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We study dynamic induction control for mitigating the wake losses of a pair of inline wind turbines.

In order to explore control strategies that account for unsteady interactions with the flow, we employ

optimal control and adjoint-based optimization in combination with large-eddy simulations. The

turbines are represented with an actuator line model. We consider a simple uniform inflow case with

two NREL 5 MW turbines spaced 5 diameters apart and find that optimal control leads to 25% gains

compared to standard Maximum-Power-Point Tracking (MPPT). It is further found that only the

control dynamics of the first turbine are changed, improving wake mixing, while the second turbine

controller remains close to the MPPT control. We further synthesize the optimal generator torque and

blade pitch controls of the first turbine into a signal that can be periodically used as an open-loop

controller, with a Strouhal number of 0.38, while realizing the same gains as the original optimal

control signal. Further analysis of the improved wake mixing resulting from the open-loop signal

reveals periodic shedding of a three-vortex ring system, which interacts and merges downstream

of the first turbine, increasing entrainment of high-speed momentum into the wake. The sensitivity

of the open-loop signal to inlet turbulence levels and turbine spacing is also investigated. At low

to medium turbulence levels, the control remains effective, while at higher levels, the coherence

of the vortex rings degrades too fast for them to remain effective. Published by AIP Publishing.

https://doi.org/10.1063/1.5038600

I. INTRODUCTION

An important challenge in wind farms is the efficiency

loss induced by turbine wakes on downstream turbines. In

various operational wind farms, and depending on the farm

layout and the wind direction, losses as much as 60% have

been reported in individual turbines compared to front-row

turbines.1–3 These findings have also been supported by sev-

eral Large-Eddy Simulation (LES) studies.4–7 The problem is

inherent to the existence of turbine wakes and cannot be com-

pletely avoided unless there is more than 15–20 rotor diameters

of distance between the wind turbines so that wakes can com-

pletely recover due to turbulent mixing. However, in large

wind farms, this is economically not interesting, as the spacing

between turbines is dictated by other aspects such as site devel-

opment cost, cabling costs, etc.6,8 Active control strategies that

take wake interaction into account may play a key role in mit-

igating power losses due to turbine wakes, thus decreasing the

levelized cost of energy in wind farms.

At below-rated wind speeds, the conventional approach

in wind-turbine control (also standardly used for turbines in a

farm) is based on maintaining the peak aerodynamic efficiency

for each turbine individually. At above-rated wind speeds, tur-

bines operate at rated power and adapt their aerodynamic effi-

ciency by blade pitch to maintain a constant rotational speed.

In wind farms, the latter regime is not amenable for further

power optimization, as turbines are already at their maximum

output, but in the former regime, it may be beneficial to take

a)E-mail: aliemre.yilmaz@kuleuven.be
b)E-mail: johan.meyers@kuleuven.be

wake interaction into account and coordinate the control of the

turbines in the farm.

In the past, numerous studies have attempted to develop

coordinated control strategies for wind farms—most of them

have focused on static approaches. One of the earliest stud-

ies in this direction was performed by Steinbuch et al.9 They

focussed on statically downrating the first rows of a farm,

reducing their wake strength, and increasing energy extrac-

tion in downstream turbines, with the overall aim to real-

ize a net positive balance in energy extraction. This type

of control approach is often called axial induction con-

trol. However, recent research based on high-fidelity LES,

as well as wind-tunnel experiments, has revealed that static

axial induction control provides minor benefits at best.10,11

Earlier positive results are now attributed to the use of

wake engineering models that were not sufficiently sophis-

ticated to properly capture the relevant physics of wake

mixing.10 Another static approach to optimizing wind-farm

power extraction is based on wake redirection using the tur-

bine yaw angle. In contrast to static induction control, this

approach has been shown to be successful both in LES and in

experiments.12–14

The use of wind-farm control in which turbine con-

trols interact dynamically with the turbulent background flow

in the wind-farm boundary layer with the aim to increase

power extraction is much less studied. First work in this

direction was presented by Goit and Meyers.15 They used

optimal control based on LES to optimize the interaction

between dynamic turbine induction control and a fully devel-

oped wind-farm boundary layer. Later, the approach was

extended to wind farms with entrance effects,16,17 with
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power gains up to 20%, depending on control speed and

constraints on the maximum induction.17 Very recently,

dynamic yaw control was also considered based on the same

methodology.18

The above work on optimal dynamic induction control of

wind farms15–17 has focused on the use of LES as a control

model so that the detailed turbulence physics of wake mix-

ing and interaction with the boundary layer are accounted for

when optimizing the controls. The main rationale behind these

studies did not envisage the use of LES as a real-time control

model (which is computationally not feasible), but rather used

the approach to explore new physical mechanisms that can be

used to improve wind-farm energy extraction. For instance,

one of the salient features found in optimal dynamic induc-

tion control of wind farms is the excitation of vortex rings

behind the first-row turbines, which increase wake mixing and

downstream power output.19 However, these findings are all

based on LES using an actuator disk model (ADM) as a tur-

bine model, controlling the disk-based thrust coefficient of

each individual turbine in the LES. Given current-day com-

putational resources, this is unavoidable when considering

coordinated control of wind farms in LES. Nevertheless, the

use of an ADM simplifies the representation of turbulence

in the near wake. Moreover, even though disk-based thrust

coefficients in ADM are indirectly related to generator torque

and blade-pitch set points, it remains a simplified representa-

tion that does not include the full degrees of freedom nor the

limitations of real turbine control. Therefore, in the current

work, we focus on the use of LES-based optimal control in

combination with an actuator line model (ALM). Moreover,

instead of performing optimal control of an entire wind farm,

we study a two-turbine setup with uniform inflow conditions

so that the simulation resolution can be sufficiently refined to

warrant the use of an ALM. Similar to earlier results using an

ADM,19 we find that optimal control with an ALM leads to the

excitation of vortex rings in the wake of the leading turbine,

resulting in better wake mixing. However, the finer resolution

and improved model highlight different features related to the

vortex dynamics and pairing. Moreover, based on our results,

we identify simple open-loop control signals that reproduce

these features and can be straightforwardly tracked by means

of a conventional control.

The paper is organized as follows. Section II introduces

the LES-based optimal control methodology. Subsequently,

the computational setup and scope of the current study are

presented in Sec. III. Results are discussed in Sec. IV, and

conclusions are presented in Sec. V.

II. METHODOLOGY

First, in Sec. II A, we present the receding-horizon

optimal-control framework that we use in the current work.

Next, in Sec. II B, the forward simulation system is pre-

sented, corresponding to large-eddy simulations of a set of

wind turbines using ALM. The optimal control problem is sub-

sequently formulated in Sec. II C, including the formulation

of the adjoint equations. Finally, in Sec. II D, some imple-

mentation details related to the adjoint time integration are

discussed.

A. Receding horizon optimal control framework

Similar to earlier work on optimal control in wind-farm

LES,15–17 we use a receding-horizon framework to optimize

the interactions between the wind-turbine controls and the

turbulent flow. The concept is illustrated in Fig. 1.

First of all, we define an optimal control time horizon T.

Next, at simulation time t = 0, we optimize the turbine controls

(generator torques and blade pitch angles) over the time hori-

zon T given the full interaction with the turbulent flow during

this time horizon. This requires the solution of a large optimiza-

tion problem, with multiple large-eddy simulations and adjoint

large-eddy simulations as further described in Sec. II C. On

average, this optimization requires N s = 60 simulations (LES

or adjoint LES)—see Sec. III for details of the computational

setup.

Once this optimization problem is solved, the optimal con-

trols are used to advance the system in time, but only for a time

window TA < T, so that optimization finite-horizon-effects

are truncated from the controls. (Finite-horizon-effects are

explained in Appendix C.) We now arrive at t = TA and start a

new optimization problem over the time window [TA, TA + T ],

and so on. Thus, overall, this receding horizon approach is

N s ∗ T /TA times more expensive than a standard large-eddy

simulation with wind turbines.

It is best to keep the length of the optimization time

horizon T as long as possible so that the wind turbines have

plenty of time to interact. However, in practice, T is limited

by the accuracy of the adjoint-based gradient, which diverges

for too long time horizons (see, e.g., Refs. 20–22 for a theo-

retical background). Therefore, we select T sufficiently long

for our purposes (see Appendix C for an evaluation of our

gradient accuracy). Next to this, the ratio TA/T should be

selected as low as possible to guarantee a smooth transition

between optimal control signals of successive optimization

windows. Nevertheless, the total computational cost scales

with T /TA. In earlier optimal-control studies in turbulence

resolving simulations, TA = T (e.g., Ref. 23) and TA = T /2

(e.g., Refs. 23 and 15) have been typically used. Recently,

in Ref. 17, it was shown that TA = T /4 results in a much

smoother transition between the control signals compared to

TA = T /2. In view of these, in the current study, we use TA = T /3

as a trade-off between signal smoothness and computational

cost.

FIG. 1. Receding horizon control.
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B. Forward system

The forward LES simulations are performed in SP-

Wind,24 an in-house pseudo-spectral Navier-Stokes (NS)

solver. The governing equations are based on the filtered NS

equations for incompressible flow, i.e.,

∇ · ũ = 0, (1a)

∂ũ

∂t
+ ũ · ∇ũ = −

1

ρ
∇p̃ − ∇ · τ + f , (1b)

where ũ = [̃u1, ũ2, ũ3] is the velocity, p̃ is the pressure, τ is

the subgrid scale stress, and f the wind turbine forces that are

modeled using an ALM model (see below). Similar to earlier

work on optimal control of wind farms, we use a standard

Smagorinsky model to model the subgrid-scale stresses so that

τ = −2(Cs∆)2(2S : S)1/2S, (2)

with the rate-of-strain tensor S = (∇ũ + (∇ũ)T )/2, the grid

spacing ∆ = (∆1∆2∆3)1/3, and where we take25,26 Cs = 0.14.

Further details on boundary conditions and the case setup

are discussed in Sec. III, while discretization is discussed in

Sec. II D.

The turbine forces f are modeled using an ALM, follow-

ing Ref. 27 and many studies since then. These represent the

forces by turbines on the flow, and contributions are assembled

over the different turbines and blades so that f =
∑Nt

i=1

∑Nb

j=1
f ij,

with f ij being the force coming from blade j of turbine i and N t

and Nb being the number of turbines and blades per turbine,

respectively. In our current study, Nb = 3, and N t = 2.

In order to calculate the blade forces f ij, it is assumed

that the blades can be represented by lifting lines. Along these

lines, lift and drag forces are obtained using the local relative

velocity, and using tabulated values for lift and drag coeffi-

cients. This results in blade section forces Fij(µ, θi) along

the blade span, with µ = r/R (0 ≤ µ ≤ 1) being a scalar that

parametrizes the blade along its span (see below for expres-

sions of Fij), R being the radius of the rotor, and θi(t) being the

position angle of the turbine rotor. The concept is illustrated in

Fig. 2. Note that we presume that the rotor is always perpendic-

ular to the x1-direction and that the blades can be parametrized

with straight actuator lines. Its coordinates are given by

xij(θi, µ) = [xi
1
, xi

2
+ Rµ cos(θi + ∆θj), xi

3
+ Rµ sin(θi + ∆θj)],

FIG. 2. Actuator line model. Outline of the main approach and relevant

parameters.

with xi being the coordinates of the hub of turbine i, R being

the radius, and ∆θj = (j − 1)2π/Nb being the angle offset of

blade j.

The forces f ij on the flow are obtained by filtering the

blade section forces using a three-dimensional Gaussian filter,

leading to

f ij(x, t) = −

∫ 1

0

G(x − xij(µ))Fij(µ, θi(t)) dµ, (3)

where

G(x) =
(6/π)3/2

ǫ1ǫ2ǫ3

exp*,−6*,
x2

1

ǫ2
1

+
x2

2

ǫ2
2

+
x2

3

ǫ2
3

+-+- (4)

is the Gaussian filter kernel, with ǫk being the directional filter

widths.

The force Fij per unit span and per unit density is further

expressed using standard blade-element theory as28

F
ij

1
= qij

(

Cl cosψij + Cd sinψij
)

c(µ),

F
ij

2
= −qij

(

Cl sinψij − Cd cosψij
)

c(µ) sin(θi + ∆θj),

F
ij

3
= qij

(

Cl sinψij − Cd cosψij
)

c(µ) cos(θi + ∆θj),

(5)

where qij
= [(v

ij

1
)2 + (ωiRµ − v

ij

θ
)2]/2 and v

ij

1
and

v
ij

θ
= −v ij

2
sin(θ) + v

ij

3
cos(θ) are the local axial and tangen-

tial velocity on the blade, respectively. Note that they depend

on µ and θi + ∆θj, which we have dropped from the nota-

tion for simplicity. Furthermore, c(µ) is the blade chord,

ψij
= arctan(v

ij

1
/(ωiRµ − v

ij

θ
)) is the flow angle, and Cl and

Cd are the lift and drag coefficients of the blade profile along

the span. They depend on the location µ and on the local angle

of attack αij = ψij − ς − βi, where ς(µ) is the twist angle, and

βi(t) is the collective blade pitch angle of turbine i (which is

a control parameter).

The ALM velocities 3 on the lifting line are obtained

by interpolating the LES velocity ũ. To this end, a linear

interpolation is applied, which corresponds in kernel notation

to

3
ij(µ, θi(t)) =

∫
H(x − xij(θi, µ))̃u(x, t) dx, (6)

with H(x) =
∏3

k=1
Hk(xk) and

Hk(x) = max

(

1 −
|x |

∆k

, 0

)

, (7)

where we use the LES grid spacing for ∆k . Note that the par-

ticular choice of convolution notation we use here is for ease

of derivation of the adjoint equations (see Appendix A).

Finally, the rotor position and rotor dynamics are given

by

dθ

dt
= ω(t), (8)

J
dω

dt
= Ta(t) − Tg(t), (9)

with θ = [θ1, . . . , θNt ] and ω = [ω1, . . . ,ωNt ] vectors con-

taining the rotor positions and rotational speeds of all turbines.

Furthermore, J is the turbine inertia (presumed the same for
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all turbines), Tg(t) = [T1
g , . . . , T

Nt
g ] is a vector with all gen-

erator torques of the turbines (which are control parameters),

and Ta = [T1
a , . . . , T

Nt
a ] is the vector with all aerodynami-

cal torques generated by the turbine blades. The latter follows

from T i
a = ∫

1
0

∑Nb

j=1
T

ij
a dµ, with

T
ij
a = qij

(

Cl sinψij − Cd cosψij
)

c(µ)R µ (10)

being the blade section torques per unit span and per unit den-

sity. For the verification of the implemented ALM, the reader

is referred to Ref. 52.

The above turbine model has two control inputs per tur-

bine, which are the generator torque T i
g(t) and collective pitch

angle βi(t). In Sec. II C, we will present the optimal control

problem that we use to optimize these controls. However as a

point of reference, we will also consider a standard maximum

power-point tracking (MPPT) region-2 controller. It keeps the

pitch angle at the optimal design setting and regulates the

generator torque using29

T i
g = Kω2

i , with K =
1

2
ρπR5

C∗p

λ3
∗

, (11)

where C∗p and λ∗ are the optimal design power coefficient and

design tip speed ratio, respectively, which we take the same for

all turbines. For the NREL-5 MW turbine used in the current

study,30 the optimal control setting in region-2 reads K = 2.17

× 106 kg m2 and β = 0◦ based on the classical blade element

momentum theory. However, when coupling the ALM with a

Navier-Stokes solver, these values depend on the filter width

used for the filtering of the ALM forces.31,32 For the grid res-

olution and filter width used in the current study, the optimal

value of K is found to be 2.02 × 106 kg m2. Similarly, the

optimal blade pitch angle is found to be β = −1◦. These values

are employed for the reference MPPT simulations.

C. Optimization problem and continuous
adjoint equations

As discussed in Sec. II A, we employ a moving horizon

optimal control framework to optimize T i
g(t) and βi(t) over

a time horizon [0, T ]. For the sake of compact notation, we

assemble all controls in one control vector ϕ = [Tg(t), β(t)],

with Tg(t) defined above and β = [β1(t), . . . , βNt (t)].

The cost functional that we use in the optimization

problem corresponds to

J(ϕ, q) =

∫ T

0

−Tg(t) · ω(t) dt

+

∫ T

0

Nt
∑

i=1

(

γ1

[

max
(

0,ωi(t) − ω
max)]2

+ γ2

[
max

(

0,ωmin − ωi(t)
)]2

)

dt, (12)

where for ease of notation we assembled all state vari-

ables coming from Eqs. (1), (8), and (9) into one vector

q = [̃u(x, t), p(x, t), θ(t),ω(t)]. The above cost function max-

imizes power extraction in the farm but adds two additional

penalty terms scaled with constants γ1 and γ2. These intro-

duce soft constraints on the rotational speed, which are related

to the state variables, and are as such difficult and expensive

to add as hard constraints in the optimization problem. We

employ ωmax = 12.1 rpm in accordance with the limits on

the NREL-5 MW turbine. Moreover, ωmin = 0 to prevent the

rotor from switching to fan mode. Furthermore, we use values

γ1 = γ2 = 109 so that the penalization terms attain values on a

similar order of magnitude with the produced power for slight

violations of the constraints. In practice, we observe that the

rotational-speed constraints are almost never violated in our

optimal control results.

Given the above cost functional and the state equations

presented in Sec. II B, we arrive at the following optimiza-

tion problem, which we formulate directly in its reduced

formulation (see, e.g., Refs. 33 and 15):

min
ϕ

J̃(ϕ) ≡J(ϕ, q(ϕ)),

s.t.

βmin 6 βi(t) 6 βmax for i = 1 · · ·Nt ,

Tmin 6 T i
g 6 Tmax for i = 1 · · ·Nt .

(13)

Here, q(ϕ) corresponds to the solution of the state equations

given the controls ϕ. Thus during optimization, the state equa-

tions are satisfied at every step, while we iterate on ϕ to find

the optimal controls.

To solve the optimization problem (13), we use a Limited-

memory Broyden–Fletcher–Goldfarb–Shanno method for

Bound-constrained optimization (L-BFGS-B),34 similar to

earlier work in Ref. 17. L-BFGS-B is a gradient based quasi-

Newton method, which estimates an approximation to the

true Hessian of the optimization problem by using a BFGS

updating scheme and employs a gradient projection technique

to handle simple box-constraints.34 The method is gradient

based and thus requires the gradient of the cost functional

∇J̃ = [∇J̃β ,∇J̃T ] (with ∇J̃β and ∇J̃T being the gradient

of the cost functional toward the controls β, and Tg, respec-

tively). Before using the gradient in the L-BFGS-B method,

we first apply a preconditioning. We observe that ∇J̃β is on

average eight orders of magnitude larger than ∇J̃T , and there-

fore, we scale ∇J̃β by a factor of 10−8. Note that such a

scaling would not be necessary in an exact Newton method,

but we found it to be necessary here as the BFGS method

estimates the Hessian based on a limited history of past gra-

dients only, and without this scaling, optimal control results

would not include any generator torque action within the lim-

ited number of iterations that we can afford in the optimization

method.

The gradient of the cost function ∇J̃ = [∇J̃β ,∇J̃T ] is

obtained using an adjoint method. This allows the calculation

of the gradient at the cost of one additional set of partial differ-

ential equations (the adjoint or backward system) with a similar

computation cost as the forward system. Detailed derivations

are provided in Appendix A. We find the gradient as

∇J̃β =

∑

j

1i

∫ 1

0

dFij

dβi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ−
1

J

dTa

dβ
χ,

(14)

∇J̃T = −ω + χ/J . (15)
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The Jacobians dFij/dβi and dTa/dβ are further elaborated in

Appendix A. Furthermore, ξ and χ follow from the solution

of the adjoint equations.

For the derivation of the adjoint equations, we use a con-

tinuous approach. Detailed derivations of the equations are

provided in Appendix A, leading to

∇ · ξ = 0, (16)

−
∂ξ

∂t
− ũ · ∇ξ + (∇ũ)T ξ −

1

ρ
∇π + ∇ · τ∗ + f ∗ = 0, (17)

−
dχ

dt
− (T + Υ) −

1

J

dTa

dω
χ +

∑

j

1i

∫ 1

0

dFij

dωi

·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ = 0, (18)

−
dΥ

dt
−

1

J

dTa

dθ
χ +

∑

i,j

∫ 1

0

dFij

dθi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ

+
∑

i,j

∫ 1

0

Fij ·

(∫
Ω

dG(x − xij(µ))

dθi
ξ dx

)

dµ = 0, (19)

whereT = Tg−2γ1 max [0,ω − ωmax]+2γ2 max [0,ωmin − ω].

These equations need to be integrated backward in time, with

terminal conditions ξ(T ) = 0, χ(T ) = 0, andΥ(T ) = 0. Further-

more, τ∗ are the adjoint subgrid-scale stresses (see Ref. 15 for

details), and the adjoint ALM forces are given by

f ∗ =
∑

i,j

∫ 1

0

H(x − xij)

(

dFij

d3ij

)T

·

[∫
Ω

G(x − xij)ξ dx

]
−

1

J

dT
ij
a

d3ij
χi

 dµ. (20)

Further details, including expressions for the Jacobians

dTa/dω, dFij/dωi, etc., are provided in Appendix A.

D. Discretization and aspects of adjoint
time integration

Both the forward and adjoint equations are solved using

SP-Wind, which is an in-house large-eddy simulation and

optimization code developed at KU Leuven over the last

decade.15,17,35,36 The Navier–Stokes equations are discretized

using a pseudo-spectral Fourier method in horizontal planes,37

and a fourth-order energy conserving finite-difference method

is used in the vertical direction.38 Dealiasing is performed

using the 3/2 rule.37 The Poisson equation is solved using

a direct method, and time integration is performed with a

fourth-order four-stage Runge-Kutta method. In the axial

flow direction, non-periodic boundary conditions are imposed

using a fringe region method (see Ref. 39 for implementation

details).

The adjoint equations are solved using the same dis-

cretization techniques.15,17,36 During the adjoint simulation,

the solution of the forward equations around which adjoint

sensitivities are evaluated is required [see Eqs. (17)–(20)]. In

earlier studies,15,17,36 the forward velocity field was stored only

once every time step and kept constant over the four backward

Runge–Kutta stages. This reduces the required amount of disk

storage by a factor of four but leads to a first-order time error

between the forward and backward sensitivity. This has never

led to gradient accuracy issues in earlier studies (see, e.g.,

Refs. 36 and 40). However with the introduction of an ALM,

and the additional rotation and position equations of the turbine

rotor, we found that errors introduced in this way grow unac-

ceptably large, or adjoint simulations diverge. Therefore, in

the current study, we use a discrete-adjoint Runge–Kutta time

integration instead, of which the formulations can be found in

Appendix B.

Overall, for the optimal control case considered in the

current study (i.e., with T = 199.5 s, and using uniform non-

turbulent inflow conditions, see Sec. III A for further details),

we verified that the error between our adjoint gradient and

a simple finite-difference evaluation of the gradient (for a

few sensitivities only) remains below 10% (further details

are provided in Appendix C). Nevertheless, accuracy of the

gradient remains an issue when combining optimal control

with a turbulent inflow, requiring further algorithm develop-

ments and research in future work. In the current paper, we

restrict our optimal control simulation to one non-turbulent

inflow case (also in view of large computational cost) and

use results to synthesize simple open-loop control signals

that are subsequently also tested for different turbulent inflow

conditions.

III. COMPUTATIONAL SETUP

The optimal control study and all additional simulations

in the current work are considering two inline wind turbine

rotors placed in a rectangular domain as shown in Fig. 3. The

domain size is 14× 6× 6 in terms of rotor diameters. The rotor

model used is NREL-5 MW,30 with a diameter of 126 m. First,

in Sec. III A, details of the optimal-control case are defined.

Next in Sec. III B, additional simulation cases are defined,

which are later used for testing of optimal-control signals.

A. Optimal-control case setup

In the current manuscript, we consider one optimal control

case that focuses on the coordinated control of two turbines

with a 5D stream-wise separation. The rotors are represented

using an ALM (see Sec. II B).

The simulations are performed using two inline wind tur-

bine rotors placed in a rectangular domain as shown in Fig. 3.

The rotor model used is NREL-5 MW,30 with a diameter of

126 m. Each blade of the rotors is represented by 50 actuator

line points. The domain is discretized by an equidistant Carte-

sian mesh with 384 × 192 × 384 grid points. This leads to

approximately 31 LES grid points along the rotor diameter,

which is a moderately fine discretization resolution for ALM

simulations.44 The width of the force filter [i.e., ǫ1, ǫ2, ǫ3 in

Eq. (4)] is 2.5 times the cell size in the corresponding direc-

tion. For the time integration, we use a time step of 0.07 s,

which corresponds to a Courant–Friedrichs–Lewy number of

approximately 0.12.

The upstream rotor is placed three diameters downstream

of the inflow boundary in the axial flow direction. In the other

directions, both rotors are placed in the center of the domain. At

the inlet, a uniform inflow is imposed with a velocity of 8 m/s,
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FIG. 3. Simulation setup for the optimal control case. [In

the spanwise direction (x2), the boundary conditions are

periodic.]

which is well within the region-2 operation of the NREL-5 MW

turbine. The inlet conditions are implemented using a classi-

cal fringe-region technique in our pseudo-spectral method.45

In the spanwise direction, periodic boundary conditions are

employed, while in the vertical direction, symmetry condi-

tions are used. Before starting the optimal control, both rotors

are operated by the MPPT controller for roughly two domain

flow-through times so that the turbine wakes are fully devel-

oped. After this, we start the optimal control, which we indicate

with time t = 0.

In our receding horizon control, we use a time horizon

T = 199.5 s, which roughly corresponds to four to five rotor-

to-rotor advection times. We further employ TA = T /3 = 66.5 s

(see Sec. II A) and perform in total five consecutive optimal-

control time windows so that we arrive at a total optimal control

time of 332.5 s, which roughly corresponds to 1.5 domain

through-flow times (≈21 D/U∞).

In the first iteration of our first optimization window, we

initialize our controls ϕ in the L-BFGS-B algorithm by the

controls that we obtain by first simulating this time window

using the MPPT controller. In subsequent optimization win-

dows (two to five), we use the optimal controls obtained from

the previous window. However, instead of using the full signal

[0, T ], we repeat the first part [0, TA] three times, as we found

that it provides us with a better starting point.

During optimization, we do not formally converge the

controls, but rather terminate after the control updates start

to stagnate. This roughly corresponds to 25-30 L-BFGS-B

iterations and 55-65 PDE simulations (forward or adjoint)

per optimization window. In Fig. 4, the convergence history

is shown for the five optimization windows. During forward

simulations, the forward solution is stored to disk for use in

subsequent adjoint simulations, requiring 15TB of disk stor-

age. Forward and adjoint simulations are performed on 672

cores (24 nodes of Intel Broadwell, E5-2680v4), intercon-

nected with EDR Infiniband. The forward simulation of one

time window T takes approximately 105 min of wall time,

with an adjoint simulation taking roughly the same. In total,

the full optimal-control study over the five time horizons took

45 days of simulations.

B. Additional simulation cases

In Sec. IV, we synthesize the optimal control results

obtained using the case setup described above into simple

periodic control signals that can be straightforwardly applied

to a wind turbine without the need for feedback or model-

predictive control. We test these signals in an additional set of

simulation cases.

A first set of simulation cases simply repeats the uni-

form inflow setup described above, and a second set of cases

uses a turbulent inflow on the same grid. To this end, Mann

turbulence46 is added to the uniform inflow, generated using

the TuGen library.47 Three different turbulence intensities are

considered (1%, 5%, and 10%), as well as four different inte-

gral length scales (8 m, 15 m, 30 m, and 63 m). Moreover,

FIG. 4. Descent history of the cost function for

sub-windows.
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FIG. 5. Time averaged power gains for the optimization

windows (W1-5). T1 and T2 are the upstream and the

downstream wind turbines, respectively.

two different axial spacings between the rotors are considered,

i.e., 5D (same as the above) and 3D. Finally, we also perform

simulations on a grid that is twice refined in each direction,

i.e., with 768 × 384 × 768 grid points.

IV. RESULTS AND DISCUSSION

First, in Sec. IV A, the results from the optimal control

case with uniform inflow are discussed, showing significant

gains in energy extraction. Moreover, synthetic easy-to-use

open-loop control signals are identified for further testing.

Then, in Sec. IV B, we use the most performing signal to iden-

tify the flow physics that lead to increased energy extraction,

in particular, focusing on the vortex dynamics in the wake.

Subsequently, in Sec. IV C, we further apply the synthetic

control signal to various cases with turbulent inflow to check

its robustness and range of applicability. Finally, we conduct

a grid refinement study in Sec. IV D. Note that in the rest of

the text, T1 and T2 will be used for denoting the upstream and

the downstream rotors, respectively.

A. Optimal control with uniform inflow

Here, we consider optimal control of two turbines using

uniform inflow without any background perturbations. Sev-

eral simulation studies thus far have already investigated

turbine wake behavior for very low inflow turbulence intensi-

ties, focusing on near-wake behavior and tip-vortex dynam-

ics48–50 and showing that laminar-to-turbulence transition

in the wake is significantly delayed when background tur-

bulence is absent.51,52 Thus, we can expect significant wake

deficits at the second turbine, leading to low extraction effi-

ciency and allowing for plenty of margin for control opti-

mization. Moreover, as will be illustrated below, the clean

undisturbed inflow leads to well-structured optimal control

signals that can be easily reproduced. We should remark that

the atmospheric boundary layer is usually turbulent, and we

will test our control signals using turbulent inflow in Sec. IV C.

Nevertheless, low turbulence conditions can also occur, e.g.,

in situations with shallow atmospheric boundary layers, or in

the presence of stable stratification.

In Fig. 5, an overview is provided of the optimal control

gains per window and per turbine, compared to the standard

MPPT control. It is appreciated that the majority of the power

gain comes from T2, while there is no significant change in

generation of T1. We further see that in the first control window

the gain is negative. This is related to the start-up of the optimal

control and the transition from the MPPT to optimal control.

When averaging the gains of windows 2–5, we find an overall

gain of 20%. The overall gain in T2 is 190%.

In Fig. 6, we compare the control signals of the optimal

control cases and the MPPT control, and further also compare

power and rotational speed signals. First of all, looking at the

MPPT signals, we observe that there are no variations in the

controls of T1, as it experiences uniform inflow, while varia-

tions in T2 remain very moderate. Moreover, both for T1 and

T2, β = −1, as this is the MPPT set point for the pitch angle.

FIG. 6. Optimal control versus maximum power-point

tracking (MPPT) control for uniform inflow conditions.

Comparison of power (P), generator torque (Tg), blade

pitch angle (β), and rotational speed (ω) trajectories of

upstream (T1) and downstream (T2) wind turbines.
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FIG. 7. The minimal optimal control signals (S0) for T1 and their derivatives

(S1-S3) are shown in (a) and (b). The rotational speed trajectory in response to

S0 is plotted in (c). Control signals longer than 66.5 s are obtained by periodic

application of the above control signals.

When looking at the optimal control signals, we observe a lot

of activity, in particular, in T1. As we will further illustrate

below (see Sec. IV B), this leads to increased wake mixing

and higher velocities at T2. Both generator torque and pitch

are actuated in T1, and both signals repeat themselves per

control window. This is logical, since inflow is uniform, so no

adaptation to turbulent background fluctuations is necessary.

We finally observe that the pitch-control signal of T1 has a very

noisy high-frequency component. This is not a physically rel-

evant result, and as further shown, these high frequencies can

be filtered away without deteriorating the control effective-

ness. This noisiness is introduced in the optimization by the

relatively coarse LES mesh over which the blades rotate, lead-

ing to locally non-smooth interpolated inflow velocity at the

blades. Possible solutions to this problem may include differ-

ent smoothing and interpolation approaches in the ALM or the

use of Sobolev smoothing of the gradient (see, e.g., Ref. 53).

Both are topics of further research.

In Fig. 6, it is noticed that the power output of the optimally

controlled upstream rotor regularly attains levels greater than

that of the MPPT controlled counterpart. This is achieved by

using the energy stored in the inertia. Looking at Fig. 6, it

can be observed that the overshoots in the power production

are accompanied by an increase in the generator torque and a

decrease in the rotational speed. This is on average balanced at

other time instances by the opposite action, that is, a decrease

in generator torque and speedup of the rotor.

Looking at the optimal control of T2 in Fig. 6, we observe

much smoother control signals than for T1. The power is

periodically fluctuating, leading on average to a higher power

output for T2. This is accompanied by a torque control signal

that is in phase with the power fluctuations, while pitch is not

actuated. Likewise, the rotational speed is periodically fluctu-

ating, also in phase with the power signal. This behavior is the

result of a periodically varying inflow velocity at T2 that is

on average higher than for the uncoordinated case (see further

discussion below). The T2 controls simply keep the turbine at

its optimal tip-speed ratio given this velocity variation. In fact,

replacing the T2 controls in the optimal-control problem with

a MPPT strategy (for T2 only) leads to similar power gains.

We now further analyze the controls of T1 and derive four

simpler control strategies for more practical use. Since the opti-

mal controls of T1 are periodic and repetitive per window, we

start by taking the controls of the fifth window. Subsequently,

we remove the high-frequency components in the pitch con-

trol (cf. discussion above) by using a low-pass filter: to this

end, the smoothed signal has been constructed by using the

first seven harmonics of the original signal. For the sake of

consistency, the same is also applied to the generator torque

signal (although smoothing is not necessary). We denote these

control signals as S0 (see Fig. 7).

Looking at S0 in Fig. 7, it is observed that the control

amplitude gradually decreases toward the end of the time win-

dow. Moreover, in the last 25 s of the window, the impact on

the rotational speed of the optimal control case (also shown

in Fig. 7) is limited. We believe that this is related to finite

horizon effects: the later a T1 control action occurs in the opti-

mization time window, the less it can lead to power increases

in T2, and thus, the optimal controller gradually returns to a

greedy MPPT control strategy over the control time horizon.

Therefore, we construct additional signals by shortening the

S0 signal. To make the selection of these signals, we base

ourselves on the rotational speed behavior.

Looking at the rotational speed in Fig. 7 in the first 42 s,

a slowdown and speed-up is observed that is roughly anti-

symmetrical around 23.5 s and the average rotational speed.

Therefore, a signal S1 is selected that corresponds to the first

42 s of S0, cutting away the last 24.5 s. A third signal S2 is

constructed by further removing the first 5 s from S1, as control

action and rotational speed fluctuations are very limited in this

period. Finally, a last signal (S3) is constructed by taking the

first half of S2. This last signal does only contain the first

part of the antisymmetric rotational speed behavior mentioned

above.

From a physical point of view, periodic optimal con-

trol signals can be expected as the flow is uniform and time

invariant. Therefore, we periodically use these four control

FIG. 8. Time averaged power gains associated with four

different control signals (S0-S3) applied to the upstream

wind turbine (T1). In all cases, the downstream with tur-

bine (T2) is controlled with a maximum power point

tracking algorithm.
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FIG. 9. Generation history of the downstream wind turbine (T2) in the wake

of the upstream wind turbine (T1). T1 is controlled in five different ways:

Either one of the S0-S3 is applied, or the maximum power point tracking

(MPPT) algorithm is employed. In all cases, T2 is MPPT controlled.

signals in a set of simulations over a longer time horizon of

450 s so that we obtain accurate statistical averages on power

gains. For the second turbine, we simply use a MPPT con-

troller, as suggested by the optimal control behavior of T2.

Moreover, as a reference, we use the MPPT controller for both

turbines also simulated over the longer time horizon of 450 s.

Results on power gains relative to the standard MPPT

control are shown in Fig. 8. It is found that the signals S0, S1,

and S2 achieve significant total power gains over the MPPT

controller, reaching similar levels as previously observed for

the optimal controller. Overall, S1 performs best with a power

extraction that is even slightly higher than observed for the

optimal controller in Fig. 5. Remark that this difference is

statistically not significant in view of the relatively short time

horizons available for averaging in the optimal control case. It

is further observed in Fig. 8 that the signal S3 is not successful

at all, showing that the antisymmetric behavior in rotational

speed observed above is an essential feature of the control

mechanism.

The gains in T2 (which is controlled using a MPPT con-

troller) are further investigated by looking at the power his-

tory of T2 for the different control signals S0–S3 in Fig. 9.

Again it is appreciated that S3 is not effective, while the

other signals lead to a strongly increased power extraction that

periodically oscillates. Since the signals S0–S2 are all con-

structed by periodic repetition of basis signals with different

length, the excitation frequency of these cases is different and

corresponds to a Strouhal number of St = 0.237, St = 0.375,

and St = 0.426, respectively [with St = D/(τU∞) and τ being

the period of the control signals]. This is also clearly visible

in Fig. 9 when looking at the period of the power extraction

of T2.

Overall, the signal S1 performs best in terms of power

gains, as well as in terms of simplicity of the signal. In Sub-

section IV B, we investigate in more detail the wake field of

T1 associated with the periodic application of the control sig-

nal S1. Three periods of the S1 signal as well as its frequency

domain representation are given in Fig. 10. Remember that the

S1 signal is cut out from the S0 signal (see Fig. 7); hence, notice

that the overall signal is mildly discontinuous at the connec-

tion points. Next, in Sec. IV C, we investigate the robustness

of the results for different turbulent inflow conditions.

B. Visualization of control physics for signal S1

We now further investigate the simulation results for the

signal S1. To this end, we look at snapshots of the axial velocity

in the wake of T1 in Fig. 11(a). Moreover, in Fig. 11(b), the

kinetic energy Ek in the wake of T1 is shown as a function of

time, where

Ek(t) =

∫ 5D

0

∫ 2π

0

∫ R

0

1

2

(

ũ2
1 + ũ2

2 + ũ2
3

)

dx1dθdr. (21)

In Fig. 11, we start applying the signal S1 at t = 0. Before

this, the standard MPPT controller was used for T1, leading

to a strong wake behind T1 that impinges on T2. Note that

the flow remains largely laminar in the wake of T1 at t = 0.

Transition only starts around x = 3.5D, and the flow is fully

turbulent only in the wake of T2. This is clearly related to the

uniform unperturbed inflow conditions that are used in these

simulations. We remark that predicting the exact location of

the transition using LES is nontrivial and depends strongly

on the grid resolution (see below for a further grid sensitivity

study), as the initial transition happens at small scales in the

thin shear layer between the wake and free stream. In Sec. IV C,

we investigate turbulent inflows, for which wake transition is

not an issue.

Looking at the velocity field in subsequent snapshots in

Fig. 11, we observe that high speed flow is entrained into the

wake (cf. t = 50–112 s). The process starts with a perturbation

of the shear layer and continues with penetration of high-speed

flow into the inner core of the wake. Eventually, the high-speed

flow reaches the center of the wake, breaking up the wake.

FIG. 10. Time and frequency domain representations of

the S1 signal (left column: generator torque, right col-

umn: blade pitch). On the top row, three periods of the S1

signal is shown (horizontal dashed line: mean). On the

second and the third rows, the amplitudes and the phases

of the first five harmonics of the S1 signal are shown,

respectively.
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FIG. 11. (a) Axial velocity contours at four different time

instants of the wake evolution in response to the control

signal S1. (b) Spatially integrated kinetic energy Ek(t) in

the wake of T1 as a function of time (normalized by the

kinetic energy at t = 0 s).

As a result, three zones emerge: a low-speed zone attached

to T1, which can be considered as T1’s new shorter wake,

a detached low-speed zone farther downstream, and a high

speed zone in between. After the breakup of the wake, the

penetration of high-speed flow into the wake core continues.

This causes the detached zone to be pushed further down-

stream and slightly radially outward, while the advection of

the attached zone is retarded. As a result, the axial extent of

the high speed zone enlarges. Eventually, the high-speed zone

leads to increased energy extraction when it arrives at T2. The

periodic application of signal S1 leads to a periodic repetition

of this process, explaining the power signal observed for T2

in Fig. 9. This is further quantified in Fig. 11(b), showing the

spatially integrated kinetic energy in the wake of T1 as a func-

tion of time. It is observed that the energy in the wake starts to

increase drastically at t = 50 s, which corresponds to the onset

of high-speed flow penetration in Fig. 11(a). The energy in the

wake increases until t = 112 s, after which it starts oscillating

around a level which is approximately 1.8 times higher than

the initial state.

In Fig. 12 (Multimedia view), the vortex structures in

the wake of T1 controlled using signal S1 are visualized

using the Q criterion54 showing snapshots from t = 116 s to

t = 224 s, corresponding approximately to 2.5 periods of actu-

ation with signal S1. The axial velocity field is also shown

in color in the figure. We observe that T1’s wake is strongly

dominated by coherent vortex rings. This is different from

the classical helical tip vortex system that is observed in the

conventional operation of wind turbines,55 although a helical

tip-vortex system can still be observed close to the turbines in

some snapshots (see, e.g., at t = 224 s for T2).

We find that the successive application of signal S1 leads

to the emergence of three consecutive vortex rings over one

period, which we label with letters A, B, and C in Fig. 12

(Multimedia view). The wake energizing process is driven

by the strong mutual interaction between those three vortex

rings. The interaction resembles a typical leap-frogging phe-

nomenon, which is commonly observed between two coaxial

vortex rings, traveling in the same direction.56–58 Here, the

interaction occurs between three vortex rings. This can be

FIG. 12. Visualization of the coherent structures when

the upstream rotor is controlled using signal S1. In color:

axial velocity field. Vortex structures are visualized using

the Q-criterion, showing isosurfaces of Q = 0.01 s−2.

T1 and T2 mark the axial locations of the upstream and

the downstream wind turbines, respectively. Multimedia

view: https://doi.org/10.1063/1.5038600.1

https://doi.org/10.1063/1.5038600.1
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observed from 160 to 224 s: the leading vortex ring A shrinks

under the effect of the induced velocity field of ring B. More-

over, ring A decelerates because of the induced velocity field

by ring B, as well as its own self-induced velocity which is

increased due to shrinking. Meanwhile, ring B expands and

accelerates. Eventually, ring B overtakes ring A as seen at

t = 182 s. Subsequently, ring A is also overtaken by ring

C (t = 194 s), after which it merges with ring C into a larger

ring AC (t = 203 s). Finally, ring B now also shrinks under the

effect of the induced velocity field of ring AC, is subsequently

overtaken by ring AC (t = 203 s), and finally merges with AC

to form ring BAC (t = 210 s).

As observed in Fig. 12 (Multimedia view), the induced

velocity fields from rings A, B, and C and their merging lead

to strong entrainment of high-speed velocity in front of the

merged rings, explaining the observations in Fig. 11. The peri-

odic application of signal S1 leads to the periodic excitation of

such a three-vortex system, and this is also visible in Fig. 12

(Multimedia view) (t = 116 s), where three prior triples to the

BAC system are visible, with the two most downstream of

them already merged into single large vortices.

In Fig. 13, the blade pitch angle, the rotational speed, and

the disk-based thrust coefficient along with the vortex shedding

[cf. Fig. 12 (Multimedia view)] intervals are shown for a period

of the control signal. The thrust coefficient in the figure is based

on the rotor-averaged axial velocity (̃ud) and reads

C ′T =
F1

1
/

2 ρ̃u2
d
A

, (22)

with A = πR2 being the rotor swept area. Notice that the gener-

ator torque signal is not plotted in Fig. 13 as it does not affect

the flow directly, but only through the rotational speed. It is

evident that the triple vortex system emerges as a result of

the alternating control pattern. That is, each vortex ring is cre-

ated during the course of an increase in the thrust coefficient,

preceded by a relaxation. Looking into more details at our

results, we found that the increase of the thrust coefficient was

mainly located near the outer part of the blade, also increasing

the tip vortex strength. These tip vortices then merge together

into one single vortex ring.

FIG. 13. The connection of vortex-shedding of T1 with signal S1. Top to bot-

tom: blade pitch angle, rotor speed, and thrust coefficient. A, B, and C denote

the intervals during which the respective vortex rings in Fig. 12 (Multimedia

view) are formed. The interval between t = 84 s and the vertical solid line

corresponds to one period of the control signal.

A recent optimal wind farm control study by Munters and

Meyers19 used actuator disk models, using C ′
T

, which directly

appears in the ADM as a control parameter. When focusing

on the first row in the farm, similar alternating control patterns

were observed, including the formation of vortex rings. How-

ever, during one period of excitation, only one vortex ring was

formed at a Strouhal number of 0.25, compared to 0.375 used

here. We attribute these differences to (1) the turbine models

(e.g., a different radial force distribution), (2) the finer resolu-

tion, as well as (3) more realistic control parameters, and the

inclusion of turbine inertia in the current study.

Regarding the other control signals, the application of S0

and S2 to T1 also leads to vortex dynamics and wake energiz-

ing processes that are similar to the ones described earlier for

S1 (not shown). The S3 signal excites only two vortex rings,

which also mutually interact and eventually merge as shown

in Fig. 14. However, in this case, the interaction is not strong

enough to entrain sufficient free-stream energy into the wake,

and the S3 control signal does not perform any better than the

MPPT control (cf. Fig. 9).

C. Turbulent inflow

In this section, signal S1 is further tested for different tur-

bulent inflow conditions and for a turbine spacing of 5D (same

as before), as well as a spacing of 3D. Again, we have a refer-

ence case where both turbines are controlled with the MPPT

algorithm, and next to that a case with T1 periodically using

signal S1, and T2 using MPPT. Turbulent inflow conditions

with various turbulence intensities (TI = 1%, 5%, and 10%)

and length scales (L = 8 m, 15 m, 30 m, and 63 m) are consid-

ered. To this end, turbulent fluctuations are generated in Tugen

and then superimposed on a uniform inflow with a velocity of

8 m/s.

An overview of the different cases and the respective gains

is provided in Table I. Next to the turbulence intensity and

length scale at the inlet, the table also lists the turbulence

intensity on the plane of the upstream rotor, significantly out-

side the rotor swept area (y/D = 5.5). Since turbulence at the

inlet is imposed on a uniform background flow, there is no

production outside the rotor affected region, so that turbu-

lence slowly decays, with larger decay rates for smaller length

FIG. 14. Visualization of the coherent structures when the upstream rotor is

controlled using signal S3. In color: axial velocity field. Vortex structures are

visualized using the Q-criterion, showing isosurfaces of Q = 0.01 s−2. T1

and T2 mark the axial locations of the upstream and the downstream wind

turbines, respectively.
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TABLE I. Time averaged power gains (%) associated with the employment

of the optimal controls for the upstream wind turbine, while the downstream

wind turbine employs the maximum power point tracking (MPPT) algorithm.

Gains are computed with respect to a reference case, in which both wind

turbines are MPPT controlled. Results are presented for two different axial

spacings between the rotors (i.e., 3D and 5D) and for various turbulent inflow

conditions. TI and L are the turbulence intensity and the integral length scale

at the domain inlet, respectively, and TI∗ is the turbulence intensity at the rotor

plane, well out of the rotor swept area (y/D = 5.5).

3D 5D

TI (%) TI∗ (%) L (m) T1 T2 T1 + T2 T1 T2 T1 + T2

1 0.90 8 0.0 137.8 12.6 0.0 77.0 15.6

1 0.95 15 ☞0.2 110.1 11.4 ☞0.2 56.8 12.2

1 0.98 30 ☞0.4 88.0 9.9 ☞0.4 46.1 10.1

1 1 63 ☞0.4 83.2 9.3 ☞0.4 46.1 10.2

5 3.3 8 ☞0.5 70.7 7.9 ☞0.5 49.2 9.7

5 3.8 15 ☞0.7 31.9 3.9 ☞0.7 30.6 6.3

5 4.3 30 ☞0.8 12.8 1.4 ☞0.8 7.8 1.4

5 4.8 63 ☞1.4 7.7 0.2 ☞1.4 3.2 ☞0.2

10 5.2 8 ☞0.7 45.4 5.2 ☞0.7 35.0 6.9

10 6.6 15 ☞0.7 9.2 0.9 ☞0.7 9.5 1.8

10 7.9 30 ☞0.9 ☞4.9 ☞1.6 ☞0.9 ☞0.8 ☞0.9

10 9.2 63 ☞2.4 ☞4.6 ☞2.9 ☞2.4 ☞0.6 ☞1.8

scales. Also, the decay rate of turbulence gets larger as the

inflow turbulence intensity increases.

When looking at the gains in Table I for the same tur-

bulence length scales, it is seen that the effectiveness of the

control disappears for higher turbulence intensities. Compar-

ing 3D and 5D spacings, we observe that gains are slightly

larger for the higher spacing (for which the signal S1 was opti-

mized earlier), but differences are not very big. Finally, in cases

where power gains are significant, it is seen that the application

of signal S1 to T1 leads to a substantial increase in T2’s gen-

eration, while its effect on T1’s output is rather smaller. This

is in line with the earlier results for the non-turbulent inflow

case.

The decrease of control efficiency with turbulence inten-

sity can be attributed to two effects. First of all, higher tur-

bulence levels lead to improved wake mixing, decreasing the

margins for improvement of control strategies. Second, the sig-

nal S1 is designed for a non-turbulent background flow. The

latter is appreciated when looking at the vorticity dynamics of

the S1 controlled case in Fig. 15 for TI in = 5% and Lin = 15 m.

For this case, gains are still around 6% compared to MPPT. It

is seen that the coherent vortex rings are still recognizable in

the near wake, but significantly distorted. Further downstream,

the vortex rings break up and evolve toward quasi-streamwise

FIG. 15. A snapshot of the vortical flow field emerging for the control sig-

nal S1 applied to the upstream wind turbine and turbulent inflow conditions

TI in = 5% and Lin = 15 m.

vortex tubes, and coherence is gradually lost. This reduces

the effectiveness of the control. It is evident that the pres-

ence of background turbulence accelerates the disintegration

of coherent vortex rings, and this is even more the case for

higher turbulence levels.

In the study by Munters and Meyers,19 the optimal control

signals are found to be effective at higher turbulence intensities

(i.e., they obtained a 2% power gain with an inflow turbu-

lence intensity of 16%). However, this was achieved with a

larger control amplitude for C ′
T

(0.5 < C ′
T
< 3.5 in the work

of Munters and Meyers19 versus 1.2 < C ′
T
< 3.8) here. Next to

that, model detail and grid resolution can also play an impor-

tant role. Therefore, the comparison of the two wind turbine

models in the context of dynamic wind-farm control remains

an important topic for future research.

D. Grid refinement study

Up until now, all simulations were performed on a grid of

approximately 28×106 cells, a size that was mainly dictated by

the computational resources available for the optimal control

case in Sec. IV A. Here, we refine the mesh with a factor two

in each direction for a selection of four cases, i.e., one with

uniform inflow and one with turbulent inflow (TI in = 5% and

Lin = 15 m), each time for the MPPT case and for T1 controlled

using signal S1. This yields a grid resolution of 2.3 m × 2 m ×
1 m for a total of approximately 225 × 106 cells and (R/∆≈) 37

LES grid points per actuator line, which complies with typical

resolution requirements for ALM in LES.44

The results are shown in Figs. 16 and 17. First of all, in

Fig. 16, the axial velocity is shown at different downstream

distances from the first turbine for the two grids and the

reference case. It is observed that velocity profiles collapse

very well for both grids. The largest discrepancy can be found

for the non-turbulent inflow case, for which some differences

FIG. 16. Comparison of the axial velocity profiles under two different inflow

conditions and on two different grid resolutions (dashed line: coarse grid; solid

line: fine grid). Both rotors are controlled with the MPPT algorithm.
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FIG. 17. Grid refinement study. Comparisons of the downstream rotor’s

power output under two different inflow conditions and on two different grid

resolutions (lines with diamonds: coarse grid; lines with circles: fine grid).

The upstream rotor employs S1 control signal, while the downstream rotor is

controlled with the MPPT algorithm.

are visible at the wake edge 3D and 4D downstream of T1. This

is related to the fact that the laminar-to-turbulent transition in

the thin shear-layer at the edge of the turbine wake starts at

very small scales, and the grid is not yet sufficiently refined to

capture these details. However, at all other locations, as well

as for the turbulent inflow case, this is no issue.

In Fig. 17, the power output of the downstream wind tur-

bine (as a function of time) is compared for the two grids, the

laminar and turbulent inflow case. In both cases, the upstream

rotor employs signal S1, while the downstream rotor is con-

trolled with the MPPT algorithm. First of all, we observe that

the power output for the laminar inflow case is very similar

for both grids in spite of the grid dependency of the transition

location. For the turbulent inflow case, differences are some-

times larger (e.g., between 100 and 200 s or around 400 s), but

overall results collapse relatively well. Moreover, differences

can be explained by instantaneous difference in turbulent real-

izations. Although the turbulent inflow fields for both grids are

characterized by the same average turbulence intensity and the

integral length scale at the inlet, the two turbulent fields are

not exactly the same.

Overall, we conclude that the control signals and mecha-

nisms identified above are independent of the grid resolution.

This makes also sense from a numerical point of view, since

the wake energizing process described in Secs. IV A–IV C

develops on a length scale comparable to the rotor diameter,

which is considerably larger than the grid resolutions we used

in our simulations.

V. CONCLUSIONS

We investigated dynamic induction control for mitigating

the wake losses of a pair of inline NREL 5 MW turbines. To

this end, we combined optimal control with large-eddy simula-

tions. Using adjoint-based optimization in a receding horizon

setting, the turbine controls were optimized for maximum

power production.

The optimal control setup consists of two inline NREL-

5 MW rotors, which are separated by five rotor diameters

in the streamwise direction and represented with an actua-

tor line model. The turbine controls were optimized under

uniform non-turbulent inflow conditions so as to investigate

the turbine induced wake energizing process in the absence

of background turbulence. Subsequently, the optimal control

results were compared to a standard MPPT control in a similar

setup, and power gains of about 25% were found for the opti-

mal control scenario in this particular case. We further found

that the optimal control mainly changes the control dynamics

of the first turbine, improving wake mixing, while the con-

trol of the second turbine remains close to a simple MPPT

controller.

Based on the generator torque and pitch signals of the

optimal control case, we derived a simplified control signal for

the first turbine, which can be periodically used as an open-

loop controller with a Strouhal number of 0.38. Using a MPPT

controller for the second turbine, we find that gains remain in

the order of 25% for the uniform inflow case. The wake mixing

mechanisms were further investigated, and it was found that

the T1 controller periodically sheds three vortex rings, which

interact downstream and eventually merge into one big vortex

ring, enhancing entrainment of free-stream momentum in front

of the ring.

The vortex rings emerge in phase with an increase in the

rotational speed and a decrease in the blade pitch angle, which

leads to a combined effect of increased disk-based thrust coef-

ficient. The resulting vortex dynamics is different than the

one observed earlier by Munters and Meyers19 using an ADM

model and direct control of the disk-based thrust-coefficient.

Possible causes are attributed to the finer resolution in the

current ALM simulations, the different turbine representation,

including the effect of rotor inertia, and the radial distribution

of forces in the ALM.

The control signals developed for uniform non-turbulent

inflow were further tested for turbulent inflow conditions

and two different turbine spacings, namely, 3D and 5D. We

observed that the power gains are slightly higher for larger

spacing. On the other hand, turbulent inflow conditions have

a remarkable impact on the obtained power gains. In general,

the power gains were observed to decrease with increasing tur-

bulence intensity and integral length scale. For approximately

1% of inflow turbulence intensity with an integral length scale

of 8 m and 63 m, the power gains were found to be 15.6% and

10.2%, respectively. In the case of 3%–4% of inflow turbulence

intensity with an integral length scale of 8 m and 30 m, power

gains were found to be 9.7% and 1.4%, respectively. Finally,

for 5%–6.5% of inflow turbulence intensity with an integral

length scale of 8 m and 15 m, power gains were observed

to be around 7% and 2%, respectively. For higher turbulence

levels, the control signal loses its effectiveness, as now the

vortex rings break up and lose their coherence very fast. More-

over, higher turbulence levels naturally lead to improved wake

mixing also in the MPPT case so that there is less room for

improvement.

Compared to earlier optimal control studies using an

ADM approach, we observed that ALM increases the numer-

ical complexity of the adjoint-based receding-horizon opti-

mization. We found this to be related to the rotational position

equation and the numerical noise that is generated by actua-

tor forces that rotate over the LES grid. To improve conver-

gence, we formulated a discrete adjoint Runge–Kutta method.
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Unfortunately, this does not remove all numerical noise and

restricted the use of our optimal control simulations to non-

turbulent inflow cases. Future work will need to look into

improving our algorithms by, e.g., adapting ALM interpola-

tion60–62 and filtering, introducing Sobolev smoothing of the

gradients or considering different optimization methods such

as thrust region methods, among others.

Finally, while we identified a new physical control mecha-

nism that can be used to improve wake mixing of wind-turbine

wakes, the robustness of the S1 signal is still to be checked

with more than two rows of turbines. Moreover, practical

feasibility also depends on the additional aspects related to

structural loads and lifetime of different components of the

turbine. These require further research.
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APPENDIX A: DERIVATION OF THE ADJOINT
EQUATIONS

In the current appendix, the derivation of the adjoint equa-

tions is presented. To this end, first proper inner products are

defined for control and state variables, i.e.,

(ϕ1, ϕ1) =

∫ T

0

(Tg1 · Tg2 + β1 · β2) dt, (A1)

(q1, q1) =

∫ T

0

∫
Ω

u1 · u2 dxdt +

∫ T

0

∫
Ω

p1p2 dxdt

+

∫ T

0

(θ1 · θ2 + ω1 · ω2) dt. (A2)

Similar inner products follow for elements of ϕ and q. For

instance, the inner product for the velocity field corresponds

to the first term on the right-hand side of Eq. (A2).

In order to derive the adjoint equations, we follow the

classical Lagrangian approach. Using the Lagrange multipliers

q∗ = [ξ(x, t), π(x, t), χ(t), Υ(t)], we formulate the Lagrangian

as

L(ϕ, q, q∗) =J(ϕ, q) +

∫ T

0

∫
Ω

π∇ · ũ dxdt

+

∫ T

0

∫
Ω

(

∂ũ

∂t
+ ũ · ∇ũ +

1

ρ
∇p̃ +∇ · τ − f

)

· ξ dxdt

+

∫ T

0

(

dω

dt
−

Ta − Tg

J

)

· χ dt,

+

∫ T

0

(

dθ

dt
− ω

)

· Υ dt, (A3)

where ξ , χ, and Υ are tensors with the same dimensions as ũ,

ω, and θ, respectively.

If the proper adjoint equations are satisfied, the gradient of

the reduced cost functional can now be identified as the Riesz

representation of the Gateau differential of the Lagrangian to

the control variables, i.e., (∇J̃, δφ) = Lφ(δφ). The adjoint

equations are obtained by expressing the Riesz representation

of Lq(δq) = 0. Details of the underlying theory can be, e.g.,

found in Ref. 33, and, applied to optimal control in LES, in

Ref. 15 (see Appendix C).

The derivation of the adjoint equations for the standard

Navier–Stokes equations following the above procedure is well

known and can be found in Refs. 23, 59, and 36 among others.

Moreover, the derivation of the LES equations in a boundary-

layer setting including the adjoint subgrid-scale model is

documented in Ref. 15. Therefore, in the current appendix,

we restrict ourselves to the derivation of the gradient of the

reduced cost functional, and the adjoint ALM equations, which

include adjoint equations for the turbine dynamics, as well as

an adjoint forcing term in the adjoint momentum equation.

These derivations are given in Appendixes A 1–A 5.

1. Gradient of the cost functional

First of all, using (A3), the derivation of the second part

of the gradient ∇J̃T is straightforward. We obtain

LTg
(δTg) =

∫ T

0

−ω · δTg +
χ

J
· δTg dt (A4)

so that ∇J̃T = −ω + χ/J .

The derivation of ∇J̃β is more elaborate. We obtain

Lβ(δ β) =

∫ T

0

∫
Ω

(

−
df

dβ
δβ

)

· ξ dxdt +

∫ T

0

1

J

(

−
dTa

dβ
δβ

)

· χ dt

=

∫ T

0

∫
Ω

*.,
∑

i,j

∫ 1

0

G(x − xij(µ))

(

dFij

dβi
δ βi

)

dµ
+/- · ξ dxdt +

∫ T

0

1

J

(

−

[
dTa

dβ

]∗
χ

)

· δβ dt

=

∫ T

0

*.,
∑

i,j

∫ 1

0

(

dFij

dβi
δ βi

)

·

[∫
Ω

G(x − xij(µ))ξ dx

]
dµ

+/- dt +

∫ T

0

1

J

(

−

[
dTa

dβ

]∗
χ

)

· δβ dt

=

∫ T

0

*.,
∑

i,j

∫ 1

0

dFij

dβi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ
+/-δ β

i dt +

∫ T

0

1

J

(

−

[
dTa

dβ

]∗
χ

)

· δβ dt (A5)
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so that

∇J̃β =

∑

j

1i

∫ 1

0

dFij

dβi

·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ −
1

J

[
dTa

dβ

]∗
χ, (A6)

with 1i being the N t-dimensional unit tensor in direction i.

Furthermore, the Jacobian dTa/dβ is diagonal so that
[

dTa/dβ
]∗
= dTa/dβ. Further expressions for the Jacobians

dTa/dβ and dFij/dβi are provided in Appendix A 5.

2. Adjoint equation of rotation

The adjoint rotation equation is obtained by casting

Lω(δω) = 0 in its Riesz representation form. We find

Lω(δω) =

∫ T

0

−(T + Υ) · δω +
dδω

dt
· χ −

1

J

(

dTa

dω
δω

)

· χ dt −

∫ T

0

∫
Ω

df

dω
δω · ξ dxdt

=

∫ T

0

−(T + Υ) · δω −
dχ

dt
· δω dt + χ(T ) · δω(T ) − χ(0) · δω(0) −

∫ T

0

1

J

[
dTa

dω

]∗
χ · δω dt

+

∫ T

0

∫
Ω

*.,
∑

i,j

∫ 1

0

G(x − xij(µ))

(

dFij

dωi
δωi

)

dµ
+/- · ξ dxdt

=

∫ T

0

−(T + Υ) · δω −
dχ

dt
· δω dt + χ(T ) · δω(T ) − χ(0) · δω(0) −

∫ T

0

1

J

[
dTa

dω

]∗
χ · δω dt

+

∫ T

0

*.,
∑

i,j

∫ 1

0

dFij

dωi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ
+/-δω

i dt, (A7)

whereT = Tg−2γ1 max [0,ω − ωmax]+2γ2 max [0,ωmin − ω].

Consequently, the adjoint equation of rotation corresponds to

−
dχ

dt
− (T + Υ) −

1

J

[
dTa

dω

]∗
χ

+
∑

j

1i

∫ 1

0

dFij

dωi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ = 0,

(A8)

with terminal condition χ(T ) = 0 [and since δω(0) = 0].

Again, dTa/dω is diagonal so that [dTa/dω]∗ = dTa/dω.

Expressions for the Jacobians = dTa/dω and dFij/dωi are

provided in Appendix A 5.

3. Adjoint rotor-position equation

The adjoint rotor-position equation is obtained by casting

Lθ(δθ) = 0 in its Riesz representation form. Thus

Lθ(δθ) =

∫ T

0

∫
Ω

−

(

df

dθ
δθ

)

· ξ dxdt +

∫ T

0

−
1

J

(

dTa

dθ
δθ

)

· χ dt +

∫ T

0

dδθ

dt
· Υ dt,

=

∫ T

0

∫
Ω

*.,
∑

i,j

∫ 1

0

G(x − xij(µ))

(

dFij

dθi
δθi

)

dµ
+/- · ξ dxdt

+

∫ T

0

∫
Ω

*.,
∑

i,j

∫ 1

0

(

dG(x − xij(µ))

dθi
δθi

)

Fij dµ
+/- · ξ dxdt

−

∫ T

0

1

J

[
dTa

dθ

]∗
χ · δθ dt −

∫ T

0

dΥ

dt
· δθ dt + Υ(T ) · δθ(T ) − Υ(0) · δθ(0),

=

∫ T

0

*.,
∑

i,j

∫ 1

0

dFij

dθi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ
+/-δθ

i dt

+

∫ T

0

*.,
∑

i,j

∫ 1

0

Fij ·

(∫
Ω

dG(x − xij(µ))

dθi
ξ dx

)

dµ
+/-δθ

i dt

−

∫ T

0

1

J

[
dTa

dθ

]∗
χ · δθ dt −

∫ T

0

dΥ

dt
· δθ dt + Υ(T ) · δθ(T ) − Υ(0) · δθ(0).
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Furthermore, δθ(0) = 0, and [dTa/dθ]∗ = dTa/dθ, so that the

adjoint rotor-position equation is given by

−
dΥ

dt
−

1

J

dTa

dθ
χ +

∑

i,j

∫ 1

0

dFij

dθi
·

(∫
Ω

G(x − xij(µ))ξ dx

)

dµ

+
∑

i,j

∫ 1

0

Fij ·

(∫
Ω

dG(x − xij(µ))

dθi
ξ dx

)

dµ = 0, (A9)

with terminal condition Υ(T ) = 0. Expressions for the Jaco-

bians are provided in Appendix A 5.

4. Adjoint ALM turbine forces

The adjoint turbine forces arise in the adjoint momentum

equations that follow from Lũ(δũ) = 0. Here, we do not derive

the full momentum equations, but rather focus on all terms that

arise from the differentiation of the actuator line model to ũ,

defining the adjoint forces. We obtain

(f ∗, δũ) =

∫ T

0

∫
Ω

−

(

df

dũ
δũ

)

· ξ dxdt +

∫ T

0

−
1

J

(

dTa

dũ
δũ

)

· χ dt

=

∫ T

0

∫
Ω

*.,
∑

i,j

∫ 1

0

G(x − xij(θi, µ))

(

dFij

d3ij
d3ij

dũ
δũ

)

dµ
+/- · ξ dxdt

−

∫ T

0

∑

i,j

1

J
*,
∫ 1

0

dT
ij
a

d3ij
d3ij

dũ
δũ dµ+-χi dt. (A10)

Using

d3ij

dũ
δũ =

∫
Ω

H(x − xij(θi, µ))δũ dx, (A11)

this further leads to

(f ∗, δũ) =

∫ T

0

∫
Ω

∫
Ω

*.,
∑

i,j

∫ 1

0

G(x − xij)H(x′ − xij)

(

dFij

d3ij
δũ

)

dµ
+/- · ξ dx′ dxdt

−

∫ T

0

∫
Ω

∑

i,j

1

J
*,
∫ 1

0

dT
ij
a

d3ij
H(x − xij)δũ dµ+-χi dx dt

=

∫ T

0

∫
Ω

*.,
∑

i,j

∫ 1

0

H(x′ − xij)

(

dFij

d3ij

)T [∫
Ω

G(x − xij)ξ dx

]
dµ

+/- · δũ dx′dt

−

∫ T

0

∫
Ω

∑

i,j

*,
∫ 1

0

H(x − xij)
1

J

dT
ij
a

d3ij
χi dµ+- · δũ dx dt. (A12)

Thus,

f ∗ =
∑

i,j

∫ 1

0

H(x − xij)

(

dFij

d3ij

)T [∫
Ω

G(x − xij)ξ dx

]
−

1

J

dT
ij
a

d3ij
χi

 dµ. (A13)

Expressions for dFij/d3ij and dT
ij
a /d3

ij are further provided in

Appendix A 5.

5. Jacobian expressions

Expressions for derivatives to β, ψij, ω, θ, and 3ij are

assembled in Appendixes A 5 a–A 5 e.

a. Derivatives to β

First of all, (dTa/dβ)χ =
∑

i dT i
a/dβ

i χi, with

dT i
a

dβi
= −

∫ 1

0

Nb
∑

j=1

qij

(

dCl

dα
sinψij −

dCd

dα
cosψij

)

c(µ)R µ dµ.

(A14)

Second,

dF
ij

1

dβi
= −qij

(

dCl

dα
cosψij +

dCd

dα
sinψij

)

c(µ),

dF
ij

2

dβi
= +qij

(

dCl

dα
sinψij −

dCd

dα
cosψij

)

c(µ) sin(θi + ∆θj),

dF
ij

3

dβi
= −qij

(

dCl

dα
sinψij −

dCd

dα
cosψij

)

c(µ) cos(θi + ∆θj),

(A15)

where the derivatives dCl/dα and dCd /dα are evaluated at

every blade ij individually, by employing a first order forward

difference scheme on the tabulated lift and drag tables from

Ref. 30.
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b. Derivatives to ψij

We have
dT

ij
a

dψij
= qijc(µ)Rµ

(

Cl cosψij + Cd sinψij +
dCl

dα
sinψij −

dCd

dα
cosψij

)

, (A16)

and
dF

ij

1

dψij
= qijc(µ)

(

−Cl sinψij + Cd cosψij +
dCl

dα
cosψij +

dCd

dα
sinψij

)

,

dF
ij

2

dψij
= −qijc(µ)

(

Cl cosψij + Cd sinψij +
dCl

dα
sinψij −

dCd

dα
cosψij

)

sin(θi + ∆θj),

dF
ij

3

dψij
= qijc(µ)

(

Cl cosψij + Cd sinψij +
dCl

dα
sinψij −

dCd

dα
cosψij

)

cos(θi + ∆θj).

(A17)

As discussed above (see Appendix A 1), the derivatives dCl/dα

and dCd /dα are evaluated using interpolations of tabulated

data.

c. Derivatives to ω

First, (dTa/dω)χ =
∑

i dT i
a/dω

i χi, with

dT i
a

dωi
=

∫ 1

0

Nb
∑

j=1

[
(ωiRµ − v

ij

θ
)
(

Cl sinψij − Cd cosψij
)

× c(µ)(Rµ)2 +
dT

ij
a

dψij

dψij

dωi

]
dµ, (A18)

with ∂T
ij
a /∂ψ

ij given by Eq. (A16), and

dψij

dωi

= −
v

ij

1
Rµ

(v
ij

1
)2 + (ωiRµ − v

ij

θ
)2

. (A19)

Second, the first element of dFij/dωi is given by

dF
ij

1

dωi
= Rµ(ωiRµ − v

ij

θ
)
(

Cl cosψij + Cd sinψij
)

c(µ)

+
∂F

ij

1

∂ψij

dψij

dωi

, (A20)

and similar expressions are straightforwardly obtained for

dF
ij

2
/dωi and dF

ij

3
/dωi.

d. Derivatives to θ

First of all, dT i
a/dθ

i
=

∫ 1

0

∑Nb

j=1
dT

ij
a /dθ

i dµ, where

dT
ij
a

dθi
=

dT
ij
a

d3ij
d3ij

dθi
. (A21)

Similarly,

dFij

dθi
=

∂Fij

∂θi
+

dFij

d3ij
d3ij

dθi
. (A22)

Expressions for dFij/d3ij and dT
ij
a /d3

ij are provided in

Appendix A 5 e. Moreover, it is readily seen that

∂Fij

∂θi
= [0,− cos(θi + ∆θj),− sin(θi + ∆θj)]qij(Cl sinψij

− Cd cosψij)c(µ). Furthermore,

d3ij

dθi
=

∫
Ω

d

dθi


3

∏

k=1

Hk(xk − x
ij

k
(θi, µ))

 ũ(x, t) dx, (A23)

where

dHk(xk − x
ij

k
)

dθi
=


1

∆k

sign(xk − x
ij

k
)
dx

ij

k

dθi
for |xk − x

ij

k
(θi, µ)| <∆k

0 otherwise,

(A24)

with dxij/dθi = [0, − Rµ sin(θi + ∆θj), Rµ cos(θi + ∆θj)].

Finally,

dG(x − xij)

dθi
= G(x − xij)12z *,

−(x2 − x
ij

2
) sin(θi + ∆θj)

ǫ2
2

+
(x3 − x

ij

3
) cos(θi + ∆θj)

ǫ2
3

+-, (A25)

with z = (
∑3

k=1
[(xk − x

ij

k
)/ǫk]2)1/2.

e. Derivatives to 3ij

Applying the chain rule, we find

dT
ij
a

d3ij
=

∂T
ij
a

∂3ij
+
∂T

ij
a

∂ψij

dψij

d3ij
, (A26)

dFij

d3ij
=

∂Fij

∂3ij
+
∂Fij

∂ψij

dψij

d3ij
. (A27)

Expressions for ∂T
ij
a /∂ψ

ij and ∂Fij/∂ψij are given in Appendix

A 5 b. Further elaborations of dψij/d3ij, ∂T
ij
a /∂3

ij, and

∂Fij/∂3ij, are straightforward, but omitted here for brevity.

APPENDIX B: DISCRETE ADJOINT RUNGE–KUTTA
TIME INTEGRATION

Remark that the explicit Runge–Kutta method is not

self-adjoint so that the discrete adjoint formulation differs

slightly from the forward formulation. Details can be, e.g.,

found in Refs. 41 and 42. The forward Runge–Kutta method

corresponds to43

qn
i = qn + ∆t

4
∑

j=1

aijR(qn
j , ϕn

j ), (B1)

qn+1
= qn + ∆t

4
∑

i=1

biR(qn
i , ϕn

i ), (B2)
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with the classical RK4 coefficients

a =



0 0 0 0

1
/

2 0 0 0

0 1
/

2 0 0

0 0 1 0


, b =



1
/

6
2
/

6
2
/

6
1
/

6


.

Furthermore qn and qn+1 are the forward states discretized

at time step n and n + 1, respectively, and qn
i

is the solu-

tion at the ith intermediate Runge–Kutta stage of nth time

step. The adjoint Runge-Kutta method can then be derived to

be41,42

q∗
n

= q∗
n+1

+

4
∑

j=1

q∗
n

j − Dq(qn, ϕn),

q∗
n

i = ∆t R∗q(qn
i , ϕn

i )
*.,biq

∗n+1

+

4
∑

j=1

ajiq
∗n

j
+/-.

(B3)

Above q∗ and R∗q are the adjoint states and the adjoint Jacobian,

respectively. Furthermore, Dq denotes the partial derivative of

the integrand of the cost functional with respect to the state

variables.

APPENDIX C: GRADIENT VERIFICATION

In this appendix, we verify the implemented adjoint

method by comparing the resulting gradient vector against the

one computed with a finite difference method, for a limited

set of control perturbations. The simulations are performed

under uniform inflow conditions, using the computational

setup described in Fig. 3. First an initialization simulation is

performed by controlling both rotors with the MPPT algo-

rithm until the wakes are fully developed. Next, a control

window of 200 s with a MPPT controller is considered

as the background state around which control sensitivity is

investigated.

The adjoint-based sensitivity provides the gradient vector

for every instance in time over the full 200 s control horizon at

the cost of one simulation. Finite Differences (FDs) are much

more expensive and require one simulation per control direc-

tion (i.e., generator torque and pitch sensitivity times number

of time instances). Here, we evaluate the finite difference

sensitivity for different time instances (for generator torque,

t = 0, 6, 10, 20, 26, 34, 49, 98, 147, 199 s, and for blade pitch,

t = 0, 5, 10, 20, 28, 30, 36, 42, 49, 98, 199 s), requiring 21

simulations in total for different perturbations δϕi (i = 1, . . .,

21), with ‖δϕi‖ = 1. The FD sensitivity is then evaluated using

(

∇J̃i, δϕi

)

=

J̃(ϕMPPT + αδϕi) −J̃(ϕMPPT)

α
+ O(α2).

(C1)

The step-size α is ideally selected such that

‖∆J̃ ‖/‖J̃ ‖ ≈ ǫ
1/2

machine
as a rough trade-off between errors

arising from arithmetic precision and higher order terms (see

Ref. 40 for a discussion). Here, we find α ≈ 10−4 to work well.

The adjoint and the finite difference gradient vectors are

compared in Fig. 18, showing that agreement is very good.

As far as the gradient of the cost functional with respect to

the generator torque is considered, the relative error between

the adjoint and the finite difference methods is found to be 7%

(based on the L2 norm of the gradient for all FD time instances),

while it corresponds to 10% for the blade pitch gradient. It

is further noticed that the adjoint pitch gradient shows some

high-frequency oscillations. These are the numerical features

of the ALM, but do not dominantly influence our optimization

results (see discussion in the main text). The improvement

of the gradient based on different interpolation and filtering

strategies or the use of Sobolev smoothing is a subject of future

research.

Looking at Fig. 18, it is also observed that the adjoint

gradient error grows in the inverse time direction, in line with

the general magnitude of the gradient. This is natural due to

the fact that turbulence is a chaotic system so that any linear

sensitivity evaluation (be it forward or backward) is bound to

diverge.20–22 This limits in practice the length of our optimal

control window, which we take here to be 200 s.

Finally, we notice in Fig. 18 that gradient activity is mainly

located in the the initial T /3 s of the time horizon. This is related

to the fact that after the initial T /3 s, fluid particles do not have

enough time to travel the distance between the rotors of the

two turbines so that control actions have no impact on the

second turbine anymore. This is a clear finite-time horizon

effect of our receding-horizon approach. In order to mini-

mize the impact on optimization results, we therefore select

TA = T /3.

FIG. 18. Comparison of the adjoint and the finite differ-

ence gradients.
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