of our computations. The x-axis
corresponds to different values of λ, while at the left y-axis the control profit
and on the right axis the number of rotations in reverse direction is shown.
In the case of no rotation penalties, i.e., λ = 0, there are quite a lot rotations.
But even for a very small value of λ, e.g., 0.02, the number of rotations is
reduced rapidly by approximately 75%, while the profit value remains almost
the same. An explanation for this observation is that there is some symmetry
in the problem. Since each section can be controlled by more than one team,
in some cases a simple permutation of the tours of two teams can resolve a
rotation without changing the profit value. As an example see two teams
t1 and t2 that both can control on sections s1 and s2. We are given a plan
with two rotations, for t1 on Monday at 7am on section s1 and on Tuesday
at 10am again s1. For t2 on Monday at 10am and on Tuesday at 7am on s2
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on both days. The schedule on Tuesday is now changed as follows: team t1
controls from 7am s2 and team t2 from 10am s1. Then the profit remains the
same, but two rotations are resolved.

A value λ > 0.1 again reduces the number of rotations until λ = 0.5,
where the number of rotations equals zero. Indeed the profit value is de-
creasing when the weight factor for the rotation penalties increases but the
loss is very small. It is approximately as high as the profit of a tour where
sections are controlled during a time horizon when the traffic volume is rather
low. Another interesting case is λ = 1, where no profit value is considered for
the toll enforcement. The resulting profit value in the solution, i.e., the value
that is assigned to nodes on solution paths in the tour planning graph, can
be arbitrary bad, since there is no incentive for the model to control sections
with high traffic more than those with low traffic. In this case it was only
238963.

The benefit of using the weighted-sum approach is stated by the following
Lemma. Although the general result is well-known [13], we give a short proof
applied to the TEP for the sake of completeness.

Lemma 1 (Weak Pareto-optimal solutions). We are given a TEP instance in
the integrated IP formulation, but with the weighted objective (7) depending
on the parameter λ. We call this problem TEP(λ). Then ∀λ ∈ [0, 1] an
optimal solution (x∗, z∗) of the TEP(λ) is weak Pareto-optimal.

Proof. Let (x∗, z∗) be an optimal solution of the TEP(λ). Assume this solu-
tion is not weak Pareto-optimal. Hence, there exists another solution (x̃, z̃)
with both ∑

p∈P

wpz̃p >
∑

p∈P

wpz
∗

p

and ∑

m∈M

∑

(u,v)∈Ã

c(u,v)x̃
m
(uv) >

∑

m∈M

∑

(u,v)∈Ã

c(u,v)(x
∗)m(uv).

There, we replaced the subtraction in the objective by a sum by setting
c(u,v) < 0, ∀(u, v) ∈ Ã. Then it follows that

(1− λ)
∑

p∈P

wpz
∗

p + λ
∑

m∈M

∑

(u,v)∈Ã

c(u,v)(x
∗)m(uv) <

(1− λ)
∑

p∈P

wpz̃p + λ
∑

m∈M

∑

(u,v)∈Ã

c(u,v)x̃
m
(uv).
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But this is a contradiction to the condition that (x∗, z∗) is an optimal solution
of the TEP(λ)

The proof shows also, why it is important to consider only the weak
Pareto-optimality condition. Namely, in the case of λ = 0 we discussed that
a simple permutation of duties between two teams can reduce the number of
rotations without changing the control profit. If we denote our optimal solu-
tion again by x∗ and the permutated by x̃, it holds that f1(x

∗) =
∑
p∈P

wpz
∗

p =
∑
p∈P

wpx̃p = f1(x̃) but f2(x
∗) < f2(x̃). The same holds for the case of λ = 1

by exchanging f1 and f2 in the equations of the previous sentence. This
violates the condition of (non-weak) Pareto-optimality. Hence, one can state
the following Proposition:

Lemma 2 (Pareto-optimal solutions). We are given a TEP(λ) instance.
Then ∀λ ∈ (0, 1) an optimal solution (x∗, z∗) of the TEP(λ) is Pareto-
optimal.

Proof. Let again (x∗, z∗) be an optimal solution of the TEP(λ). Assume this
solution is not Pareto-optimal. Hence, there exists another solution (x̃, z̃)
with w.l.o.g. ∑

p∈P

wpz̃p >
∑

p∈P

wpz
∗

p

and ∑

m∈M

∑

(u,v)∈Ã

c(u,v)x̃
m
(uv) =

∑

m∈M

∑

(u,v)∈Ã

c(u,v)(x
∗)m(uv).

Since (1− λ) > 0 it follows that

(1− λ)
∑

p∈P

wpz
∗

p + λ
∑

m∈M

∑

(u,v)∈Ã

c(u,v)(x
∗)m(uv) <

(1− λ)
∑

p∈P

wpz̃p + λ
∑

m∈M

∑

(u,v)∈Ã

c(u,v)(x
∗)m(uv) =

(1− λ)
∑

p∈P

wpz̃p + λ
∑

m∈M

∑

(u,v)∈Ã

c(u,v)x̃
m
(uv)

But this is a contradiction to the condition that (x∗, z∗) is an optimal solution
of the TEP(λ). The case, that

∑
m∈M

∑

(u,v)∈Ã

c(u,v)x̃
m
(uv) >

∑
m∈M

∑

(u,v)∈Ã

c(u,v)(x
∗)m(uv)

can be shown analogously.
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There remains an interesting question if a rotation free plan can be
achieved without a big loss of the profit. The results of our test above
indicate this. We tried to verify that this result was not an exceptional case.
For this purpose, four other real world instances from control area r1 were
tested with regard to the influence of rotation penalties on the control reward.
The control profit value of two parameter settings was compared. First, a
setting without rotation penalties was used, i.e., λ = 0. In this setting any
number of rotations can be part of the solution. The only focus lies on the
control rewards. Second, we used a setting where the penalties lead to an
optimal solution without any rotations, e.g., λ = 0.6 in our previous exam-
ple. The solutions in the second setting with no rotations never had a loss
of more than 0.8% of the control profit achieved by the first setting. That
means introducing strong penalty factors for forward and backward rotations
causes only a small decrease in the control profit. Hence, we can conclude
that computing employee-friendly plans without rotations does not lead to a
significantly worse control.

6 Results from the Pilot and Roll-Out in Ger-

many

We implemented our model and algorithm in a computer program, called
TC-OPT, which has an interface to the commercial planning suite IVU.plan
since release 11.2 from the IVU Traffic Technologies AG. In 2012 we started
a pilot operation for two control areas in Germany where the planners at
the BAG used our algorithm and tool to compute control plans. From those
successfull real world tests we choose six representative instances. In the
following we analyse the performance of TC-OPT for those instances. The
two control areas, called regions in the following, that are denoted by r1 and
r2. All instances are based on a time discretization of ∆ = 4h.

Table 1 includes the description of all six test instances with respect to
their input size and the size of the integrated IP formulations. We used
a set of standard (legal) rules, like minimum rest times or working time
regulations. The reason for the different number of sections in region r1 is
that in 2012 the toll was extended to several main roads. To control those
new network parts new sections were generated. Furthermore, the instances
differ partly according to the number of duty types. Even if some input
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Instance Inspectors Duty Types Sections IP Rows IP Columns

r1-may 21 6 17 7738 96526
r1-july 21 6 17 9650 152541
r1-dec 22 4 22 8010 101791
r1-june 21 6 17 10498 230502
r2-nov 23 6 24 13252 314042
r2-sept 23 8 24 15417 402285

Table 1: Testset: Description of input data and problem sizes.

parameter - like the number of inspectors or the number of sections - seem
to be very similar, there is a broad variation in the number of columns. That
means, the number of tours and duty sequence arcs differs a lot among the
instances.

An important reason for this observation is the very different number of
absences of inspectors in the planning horizon due to holidays or diseases
among the instances. Another reason is that on some days duties must not
be scheduled for a couple of inspectors since there are pre-assigned duties like
staff briefings or stationary controls. Therefore, a higher number of absences
and duties descreases the number of variables in the IP model and the degree
of freedom for the planning of tours is lower. In constrast to that an increased
number of duty types, as for r2-sept, leads to a higher degree of freedom. The
instance r1-may was used for the analysis of the Pareto frontier in Section 5.
All computations were done on a Dell Power Edge M620 computer with an
8-core Intel Xeon CPU with 2,70 GHz and SUSE Linux 12.4 as operating
system. The memory limit for the solution tree was 40 GB. Furthermore,
there was a time limit of 6 hours (= 21600 seconds) for each instance. As
an IP Solver CPLEX 12.5 by IBM with the default parameter setting was
applied by using up to eight threads.

Table 2 presents a solution analysis. The main result is that we were able
to compute high quality solutions for all instances which can be implemented
in real world. The 2nd column displays the solution time for the root LP
relaxation. There is a broad variability from 6 to 100 seconds. The ordering
of the solution time corresponds in most cases to the ordering of the number
of columns, so it can be concluded that an increasing number of columns
very often leads to an increasing root relaxation solution time. In column
three and four the time and the resulting gap of the first primal solutions
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Instance time(lp) time(1st) gap (1st) gap total time
[sec.] [sec.] (%) (%) [sec.]

r1-may 6.76 80 2.13 - 918.19
r1-july 17.48 75 inf. - 4041.95
r1-dec 7.56 80 inf. - 12978.98
r1-june 32.43 500 3.63 0.34 21600.00
r2-nov 99.95 8800 5.28 2.86 21600.00
r2-sept 98.86 12500 5.61 1.31 21600.00

Table 2: IP-Solution analysis for all instances: The solution time of the root LP
is denoted by time(lp). The column “time(1st)” indicates when the first primal
solution was found while “total time” gives the overall solution time. The column
“gap” shows the final solution gap and “gap(1st)” the gap when the first primal
bound was found.

are given. The instances r1-july and r1-dec have the value infinity for the
first integrality gap, since the objective value was negative in both cases.
Although the quality of the first solutions was very poor, for both instances
it took less than eight minutes of the total solution time until a solution
was found where the resulting integrality gap was less than 9%. The easiest
instance r1-may has found a feasible solution when the most difficult instance
r2-sept was still at the stage of solving the root LP. Again there is a broad
range of values between 75 seconds and three and a half hours. For several
instances the quality of the first solution is quite good since the maximum
integrality gap is below 6%. And for those whose first solution is not so
good, we explained above that a solution of similar quality can be found
very quickly. After 10 minutes at least one integer feasible solution was
found for all instances from region r1.

The columns five and six present information obtained at the end of the
algorithm, the final gap and the overall solution time. We point out that
three instances, r1-may, r1-july and r1-dec, can be solved to optimality. The
first two even very fast, namely after 16 minutes and after 68 minutes. In
many IPs the final optimal solution is found quickly and most of the time
is used to close the final gap. But in our tests, this is not the case. Here,
for r1-july and r1-dec it was about one third of the total time to proove the
final solution as optimal. All other instances reached the time limit of 6
hours. The fourth instance from region r1 achieved a final gap of less than
1% and therefore it is almost solved to optimality. The gap of the instances
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from region r2 is significantly higher but the solutions still have a very good
quality. It is a general observation that the r2 instances are more difficult
to solve. Partially this could be explained by the different number of duty
types, inspectors and sections. But maybe there are also characteristics in
the assignment of inspectors to sections, in the traffic distribution of r2 or in
the temporal distribution of duty types such that it is more difficult to find
feasible solutions and to close the gap by the LP bound.

Therefore, after the succesfull “reality-test” in 2012, the use of our al-
gorithm was extended in 2013 to additional regions as part of an extensive
Roll-Out project. The goal of the BAG and the Roll-Out project is that in
2014 all control regions in Germany will be planned by using mathematical
optimization. Hence, we can proudly conclude that our mathematical opti-
mization approach gained acceptance in practice. This is the first time that
toll enforcement tours and duties are planned by a integrated optimization
approach. Our approach supports the planners to achieve a better quality of
control plans by using state of the art mathematical optimization techniques.
This makes their daily work easier, more transparent, more objective, and
most of all more efficient.

7 Conclusion and Future Research

In this paper we presented a special type of an integrated Vehicle Routing
Problem, the Toll Enforcement Problem, that is used to compute optimal
tours and inspector rosters for the truck toll on German motorways. We
shortly presented graph models for the tour planning and the rostering of
the crews. They are sufficiently general that they can be used to deal with
other inspection problems, like police, security or ticket inspections. One
main focus was the description of typical requirements and legal rules for the
crew rostering. In many cases these conditions can be satisfied according to
an appropriate local modeling in the roster graph. Therefore no constraints
were needed in the IP formulation to guarantee compliance of those rules.
This results in a strong graph formulation, reducing the IP complexity and
leading to a compact integrated problem formulation. That is one important
reason for the good performance of our approach.

Another focus was the analysis of the bicriterion character of our problem
since the integration of rostering leads to two different objective functions.
But fortunately our tests showed no conflict between an efficient control
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and an employee-friendly crew rostering. On the contrary, we were able to
provide solutions without rotation costs at the expense of a hardly smaller
control quality. Finally computational results from real world instances were
presented. They show that our graph-theoretic model and algorithmic ap-
proach is indeed able to solve the instances quite fast and achieves a very
good solution quality. Our approach enables us to use the rostering part
in an integrated model, which is still computational tractable. Therefore,
we can conclude that with our model and in particular with the approach
of omitting infeasible duty sequences during the construction of the roster
graph it is possible to tackle this challenging real-world problem.

An outline for future research could be three main aspects: First, addi-
tional regulations can be added, e.g., introducing individual upper bounds
on late, night or weekend duties. Another issue is to increase the simulta-
neous number of duty types used during one computation. Second, it is an
important research direction to decrease the problem complexity, e.g., by a
dynamic generation of control tours or duty rosters. In addition, advanced
problem specific algorithmic approaches like heuristics, multi-level algorithms
or branch and price should be developed. The third aspect is the integration
of our game-theoretic approach [1] in the TEP and of course the transfer of
our model to other inspection applications.
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