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Abstract

We consider the problem of designing optimal mechanisms for settings where agents have
dynamic private information. We present the Virtual-Pivot Mechanism, that is optimal in a
large class of environments that satisfy a separability condition. The mechanism satisfies a rather
strong equilibrium notion (it is periodic ex-post incentive compatible and individually rational).
We provide both necessary and sufficient conditions for immediate incentive compatibility for
mechanisms that satisfy periodic ex-post incentive compatibility in future periods. The result
also yields a strikingly simple mechanism for selling a sequence of items to a single buyer. We
also show the allocation rule of the Virtual-Pivot Mechanism has a very simple structure
(a Virtual Index) in multi-armed bandit settings. Finally, we show through examples that the
relaxation technique we use does not produce optimal dynamic mechanisms in general non-
separable environments.

1 Introduction

We study the problem of designing optimal mechanisms for environments with dynamic private
information and propose a mechanism that is profit-maximizing in a class of environments that we
call separable.

In a separable environment, the valuation function of an agent can be decomposed as the product
(or sum) of a function of the agent’s first signal and another function of the agent’s future signals.
As an example, consider a manufacturer that sells to several retailers. Each retailer has two pieces
of private information: her profit margin (which she knows a priori) and the demand she faces
(which she learns over time and could potentially be time-varying).

Another compelling application is that of online advertisement auctions where a publisher sells the
space on her website to advertisers. The advertisers usually know a-priori their profit margins on
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each sale, but they estimate over time the conversion rates (fraction of ads that turn into sales).
This is also a separable environment.

The optimal mechanism we propose, the Virtual-Pivot Mechanism, is quite intuitive — it com-
bines ideas based on the “virtual value” formulation of Myerson [1981] for static revenue-optimal
mechanism design and the dynamic “pivot” mechanism proposed by Bergemann and Välimäki
[2010] for maximizing social welfare. The mechanism essentially maximizes an affine transformation
of the social welfare which corresponds to a certain virtual surplus. Furthermore, the mechanism
satisfies strong (periodic ex-post) notions of incentive compatibility and individual rationality.

One notable special case of our results is the setting with only one buyer. Namely, consider a setting
where the mechanism at each period has one item to sell to a single buyer. The mechanism has a
fixed production cost γ for the item. Under separability assumptions, the optimal mechanism in
this setting has a surprising simple form (with a simple indirect implementation which we present
later) — the mechanism offers the agent a “menu” of contracts, of the form (p,M(p)) to the agent.
If an agent chooses a contract, she will be charged an upfront payment of M(p) and afterwards the
mechanism posts a price of p > γ at each time step — the agent has the option to pay more upfront
for cheaper prices in the future. Note that even if the agent’s valuation is increasing (or decreasing)
over time and the seller is fully aware of this fact, the optimal mechanism involves offering the item
at all periods at a constant price p.

In the general solution with multiple buyers, the Virtual-Pivot Mechanism still retains this flavor.
Roughly speaking, each agent, based on her initial type, is assigned a certain weight function in
an affine transformation of the social welfare that is maximized by the mechanism, see Section 5.1.
The more the agent pays up front the higher her importance will be in the social welfare function
(leading to more allocations to her in the future).

Our setting considers a mechanism which allows agents to report their type every round. In
particular, this implies that they are able to re-report all of their historical private information that
has bearing on the current and future values. Allowing re-reporting of private signals is a crucial
step in obtaining periodic ex-post incentive guarantees. Once we obtain periodic ex-post incentive
compatibility for all future periods, we are able to provide necessary and sufficient conditions for
incentive compatibility at the first period. We directly show these conditions are satisfied for our
optimal mechanism.

Finally, we provide examples of how the standard “relaxation” approach to dynamic mechanism
design will not succeed without certain additional assumptions.

1.1 Related Work

Two natural objectives in the dynamic mechanism design are maximizing the long term social
welfare of all buyers (efficiency) and maximizing the long term revenue or profit of a seller (op-
timality). With regards to maximizing the long term social welfare, there are elegant extensions
of the efficient (VCG) mechanism to quite general dynamic settings, including the dynamic pivot
mechanism of Bergemann and Välimäki [2010] and the dynamic team mechanism of Athey and
Segal [2007] (see also Cavallo et al. [2007], Bapna and Weber [2008], Nazerzadeh et al. [2008]).

The literature on dynamic revenue-optimal mechanism has been primarily focused on settings
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where the agents arrive and depart dynamically over time, but their private information remains
fixed, see Vulcano et al. [2002], Pai and Vohra [2008], Said [2009], Gershkov and Moldovanu [2009],
Skrzypacz and Board [2010]. In these setting, the mechanism designer faces a dynamic problem,
but the incentive constraints of each agents are essentially static because agents do not obtain any
“new” private information over the course of the mechanism. For surveys on dynamic mechanism
design see Bergemann and Said [2011], Parkes [2007].

We consider a setting where the private information of the agents changes over time, a line of
research that was pioneered by Baron and Besanko [1984]. Courty and Li [2000] provide an optimal
mechanism for an environment where agents have private information about the future distribution
of their valuations. Battaglini [2005] studies a setting with a single agent whose private information
is given by a 2-state Markov Chain and shows that the optimal allocation converges over time to
the efficient allocation. In contrast to the results in Battaglini [2005], in the settings we consider,
the allocation distortion generated by the agents’ initial private information does not disappear
with time. For a more detailed discussion, see Subsection 5.1.

A closely related work to ours is that of Ëso and Szentes [2007] who study a two-period model
where each agent receives a signal at the first period and the seller can also allow each agent to
receive an additional private signal at the second period. Under certain concavity and monotonicity
conditions on the signals, they show that the optimal mechanism allows the agents to receive their
second signals; however, agents do not obtain any rents from the fact second period signal is private.
They also propose a ‘handicap’ auction for the case where the agents’ valuations are given by the
sum of the first and second period signals. We use similar ideas and show that for a broad class of
environments, the seller is able to extract the information rent associated with all signals except the
initial one, even if the seller does not control the agents’ ability to obtain further private signals.
However, as we show in Section 7, there exist dynamic settings where the seller cannot extract the
entire information rent from future signals. We also note the work in Deb [2008], which provides an
optimal mechanism in a setting with only one buyer where the value is Markovian in the previous
value, among other technical conditions.

Another closely related work to ours is by Pavan et al. [2008, 2009], which presents a comprehensive
characterization of necessary conditions for incentive compatibility in both finite horizons (Pavan
et al. [2008]) and infinite horizons (Pavan et al. [2009]). Finding sufficient conditions for incentive
compatibility turns out to be a difficult challenge, as Pavan et al. [2008] acknowledge.1 A setting
where they show incentive compatibility (Proposition 12) is one where types evolve according to an
AR(k) auto-regressive stochastic process with non-negative coefficients, the set of feasible actions of
the mechanism is a lattice (therefore excluding problems such as allocating private goods between
two or more agents) and actions do not affect the evolution of types.2

See Subsection 3.3 for further discussion on how our methodology relates to prior work.

1“As for incentive compatibility in period one, we were only able to check it application-by-application, but we
have been able to verify it in a few special settings.” (Pavan et al. [2008], page 4)

2See Assumptions SCP and DNOT, both used in proving Proposition 12 in Pavan et al. [2008].
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1.2 Organization

We organize our paper as follows. In Section 2, we formalize our model, define concepts such as
incentive compatibility and optimality of mechanisms. In Section 3, we discuss our approach for
designing optimal mechanisms. In particular, both necessary and sufficient constraints for incentive
compatibility are provided here. We introduce the notion of separability in Section 4 and provide
an upper bound on the revenue of any mechanism in a separable environment. In Section 5, we
propose our mechanism and states our main optimality result. Special cases (including the setting
with only one buyer) are considered in Section 6. Section 7 provides simple examples showing how
the usual incentive constraints from static mechanism are insufficient for the dynamic case. It also
shows that without our separability assumptions, the particular relaxation approach we take is
insufficient. The Appendix contains all the proofs.

2 Preliminaries

In this section, we formalize our model and define concepts such as incentive compatibility and
optimality of mechanisms.

2.1 The Dynamic Environment

We consider a discrete-time, δ-discounted infinite-horizon (t = 0, 1, 2, ...) model that consists of
one seller and n agents (buyers). The seller decides upon an action at at each period t among the
feasible set of actions At, at a cost of ct(a

t) to the seller, where at = (a0, a1, · · · , at) represents all
the actions taken by the mechanism up to time t.

At every period, each agent i ∈ {1, ..., n} receives a private signal si,t ∈ Si,t. In particular, we make
the following assumption about the first signal si,0 throughout the paper:

Assumption 2.1. For each agent i, si,0 ∈ [0, 1] is real valued and distributed according to Fi.
Furthermore, assume that Fi is strictly increasing and has a density, which we denote by fi.

This first signal summarizes all the initial private information of the agent (which has bearing on
her entire stream of valuations). Furthermore, for all t ≥ 1, each agent also receive a private signal
si,t ∈ Si,t — here we not concerned with whether or not these future signals are real or not (the
set Si,t is arbitrary for t ≥ 1).

The type of agent i at time t is the sequence of signals of the buyer i up to (and including) time
t, which is denoted by sti = (si,0, ..., si,t). The type provides a summary of all the agent’s private
information which has bearing on all her current and future valuations. For notational convenience,
we let vector st = {sti}i∈[n] denote the (joint) types of all agents at time t. At each period t, agent
i obtains value vi,t(a

t, sti), which is a function of her type and the seller’s past and current actions.
We assume quasi-linear utilities and denote the payment of agent i at time t by pi,t, so that the
(instantaneous) utility of agent i at time t is given by

ui,t = vi,t(a
t, sti)− pi,t.

We also assume throughout the following regularity condition.
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Assumption 2.2. The partial derivative
∂vi,t(a

t,si,0,...,si,t)
∂si,0

exists for all i, t, at, and sti, and it is

bounded by V̄ <∞.

We now specify the stochastic process over the signals. The signal si,t that agent i receives at
time t may be correlated to her previous signals si,0, ..., si,t−1 and the past actions of the seller
a0, ..., at−1, but it is independent (conditionally on the seller’s actions) of all signals of the other
agents. Formally, the stochastic signal si,t is determined by the stochastic kernel Ki,t(si,t|at−1, st−1

i ).
Without loss of generality, we make the assumption that the first signal is independent of the future
signals:

Assumption 2.3. For each agent i, the distribution of the initial signal si,0 is independent of the
future signals si,t for t ≥ 1.

In fact, without loss of generality, one can assume that all the signals are independent (as noted
by Pavan et al. [2009] 3). Even under this assumption, importantly, note that the value of agent
i at any future period (t ≥ 1) may still be correlated with the signal si,0. Here, we only explicitly
assume si,0 to be independent of the future — arbitrary dependencies among future signals are
permitted. While this assumption is without loss of generality, an example in Section 7 suggests
that there are technical reasons for which this is formulation natural (in particular, this example
shows how the relaxation approach we take may fail in a different representation).

We also assume the mechanism has the ability to exclude agents from the system at time t = 0.
That is, it can select a subset of the agents that will obtain no value (and will not make payments)
at any period t ≥ 0. The exclusion of an agent from the system does not impact the value obtained
by the other agents if the mechanism still takes the same sequence of actions a1, ..., at.

Assumption 2.4. The set of feasible actions A0 at time t = 0 is equal to 2{1,··· ,n}, that is, the set
of all subsets of {1, .., n}. If i /∈ a0, then agent i is excluded from the system, i.e., pi,t = 0 and
vi,t(a

t, sti) = 0 for all t, at, and sti. No agent obtains immediate value from the choice of a0, i.e.,
vi,0(a0, si,0) = 0 irrespective of whether i ∈ a0 or not. Also, the value obtained by each agent does
not depend on the exclusion of other agents. In addition, the cost incurred by the mechanism only
depends on the actions not on the excluded agents.

The assumption implies that for any pair of actions a0, a
′
0 in A0 such that i ∈ a0 and i ∈ a′0, the

value vi,t(a0, a1, · · · , at, sti) = vi,t(a
′
0, a1, · · · , at, sti) for all t, a1, ..., at, and sti. Also, ct(a0, a1, ..., at) =

ct(a
′
0, a1, ..., at) for all t — of course, exclusion of an agent may change the choice of the actions

taken by the mechanism. The assumption that the agents do not obtain value at t = 0 is made
without loss of generality and for simplicity of presentation. Nevertheless, the mechanism may
charge the agents pi,t 6= 0 at that time. The above assumption simplifies satisfying the participation
constraints. For example, if an agent only obtains negative values from the actions, she would be
excluded from the mechanism. Observe that if the actions taken by the mechanism correspond to
allocations of items to agent, this assumption can be simply satisfied.

3 The argument essentially follows from this observation: any stochastic process {Xt}t∈N may be simulated by
a function f such that xt+1 = f(x1, . . . , xt, zt) where the zt’s are i.i.d. and uniform on [0, 1] (here f is constructed
based on the distribution Pr(Xt+1|X1, . . . Xt)); see Pavan et al. [2009].
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At each period t ≥ 0,

1. Each agent i receives her private signal si,t ∼ Ki,t(·|at−1, st−1
i ).

2. Each agent i provides a report, ŝti, of her current type, sti = (si,0, ..., si,t), as determined by
her private history hi,t. In particular, ŝti = Ri(hi,t).

3. As a function of the public history, ht, and the current reports, ŝt, the mechanism deter-
mines the action at ∈ At and the payments pi,t for each agent i. In particular, at = q(ht, ŝ

t)
and the joint prices are {pi,t}i∈[n] = p(ht, ŝ

t).

Figure 1: A generic mechanism

For our theorems to hold, we make further restrictions on the functional form of the values. In
particular, we will place a separability assumption on the environment, which we precisely state in
Section 4.

Throughout the paper, suppose Assumptions 2.1, 2.2, 2.3 and 2.4 hold.

2.2 Mechanisms, Incentive Constraints, and Optimality

A mechanismM(q, p) is defined by a pair of an allocation rule q(·) and a payment rule p(·). We let
Q denote the set of all allocation rules. By the Revelation Principle (cf. Myerson [1986]), without
loss of generality, we focus on (dynamic) direct mechanisms.4

At each period t, each agent i, makes a report, denoted by ŝti, of her type sti. Using our standard
shorthand notation, we denote the joint reports of all agents by ŝt = {ŝti}i∈[n]. Note that since
sti = (si,0, ..., si,t) includes the set of all signals that each agent has received, each agent re-reports
all of their previous signals at every period. The report of an agent can be conditioned on the
history, which we now specify.

The public history at time t, denoted by ht, is the sequence of reports and actions of the mechanism
until period t−1; namely, ht = (ŝ0, a0, ŝ

1, a1, · · · , ŝt−1, at−1). The private history of agent i at time
t, denoted by hi,t, includes the public history and her current type (sequence of signals she received
up to, and including, time t), i.e., hi,t = (si,0, ŝ0, a0, si,1, ŝ

1, a1, · · · , si,t−1, ŝ
t−1, at−1, si,t).

The allocation and payment rules are functions of the public history at time t, ht, and the reports
of all agents at time t, ŝt. The allocation rule determines the action taken by the mechanism and
the payment rule determines the payment of each agent.

The reporting strategy of agent i, denoted by Ri, is a mapping from her private history hi,t to
a report of her current type ŝti. Mechanism M and the reporting strategy profile R = {Ri}i∈[n]

determine a stochastic process which is described in Figure 1.

We now define the incentive constraints of the mechanism. Denote the expected (discounted) future

4 The Revelation Principle implies that an equilibrium outcome in any indirect mechanism can also be induced as
an equilibrium outcome of an (incentive compatible) direct mechanism.
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value of agent i under the (joint) reporting strategy R in mechanism M by:

VM,R
i = E

[ ∞∑
t=0

δtvi,t(a
t, sti)

]

and the expected (discounted) future utility (of i under R in M) as:

UM,R
i = E

[ ∞∑
t=0

δt
(
vi,t(a

t, sti)− pi,t
)]

where the expectation is with respect to the stochastic process induced by the reporting strategy
and the mechanism. Similarly, for the expected value and utility of agent i, conditioned on a private
history hi,t and type of the other agents st−i, we have:

VM,R
i (hi,t, s

t
−i) = E

[ ∞∑
τ=t

δτvi,τ (aτ , sτi )

∣∣∣∣∣hi,t, st−i
]

UM,R
i,t (hi,t, s

t
−i) = E

[ ∞∑
τ=t

δτ (vi,τ (aτ , sτi )− pi,τ )

∣∣∣∣∣hi,t, st−i
]

Note that this expectation is well defined (even on private histories which have probability 0 under
R), since the reporting strategies are mappings from all possible private histories of agent i (and
we have conditioned on the public history and current joint type).

Roughly speaking, the notion of incentive compatible is one in which no agent wants to deviate
from the truthful strategy, as long as all other agents are truthful. This involves a somewhat
delicate quantification with regards to the history. Our (weaker and stronger) notions of incentive
compatibility are identical to those in Bergemann and Välimäki [2010].

Definition 2.1. (Incentive Compatibility) Let T denote the (joint) truthful reporting strategy.

• Dynamic mechanism M is (Bayesian) incentive compatible (IC) if, for each agent i, truth-
fulness is a best response to the truthful strategy of other agents — precisely, if for each i and
Ri,

UM,T
i ≥ UM,(Ri,T−i)

i

• Dynamic mechanism M is periodic ex-post incentive compatible if, for each agent i and at
any time t, truthfulness is a best response to the truthful strategy of other agents — precisely,
if for each i and time t, reporting strategy Ri, private history hi,t, and current type of the
other agents st−i:

UM,T
i,t (hi,t, s

t
−i) ≥ U

M,(Ri,T−i)
i,t (hi,t, s

t
−i) (1)

Note that the (weaker) Bayesian notion of IC implies that the truthful reporting strategy is a best
response from a private history that is generated under T with probability 1. In contrast, the
(stronger) periodic ex-post notion demands that the truthful strategy is a best response on any
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private history, even those which have probability 0 under T (e.g. those histories where agents
mis-reported in the past). See Bergemann and Välimäki [2010] for further discussion.

The notion of individual rationality is one, where at the equilibrium, the agents choose to participate
(as it demands that the agents’ utilities be non-negative). Precisely,

Definition 2.2. (Individual Rationality) Let T denote the (joint) truthful reporting strategy.

• MechanismM is (Bayesian) individually rational (IR) if, for each agent i, the expected future
utility under the truthful strategy is non-negative, i.e., UM,T

i ≥ 0.

• Mechanism M is periodic ex-post individually rational if the expected future utility is non-
negative for each agent i and time t, private history, hi,t, and joint type of the other agents

st−i, i.e., UM,T
i,t (hi,t, s

t
−i) ≥ 0.

The expected profit of a mechanism M is the discounted sum of all payments of the agents minus
the cost of the actions

ProfitM = E

[ ∞∑
t=0

δt

(
−ct(at) +

n∑
i=1

pi,t

)]
(2)

under the (joint) truthful reporting strategy T . The objective of the seller is to maximize this
expected profit, subject to both the incentive compatibility and individual rationality constraints.
Precisely,

Definition 2.3. (Optimality) A Bayesian individually rational and Bayesian incentive compatible
mechanism is optimal if it maximizes the expected profit among all Bayesian individually rational
and Bayesian incentive compatible mechanisms.

Note the optimal mechanism is only required to satisfies the weaker Bayesian incentive constraints.
This definition of optimality guarantees that the mechanism obtains an expected profit higher than
(or, at least, equal to) any other mechanism that is incentive compatible and individually rational.
Ideally, we might hope for an optimal mechanism which also satisfies the stronger (periodic ex-post)
incentive constraints, which ensures truthfulness is a best response even if agents have deviated in
the past. As we show, the mechanism we propose, the Virtual-Pivot Mechanism, enjoys these
stronger guarantees.

3 A Relaxation Approach

We now provide a methodology for optimal dynamic mechanism design. The relaxation approach
we take is the standard one also used in Ëso and Szentes [2007], Pavan et al. [2008], Deb [2008].
The difficulty is in “un-relaxing”, i.e., showing that a candidate for the optimal policy satisfies the
more stringent dynamic IC constraints.

Here, we are able to provide both necessary and sufficient conditions for dynamic IC. In particular,
the use of the periodic ex-post notion of incentive compatibility is critical in this characterization.
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3.1 Relaxing

In this section, we consider a simpler, yet closely related, problem where we can utilize known static
mechanism design techniques to design an optimal mechanism — these techniques are also used
in Ëso and Szentes [2007], Pavan et al. [2008], Deb [2008]. The idea is to relax the optimization
problem (of finding the optimal mechanism) by only imposing certain incentive constraints that
arise in a simpler version of the problem. Roughly speaking, we attempt to solve a (simpler)
less-constrained optimization problem. The critical issue is in showing that the solution to this
less-constrained problem is also the optimal solution for the original problem.

Definition 3.1. (Relaxed Environment) Consider an environment where only the initial type si,0 is
private to each agent i, while all her future signals are observed by the mechanism. We define this
to be the relaxed environment and refer to our original environment as the dynamic environment.

While the mechanism in the relaxed environment has full information with regards to the agents
signals from t ≥ 1, note that si,0 may affect all the future values of the agent. Observe that any
direct mechanism in the dynamic environment induces a mechanism in the relaxed environment in
a natural way: for t ≥ 1, simply use the agents actual signals si,1, ..., si,t as well as the reported
initial signal ŝi,0 as the reported type {ŝti} (as the input to the allocation and payment rules of the
mechanism).

The following lemma is a rather straightforward observation.

Lemma 3.1. Let E be a dynamic environment and Erelaxed be the corresponding relaxed environ-
ment. We have that:

• If M is an incentive compatible and individually rational mechanism in E, then it is an
incentive compatible and individually rational mechanism in Erelaxed.

• Let R? be the optimal revenue in Erelaxed. Suppose a (Bayesian) incentive compatible and
individually rational mechanism M in E has revenue R?, then M is optimal for both E and
Erelaxed.

This lemma suggest a natural optimal mechanism design approach: first, find an allocation rule
q? of an optimal mechanism in the relaxed environment Erelaxed; then determine if there exists a
pricing rule for p? such that: 1) the mechanism (q?, p?) is IC and IR in the dynamic environment
E ; 2) the expected revenue it achieves is R?. If such a pricing is possible, then (q?, p?) is optimal in
E . In our separable environments, we show this approach is applicable. Furthermore, in Section 7,
we discuss the limitations of this approach, where we provide certain non-separable environments
for which the optimal revenue in E is strictly less than the optimal revenue in Erelaxed.

Envelope and Revenue Lemmas

Since in the relaxed environment the only piece of private information for each agent i is si,0,
using the standard approach from static mechanism design (see Myerson [1981], Milgrom and Segal
[2002]), we provide the following lemma.
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Lemma 3.2. (Envelope Condition) Suppose that the mechanism M is IC in the relaxed environ-
ment. Then for all i, si,0 and s′i,0,

Ui(si,0, s−i,0)−Ui(s′i,0, s−i,0) =

∫ si,0

s′i,0

E

[ ∞∑
t=0

δt
∂

∂si,0
vi,t(a

t, si,0, si,1, ..., si,t)
∣∣
si,0=z

∣∣∣∣∣ si,0 = z, s−i,0

]
dz.

(3)
where Ui(si,0, s−i,0) is utility of agent i under the truthful strategy in M, with the initial types are
si,0 for i and s−i,0 for the other agents.

Again using standard techniques from static mechanism design, we can use the envelope condition
above to establish the profit of any IC mechanism in the relaxed environment.

Lemma 3.3. (Expected Profit) Suppose that the mechanism M is IC in the relaxed environment.
Then, the expected profit obtained by the mechanism, ProfitM, is equal to:

E

[ ∞∑
t=1

δt

(
n∑
i=1

(
vi,t(a

t, sti)−
1− Fi(si,0)

fi(si,0)

∂vi,t(a
t, si,0, si,1, ..., si,t)

∂si,0

)
− ct(at)

)
−

n∑
i=1

UMi (0, s−i,0)

]
(4)

where the expectation is taken over si,0 and s−i,0.

This lemma can be used to derive a candidate for the optimal allocation rule: if we pick an allocation
rule that maximizes the equation above and pick a payment rule that makes it both IC and IR,
then we will have an optimal mechanism.

3.2 Un-Relaxing

From the relaxed environment, we can find a candidate for an optimal allocation rule. The main
challenge here is how to find a payment rule and show that such a mechanism satisfies dynamic IC
constraints. It turns out that it is natural to break this into two stages.

The first step is understanding how to ensure IC for t ≥ 1. Here, there seems to be no general
methodology in the literature (note that we are not assuming any structure on the stochastic process
for the signals st, for t ≥ 1). Our approach involves going one step further and trying to insure
periodic ex-post IC for periods t ≥ 1. Recent work by Bergemann and Välimäki [2010] show how
to guarantee periodic ex-post IC in the context of maximizing social welfare. Our results make use
of this, but to do so, a critical conceptual step is to allow agents to re-report their entire type at
every period. This way, we are able to obtain periodic ex-post IC for t ≥ 1.

For t = 0, where si,0 is real valued, we explicitly characterize the necessary and sufficient conditions
for dynamic IC based on the fact that we have a periodic ex-post IC mechanism for periods t ≥ 1.
This is a key technical step in our proof.

Re-Reporting and Periodic Ex-Post IC

Recall that each agent i reports her entire type sti = (si,0, ..., si,t) at each period t, not just her
most recent private signal si,t. At the first glance, it may seem that this re-reporting of past private
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signals is redundant. However, there are a few of reasons why this approach is quite natural, both
conceptually and technically.

Re-reporting simplifies the task of obtaining periodic ex-post IC guarantees. It gives an opportunity
for agents that have reported untruthfully in the past to correct their past mis-reports and, in this
way, return to truthful reporting course. In fact, it is unclear how to obtain such a guarantee for a
mechanism which does not allow re-reporting — such a mechanism must incentivize an agent who
has mis-reported in the past to report truthfully in the future, without the ability to query the
agents about their previous signals.

For such mechanisms (which do not allow re-reporting), often the best that the mechanism can do
is offer the agent an opportunity to misreport again in order to course-correct. In essence, these
are the techniques used in Ëso and Szentes [2007], Pavan et al. [2008], Deb [2008] to obtain IC (not
periodic ex-post IC) by restricting the value functions or the stochastic process.

Necessary and Sufficient Conditions for IC

In the previous subsection, we argued that re-reporting simplifies the task of constructing a periodic
ex-post IC mechanism. We postpone the discussion of how we can use re-reporting to actually
construct a periodic ex-post IC mechanism until Section 5.

For now, assume that a mechanismM is periodic ex-post IC for all periods t ≥ 1. That is, for any
period t ≥ 1, any agent i, private history hi,t, types of other agents st−i, and reporting strategy Ri,
Eq. (1) is satisfied. We now provide necessary and sufficient conditions for such a mechanism to be
IC (at period t = 0).

Consider a subset of an agent’s reporting strategies that we denote by x′ → x. Define x′ → x as the
reporting strategy in which the agent reports x′ as her first type si,0 (at t = 0), and subsequently
(re-)reports it as x in all future periods (t ≥ 1). Furthermore, under the strategy x′ → x, all
other signals si,t (for t ≥ 1) are truthfully reported. In others words, at t = 0, she initially reports
ˆsi,0 = x′, and, for t ≥ 1, she reports ŝti = (x, si,1, si,2, ..., si,t). In x′ → x, we also allow x′ and x to

be functions of si,0. For example, the truthful strategy Ti can be represented as si,0 → si,0.

The expected utility of agent i under mechanismM and reporting strategy x′ → x given her initial
type si,0 is UM,(x′→x,T−i)(si,0). For notational convenience, we drop the explicit dependence on the
mechanism and the other agents’ playing the truthful strategy and denote this by:

Ux
′→x(si,0) = UM,(x′→x,T−i)(si,0). (5)

Similarly, we define the expected value of agent i under strategy x′ → x, assuming other agents are
truthful by:

V x′→x(si,0) = VM,(x′→x,T−i)(si,0). (6)

We also use the notation Ux
′→x(si,0, s−i,0) and V x′→x(si,0, s−i,0), when we condition on the initial

types of the other agents s−i,0.

Suppose the mechanism M is one which is periodic ex-post IC for periods t ≥ 1. Under such a
mechanism, if agent i deviates at period t = 0, while all other agents are truthful, agent i’s best
response strategy at all future periods t ≥ 1 is to reveal her true type. Therefore, if her true first
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type is si,0, then to verify if truthfulness is a best response, we only need to verify that the truthful
policy provides more utility then all misreporting strategies of the form s′i,0 → si,0. Therefore, if
mechanism M is periodic ex-post IC for periods t ≥ 1, then it is also IC at t = 0 if, and only if,
for any true type x and time 0 report x′,

Ux→xi (x) ≥ Ux′→xi (x).

Subtracting Ux
′→x′

i (x′) from both sides, we get the following characterization: the mechanism M
is IC if, and only if, for all x and x′,

Ux→xi (x)− Ux′→x′i (x′) ≥ Ux′→xi (x)− Ux′→x′i (x′). (7)

Furthermore M is periodic ex-post IC if the above holds where we condition on the other types
s−i,0. That is, the mechanism is periodic ex-post IC if for all x, x′ and s−i,0,

Ux→xi (x, s−i,0)− Ux′→x′i (x′, s−i,0) ≥ Ux′→xi (x, s−i,0)− Ux′→x′i (x′, s−i,0). (8)

These observations are useful in that it we can use envelope conditions to precisely characterize
incentive compatibility in terms of the expected values of the agents. First, we obtain that periodic
ex-post IC for t ≥ 1 implies the following lemma.

Lemma 3.4. (Periodic Ex-Post IC) Suppose that mechanism M satisfies the periodic ex-post IC
conditions for all t ≥ 1. Then, for all x and x′ in [0, 1], we have

Ux
′→x

i (x)− Ux′→x′i (x′) =

∫ x

x′

∂V x′→z
i (s)

∂s

∣∣∣
s=z

dz (9)

It is straightforward to show that the partial derivative exists and, for any x, y and z, is given by:

∂V x→y(s)

∂s

∣∣∣
s=z

= E

[ ∞∑
t=0

δt
∂

∂si,0
vi,t(a

t, si,0, si,1, ..., si,t)
∣∣
si,0=s

∣∣∣∣∣si,0 = z

]
(10)

where the expectation is under joint strategy (x→ y, T−i) inM (see Lemma A.1 in the Appendix).

The following lemma uses the characterization above to obtain both necessary and sufficient con-
ditions for incentive compatibility (at t = 0).

Lemma 3.5. (Necessary and Sufficient Conditions for IC) Suppose that the mechanismM satisfies
the periodic ex-post IC conditions for all t ≥ 1. Then, M is IC for all t ≥ 0 if, and only if, both
conditions below are satisfied:

• (Envelope Condition) For all x and x′,

Ux→xi (x)− Ux′→x′i (x′) =

∫ x

x′

∂V z→z
i (s)

∂s

∣∣∣
s=z

dz. (11)

• (Interval Dominance) For all x and x′,∫ x

x′

∂V z→z
i (s)

∂s

∣∣∣
s=z

dz ≥
∫ x

x′

∂V x′→z
i (s)

∂s

∣∣∣
s=z

dz. (12)
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Furthermore, M is ex-post periodic IC if and only if the previous two conditions are satisfied when
we condition on every possible other initial types ŝ−i,0.

The result above is analogous to the characterization of incentive compatibility in standard single-
parameter settings, where an envelope condition and monotonicity are used to characterize IC (see
Myerson [1981]). The envelope condition above is a standard one, but interval dominance replaces
monotonicity in a dynamic setting. It compares the utility obtained by the truthful strategy (left-
hand side) with other strategies of the form x′ → si,0 (right-hand side), as these are the only
plausible candidate strategies when the mechanism is ex-post IC for periods t ≥ 1.

3.3 On Our Methodology

Although previous papers in the literature (see Ëso and Szentes [2007], Pavan et al. [2008]) also
provide optimal mechanisms using the relaxation approach, we emphasize that our construction
and results do not immediately follow from them. The key challenge we address in our paper is
showing that the allocation rule generated by the relaxation has an associated payment rule that
makes the mechanism IC and IR in the dynamic setting. Our solution requires a combination of
using the re-reporting technique, with constructing payments based on Bergemann and Välimäki
[2010] to obtain periodic ex-post IC for periods t ≥ 1, as well as proving IC (at t = 0) by using our
characterization of IC under the assumption of periodic ex-post IC for t ≥ 1.

Furthermore, we show in Section 7 that the relaxation approach does not work in every setting.
In fact, the second example provides a simple dynamic environment in which the usual notions
of monotonicity hold for the optimal allocation in the relaxed environment, and yet, this same
allocation rule is not optimal in the dynamic environment (clearly showing how static notions of
monotonicity are insufficient). Although we are not able to address the challenging problem of
explicitly characterizing the necessary and sufficient properties of an environment for which this
relaxation approach will succeed, we do provide environments in which both: the relaxation ap-
proach fails and various assumptions of our separable environment are violated. Roughly speaking,
these show that at least some variant of our assumptions are required for the relaxation approach
to be successful.

4 Separability

We now define a class of environments where the optimal allocation in the relaxed environment is
closely related to an (affinely transformed) efficient allocation. In the next section, we provide an
optimal mechanism for this class.

To be able to construct an optimal dynamic mechanism, we need to assume some structure on
how the agents’ values relate to their signals. The next property specifies two natural relationships
between the signals and the values.

Property 4.1. (Functional Separation) An environment satisfies functional separation if the value
function of each agent is either multiplicatively or additively separable:
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• The value function of agent i is multiplicatively-separable if there exists functions Ai and
Bi,t such that:

vi,t(a
t, sti) = Ai(si,0)Bi,t(a

t, si,1, . . . , si,t) (13)

• The value function of agent i is additively-separable if there exists Ai, Bi,t, Ci,t such that:

vi,t(a
t, sti) = Ai(si,0)Ci,t(a

t) +Bi,t(a
t, si,1, . . . , si,t) (14)

Definition 4.1. We call an environment separable if Assumption 2.3 and Property 4.1 hold.5

Note that an environment may not be separable at the first glance, but there might exist a trans-
formation of the signals and value functions which makes the environment separable.

In the following section, unless otherwise stated, we assume the environment is separable.

4.1 Examples of Separable Environments

Sponsored Search A prominent example of multiplicatively separable value functions arises in the
setting of online advertising. Consider a sponsored search auction for a keyword that corresponds
to a certain product. Suppose agent i is an online retailer of such a product who participates in
the corresponding auction. Every time a user types in the keyword, the ad spaces are allocated to
the retailers. Every time a user purchases the product from them, the retailer i obtains a profit
of si,0 (and 0 otherwise). The type of each agent i (besides si,0) would represent the Bayesian
belief about the probability of a purchase occurring given the retailer’s ad is shown. Therefore,
vi,t(s

t
i) = si,0 × Pr[purchase|si,1, ..., si,t]. After each time the ad of retailer i is shown to a user, the

retailer updates her belief about probability of a purchase.

Supply Chain A widget manufacturer supplies one or more retailers who sells these products
to consumers. The widgets have some associated production cost ct(·) that are borne by the
manufacturer. The retailers have two pieces of private information: their profit margin on the
widgets (which they know upfront and is captured by si,0) and the demand they face for the
widgets (which they learn over time and is captured by si,1, ..., si,t). Each retailer’s value is then
given by vi,t(s

t
i) = si,0 ×Demand(si,1, ..., si,t).

AR(k) For an example of additively separable value function, consider auto-regressive (AR)
processes. One example of an AR(k) model for the evolution of the valuation of each agent i is as
follows: the initial value of agent i is given by vi,1 = si,0, and every time the item is allocated to

agent i her valuation is updated according to vi,t =
∑k

τ=1 γi,t,τvi,t−τ + ηi,t(a
t, si,1, . . . , si,t), where

γi,t,τ are constants and η is a noise process. It is straightforward to use functions Ai(si,0), Ci,t(a
t),

and Bi,t(a
t, si,1, . . . , si,t) to model this process as an additively separable value function.

5 We do assume that Assumption 2.3 holds throughout the paper, but we state the definition above as a combination
of Property 4.1 and Assumption 2.3 in order to clearly state that for an environment to be separable, the value function
of each agent must satisfy both a functional and a statistical (independence of first signal) separation.
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4.2 The Relaxed Environment and the Virtual Welfare

In the relaxed environment, we can use the standard techniques of static mechanism design (My-
erson [1981], Milgrom and Segal [2002]) to establish an upper bound on the profit of the optimal
mechanism. The next lemma establishes that the profit of any IC mechanism is an ‘affine trans-
formation’ of the social welfare of the agents. The affine factors are given by the functions α and
β in the lemma. Note that they are only depend on the initial signals (and the actions of the
mechanism) and do not explicitly depend on the signals from t ≥ 1. This observation underlies our
construction of the optimal mechanism.

Lemma 4.1. Consider the relaxed environment and an incentive compatible mechanism M. Sup-
pose the environment is separable (as in Definition 4.1), and Ai, Bi,t and Cit, are uniformly bounded.
Then, under the stochastic process induced by M and the truthful reporting strategy, the expected
discounted sum of payments by each agent i is equal to

E

[ ∞∑
t=0

δtpi,t

]
= E

[ ∞∑
t=0

δt
(
αi(si,0)vi,t(a

t, sti) + βi,t(a
t, si,0)

)]
− E

[
UM,T
i (si,0 = 0, s−i,0)

]
(15)

where the functions αi and βi,t are given by:

• For multiplicatively-separable values,

αi(si,0) = 1− 1− Fi(si,0)

fi(si,0)

A′i(si,0)

Ai(si,0)
βi,t(a

t, si,0) = 0

• For additively-separable values,

αi(si,0) = 1 βi,t(a
t, si,0) = −1− Fi(si,0)

fi(si,0)
A′i(si,0)Ci,t(a

t)

The lemma above yields a bound on the profit of the optimal mechanism for the relaxed environ-
ment. Recall that Lemma 3.1 established that the profit for the dynamic environment is bounded
by the profit from the relaxed one. Combining these two lemmas and the fact that an IR mechanism
must satisfy UM,T

i (si,0 = 0) ≥ 0, we obtain the following profit bound.

Corollary 4.1. Under the assumptions in Lemma 4.1, for both the relaxed and the dynamic en-
vironments, the ProfitM of any incentive compatible and individually rational mechanism M is
bounded as follows:

ProfitM ≤ max
q∈Q

E

[ ∞∑
t=1

δt

(
n∑
i=1

(
αi(si,0)vi,t(a

t, sti) + βi,t(a
t, si,0)

)
−ct(at)

)]
, (16)

where Q is the set of all allocation rules.

The bound above determines an upper bound on the profit of any optimal dynamic mechanism. In
the next section, we provide a dynamic mechanism that satisfies IC and IR and achieves this upper
bound.
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5 The Virtual-Pivot Mechanism

We now present the Virtual-Pivot mechanism an optimal dynamic mechanism in separable
environments.

The key insight from Section 4 is that the profit of a dynamic mechanism is bounded by an affine
transformation of the social welfare of the agents, where the affine parameters are given by the
functions αi and βi,t in Lemma 4.1.

We define an affine weight function through a pair of vectors (α̂, β̂), such that α̂ = (α̂1, · · · , α̂n)
∈ Rn and β̂ = (β̂1, · · · , β̂n) ∈

(
A × R

)n
, where A includes all possible action vectors at for any t.

In particular, β̂ is allowed to depend action at, so that β̂(at) = (β̂1(at), · · · , β̂n(at)) ∈ Rn. For any
(α̂, β̂), time t, and vectors of actions at and types st, the weighted social welfare with respect to
(α̂, β̂) is defined as

W (α̂,β̂)(at−1, st) , max
q∈Q

E

[ ∞∑
τ=t

δτ

(
n∑
i=1

(
α̂ivi,τ (aτ , sτi ) + β̂i(a

τ )
)
−cτ (aτ )

)∣∣∣∣∣st, at−1

]
, (17)

where the max is over all the possible allocation rules. Using a standard dynamic programming
argument, the weighted social welfare satisfies the following (Bellman) equations:

W (α̂,β̂)(at−1, st) = max
at∈At

E

[
n∑
i=1

(
α̂ivi,t(a

t, sti)− β̂i(at)
)
−ct(at) + δW (α̂,β̂)(at, st+1)

∣∣∣∣∣st, at−1

]
(18)

where st+1
i is the next (random) type when conditioned on st and at.

Note, however, that the affine parameters (α̂, β̂) we need to use to achieve the bound from Corol-
lary 4.1 are not numbers (or, in the case of β, functions of the sequence of actions), but functions
of the first signal si,0 of each agent i. An important challenge in implementing an IC mechanism

is eliciting si,0 in an incentive compatible way in order to obtain the desired (α̂, β̂). An important
design choice in the Virtual-Pivot Mechanism is to use the first report of si,0 to determine the

affine parameters (α̂, β̂) and maintain those affine parameters fixed for all periods, irrespective of
future re-reports of si,0.

The Virtual-Pivot mechanism is presented in Figure 2. The mechanism consists of two stages:

• (Subscription Phase) At time 0, each agent i, reports her initial type, ŝi,0. Then, the mech-

anism assigns affine parameters
(
α̂i = αi(ŝi,0), β̂i(·) = βi,t(·, ŝi,0)

)
to each agent i, where

the functions αi and βi are given in Lemma 4.1. Then, the mechanism excludes the agents
whose expected discounted payments would be negative (or zero). If p?i (ŝ0) ≤ 0

(
see def-

inition in Eq. (24)
)
, then i /∈ a0. Otherwise, agent i ∈ a0 and pays pi,0(ŝ0)

(
see defini-

tion in Eq. (25)
)
.

• (Allocation Phase) For t ≥ 1, the Virtual-Pivot mechanism is equivalent to an affine
dynamic pivot mechanism. The affine parameters are fixed and the mechanism solicits reports
from the agents in order to choose actions that maximize the affinely transformed social

welfare W (α̂,β̂).

16



The Virtual-Pivot Mechanism:

(Subscription Phase) At time t = 0, for each agent i,

She reports ŝi,0.

Let α̂i ← αi(ŝi,0), β̂i(a
τ )← βi,τ (aτ , ŝi,0) for all τ ≥ 1 and aτ ∈ Aτ .

If p?i (ŝ0) ≤ 0
(
see Eq. (24)

)
, then i /∈ a0 (agent i is excluded).

If p?i (ŝ0) > 0, then let i ∈ a0 and charge her pi,0(ŝ0), see Eq. (25).

(Allocation Phase) At each time t = 1, 2, . . .

Each agent i reports ŝti.

Let a?t be an action that maximizes W (α̂,β̂)(a?t, ŝt), see Eq. (19).

Let mi,t be the flow marginal contribution of agent i, see Eq. (21).

The payment of each agent i is equal to pi,t(ŝt)← vi,t(a
?t, ŝti)−

mi,t

α̂i
.

Figure 2: The Virtual-Pivot Mechanism

To gain some intuition, let us consider the multiplicative-separable case. Roughly speaking, an
agent with a higher initial signal si,0, would be assigned a larger α̂i. A larger α̂i increases the
weight of the agent in the affine transformation and hence increases the value obtained by the
agent.

We discuss the allocation and payment rules in more details in Section 5.2. Before that, we present
our main results.

5.1 Optimality

We make the following assumptions.

Assumption 5.1. (Monotone Hazard Rate) Assume that
fi(si,0)

1−Fi(si,0) is strictly increasing.

Assumption 5.2. Assume that:

• (Multiplicative Case) If the value function of agent i is multiplicatively separable, then Ai(si,0)
is strictly increasing, twice differentiable, and concave in si,0.

• (Additive Case) If the value function of agent i is additively separable, then, for all at ∈ A,
Ai(a

t) is strictly increasing, twice differentiable and concave in si,0. Also, Ci,t(a
t) is positive.
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The function Ai(si,0) = si,0 is an example of a function that satisfies Assumption 5.2. These as-
sumptions imply that αi is strictly increasing for multiplicatively separable value functions and that
βi,t is differentiable and strictly increasing for additively separable value functions (see Lemma A.2).

Theorem 5.1. (Optimality) Suppose that the environment is separable and that Assumptions 5.1,
and 5.2 hold. Then, the Virtual-Pivot mechanism is optimal in both the relaxed and the dynamic
environments. In addition, the Virtual-Pivot mechanism is periodic ex-post individually rational
and periodic ex-post incentive compatible.

The proof of this theorem is presented in Subsection 5.3.

The assumptions above allow us to satisfy the dynamic IC condition from Lemma 3.5. For opti-
mality of the mechanism in the relaxed environment, a weaker set of assumptions could potentially
be sufficient.

The Virtual-Pivot Mechanism is optimal for both the relaxed and dynamic environments and
the profit obtained by the mechanism, as well as the utility obtained by the agents, are identical in
both environments. Therefore, the agents obtain no “information rent” for periods t ≥ 1. That is,
the agents are not able to obtain any benefit from the fact that signals si,1, ..., si,t are private. This
no-information-rent property was noted in a two-period model by Ëso and Szentes [2007] where
the mechanism is able to control whether or not agents obtain a second private signal. Theorem
5.1 implies that the no-information-rent property holds even in infinite-horizon problems where the
sellers has partial control (or even no control) over what private signals agents obtain over time
(signals evolve according to a stochastic kernel Ki,t(si,t|at−1, st−1

i )), as long as the environment
is separable. We show in Section 7 that this property does not extend to general non-separable
settings.

Since there is no information rent for periods t ≥ 1, there is no allocation distortion associated with
signals si,t for t ≥ 1. The initial signal si,0, however, causes distortion from the efficient allocation
at every period as if the mechanism design problem was a static one. To see this easily, consider
a setting where each agent i has a multiplicatively separable valuation and Ai(si,0) = si,0, i.e.,
the value function of agent i is vi,t = si,0 × Bi,t(at, si,1, . . . , si,t). The Virtual-Pivot Mechanism
allocates in order to maximize the “virtual valuations” of(

si,0 −
1− Fi(si,0)

fi(si,0)

)
Bi,t(a

t, si,1, . . . , si,t).

That is, the first signal si,0 is replaced at every period by the virtual value si,0− 1−Fi(si,0)
fi(si,0) of static

mechanism design (see Myerson [1981]). Our results contrast to the ones of Battaglini [2005], Zhang
[2011], where the impact of the first signal si,0 on the value vi,t is transient (it disappears as t grows)
and, therefore, the allocation distortion is also transient.

5.2 The Allocation and Payment Rules

We first discuss the allocation rule of the mechanism. At each time t, the mechanism chooses

allocation a?t that maximizes W (α̂,β̂)(a?t−1, ŝt) where a?t−1 = (a?0, · · · , a?t−1) represents the past
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actions of the mechanism. From Eq. (18), we have

a?t ∈ argmax{at∈At}

{ n∑
i=1

(
α̂ivi,t((a

?t−1, at), ŝ
t
i) + β̂i

(
a?t−1, at

))
−ct(a?t−1, at) (19)

+δE
[
W (α̂,β̂)

(
(a?t−1, at), s

t+1
i

) ∣∣∣ st = ŝt

]}

Note that only reports from two time periods (0 and t) are used to determine a?t . That is, ŝ0 is
used to determine the affine parameters and ŝt is used to determine the agents’ types at period t.
At time t, the mechanism does not use the agents’ reports between times 1 to time t − 1 (for the
allocation or payments).

We now show how the payments are determined. We start from the payments pi,t for t ≥ 1 and then
use those to construct pi,0. To make the mechanism incentive compatible, pi,t is determined such
that the (instantaneous) utility of agent i at time t is proportional to her flow marginal contribution
to the affinely transformed social welfare, denoted by mi,t.

mi,t = W (α̂,β̂)(a?t−1, ŝt)− δE
[
W (α̂,β̂)(a?t, st+1)

∣∣∣ st = ŝt, a
?
t

]
−W (α̂,β̂)

−i (a?t−1, ŝt) + δE
[
W

(α̂,β̂)
−i (a?t−i, s

t+1)
∣∣∣ st = ŝt, a

?t, a?−i,t

]
(20)

where W
(a,b)
−i is the affinely transformed social welfare obtained in the absence of agent i

W
(α̂,β̂)
−i (at−1, st) , max

q∈Q
E

 ∞∑
τ=t

δτ

∑
j: j 6=i

(
α̂jvj,τ (aτ , sτj ) + β̂j(a

τ )
)
−cτ (aτ )

 ∣∣∣∣∣∣ st, at−1


and a?−i,t is the action that maximizes W

(α̂,β̂)
−i (a?t−1, st) at time t.

Equivalently, we have

mi,t =

n∑
j=1

(
α̂jvj(a

?t, ŝj,t) + β̂j(a
?t)
)
−ct(a?t) (21)

−W (α̂,β̂)
−i (a?t−1, ŝt) + δE

[
W

(α̂,β̂)
−i (a?t−i, s

t+1)
∣∣∣ st = ŝt, a

?t, a?−i,t

]
The payment by agent i at time t is then given by

pi,t(ŝt) = vi,t(a
?t, ŝti)−

mi,t

α̂i
. (22)

In Bergemann and Välimäki [2010], the idea of such a payment based on flow marginal contributions
was introduced and shown to establish incentive compatibility for the welfare maximizing allocation
rule. Similarly, the payments that we use (which are scaled versions of the flow marginal contribu-
tions) establish incentive compatibility for the affinely transformed welfare maximizing allocation
rule.
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We now construct the payment at time 0. Consider the allocation rule q? that maximizes the
weighted social welfare conditioned on the reports at time 0, i.e.

q? ∈ argmaxq∈QE

[ ∞∑
t=1

δt

(
n∑
i=1

(
α̂ivi,t(q

t, sti) + β̂i(q
t))
)
−ct(qt)

)∣∣∣∣∣s0 = ŝ0

]
(23)

where qt = q(ht, s
t) and qt = (q0, · · · , qt). We drop the (explicit) dependence of qt on ht and st to

simplify the presentation. Note that if the agents are truthful, then q? and a? correspond to the
same allocation rule. Define p?i (ŝ0) as follows:

p?i (ŝ0) = Vi(ŝ0)−
∫ ŝi,0

0

∂V z→z
i (si,0, ŝ−i,0)

∂si,0

∣∣∣
si,0=z

dz (24)

where:

∂V z→z
i (si,0, ŝ−i,0)

∂si,0

∣∣∣
si,0=z

= E

[ ∞∑
t=1

δt
∂vi,t(q

?t, si,0, si,1, . . . si,t)

∂si,0

∣∣∣
si,0=z

∣∣∣∣∣si,0 = z, s−i,0 = ŝ−i,0

]
.

The value p?i (ŝ0) is the payment of agent i in the relaxed environment, given by the envelope
condition. If p?i (ŝ0) ≤ 0, then the mechanism excludes agent i (that is, i /∈ a?0).

The total expected discounted sum of payments in the relaxed and dynamic environments must
match in order to achieve our optimality bound. Therefore, p?i (ŝ0) must be equal to expected
discounted sum of payments from agent i. Hence, the payment of agent i at time 0 equals

pi,0(ŝ0) = p?i (ŝ0)− E

[ ∞∑
t=1

δtpi,t(s
t
i)

∣∣∣∣∣s0 = ŝ0

]
. (25)

5.3 Un-Relaxing: Proof of Theorem 5.1

In this subsection, we present the three steps of the proof of Theorem 5.1. The proofs of the
following lemmas are given in the appendix.

The first step is to show that the mechanism, if incentive compatible, does indeed yield the profit
from the upper bound in Corollary 4.1. The argument used to prove this lemma is a standard
one from Myerson [1981]. We also show that the Virtual-Pivot Mechanism is periodic ex-post
individually rational.

Lemma 5.1. If the Virtual-Pivot mechanism is incentive compatible, then it is optimal. More-
over, it is periodic ex-post individually rational at t = 0.

The lemma below guarantees that, under the Virtual-Pivot mechanism, it is always a best
response for agents to report their types truthfully regardless of the history, at any time t ≥ 1
(assuming that other agents will be truthful in the future but not necessarily in the past). This
lemma follows the technique of Bergemann and Välimäki [2010], except that it maximizes an affine
transformation of the social welfare, instead of the social welfare itself.
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Lemma 5.2. The Virtual-Pivot mechanism is periodic ex-post incentive compatible and peri-
odicic ex-post individually rational for all periods t ≥ 1.

The lemma above not only rules out deviations at periods t ≥ 1, but it also rules out combined
deviations at period t = 0 and future periods. That’s because if an agent deviates at period 0, she
still wants to truthfully report her type at future period (the mechanism is periodic ex-post IC).

Therefore, we need only concern ourselves with period t = 0 deviations from the truthful strategy.
The proof of Theorem 5.1 is completed by the following lemma.

Lemma 5.3. Suppose the assumption of Theorem 5.1 hold. Then the Virtual-Pivot mechanism
satisfies the conditions provided by Lemma 3.5

(
i.e., Eqs. (11) and (12)

)
. These conditions are

satisfied for all agents conditioned on any initial type s−i,0 of the other agents and, therefore, the
mechanism is periodic ex-post incentive compatible.

This is a key technical result in our paper. Proving this lemma involves addressing the key difference
between the dynamic and the static setting, as we explicitly show the conditions of Lemma 3.5 hold.
The separability assumption is central here.

6 Special Cases of the Virtual-Pivot Mechanism

In this section, we show that the Virtual-Pivot mechanism can be simply implemented in some
natural special cases where it enjoys additional guarantees. First, we present an indirect imple-
mentation of the mechanism in an environment with a single agent. Then, we look at environments
where the evolution of the types of the agents is either fully dependent or fully independent of the
actions of the mechanism.

6.1 The Optimal-Contracting Mechanism for a Single Agent

We now consider the case where there is only a single agent. In this case, the optimal mechanism
can be implemented as remarkably simple indirect mechanism.

In particular, the indirect Optimal-Contracting Mechanism is presented in Figure 3. The
mechanism works a follows. The Subscription Phase is the only period at which the agent ever
makes a report of her type. In particular, the agent just makes a report ŝ0 of s0.6 In the Posted-
Price-Phase, the mechanism simply posts a price for every possible action; the agent decides upon
the action; the agent pays the respective price for this action; the mechanism executes this chosen
action. These prices may vary as a function of time, as they depend on her previous purchases.
After t ≥ 1, the mechanism does not solicit reports from the agent.

Corollary 6.1. Suppose the assumptions of Theorem 5.1 hold and that there is only one agent.
Then Optimal-Contracting is an optimal mechanism.

6 Observe that the subscription phase can be implemented in an indirect manner by offering a menu of contracts
at time 0. However, for the simplicity of presentation, we assume the agent reports her initial type.
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The Optimal-Contracting Mechanism for One Agent

(Subscription Phase) At time t = 0,

The agent reports ŝ0.

If p?(ŝ0) ≤ 0, then terminate the process,
(
see Eq. (24)

)
.

Otherwise, charge the agent p0(ŝ0) and continue,
(
see Eq. (25)

)
.

(The Posted Price Phase) At each time t = 1, 2, . . .

The mechanism informs the agent of the price of each possible action.

pt(a
t, ŝ0) =

ct(a
t)− βt(at, ŝ0)

α(ŝ0)

The agent chooses an action at, pays pt(a
t, ŝ0), and the mechanism takes this action.

Figure 3: The Optimal-Contracting Mechanism for a Single Agent

In indirect mechanisms, we need to concern ourselves with what equilibrium we are implementing
since agents are no longer simply reporting their types. The corollary above refers to the equilibrium
where ties are broken as in the Virtual-Pivot Mechanism.

To observe how simple the Optimal-Contracting Mechanism is, consider a scenario where the
mechanism is considering selling a stream of items to an agent. At each time period, the seller has
two possible actions: allocate an item to the agent at a production cost γ ≥ 0 or not (at no cost).
The agents’ valuation is multiplicative separable (hence, βt(a

t, ŝ0) = 0).

The Optimal-Contracting Mechanism can be implemented as follows: the seller offers a family
of contracts to the agent of the form (p,M(p)). The agent either leaves (and the process terminates)
or she picks a price p. If the picks a price p she is immediately charged M(p). At every period
t ≥ 1, the agent will offered to buy the item at the constant price p.

The value M(p) the mechanism selects is

M(p) = p0

(
α−1

(
γ

p

))
,

for each possible positive value of p0(s0). In equilibrium, the agent will either leave (if p?(s0) ≤ 0)
or will pick price p = γ

α(s0) .

This mechanism is optimal regardless of the value function of the agent, as long as it is multiplica-
tively separable. Even if the agent’s value vt is increasing or decreasing over time and the seller
knows about it, it is still optimal for the seller to offer a family of contracts of the form (p,M(p))
which includes a constant price for every item (t ≥ 1).
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6.2 Controlled and Uncontrolled Environments

There are two natural extremes for how the stochastic process of the environment evolves. At one
extreme is the fully uncontrolled environment, where the evolution of the agents’ signals has no
dependence on the action taken by the mechanism. Here, we show the Virtual-Pivot mechanism
enjoys a much stronger incentive compatibility notion. At the other extreme is a multi-armed bandit
process (which can be considered a fully controlled environment). Here, the type of an agent only
evolves if the agent was allocated the item (and no evolution occurs otherwise), and the optimal
allocation rule has a particularly simple form.

6.2.1 Fully Uncontrolled Environments

Define an uncontrolled environment to be one in which the stochastic process of each agent is
independent of the actions taken by the mechanism, i.e.,

Ki,t(si,t|at, st−1
i ) = Ki,t(si,t|st−1

i ).

In this environment the allocation rule of the Virtual-Pivot Mechanism is myopic, in that the
mechanism’s decision is to maximize the instantaneous weighted social welfare (as opposed to
considering how this impacts future decisions). In particular, we have that:

argmax{at∈At}E

[
n∑
i=1

(
α̂ivi,t(a

t, ŝti) + β̂i(a
t)
)
−ct(at)

∣∣∣∣∣ŝt, at−1

]

= argmax{at∈At}E

[
n∑
i=1

(
α̂ivi,t(a

t, ŝti) + β̂i(a
t)
)
−ct(at) + δW (α̂,β̂)(at, ŝt+1)

∣∣∣∣∣ŝt, at−1

]

This is a straightforward corollary of the uncontrolled assumption. 1

Corollary 6.2. (A Dominant Strategy IC) Suppose the assumptions of Theorem 5.1 hold. The
Virtual-Pivot Mechanism has the property that for every timestep t ≥ 1, (e.g. after timestep
t = 0), the truthful reporting strategy is a dominant strategy.

This guarantee is immediate since each allocation from t ≥ 1 is just instantly maximizing a social
welfare function (and the action taken by the mechanism and the reports provided by the agents
have no effect on the future evolution of signals). Hence, periodic ex-post IC for periods t ≥ 1
immediately implies ex-post IC (and, hence, dominant strategies implementation) for periods t ≥ 1.
Hence, if agents knew their own (and other agents’) past, present and future signals, they would
still report truthfully at all histories after t = 0. Note, however, that the at period t = 0, the
mechanism is still periodic ex-post IC (not ex-post IC).

6.2.2 Fully Controlled (Multi-Armed Bandit) Environments

We now consider the setting where there is only one item to sell every round — so the action space
for the mechanism at each period t ≥ 1 consists of choosing which agent should receive the item
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(or choosing not to allocate the item). The environment now considered is one where the type of
an agent changes evolves only if the mechanism takes an action. Namely, the type of an agent only
changes when the mechanism allocates the item to the agent. We call this environment controlled;
the underlying stochastic process corresponds to multi-armed bandits where each arm is mapped
to an agent. A special case of this setting is also considered in Pavan et al. [2009], in what they call
“bandit auctions”. In their model, the types of agents evolve, in an additive manner, according to
restricted multi-armed bandits processes.

In a multi-armed bandit process, there is a “state” of each arm and this only evolves if the arm
was “pulled”. In our setting, fully controlled environment is one where if on any round t− 1 where
agent i is not allocated the item, the signal si,t is irrelevant. Precisely, we have that if i is not
allocated at time t− 1, then we have that: 1) all current and future values do not depend on si,t.
2) the distribution of all future signals are independent of si,t. We also assume, for simplicity, that
there are no costs associated with actions in the fully controlled setting.

An notable feature of this environment is that the optimal allocation is an index-based policy (a
Gittins-type index, see Gittins [1989], Whittle [1982]). Namely, we can assign a number to each
agent, independent of the other agents, and the optimal allocation rule is to give the item to the
agent with the highest positive index. In the fully controlled environment, the optimal allocation
can be implemented using virtual indices.

Definition 6.1 (Virtual Index). For each agent i, the virtual index is defined as:

G(α̂,β̂)
i (si,t) = max

τi
E

∑τi
t=t′ δ

t
(
α̂ivi,t′(a

t′ , st
′
i ) + β̂i(a

t′)
)

∑τi
t=t′ δ

t

∣∣∣∣∣∣si,t
 (26)

where the maximum is taken over all stopping times τi.

The optimal allocation rule is to give the item to the agent with the highest positive virtual index.
The virtual index can be computed individually for each agent and, therefore, it decouples the
n-agent problem into n single-agent problems.

The payments, however, cannot be computed separately for each agent as they dependent on the
externalities created by the agent receiving an item. The agents who do not receive an item at
time t do not cause externalities and, therefore, do not make payments at time t (other than time

t = 0). For the agent i that does get the item at time t, W
(α̂,β̂)
−i (a?t, ŝt) = E

[
W

(α̂,β̂)
−i (ŝt+1)

∣∣∣a?t].
Hence, we obtain the following corollary.

Corollary 6.3. (The Virtual Index Mechanism) Consider the fully controlled environment defined
above and suppose the assumptions of Theorem 5.1 hold. The allocation rule of the Virtual-Pivot
Mechanism is to simply allocate to the agent with the highest virtual index. Moreover, for t ≥ 1,

pi,t(ŝ
t) =

1

α̂i

(
(1− δ)W (α̂,β̂)

−i (a?t, ŝt)− β̂i(a?t)
)
.

To gain some intuition, consider the multiplicative-separable case. An agent with a higher initial
type si,0, would be assigned a larger α̂i. A larger α̂i increases agent i’s virtual index and, therefore,
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increases the expected discounted value that agent i obtains. Moreover, she pays a lower payment
at each period t ≥ 1. However, for these privileges, she will be required to make a higher upfront
payment (at t = 0).

7 Limitations of the Relaxation Approach

In this section, we provide examples where the optimal mechanisms in the dynamic and relaxed
environments obtain different revenues. Our first example shows that if s1 is correlated with
the future signals then the relaxation approach may fail. This suggests that our assumption of
independence of s1 (which is without loss of generality) is potentially a natural representation.
Our second example provides a simple, yet non-separable, value function in which the relaxation
approach fails.

The examples are two period environments with one agent (e.g. future values can be considered to
be 0 and we can set δ = 1 without loss of generality). The agent receives signals s0 and s1 at times
0 and 1. At the end of the period t = 1, the mechanism takes an action a ∈ {0, 1}, corresponding
to an allocation of an item. The agent obtains a value of a × v(s0, s1) – no value is obtained at
t = 0.

Correlated Signals

Suppose the value of the agent is equal to her second signal, namely, v(s0, s1) = s1. Assume
s0 ∈ [0, 1] and s1 ∈ [0, 1] are correlated. In the relaxed environment, the optimal mechanism is
trivial: observe s1, and take action a = 1, at the price equal to s1. Hence, the optimal mechanism
extracts the whole surplus which is equal to E[s1].

We now show that under weak assumptions, the revenue of any dynamic mechanism that cannot
observe the second signal is less than E[s1]. Consider an incentive compatible and individually
rational mechanism M. Note that due to individual rationality constraints, a mechanism cannot
extract more revenue than E[s1×aM(s0, s1)|s0] ≤ E[s1|s0] from an agent of type s0 where aM(s0, s1)
represents the mechanism’s action (i.e., the probability of allocation). Thus, M can extract a
revenue of E[s1] only if a = 1 with probability 1.

On the other hand, if a mechanisms chooses a = 1 with probability 1, then the expected payment at
time t = 0, E[p0+p1|s0], should be identical for all possible first period types s0 with probability 1, by
Lemma 3.2 (if not, then the agent would misreport her type as the type with the minimum expected
payment). Hence, the expected payment of the agent is less than or equal to infs0 E[s1|s0]. Suppose
s0 and s1 are correlated such that for an set τ of non-zero measure, if s0 ∈ τ then, E[s1|s0] < E[s1].
In this case, the revenue of M is strictly less than E[s1].
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Non-separable Value Functions

Now assume s0 to be uniformly drawn from [0, 1] and let s1 be drawn independently and uniformly
from the set {+,×}. The value at time 1 is:

v(s0,+) = s0 + c+

v(s0,×) = s0c×

For all future times, assume the value is 0. Here, we assume c+ is a constant greater than 1 and
we later set c× to be a large positive constant.

Note that this value function is of the form:

v(s0, s1) = A(s1)s0 +B(s1)

and does not satisfy our separability assumptions.

We observe that by Eq. (4), there is a unique optimal allocation in the relaxed environment. This
optimal allocation corresponds to the two static optimal auctions for the special cases where s1 = +
and s1 = ×. In particular, the allocation for q(s0, s1 = +) is one which always allocates (because
c+ is greater than 1). The allocation for q(s0, s1 = ×) occurs only if s0 ≥ 0.5. This allocation
uniquely maximizes Eq. (4), under the assumption that U(0) = 0. 7 To see this, note that for each
setting of s1, we have a static problem of optimal auction design with one item and one buyer.
Furthermore, as the values are 0 at s1 = 0 we have U(0) = 0.

It is interesting to note the following rather natural monotonicity properties:

• The value v(s0, s1) is monotone (and linear) in s0.

• The optimal (relaxed) utility is U(s0) is monotone in s0.

• The future value V (s0) under the optimal allocation is monotone in s0.

Nonetheless, we show that dynamic IC is more stringent and that the optimal revenue in the
dynamic environment is less. Let r? be this optimal revenue in the relaxed environment. Now
observe that if r? is achievable in the dynamic environment, then it must be due to this allocation
rule — Eq. (4) also specifies the expected payments in the dynamic environment. As a proof by
contradiction, let us suppose that this allocation rule could be implemented in an IC manner in
the dynamic environment.

Since the allocation does not change between 0 and 0.5, Lemma 3.2 implies:

U(s0 = 0.5)− U(s0 = 0) =
1

2
v(0.5,+)− 1

2
v(0,+)

Hence, the average revenue at s0 is:

E[p0 + p1|s0 = 0] = V (s0 = 0)− U(s0 = 0)

=
1

2
v(0,+)− U(s0 = 0)

=
1

2
v(0.5,+)− U(s0 = 0.5)

7Again, technically, there are a family of maximizers, which agree with probability one. The argument holds for
any of these maximizers.
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Now consider the misreporting strategy R of using ŝ0 = 0 when s0 = 0.5 and then reporting
ŝ1 = × when s1 = + and reporting ŝ1 = + when s1 = ×. Here, the agent obtains the item when
(s0, s1) = (0.5,×) (since (ŝ0, ŝ1) = (0,+) is reported which leads to an allocation). The value under
this strategy is:

V R(s0 = 0.5) =
1

2
v(0.5,×)

(since with a 1/2 probability the agent obtains s1 = ×). Also, note that the distribution of
misreports ŝ1 is uniform under R, so that the expected payments under R at s0 = 0.5 are identical
to those at s0 = 0. Hence,

UR(s0 = 0.5) = V R(s0 = 0.5)− E[p0 + p1|s0 = 0]

=
1

2
v(0.5,×)− 1

2
v(0.5,+) + U(s0 = 0.5)

=
1

2
(0.5c× − 0.5− c+) + U(s0 = 0.5)

Thus, for sufficiently large c×, we have that this misreporting strategy obtains strictly greater utility
than that of the truthful strategy. Furthermore, by a continuity argument, for a neighborhood
[0.5, 0.5 + ε] this misreporting strategy will also provide strictly more revenue (since the allocation
rule does not change above s1 ≥ 0.5). Thus, we have a contradiction — there is a misreporting
strategy resulting in strictly greater (unconditional) expected utility.

8 Concluding Remarks

In this work, we propose an optimal dynamic mechanism, the Virtual-Pivot Mechanism, for
separable environments. Our methodology is as follows: we first find a candidate allocation rule by
solving the mechanism design problem in a relaxed environment, as is standard in this literature.
The key challenge we address is how to find a (dynamic) payment rule that makes this candi-
date allocation rule incentive compatible. Our solution methodology involves aiming for a bigger
goal: finding a payment rule that makes the candidate allocation rule periodic ex-post incentive
compatible. We show that this is possible for periods after the initial one if we allow the agent
to “re-report” their entire history of signals at each period. In particular, the payment rule we
need is constructed by mapping the candidate allocation rule to an affine transformation of the
social welfare function. We find necessary and sufficient conditions for incentive compatibility at
the initial periods for mechanisms that satisfy periodic ex-post incentive compatibility for periods
after the first one. Finally, we show that the Virtual-Pivot Mechanism satisfies these conditions
and is, therefore, incentive compatible.

The Virtual-Pivot mechanism is quite simple and could be implemented in settings such as
selling online advertisement (see Section 4). The variant of this mechanism specialized to one-buyer
settings, the Optimal-Contracting Mechanism, is even simpler and shows that the structure of
the optimal mechanism can be quite counterintuitive.

We show in Section 7 that this relaxation approach will not work in designing optimal mechanisms
for general non-separable settings. The precise extent to which our technique works in non-separable
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settings and what methodology could be used in designing optimal mechanisms when the relaxation
method fails are promising areas for future research.
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A Appendix

A.1 Proofs for the Relaxed Environment

Lemma A.1. For any reporting strategy y → z and initial type x, the partial derivative of the
expected value of agent i V y→z

i (x) (see definition in Eq. (6)) with respect to x exists and is:

∂V y→z(x)

∂x
= E

[ ∞∑
t=0

δt
∂

∂si,0
vi,t(a

t, si,0, si,1, ..., si,t)

∣∣∣∣∣si,0=x

]

(where the expectation is under y → z and T−i). Furthermore, it is bounded by∣∣∣∣∂V y→z
i (x)

∂x

∣∣∣∣ ≤ V̄

1− δ
.

Proof. From Assumption 2.2, we have that for all i, t, a, x and si,1, ..., si,t,∣∣∣∣ ∂∂xvi,t(at, x, si,1, ..., si,t)
∣∣∣∣ ≤ V̄ <∞.

Therefore, by Lebesgue’s Dominated Convergence Theorem, the partial derivative ∂V̄ y→z(x)
∂x exists,

∂V y→z(x)

∂x
=

∂

∂x
E

[ ∞∑
t=0

δtvi,t(a
t, x, si,1, ..., si,t)

]
= E

[ ∞∑
t=0

δt
∂

∂x
vi,t(a

t, x, si,1, ..., si,t)

]

and |∂V
y→z(x)
∂x | ≤ E

[∑∞
t=0 δ

tV̄
]

= V̄
1−δ .
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Proof of Lemma 3.1. Any strategy available to the agents in the relaxed environment is a feasible
strategy in the dynamic environment. Therefore, if all other agents are truthful, any profitable
deviation from the truthful strategy in the relaxed environment implies a profitable deviation in
the dynamic environment. Since no such profitable deviations exist in the dynamic environment,
we obtain that the mechanism M is incentive compatible in the relaxed environment. Therefore,
the optimal revenue in the relaxed environment provides an upper bound on the revenue in the
dynamic environment.

Proof of Lemma 3.2. For consistency with the notation used in the rest of the paper, we represent
the utility of agent i with initial type si,0 = z′ and reporting his initial type as ŝi,0 = z by U z→zi (z′),
assuming all other agents are truthful. Respectively, V z→z

i (z′) and P z→zi (z′) represent the expected
discounted value and payment of agent i under initial type z′ and reported initial type z′.

The expected utility of agent i under reporting strategy z → z and initial type x is

U z→zi (z) = V z→z
i (z)− P z→zi (z). (27)

Under the same reporting strategy z → z, but under initial type z′, the utility of agent i is

U z→zi (z′) = V z→z
i (z′)− P z→zi (z′). (28)

The payments are functions only of reported types, not true types, and therefore, P z→zi (z) =
P z→zi (z′). Therefore, for any z 6= z′, combining Eqs. (27) and (28) yields

U z→zi (z)− U z→zi (z′)

z − z′
=
V z→z
i (z)− V z→z

i (z′)

z − z′
.

At the same time, if z > z′, incentive compatibility yields U z
′→z′
i (z′) ≥ U z→zi (z′), hence

U z→zi (z)− U z′→z′i (z′)

z − z′
≤ U z→zi (z)− U z→zi (z′)

z − z′
.

Since the partial derivative ∂V z→z(x)
∂x exists for all x (see Lemma A.1), we can take the limit as

z′ ↑ z and obtain that the left-hand side derivative of U z→zi (z) satisfies

d−U
z→z
i (z)

dz
≤ ∂V z→z

i (s)

∂s

∣∣∣
s=z

.

Using the same argument for z′ > z, we obtain that the right-hand side derivative of U z→zi (z)
satisfies

d+U
z→z
i (z)

dz
≥ ∂V z→z

i (s)

∂s

∣∣∣
s=z

.

Since |∂V
z→z
i (s)
∂s | is bounded by V̄

1−δ by Lemma A.1, we get that the absolute value of both the left-

hand and right-hand side derivatives of U z→zi (z) are also bounded by V̄
1−δ . The function U z→zi (z)

is, therefore, V̄
1−δ -Lipschitz-continuous and, thus, differentiable almost everywhere. At all points

where the derivative exists,
dUz→z

i (z)
dz =

∂V z→z
i (s)
∂s

∣∣∣
s=z

. Therefore, the envelope condition follows:

Ux→xi (x)− Ux′→x′i (x′) =

∫ x

x′

dU z→zi (z)

dz
dz =

∫ x

x′

∂V z→z
i (s)

∂s

∣∣∣
s=z

dz. (29)

Plugging in the result from Lemma A.1, we obtain the desired result.
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Proof of Lemma 3.3. For notational convenience, we write:

∂vi,t(a
t, si,0, si,1, ..., si,t)

∂si,0

∣∣
si,0=si,0

=
∂vi,t(a

t, sti)

∂si,0

where the sti implicitly depends on the first signal.

Consider first the utility UMi (s) of an agent i under an initial type profile s, which is given by

UMi (si,0, s−i,0)− UMi (0, s−i,0) =

∫ si,0

0
E

[ ∞∑
t=1

δt
∂vi,t(a

t, sti)

∂si,0

∣∣∣∣∣si,0 = z, s−i,0

]
dz.

from Lemma 3.2. Taking the expectation of this term over all possible first period signals s1,0, ..., sn,0,
we obtain

E[UMi (si,0, s−i,0)− UMi (0, s−i,0)] =

∫ 1

0

(∫ si,0

0
E

[ ∞∑
t=1

δt
∂vi,t(a

t, sti)

∂si,0

∣∣∣∣∣si,0 = z

]
dz

)
fi(si,0)dsi,0.

Inverting the order of integration,

E[UMi (si,0, s−i,0)− UMi (0, s−i,0)] =

∫ 1

0

∫ 1

z
E

[ ∞∑
t=1

δt
∂vi,t(a

t, sti)

∂si,0

∣∣∣∣∣si,0 = z

]
fi(si,0)dsi,0dz

=

∫ 1

0
E

[ ∞∑
t=1

δt
∂vi,t(a

t, sti)

∂si,0

∣∣∣∣∣si,0 = z

]
(1− Fi(z))dz.

By multiplying and dividing the right-hand side of the equation above by the density fi(z) we
obtain an unconditional expectation,

E[UMi (si,0, s−i,0)− UMi (0, s−i,0)] = E

[ ∞∑
t=1

δt
1− Fi(si,0)

fi(si,0)

∂vi,t(a
t, sti)

∂si,0

]
.

Now note that the discounted sum of payments E[
∑∞

t=1 δ
tpi,t] is equal to the expected discounted

valuation of agent i – E[
∑∞

t=1 δ
tvi,t(a

t, sti)] – minus her utility, which yields the claim.

Proof of Lemma 3.4. The expected utility of agent i under reporting strategy x′ → z and initial
type z is

Ux
′→z

i (z) = V x′→z
i (z)− P x′→zi (z), (30)

where P x
′→z

i (z) is the expected discounted sum of payments of agent i under reporting strategy
x′ → z and initial type z (see similar definitions of Ux

′→z
i (z) and V x′→z

i (z) in Eqs. (5) and (6)).
Under the same reporting strategy x′ → z, but under initial type z′, the utility of agent i is

Ux
′→z

i (z′) = V x′→z
i (z′)− P x′→zi (z′). (31)

The payments are functions only of reported types, not true types, and therefore, P x
′→z

i (z) =
P x
′→z

i (z′). Therefore, for any z 6= z′, combining Eqs. (30) and (31) yields

Ux
′→z

i (z)− Ux′→zi (z′)

z − z′
=
V x′→z
i (z)− V x′→z

i (z′)

z − z′
.
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Periodic ex-post IC guarantees that Ux
′→z′

i (z′) ≥ Ux′→zi (z′). Therefore, for any z > z′,

Ux
′→z

i (z)− Ux′→z′i (z′)

z − z′
≤ Ux

′→z
i (z)− Ux′→zi (z′)

z − z′
.

Since the partial derivative ∂V z→z(x)
∂x exists for all x (see Lemma A.1), we can take the limit as

z′ ↑ z and obtain that the left-hand side derivative of Ux
′→z

i (z) for any constant x′ satisfies

d−U
x′→z
i (z)

dz
≤ ∂V x′→z

i (s)

∂s

∣∣∣
s=z

.

Using the same argument for z′ > z, we obtain that the right-hand side derivative of Ux
′→z

i (z)
satisfies

d+U
x′→z
i (z)

dz
≥ ∂V x′→z

i (s)

∂s

∣∣∣
s=z

.

Since |∂V
x′→z
i (s)
∂s | is bounded by V̄

1−δ by Lemma A.1, we get that the absolute value of both the left-

hand and right-hand side derivatives of Ux
′→z

i (z) are also bounded by V̄
1−δ . The function Ux

′→z
i (z)

is, therefore, V̄
1−δ -Lipschitz-continuous and, thus, differentiable almost everywhere. At all points

where the derivative exists,
dUx′→z

i (z)
dz =

∂V x′→z
i (s)
∂s

∣∣∣
s=z

. Therefore, the envelope condition follows:

Ux
′→x

i (x)− Ux′→x′i (x′) =

∫ x

x′

dUx
′→z

i (z)

dz
dz =

∫ x

x′

∂V x′→z
i (s)

∂s

∣∣∣
s=z

dz.

Proof of Lemma 3.5. The envelope condition from the relaxed environment (see Lemma 3.2) also
applies to this setting since a deviation that is feasible in the relaxed environment (that is, using
reporting strategy z → z for an initial type z′) is also feasible in the dynamic environment. There-
fore, if the mechanism is incentive compatible, then it satisfies Eq. (29), which is identical to Eq.
(11).

To see that IC implies the dynamic monotonicity condition in Eq. (12), simply note that IC is
equivalent to Eq. (7) and Eqs. (11) and (9) are respectively equal to the left-hand and the right-
hand side of Eq. (7). We thus obtain that IC implies Eq. (12).

We now show that if both Eqs. (11) and (12) hold, then the mechanism is IC. If both equations
hold, then for all x and x′,

Ux→xi (x)− Ux′→x′i (x′) =

∫ x

x′

∂V z→z
i (s)

∂s

∣∣∣
s=z

dz ≥
∫ x

x′

∂V x′→z
i (s)

∂s

∣∣∣
s=z

dz = Ux
′→x

i (x)− Ux′→x′i (x′),

where the last equality follows from Lemma 3.4. The equation above is equivalent to IC (see Eq.
(7)), when the mechanism is periodic ex-post IC for t ≥ 1.

Proof of Lemma 4.1. Observe that for multiplicatively-separable value functions

∂vi,t(a
t, sti)

∂si,0
= A′i(si,0)Bi,t(a

t, si,1, ..., si,t)
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and, therefore, Eqs. (15) and (4) are identical. Similarly, for additively-separable functions,

∂vi,t(a
t, sti)

∂si,0
= A′i(si,0)Ci(at)

and, therefore, Eqs. (15) and (4) are again identical.

Proof of Corollary 4.1. For an IC mechanism M, the expected discounted sum of payments by
agent i is equal to

E

[ ∞∑
t=0

δtpi,t

]
= E

[ ∞∑
t=0

δt
(
αi(si,0)vi,t(a

t, sti) + βi,t(a
t, si,0)

)]
− E

[
UM,T
i (si,0 = 0)

]
by taking expectations over s−i,0 (see Eq. (15)). Since the mechanism satisfies IR, E

[
UM,T
i (si,0 = 0)

]
≥

0 and, therefore,

E

[ ∞∑
t=0

δtpi,t

]
≤ E

[ ∞∑
t=0

δt
(
αi(si,0)vi,t(a

t, sti) + βi,t(a
t, si,0)

)]
.

The profit of M is given by the sum of payments minus the cost of actions (see Eq. (2)),

ProfitM ≤ E

[ ∞∑
t=1

δt

(
n∑
i=1

(
αi(si,0)vi,t(a

t, sti) + βi,t(a
t, si,0)

)
−ct(at)

)]
.

The bound above is valid for all IC and IR mechanisms. By maximizing over the set of all possible
allocation rules (payment rules do not enter the equation above), we obtain the desired result.

A.2 Proofs of Section 5.3

Lemma A.2. Suppose Assumptions 5.1 and 5.2 hold. Then αi is strictly increasing for multiplica-
tively separable functions and βi,t is strictly increasing for additively separable functions.

Proof. For simplicity of nation, let s = si,0. Also, let ηi(s) denote the hazard rate, i.e.,

ηi(s) =
fi(s)

1− Fi(s)
.

In the additive case,

∂βi,t(a
t, s)

∂s
=
η′i(s)

η2
i (s)

A′i(s)Ci,t(a
t)− 1

ηi(s)
A′′i (s)Ci,t(a

t)

where (·)′ denotes a partial derivative with respect to s. By the assumptions that Ai is concave and
strictly increasing, and the hazard rate is positive and strictly increasing, we have that the above
has the same sign as Ci,t. In the multiplicative case, first note that αi(s) = 1 − 1

ηi(s)
(logAi(s))

′.
Therefore,

α′i(s) =
η′i(s)

η2
i

A′i(s)

Ai(s)
− 1

ηi(s)
(logAi(s))

′′

which is positive by the assumption.

33



Proof of Lemma 5.1. If agents are truthful, by Eq. (24), the expected payment of each agent i
given si,0 is equal to max{p?i (si,0), 0}, where 0 occurs if agent i is excluded from the system (i /∈ ai).
Namely,

p?i (ŝ0) = V (sti)−
∫ ŝi,0

0

∂V z→z
i (si,0, ŝ−i,0)

∂si,0

∣∣∣
si,0=z

dz (32)

where

∂V z→z
i (si,0, ŝ−i,0)

∂si,0

∣∣∣
si,0=z

= E

[ ∞∑
t=1

δt
∂vi,t(q

?t, si,0, si,1, . . . si,t)

∂si,0
|si,0=z

∣∣∣∣∣si,0 = z, s−i,0 = ŝ−i,0

]

For notational convenience, we write:

∂vi,t(a
t, si,0, si,1, ..., si,t)

∂si,0

∣∣
si,0=si,0

=
∂vi,t(a

t, sti)

∂si,0

where the sti implicitly depends on the first signal. The expected payment of agent i is equal to:∫ 1

0
max{p?i (s, s0,−i), 0}fi(s)ds

=

∫ 1

0

(
E

[ ∞∑
t=1

δtvi,t(q
?t, sti)

∣∣∣∣∣si,0 = s, s−i,0

]
−
∫ s

0
E

[ ∞∑
t=1

δt
∂vi,t(q

?t, sti)

∂si,0

∣∣∣∣∣si,0 = z, s−i,0

]
dz

)
fi(s)ds,

where we can drop the max with zero since the agent obtains value zero at all periods when she is
excluded from the system. By changing the order of integration, we have∫ 1

0
max{p?i (s, s0,−i), 0}fi(s)ds

=

∫ 1

0

(
E

[ ∞∑
t=1

δt
(
vi,t(q

?t, sti)−
1− Fi(s)
fi(s)

∂vi,t(q
?t, sti)

∂si,0

)∣∣∣∣∣si,0 = s, s−i,0

])
fi(s)ds

=

∫ 1

0

(
E

[ ∞∑
t=1

δt
(
αi(si,0)vi,t(q

?t, sti) + βi,t(q
?t, si,0)

)∣∣∣∣∣si,0 = s, s−i,0

])
fi(s)ds

= E

[ ∞∑
t=1

δt
(
αi(si,0)vi,t(q

?t, sti) + βi,t(q
?t, si,0)

)∣∣∣∣∣s−i,0
]

(33)

Therefore, the profit of the mechanism matches the upper-bound provided in Corollary 4.1. Hence,
to prove the optimality, it suffices to show that the mechanism is individually rational. By con-
struction, we have the utility of agent i equal to 0 if si,0 = 0 for any s−i,0. Therefore,

Ui(s0) =

∫ si,0

0
E

[ ∞∑
t=1

δt
∂vi,t(q

?t, si,0, si,1, . . . si,t)

∂si,0
|si,0=z

∣∣∣∣∣si,0 = z, s−i,0

]
dz.

By Assumption 5.2,
∂vi,t(q

?t,si,0,si,1,...si,t)
∂si,0

is non-negative. Hence, the mechanism is individually

rational. Precisely, periodic ex-post IR at time 0.
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Proof of Lemma 5.2. Define ui,t to be the instantaneous utility of agent i at time t. We get

ui,t = vi,t(a
?t, sti)− pi,t

=
(
vi,t(a

?t, sti)− vi,t(a?
t, ŝti)

)
+
mi,t

α̂i

= vi,t(a
?t, sti) +

β̂i(a
?t)

α̂i

+
1

α̂i

∑
j 6=i

(
α̂jvj,t(a

?t, ŝj,t)
)
−ct(a?t)−W (α̂,β̂)

−i (a?t−1, ŝt) + δE
[
W

(α̂,β̂)
−i (a?t−i, ŝ

t+1)
]

The last equality follows from Eq. (21). We dropped the conditioning of W
(α̂,β̂)
−i (a?t, ŝt+1) on st = ŝt,

a?t, and a?−i,t, as it is clear from the context. For ease of notation, let s = s0. Because all agents
except i are truthful, we have

uit =
1

α̂i

( n∑
j=1

(
α̂jvj,t(a

?t, stj) + β̂j(a
?t)
)
−ct(a?t)

−W (α(s),β(s))
−i (a?t−1, st) + δE

[
W

(α(s),β(s))
−i (a?t−i, s

t+1)
])

If agent i is truthful and other agents are truthful, we have

∞∑
t′=t

δtuit′ =
1

α̂i

(
W (α(s),β(s))(a?t−1, st)−W (α(s),β(s))

−i (a?t−1, st)
)

Hence, the allocation rule is aligned with the incentive of agent i. She can maximize her utility by
reporting truthfully.

Observe that agents with α̂i ≤ 0 would have been excluded. Hence, we have
∑∞

t′=t uit′ ≥ 0.
Therefore, the mechanism is periodic ex-post IR.

Proof of Lemma 5.3. Observe that Eq. (11) is followed from Lemma 5.1 and Eq. (33). To establish
Eq. (12), we show that the inequality holds point-wise, i.e., if x ≥ x′, then

∂V xi→xi
i (s)

∂s

∣∣∣
s=xi

≥
∂V

x′i→xi
i (s)

∂s

∣∣∣
s=xi

(34)

By Eq. (10), this is equivalent to

Exi→xi

[ ∞∑
t=0

δt
∂vi,t(a

?t, sti)

∂si,0

∣∣
si,0=s

∣∣∣∣∣si,0 = xi

]
≥ Ex′i→xi

[ ∞∑
t=0

δt
∂vi,t(a

′t, sti)

∂si,0

∣∣
si,0=s

∣∣∣∣∣si,0 = xi

]
(35)

where Exi→xi is the expectation under the stochastic process determined by agent i reporting
according to xi → xi (while other agents are truthful) and a?t represents the allocation at time t in
this case. Similarly, for reporting strategy x′i → xi, we use the notation Ex′i→xi and represent the

allocation at time t by a
′t.
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Recall that we have:

vi,t(a
t, sti)−

1− Fi(si,0)

fi(si,0)

∂vi,t(a
t, sti)

∂si,0
= αi(si,0)vi,t(a

t, sti) + βi,t(a
t, si,0)

Hence, we get

∂vi,t(a
t, sti)

∂si,0
=

fi(si,0)

1− Fi(si,0)

(
(1− αi(si,0))vi,t(a

t, sti)− βi,t(at, sti)
)

(36)

Therefore, by Eq. (36), the inequality below is equivalent to the desired equation, Eq. (34):

Exi→xi

[ ∞∑
t=1

δt
(
(1− αi(xi))vi,t(at, sti)− βi,t(at, xi)

)]
(37)

≥ Ex′i→xi

[ ∞∑
t=1

δt
(

(1− αi(xi))vi,t(a′t, sti)− βi,t(a′
t
, xi)

)]

In the following we prove the inequality above. For k 6= i, define xk and x′k to be equal sk,0. Because
a? and a′ are optimal allocation rules with respect to (α(x), β(x)) and (α(x′), β(x′)), we have:

Exi→xi

 ∞∑
t=1

δt

 n∑
j=1

(
αj(xj)vj,t(a

?t, stj) + βj,t(a
?t, xj)

)
−ct(a?t)


≥ Ex′i→xi

 ∞∑
t=1

δt

 n∑
j=1

(
αj(xj)vj,t(a

′t, stj) + βj,t(a
′t, xj)

)
−ct(a′t)


and similarly

Exi→xi

 ∞∑
t=1

δt

 n∑
j=1

(
αj(x

′
j)vj,t(a

?t, stj) + βj,t(a
?t, xj)

)
−ct(a?t)


≤ Ex′i→xi

 ∞∑
t=1

δt

 n∑
j=1

(
αj(x

′
j)vj,t(a

′t, stj) + βj,t(a
′t, x′j)

)
−ct(a′t)


Subtracting these inequalities we get:

Exi→xi

 ∞∑
t=1

δt
n∑
j=1

(
(αj(xj)− αj(x′j))vj,t(a?

t, stj) + (βj,t(a
?t, xj)− βj,t(a?t, x′j))

)
≥ Ex′i→xi

 ∞∑
t=1

δt
n∑
j=1

(
(αj(xj)− αj(x′j))vj,t(a′

t
, stj) + (βj,t(a

′t, xj)− βj,t(a′t, x′j))
)

Because for k 6= i, agents are truthful and x′k = xk, we have

Exi→xi

[ ∞∑
t=1

δt
(

(αi(xi)− αi(x′i))vi,t(a?
t, sti) + (βi,t(a

?t, xi)− βi,t(a?t, x′i))
)]

(38)

≥ Ex′i→xi

[ ∞∑
t=1

δt
(

(αi(xi)− αi(x′i))vi,t(a′
t
, sti) + (βi,t(a

′t, xi)− βi,t(a′t, x′i))
)]
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Now suppose vi is multiplicative separable (i.e., βi,t(·, ·) = 0) and Assumption 5.2 holds — we
consider the additive valuations later. Because x ≥ x′, by Assumption 5.2 and Lemma A.2, we
have αi(xi) > αi(x

′
i); moreover αi(xi) is less than 1 for x ∈ [0, 1). Multiplying both sides of the

inequality above by 1−αi(xi)
αi(xi)−αi(x′i)

, yields the following:

Exi→xi

[ ∞∑
t=1

δt(1− αi(xi))vi,t(a?t, sti)

]
≥ Ex′i→xi

[ ∞∑
t=1

δt(1− αi(xi))vi,t(a′t, sti)

]

which is equivalent to Eq. (37) for multiplicative-separable valuations.

Now consider the case of additive-separable value functions. We have αi(x) = αi(x
′) = 1. Plugging

into Eq. (38) we get

Exi→xi

[ ∞∑
t=1

δt(βi,t(a
?t, xi)− βi,t(a?t, x′i))

]
≥ Ex′i→xi

[ ∞∑
t=1

δt(βi,t(a
′t, xi)− βi,t(a′t, x′i))

]

Recall that βi,t(a
t, xi) = −1−Fi(xi)

fi(xi)
A′i(xi)Ci,t(a

t). Because x ≥ x′, by Assumption 5.2 and Lemma A.2,

we have −1−Fi(xi)
fi(xi)

A′i(xi) > −
1−Fi(x

′
i)

fi(x′i)
A′i(x

′
i). By multiplying both sides of the inequality above by

1−Fi(xi)

fi(xi)
A′i(xi)

− 1−Fi(xi)

fi(xi)
A′i(xi)+

1−Fi(x
′
i
)

fi(x
′
i
)
A′i(x

′
i)

, we get:

−Exi→xi

[ ∞∑
t=1

δtβi,t(a
?t, xi)

]
≥ −Ex′i→xi

[ ∞∑
t=1

δtβi,t(a
′t, x′i)

]

which produces Eq. (37) and, thus, completes the proof.

A.3 Proof for the Single Agent Case

Proof of Corollary 6.1. Simply note that under the Virtual-Pivot Mechanism, if the agent is
allocated the item at any time t, the price she pays, under the Virtual-Pivot Mechanism, is not
a function of her report at time t (or any report after t = 0). Furthermore, the prices that the agent
is charged at t ≥ 1 are identical to that in the Virtual-Pivot Mechanism (see Eq. (22)). Also, the
prices charged at t = 0 is identical to that in the Virtual-Pivot Mechanism by construction.
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