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Summary. A dynamic treatment regime is a list of decision rules, one per time interval, for how
the level of treatment will be tailored through time to an individual’s changing status.The goal of
this paper is to use experimental or observational data to estimate decision regimes that result in
a maximal mean response. To explicate our objective and to state the assumptions, we use the
potential outcomes model. The method proposed makes smooth parametric assumptions only
on quantities that are directly relevant to the goal of estimating the optimal rules. We illustrate
the methodology proposed via a small simulation.
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1. Introduction

Dynamic treatment regimes are individually tailored treatments that are designed to provide
treatment to individuals only when and if they need the treatment. In contrast with classical
treatments in which all individuals are assigned the same level and type of treatment, dynam-
ic treatments explicitly incorporate the heterogeneity in need for treatment across individuals
and the heterogeneity in need for treatment across time within an individual. In a dynamic
treatment regime, decision rules for how the dosage level and type should vary with time are
specified before the beginning of treatment; these rules are based on time-varying measurements
of subject-specific need. The set of decision rules comprises the treatment regime.

Dynamic treatment regimes are also called adaptive strategies (Lavori and Dawson, 2000)
or adaptive interventions (Collins et al., 2001). When the treatment is the provision of health
information designed to induce an improvement in health-related behaviours, dynamic regimes
are called tailored communications (Kreuter and Strecher, 1996; Kreuter et al., 2000). Dynamic
treatment regimes are attractive to public policy makers because they treat only subjects who
show a need for treatment, freeing public and private funds for more intensive treatment of the
needy. They hold the promise of reducing non-compliance by subjects due to overtreatment or
undertreatment (Lavori and Dawson, 2000; Collins et al., 2001). These regimes are intended
to reduce negative side-effects due to overtreatment (Bierman et al., 2001). Dynamic regimes
are used in tailoring health information content to provide only personally relevant informa-
tion with the idea that this information will be attended to, thoughtfully processed and thus
efficacious (Kreuter et al., 1999).

The goal of this paper is to provide a method for estimating optimal decision rules; rules that
when implemented over a time period will produce the highest mean response at the end of the
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time period. The methodology proposed will use experimental or observational longitudinal
data to construct estimators of the optimal decision rules. Estimating the effects of dynamic
treatment regimes has been studied at length by Robins and colleagues (Robins, 1986, 1989,
1993, 1997; Murphy et al., 2002; van der Laan et al., 2001).

This work is motivated by the Fast Track prevention programme. This is an on-going random-
ized trial of a complex preventive intervention versus control. The intervention was designed
to prevent the emergence of and to reduce the level of conduct disorders and drug use in chil-
dren considered at risk owing to elevated behavioural problems in kindergarten (Bierman et al.,
1996; Conduct Problems Prevention Research Group, 1999a,b; McMahon et al., 1996). Part of
the intervention involved the implementation of a dynamic treatment regime that was designed
to improve family functioning. The Fast Track team did not want to provide the highest level
of home visiting to all families. It was thought that providing too many home visits might be
detrimental, increasing the risk for family dependence and pejorative labelling (by self and oth-
ers), and cause attrition. They decided to implement a dynamic treatment as follows. At the
end of each semester, beginning with the spring semester of first grade, the family counsellor
filled in a six-item questionnaire composed of questions concerning the quality of parenting and
family functioning. The sum is the family functioning status. The rule for assigning the number
of home visits in the following semester is

dj.Sj/ = 16 I{Sj � 8} + 8 I{9 � Sj � 16} + 4 I{17 � Sj}, j = 1, 2, 3, 4,

where Sj is the family functioning status taken at the beginning of the jth semester, with low
values indicating greater need. When this pioneering study was designed there was very little
guidance in terms of how one might formulate the decision rule(s). Collins et al. (2001) sought
to provide qualitative guidance; the goal of this paper is to provide quantitative guidance by
exploring methods for estimating good rules.

The ascertainment of optimal dynamic treatment regimes belongs to the class of sequential
or multistage decision problems. We consider dynamic treatment regimes in which decisions are
to be made at set times; in this case the regime is a set of decision rules, with one rule per time
interval. For each time interval j in {1, 2, . . . ,K}, denote the treatment decision that is to be
made by aj and denote the status (possibly a vector) at the beginning of time interval j by Sj.
In general S contains predictors of the response. The jth decision rule will use the information
that is available at time j and will output the treatment decision aj. In a redesign of the Fast
Track study we might want to consider a wide variety of information as part of S including
information resulting from the detailed summer interviews by outside staff and severity in other
domains such as the development of academic and social skills. The response at the end of time
interval K is denoted by Y . So the order of occurrence is S1,a1,S2, . . . ,aK,Y . In general we
use a bar over a variable to denote that variable and all past values of the same variable, so
āj = .a1, . . . ,aj/.

In many applications an expert provides the multivariate distribution of .S̄K,Y/ indexed by
the decisions a1, . . . ,aK. In this case, one traditionally uses backward induction (dynamic pro-
gramming) to find decision rules resulting in a maximal mean response. These arguments are
usually expressed as follows (Bather, 2000; Jordan and Bishop, 2001). Set

J0.S̄K, āK−1/ = sup
aK

.E[Y |S̄K, āK−1,aK]/,

dÅK.S̄K, āK−1/ = arg sup
aK

.E[Y |S̄K, āK−1,aK]/
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and then for each j

JK−j.S̄j, āj−1/ = sup
aj

{E[JK−j−1.S̄j+1, āj/|S̄j, āj−1,aj]}, .1/

dÅj .S̄j, āj−1/ = arg sup
aj

{E[JK−j−1.S̄j+1, āj/|S̄j, āj−1,aj]}:

The optimal rules are dÅ1 , . . . ,dÅK. It is important to recognize that the placement of āj−1 and
aj to the right of the ‘|’ sign is to indicate that these conditional expectations are taken with
respect to the multivariate distribution of .S1,S2, . . . ,SK,Y/ indexed by the decisions āj; āj play
a role similar to parameters. For example, E[Y |S̄K, āK−1,aK] is the conditional mean of Y given
S̄K indexed by the sequence of the decisions āK; it is not the conditional mean of Y given S̄K
and ‘other random variables’ āK. Equation (1) is a finite time version of Bellman’s equation
(Bellman, 1957). The function JK−j is usually called the ‘optimal cost-to-go’ from the present
state .S̄j, āj−1/ over the future intervals of time (Bertsekas and Tsitsiklis, 1996); we call JK−j the
‘optimal benefit-to-go’ as we wish to maximize the mean response rather than to minimize the
mean cost. Cowell et al. (1999) described the backward induction algorithm and also provided
an alternative viewpoint using decision potentials.

For K = 2 the above is use of backward induction to find

.dÅ1 ,dÅ2 / = arg sup
d1,d2

{E[E[E[Y |S̄2, a1, a2 = d2.S̄2,a1/]|S1,a1 = d1.S1/]]: .2/

The formula for K > 2 is similar but long; see Cowell et al. (1999), chapter 8. Statisticians who
are unfamiliar with dynamic programming may find the above objective function obtuse; in
the next section we use Rubin’s causal model to provide an alternative form for the objective
function.

Bather (2000) has given a nice introduction to and discussion of these types of problem (i.e.
the multivariate distribution of .S̄K,Y/ indexed by the decisions āK is known or can be sampled).
Although the steps in the dynamic programming algorithm are easily described, they are com-
putationally complex owing to the alternating steps of maximizing and averaging (Bertsekas
and Tsitsiklis (1996), page 3). These problems are of great interest in the engineering litera-
ture, where the decision rules are called feed-back control policies (Bertsekas and Tsitsiklis,
1996). The wide applicability of dynamic programming in finding optimal decisions combined
with the computational difficulties has spawned much research. Indeed the literature for this
setting is vast and spans many disciplines including management science, reinforcement learn-
ing, medical decision-making and statistics. Some recent work by statisticians in this setting
includes Shachter (1986), Owens et al. (1997), Cowell et al. (1999), chapter 8, and Lauritzen and
Nilsson (2001) all of whom used operations on influence diagrams to ascertain optimal sequen-
tial decision rules. Carlin et al. (1998) and Bielza et al. (2001) calculated optimal decision rules
by using Monte Carlo methods to simulate from the known multivariate distribution.

Our goal is to propose methodology for estimating the optimal rules when the multivariate
distribution of .S̄K,Y/ indexed by the decisions āK is unknown, but experimental or observa-
tional longitudinal data are available. To do this we proceed as follows. First the counterfactual
or potential outcome framework is used to provide a specification of equation (2), thus provid-
ing an alternative view of the use of dynamic programming in ascertaining optimal sequential
decisions. We use this framework to formulate assumptions that justify the use of dynamic
programming when only experimental or observational longitudinal data are available. Next
we demonstrate that if our goal is to estimate optimal rules then it is unnecessary to estimate
the full multivariate distribution of the longitudinal data. That is, in Section 3, we model this
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multivariate distribution with two groups of parameters that vary independently. The first group
of parameters (parameters in the ‘regret’ functions) will be estimated and used to estimate the
optimal rules and the second group of parameters (most of which are infinite dimensional)
are nuisance parameters. This approach will permit us to make smoothness (i.e. parametric)
assumptions on quantities that are directly relevant for estimating the optimal rules; we avoid
making smoothness assumptions on other aspects of the data distribution. In Section 4 we
illustrate a method that permits us to estimate the parameters in the regret functions without
estimating the nuisance parameters.More importantly thismethodwill provide a computational
alternative to the interweaving maximization and averaging steps of the dynamic programming
algorithm. The last section provides simulation results that illustrate the method proposed.

2. Potential outcomes and dynamic programming

Neyman (1990) introduced potential outcomes to analyse the causal effect of time-independent
treatments in randomized studies. Rubin (1978) explicated Neyman’s ideas and extended Ney-
man’s work to the analysis of causal effects of time-independent treatments from observational
data. Robins (1986, 1987) proposed a formal theory of causal inference that extended both
Neyman’s and Rubin’s work to assess the direct and indirect effects of time-varying treatments
from experimental and observational longitudinal studies. We use these works to specify our
objective and to state the assumptions.

In the following we define the potential outcomes; these potential outcomes will be related
to the observable data later. We use upper case Roman letters to denote random variables and
lower case Roman letters to denote non-random variables. Since in dynamic treatment regimes
we only manipulate or assign treatments, the potential outcomes are indexed only by treat-
ments. Furthermore, we assume that a subject’s outcomes are not influenced by other subjects’
treatments so we index each subject’s potential outcomes by only his or her treatments (see Cox
(1958) and Rubin (1986) for a more complete discussion). Thus corresponding to each fixed
value of the treatment vector āK we conceptualize a potential response denoted by Y.āK/ where
Y.āK/ is the response at the end of theKth interval that a subject would have if he or she followed
the treatments āK. Let AK be the collection of all possible K-vectors of treatments decisions.
The set of all potential responses is {Y.āK/ : āK varying in AK}. The status at the beginning of
time interval j is an intermediate outcome of (past) treatments and thus the set of intermediate
outcomes at time j is {Sj.āj−1/ : āj−1 varying in the first j− 1 components of AK}. Denote all
the subject’s potential outcomes by Osr = {S2.a1/, . . . ,SK−1.āK−2/,Y.āK/; āK ∈ AK}.

The potential outcomes model sheds light on the function to be maximized in equation (2)
as follows. The mean response for regime d1, . . . ,dK is

E[Y.d̄K/] = E[Y.āK/a1=d1.S1/,:::, aK=dK{S̄K.āK−1/, āK−1}] .3/

where a bar over a variable is used to denote that variable and all past values of the same
variable (e.g. āK = a1, . . . ,aK and S̄K.āK−1/ = S1, S2.a1/, . . . ,SK.āK−1/). The optimal rules
should maximize this mean. The mean can be written as a repeated expectation; in particular
for K = 2 we have that

E[Y.d̄2/] = E[E[E[Y.ā2/|S̄2.a1/]a2=d2{S̄2.a1/, a1}|S1]a1=d1.S1/]:

As before we may place a1 and a2 to the right of the ‘|’ sign to indicate that these conditional
expectations are indexed by the decisions. Then an alternative version is
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E[E[E[Y.ā2/|S̄2.a1/, a1, a2 = d2{S̄2.a1/,a1}]|S1,a1 = d1.S1/]]: .4/

From the similarity between the above display and equation (2), we see that the dynamic pro-
gramming algorithm, as expected, has the goal of finding the regime that maximizes the mean
response.

Now we connect the potential outcomes with observations in a longitudinal data set and
we express formula (4) in terms of these data. The observable data for a subject are X=
{S1,A1,S2, . . . ,AK,Y} where ĀK is the vector of stochastic treatment decisions. ĀK takes val-
ues in AK. We make Robins’s (1997) consistency assumption, i.e. we assume that the potential
outcomes are connected to the subject’s data by the equalities Y =Y.ĀK/, SK = SK.ĀK−1/,
and so on, including S2 = S2.A1/. In the following we use either Y or Y.ĀK/ to denote the
observed response at the end of time interval K and either Sj or Sj.Āj/ to denote the observed
status at the beginning of time interval j. Thus the observable data are the pretreatment infor-
mation (S1) plus the potential outcomes corresponding to the treatment pattern ĀK. Most of a
given subject’s potential outcomes are missing; only the potential outcomes corresponding to
the treatment pattern ĀK can be observed.

To express formula (4) in terms of the observable data we shall need to make assumptions.
To see why consider the following scenario. Suppose that, among individuals with the same
past status levels and past treatment levels, the individuals with treatment AK = high differ
from the individuals with treatment AK = low and the reason for this difference is not con-
tained in the available data. To decide whether the decision high treatment is optimal (i.e. better
than the decision low treatment) we compare the average value of Y for those with AK = high
with the average value of Y for those with AK = low. However, any apparent difference in the
two conditional means may be due to the difference in composition between the individuals
with treatment AK = high and the individuals with treatment AK = low, i.e. AK may not
be conditionally independent of the potential outcomes Osr conditional on .S̄K−1, ĀK−1/, be-
cause there may be unmeasured ‘confounders’ that determine treatment and are associated with
the potential outcomes. In general, assumptions about this distributional relationship must be
used to identify causal effects and thus to permit causal inference (for discussion, see section
11 of Robins (1997)). We make the following independence assumption (Robins, 1997) on the
relationship between the potential outcomes Osr and the treatment decisions ĀK. We assume
no unmeasured confounders:

for each j = 1, . . . ,K,Aj is independent of Osr given {S1,A1,S2,A2, . . . ,Sj}:
This assumption is also called sequential ignorability (Robins, 2000). An alternative statement
of this assumption should be possible by using the methods in Robins and Greenland (1992) or
Dawid et al. (2001). These methods replace potential outcomes with potential experiments.

The phrase ‘no unmeasured confounders’ should not be misinterpreted; perhaps a better
phrase would be ‘no unmeasured direct confounders’, as the assumption is a statement about
the selection of treatment conditional on past information. Intuitively this means that an un-
measured confounder may only influence the selection of treatment through the measured
past information. The no unmeasured confounders assumption would be true if the treat-
ments are sequentially randomized. Treatments are sequentially randomized when at each
time j the treatment Aj is randomized with randomization distribution allowed to depend
on {S1,A1,S2,A2, . . . ,Sj} (Robins, 1997). Lavori and Dawson (2000) and Lavori et al. (2000)
proposed that researchers implement sequentially randomized experiments to estimate opti-
mal decisions rules (instead of sequential randomization they used the phrase biased adaptive
within-subject randomization). An additional setting in which the no unmeasured confounders
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assumption would be true is in computer experiments that are designed using a distribution
for the decision Aj, depending only on past information. Of course, for a given observational
data set, one may believe that the Sjs are sufficiently rich that the no unmeasured confounders
assumption holds.

Assuming no unmeasured confounders, we can write equation (3), which is a function of the
multivariate distribution of the potential outcomes, as a function of themultivariate distribution
of the longitudinal data:

E[E[. . .E[E[Y |S̄K, ĀK−1,AK = dK]|S̄K−1, ĀK−2,AK−1 = dK−1]. . . |S1,A1 = d1]] .5/

where dj implicitly denotes dj.S̄j, Āj−1/. This isRobins’sG-computation formula (Robins, 1986,
1987, 1989, 1997; Gill and Robins, 2001). For K = 2 expression (5) is

E[Y.d̄2/] = E[E[E[Y |S̄2,A1,A2 = d2.S̄2,A1/]|S1,A1 = d1.S1/]]: .6/

Note the subtle difference between this equation and expression (4) and the repeated expectation
in equation (2); expressions (2) and (4) are functions of conditional distributions indexed by
treatment decisions ā2 whereas equation (6) is a function of conditional distributions, condition-
ing on the treatment decisions. It may appear to be patently obvious that equation (6) and the
repeated expectation in equation (2) should be equal. However, from the discussion preceding
the statement of the no unmeasured confounders assumption we know that this may not be true.
The beauty of the no unmeasured confounders assumption combined with Robins’s G-com-
putation formula is that they provide a means by which we can say that the repeated expectations
in equations (2) and (6) are equal. Robins’sG-computation formula is the formula that provides
the mean response to a dynamic regime in terms of the longitudinal data distribution.

A proof of Robins’s G-computation formula is provided by lemma 2 in Appendix A. This
proof assumes that the range of the treatment decisions ĀK is countable (AK is countable).
Denote the conditional probability function for each Aj given S̄j, Āj−1, by pj.aj|S̄j, Āj−1/.
The proof assumes that the regime d̄K satisfies

P

[
K∏
j=1
pj

{
dj.S̄j, Āj−1/|S̄j, Āj−1

}
> 0

]
= 1, .7/

i.e. to prove that the repeated expectations in equations (2) and (6) are equal we not only assume
no unmeasured confounders but we also make the eminently sensible assumption that treatment
patterns which are consistent with the regime d̄K can occur in the longitudinal data. See Gill
and Robins (2001) for more general conditions and proof.

Denote the class of regimes (i.e. the vector of decision rules) satisfying equation (7) by DP .
We subscript D by the probability P since the class of regimes may vary by the distribution
of the longitudinal data. For the remainder of the paper we take as our goal that of finding
a regime that maximizes expression (5) over the class DP . The assumption of no unmeasured
confounders is only used to justify the use of expression (5) as an appropriate objective function
for the purposes of estimating optimal regimes.

For each treatment level aK satisfying pK.aK|S̄K, ĀK−1/ > 0 define

Q0.S̄K, ĀK−1, aK/ = E[Y |S̄K, ĀK−1,AK = aK]

Next define

J0.S̄K, ĀK−1/ = sup
aK :pK.aK |S̄K ,ĀK−1/>0

{Q0.S̄K, ĀK−1,aK/}:
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For each j = 0, . . . ,K − 1 and aj satisfying pj.aj|S̄j, Āj−1/ > 0 iteratively define

QK−j.S̄j, Āj−1, aj/ = E[JK−j−1.S̄j+1, Āj/|S̄j, Āj−1,Aj = aj]
and

JK−j.S̄j, Āj−1/ = sup
aj :pj.aj |S̄j ,Āj−1/>0

{QK−j.S̄j, Āj−1,aj/}: .8/

We call the functions J0, . . . ,JK−1 the optimal benefit-to-go functions. These functions differ
from the displays in equation (1) in two ways: first the above optimal benefit-to-go functions
are conditional on treatment decisions whereas in equation (1) they are indexed by treatment
decisions and second we maximize over a restricted set of decision rules since we cannot evaluate
treatment decisions that cannot occur in the longitudinal data.

Beginning with J0 and then ascertaining each optimal benefit-to-go function forms the steps
of a dynamic programming argument that ends with the maximal value equal to JK−1.S1/.
This process is equivalent to maximizing expression (5) over the class DP . Indeed we have the
following theorem.

Theorem 1. Assume that AK is countable. Assume that E[|Y ||S̄K, ĀK] is bounded almost
surely. Then,

sup
d̄K∈DP

.E[E[. . .E[E[Y |S̄K, ĀK−1,AK = dK]|S̄K−1, ĀK−2,AK−1 = dK−1]. . . |S1,A1 = d1]]/ .9/

is equal to E[JK−1.S1/].

The proof is in Appendix A.
If we assume that the supremum is achieved at a d̄

Å
K inDP (for example this would occur if the

number of possible treatments is finite), then we can write the optimal benefit-to-go functions
in terms of the potential outcomes for Y . In this case

JK−j.S̄j, Āj−1/ = E[Y.Āj−1,d
Å
j , . . . ,dÅK/|S̄j, Āj−1] .10/

for each j = 1, . . . ,K. This can be derived by following the same steps as in the proof of theo-
rem 1 (see Appendix A). Thus the optimal benefit-to-go function represents the mean potential
response conditional on the past and assuming that optimal decisions will be followed in the
future.

3. The regret functions

Our goal is to estimate an optimal regime (i.e. a regime that maximizes expression (5) over the
class DP ). An initial approach is to model the multivariate distribution of .S̄K, ĀK,Y/, say by
using a parametric, semiparametric or nonparametric model, and then to apply the dynamic
programming argument. By a careful choice of a semiparametric model we can avoid the
dynamic programming step. Instead of parameterizing conditional mean functions or con-
ditional distribution functions we parameterize and then estimate regret functions. At the end
of this section we provide the semiparametric model that is induced by a parameterization of
the regrets.

The regret functions are defined for each j = 1, . . . ,K as

µj.S̄j, Āj−1, aj/ = JK−j.S̄j, Āj−1/−QK−j.S̄j, Āj−1,aj/:
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The µs satisfy the constraint

inf
aj :pj.aj |S̄j ,Āj−1/>0

{µj.S̄j, Āj−1,aj/} = 0:

The regret function µj.S̄j, Āj−1, aj/ provides the increase in the benefit-to-go that we forego
by making decision aj rather than the optimal decision at time j, i.e. the predictor effect is
measured in terms of changes from the optimal predictor value. This is most clearly seen when
the supremum in expression (9) is achieved at a d̄

Å
K ∈ DP , in which case the regret is given by

(using the potential outcomes model)

µj.S̄j, Āj−1,aj/ = E[Y.Āj−1, d
Å
j , . . . ,dÅK/|S̄j, Āj−1] − E[Y.Āj−1,aj,d

Å
j+1, . . . ,d

Å
K/|S̄j, Āj−1]:

It is clear that the backward induction argument can be based on minimizing the regrets instead
of maximizing the Q-functions. Thus if we had estimates of the regrets we could then derive
estimates of the optimal rules.

We directly model the regrets; this model may be nonparametric, semiparametric or para-
metric. Estimation is discussed in the next section. One possible class of parametric models is
based on a known ‘link’ function f.u/; these functions provide the link between the regret and
the decision rule. The minimal value of each f should be achieved at u = 0 and be equal to 0
(f.0/ = 0); so each f is a non-negative function. For a positive scale parameter ηj.s̄j, āj−1/ set

µj.s̄j, āj/ = ηj.s̄j, āj−1/ f{aj − dj.s̄j, āj−1/}: .11/

The constraints on the link function imply that dj.s̄j, āj−1/ is the optimal decision rule based
on past information .s̄j, āj−1/. We form parsimonious parametric models for the optimal deci-
sion dj.s̄j, āj−1/ and for the scale parameter ηj.s̄j, āj−1/. Parsimony can be important; in many
settings a simple rule is easier to implement than a complicated rule.

The shape of the link f determines how the modelled regret will change as a treatment
decision deviates from the optimal. To provide flexibility in the rate at which the modelled
regret changes as a treatment decision deviates from the optimal, we model and estimate a
multiplicative unknown scale parameter ηj.s̄j, āj−1/. Large values of ηj.s̄j, āj−1/ imply that a
small difference in the treatment decision from the optimal produces a large regret and vice
versa. Suppose that the possible decisions are real values (e.g. doses of a drug); then we might
believe that the regret will have a ‘U’-shape so that for doses smaller than the optimal the subject
receives insufficient treatment, yet for doses larger than the optimal the subject suffers toxicity
or side-effects and thus the subject does not benefit as much as if the optimal dose is delivered.
In this case we might use f.u/ = u2. Alternatively we might believe that the particular treatment
does not cause toxicity or side-effects; in this case the link might be positive quadratic for u < 0
and equal to 0 thereafter. In the future it will be important to model the link rather than to
assume it known.

To provide a more flexible regret we can combine two links; for example we might base a
model for the regret on

µj.s̄j, āj/ = ηj.s̄j, āj−1/ f{aj − dj.s̄j, āj−1/} + η′
j.s̄j, āj−1/ f

′{aj − dj.s̄j, āj−1/}
where f.u/ = u2 I{u � 0} and f ′.u/ = u2 I{u � 0}. We can allow the link function to change
by interval and/or by past information. This is particularly relevant if the type of decision may
change by interval and/or if the type of decision differs by most recent status and most recent
past decision.

If in an interval two different decisions must be made, then we may make the decisions
sequentially, forming two ‘intervals’ from the one and using a different link for each type of
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decision. For example suppose that in each interval educational staff must make two decisions;
first the staff member must decide whether the child is to receive special education or not. If the
child is to receive special education then the staff member must recommend a certain number of
minutes of special education per day; otherwise the staff member must recommend a number
of tutoring sessions per week. First we break each interval into two intervals corresponding to
the two decisions; then we might use equation (11) for a given link f and aj ∈ {0, 1} denoting
special education by 1 and no special education by 0. Then for possibly different link functions
f ′ and f ′′ the regret for the second decision would be

µj+1.s̄j+1, āj+1/ = I{aj = 1} ηj+1.s̄j+1, āj/ f
′{aj+1 − dj+1.s̄j+1, āj/}

+ I{aj = 0} ηj+1.s̄j+1, āj/ f
′′{aj+1 − dj+1.s̄j+1, āj/}

where the link f ′ is used to parameterize the regret when we are choosing between minutes of
special education and the link f ′′ is used to parameterize the regret when we are deciding the
frequency of tutoring sessions. In the next section we provide a method to estimate the regret
functions.

We can write the mean of Y given (S̄K, ĀK) in terms of the regrets

E[Y |S̄K, ĀK] = µ0 +
K∑
j=1

φj.S̄j, Āj−1/−
K∑
j=1

µj.S̄j, Āj/ .12/

where µ0 = E[JK−1.S1/] and the φjs are defined so that the right-hand side is equal to the left-
hand side; φj.S̄j, Āj−1/ = JK−j.S̄j, Āj−1/ − QK−j+1.S̄j−1, Āj−1/ for j = 1, . . . ,K. Note that
E[φj.S̄j, Āj−1/|S̄j−1, Āj−1] is 0. As mentioned previously, parameterizing the regrets induces
a semiparametric model for the longitudinal data X. When Y is continuous this model is given
by

g

[
y − µ0 −

K∑
j=1

{φj.s̄j, āj−1/− µj.s̄j, āj/}|s̄K, āK

]
K∏
j=1
pj.aj|s̄j, āj−1/

K∏
j=1
fj.sj|s̄j−1, āj−1/

where

(a) g.·|s̄K, āK/ is the mean 0 conditional density of Y given .S̄K, ĀK/ and must belong to the
class of mean 0 densities for fixed values of .s̄K, āK/,

(b) pj.a|s̄j, āj−1/ denotes the conditional probability function for each Aj given (S̄j, Āj−1)
at times j = 1, . . . ,K and each pj must belong to the class of probability functions in a
for fixed values of .s̄j, āj−1/,

(c) fj.s|s̄j−1, āj−1/ is the conditional density of Sj given (S̄j−1, Āj−1) at times j = 1, . . . ,K,
and each fj must belong to the class of probability densities in s for fixed values of
.s̄j−1, āj−1/,

(d) µj.s̄j, āj/ is the jth regret JK−j.s̄j, āj−1/−QK−j.s̄j, āj/ and each µj must belong to the
class of functions satisfying infaj :pj.aj |s̄j , āj−1/>0{µj.s̄j, āj/} = 0,

(e) φj.s̄j, āj−1/ is JK−j.s̄j, āj−1/−QK−j+1.s̄j−1, āj−1/ and must belong to the class of func-
tions satisfying

∫
φj.s̄j, āj−1/fj.sj|s̄j−1, āj−1/ dsj = 0 and

(f) µ0 isE[JK−1.S1/] and takes values on the real line. µ0 is the mean response to the optimal
decision regime.

As discussed above we are primarily interested in the parameters composing the regrets µj; the
unknown functions g, pjs, fjs, φjs and scalar µ0 are nuisance parameters.
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3.1. Advantages of modelling the regrets
Modelling the regrets has several nice conceptual and practical properties. First, we parame-
terize the optimal rules, i.e. we impose parsimony on aspects of the multivariate distribution of
.S̄K, ĀK,Y/ that are of direct relevance for our goal. In particular, this approach combined with
the estimation method to follow permits the straightforward use of statistical methods such as
hypothesis testing and model selection. Thus we can test whether particular features of the past
information are needed in the optimal rule.

A second nice property is that the constraints on the form of the optimal decision are made
explicit. To highlight this second property we contrast the direct parametric modelling of the
regrets with parameterizing bothQ0.S̄K, āK/ = E[Y |S̄K, ĀK = āK] and the density of Sj given
.S̄j−1, Āj−1/ for each j and then by alternating supremum and averaging steps forming esti-
mates of all theQ-functions. This alternative approach leads to implicit constraints on the form
of the regret functions µ1, . . . ,µK−1 and the Q1, . . . ,QK−1-functions. Implicit constraints on
Q1, . . . ,QK−1 occur because these are joint functions of Q0 and the conditional distributions
of the Sjs.

The finite dimensional parametric models forQ0 and the distribution of Sj given .S̄j−1, Āj−1/

also constrain the form of the regret as follows. According to the dynamic programming algo-
rithm we would first maximize Q0 over aK, yielding J0.S̄K, āK−1/. Thus the parameterization
ofQ0 determines the form of J0. From equation (12) we have that

J0.S̄K, āK−1/ = µ0 +
K∑
j=1

φj.S̄j, āj−1/−
K−1∑
j=1

µj.S̄j, āj/

(recall that Q0 = E[Y |S̄K, ĀK = āK]). Thus the parameterization of Q0 determines the shape
of this function, particularly in aK−1 via the term φK.S̄K, āK−1/ − µK−1.S̄K−1, āK−1/. At the
same time, the parametric model for the distribution of SK given .S̄K−1, ĀK−1/ constrains the
shape of φK.s̄K, āK−1/ in aK−1 sinceE[φK.S̄K, ĀK−1/|S̄K−1, ĀK−1/] = 0. These two constraints
lead to a limited set of forms for the regret function. This is particularly a problem when the
parametric models are non-linear. This situation is similar to that highlighted by Robins and
Wasserman (1997) who, in testing for effects of treatment decisions, found that the hypothesis of
no treatment effect may be excluded by the explicit restrictions imposed by parametric models
on other, less scientifically interesting, parts of the multivariate data distribution. Because the
constraints are implicit it is difficult in any given situation to check how much and in what way
they constrain the regret function.

An additional nice property resulting from direct models for the regrets is that parameteriza-
tion of the regrets does not place constraints on other aspects of the multivariate distribution of
.S̄K, ĀK,Y/ when E[Y |S̄K, ĀK] is unbounded. For continuous Y with unbounded support, this
can be seen from the likelihood provided earlier. Since Y has unbounded support there is no a
priori restriction on the value of E[Y |S̄K, ĀK]. Thus, as can be seen from the likelihood, µj and
pj are variation independent of the nuisance parameters µ0, g, φj and fj, for j = 1, . . . ,K. We
are interested in parameters composing µj and will use models for pj; parametric models for
the µjs and pjs do not constrain the possible values of the nuisance parameters and all model-
ling assumptions are explicit, i.e. we know that we are not accidently making implicit, perhaps
untenable, assumptions about nuisance parts of the multivariate distribution. To highlight this
property consider an alternative approach of directly parameterizing each of the Q-functions.
Note that

Q1.S̄K−1, āK−1/ = E[inf
aK

{Q0.S̄K, āK/|S̄K−1, ĀK−1 = āK−1}]:
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Thus parametric models for Q1 and Q0 constrain the conditional distribution of SK given
.S̄K−1, ĀK−1/. This is a well-known problem regarding the compatibility of marginal and con-
ditional models (Q0 plays the role of the conditional mean andQ1 plays the role of the marginal
mean). For a now classic example, see Hougaard (1986), who showed that, if we assume that
the proportional hazards model from survival analysis holds for both marginal and conditional
models, then subject to natural conditions the mixing density (here the density of SK given
.S̄K−1, ĀK−1/) must be a positive stable distribution with infinite mean. Thus the restrictions
on the conditional distribution of SK given .S̄K−1, ĀK−1/ can be quite surprising.

Bertsekas and Tsitsiklis (1996), working in a similar setting to that in Section 1 (i.e. the
distribution of S̄K and Y , indexed by the treatment decisions, is known or can be simulated
from), illustrated the approximation of theQ-functions by neural network architectures such as
splines, wavelets and classical neural networks. Brockwell and Kadane (2001) used a discretiza-
tion method combined with the use of ‘features’ summarizing the past history to approximate
theQ-functions. These approaches share the first property with the method proposed here, i.e.
they impose parsimony on aspects of the multivariate distribution of .S̄K, ĀK,Y/ that are of
direct relevance for the goal of estimating an optimal regime. The architectures discussed by
Bertsekas and Tsitsiklis (1996) can be considered nonparametric modelling methods when S
can assume only a few values and the possible decisions are small; in this case this method
shares the third property of avoiding implicit constraints on other aspects of the multivariate
distribution. However, in many cases S may assume many values or the set of possible deci-
sions is not small; then owing to the curse of dimensionality this approach must be considered
parametric and thus implicit restrictions are placed on the conditional density of each Sj given
S̄j−1.

A fourth nice property of this modelling approach is that it directly leads to a simple estimator
of the mean response to the optimal dynamic regime. This follows from equation (12) which
implies that

E[JK−1.S1/] =
K∑
j=1
E[µj.S̄j, Āj/] + E[Y ]:

Under the assumption of no unmeasured confounders, E[JK−1.S1/] is the mean response to
an optimal dynamic regime. Thus, given estimators of the regrets and a sample (S̄Ki, ĀKi, Yi,
i = 1, . . . ,n), an estimator of the mean response to an optimal dynamic regime is

n−1
n∑
i=1

{
K∑
j=1

µ̂j.S̄ji, Āji/+ Yi
}
:

All four properties are analogues of properties that Robins (1986, 1987, 1989, 1997) estab-
lished for structural nested mean models. Structural nested mean models are models for effects
relative to the predictor value of 0, whereas the models presented here are for effects relative to
the optimal predictor value. Additionally, the likelihood here is similar in form to the likelihood
for Robins’s structural nested mean models.

4. Estimation

Estimation procedures can be based on the following least squares characterization of the regret
functions. Denote the true regret functions with a subscript of 0, i.e. µ01, . . . ,µ0K. Also we
assume that the support of each conditional probability function pj.a|s̄j, āj−1/ for given
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(s̄j, āj−1) is known. Thus the infimum in the definition of the regret function is over a known
set of decisions.

Theorem 2. Assume that both Y and each component of µ̄0K are square integrable.
Then given a vector of square integrable functions µ̄K, where each µj satisfies both
infa:pj.a|S̄j ,Āj−1/>0{µj.S̄j, Āj−1, a/} = 0 and

E

[
Y +

K∑
l=1

µl.S̄l, Āl/−
∑
a

µj.S̄j, Āj−1, a/pj.a|S̄j, Āj−1/

]2

� E
[
Y +

K∑
l=1,l 
=j

µl.S̄l, Āl/+mj.S̄j, Āj/−
∑
a
mj.S̄j, Āj−1,a/pj.a|S̄j, Āj−1/

]2

.13/

for all square integrable mj, j = 1, . . . ,K, we have that µ̄K is almost surely equal to µ̄0K. We
can replace Y by Y + c for a scalar c and/or we can replace the ΣKl=1 by ΣKl�j and the sum
ΣKl=1,l 
=j by ΣKl>j and in both cases the same result holds.

See Appendix A for a proof of this result.
There are various ways to base estimation of the regret functions on the above least

squares characterization. For simplicity suppose that the conditional probability functions
p̄K are known. First we formulate a model for the regrets with a p-dimensional unknown
parameter β, say µj.s̄j, āj; β/, so that infa{µj.s̄j, āj−1,a; β/} = 0. Then we replace the ex-
pectation in inequality (13) by an average over the data with the aim of finding a β̂ for which

Pn

{
Y +

K∑
l=1

µl.S̄l, Āl; β̂/− ∑
a

µj.S̄j, Āj−1, a; β̂/ pj.a|S̄j, Āj−1/

}2

� Pn

{
Y +

K∑
l=1,l 
=j

µl.S̄l, Āl; β̂/+mj.S̄j, Āj/−
∑
a
mj.S̄j, Āj−1,a/ pj.a|S̄j, Āj−1/

}2

for chosen mj, j = 1, . . . ,K (for a function f of the ith subject’s data Xi, Pn{f.X/} is de-
fined as .1=n/Σni=1f.Xi/, assuming that the sample observations are independent draws from a
distribution). In the simulations, we use the model for the regrets as the mj.

In general the conditional probability functions p̄K for the longitudinal data will be unknown
(however, we continue to assume that the support of each conditional probability function
pj.a|s̄j, āj−1/ for given (s̄j, āj−1) is known). These densities can be estimated by postulating a
model and then using maximum likelihood, i.e., given the model pj.a|s̄j, āj−1; α/, j = 1, . . . ,K,
with unknown parameter α, maximize the log-likelihood

Pn

[
K∑
j=1

log{pj.Aj|S̄j, Āj−1; α/}
]

to find α̂n. In this paper we assume that the support of each pj does not vary by the unknown
parameter α. To estimate the parameters in the regret functions, we search for a .β̂n, ĉn/ for
which

K∑
j=1

Pn

{
Y + ĉn +

K∑
l=1

µl.S̄l, Āl; β̂n/−
∑
a

µj.S̄j, Āj−1,a; β̂n/ pj.a|S̄j, Āj−1; α̂n/

}2
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�
K∑
j=1

Pn

{
Y + c +

K∑
l=1,l 
=j

µl.S̄l, Āl; β̂n/+ µj.S̄j, Āj; β/

− ∑
a

µj.S̄j, Āj−1, a; β/ pj.a|S̄j, Āj−1; α̂n/

}2

.14/

for all β and c. (The inclusion of the unknown scalar c does not change consistency but greatly
improves the stability of the algorithm.) One way to implement the search computationally is
to start with an initial value of β̂n, say β̂n1, substitute β̂n1 for β̂n in inequality (14), minimize
over .β, c/, to obtain .β̂n2, ĉ/, discard ĉ, replace β̂n in inequality (14) with β̂n2 and iterate the
minimization process until convergence. The least squares criterion uses the conditional vari-
ability of the decision levels in the data to estimate the optimal decisions. Intuitively this can
be seen by acting as if the above least squares function (14) is smooth in β and differentiating
with respect to β and c. The Ajs minus their conditional expectations given the past play an
analogous role to covariates in a linear regression. This means, quite naturally, that, if given
the past information Aj is deterministic, this method cannot lead to estimators of the decision
rules.

When the modelled regrets and optimal decisions are smooth functions of β, simple Taylor
series arguments can be used to derive an estimator of the asymptotic variance of β̂n. The for-
mula is provided in Appendix A. An estimator of the mean response µ0 to an optimal dynamic
regime is

µ̂0 = Pn

{
K∑
j=1

µj.S̄j, Āj; β̂/+ Y
}
:

The formula for the asymptotic variance µ̂0 is also in Appendix A.

4.1. Further comments
The least squares characterization in inequality (13) and/or (14) leads to relatively simple
computations in contrast with the very natural approach of first estimating Q0.S̄K, āK/ =
E[Y |S̄K, ĀK = āK] and the density of Sj given .S̄j−1, Āj−1/ for each j and second carrying out
the interwoven supremum and expectation steps composing the dynamic programming algo-
rithm. See Bertsekas and Tsitsiklis (1996), page 3, for comments on the computational issues.
Furthermore, as discussed at the end of Section 2, to avoid imposing implicit constraints on the
decision rule, we would want to make the models forQ0.S̄K, āK/ and the conditional densities
of Sj given the past nonparametric. Yet if the dimension or number of values that S can assume
and/or the number of decisions is large the curse of dimensionality will result in highly variable
estimators.

Note that the above estimation method depends on a correct parameterization of the con-
ditional probability functions p̄K. Thus we are assuming an overall model for the multivariate
distribution of the data that stipulates a parametric model for the regrets µ̄K and a parametric
form for the conditional probability functions p̄K (all other parts are nonparametric).

In general, estimators based directly on the least squares characterization in inequality (13)
and/or (14) will not lead to efficient estimators of β. There are several options to remedy this sit-
uation. If the dimensionality of the problem is small so that we avoid the curse of dimensionality
(e.g.K is small and the status measure can assume only a few values and the possible treatment
levels are few) then we can use nonparametric models to estimate each component of the mul-
tivariate distribution and then use dynamic programming. If this method is feasible then we do
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not need to assume a parametric model for the conditional probability functions. Alternatively
we can adjust the above estimator to achieve double robustness (and a ‘local’ type of efficiency;
Robins (2000)). Conceptually this is a straightforward adaptation of Robins’s (2000) work on
structural nested mean models. A third option is to change the model from a model in which
most parts of the multivariate distribution are left unspecified (i.e. nonparametric) to a model
in which the entire multivariate distribution is parametric; then we may use the likelihood to
construct maximum likelihood estimators of the regret functions.

5. Simulation results and further discussion

The goal of the simulations is to demonstrate that the estimation methodology proposed here is
promising and deserves further investigation. We simulate data from the following prototypical
sequentially randomized experiment. This type of experiment would be used to estimate opti-
mal decision rules, rules that maximize academic achievement Y at the end ofK = 10 intervals.
In each interval there are two decisions. The first decision is whether the child should receive
special education (1, yes; 0, no). This decision is binary. If the child is recommended for special
education then a level 1 or greater special education per day is to be assigned. If the child is
not to receive special education then an amount of tutoring per week, 0 or greater, is assigned.
Each decision should be based on the child’s status as assessed at prior time intervals and at the
beginning of the present time interval .S1, . . . ,SK/. In the simulation of the sequentially ran-
domized experiment, the treatment assignment probabilities for the decision about whether a
child should receive special education are uniform on {0, 1}. The treatment amount assignment
probabilities for special education are uniform on 1, 2, 3 and for reading tutoring are uniform
on 0, 1, 2, 3. Although these treatment assignment probabilities do not depend on the past, in
a sequentially randomized experiment we can allow the treatment assignment probabilities to
depend on the past statuses and treatments.

We divide each interval into two subintervals; in the first subinterval the ‘yes–no’ special edu-
cation decision is made and in the second subinterval the amount of the appropriate treatment
is to be decided. Thus the effective number of intervals is 2K = 20. The remaining data are
simulated as follows. The conditional density of Y , g.·|s̄2, ā2/, is a normal, mean 0, variance 0:64
density. The marginal density of S1 and f1 is normal with mean mean1 = 0:5 and variance 0:01.
The conditional density of each Sj given (S̄j−1, Āj−1), j > 2 and odd, is normal, mean meanj =
0:5+0:2Sj−1 −0:07Aj−1Aj−2 −0:01Aj−1.1−Aj−2/, whereAj−2 assumes values 1 or 0 accord-
ing to whether special education is assigned. The conditional variance of Sj is set to 0:01. For j
even, Sj is set equal to Sj−1. Except for the regret functions the terms in the telescoping form of
the conditional mean of Y are the φjs and µ0. These are set as φj.s̄j, āj−1/ = −5.sj−meanj/ for
j odd, andµ0 = 30.Recall thatµ0 is the optimalmean response.There are noφj-terms for j even.

In simulation 1 the true regret for j odd (decide to assign special education or not) is
given by 6.aj − I{sj > 5=9}/2 and the true regret for j even is given by 1:5aj−1.aj − 2sj/2 +
1:5.1 − aj−1/.aj − 5:5sj/2 (the treatment amounts are allowed to be continuous dosage levels).
This specification of the regrets means that the simulated mean E[Y |Ā20 = ā20, S̄20 = s̄20] is
given by

30 − 5
20∑

j=1,j odd
.sj − meanj/−

20∑
j=1,j odd

6.aj − I{sj > 5=9}/2

−
20∑

j=2,j even
1:5aj−1.aj − 2sj/2 + 1:5.1 − aj−1/.aj − 5:5sj/2:
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The regrets are 0 at the optimal decision; thus, for j odd, dÅj = I{sj > 5=9} and, for j even,
dÅj = 2aj−1sj + 5:5.1 − aj−1/sj.

In the analysis of each simulated sequentially randomized experiment, we fit a quadratic link
(f.u/ = u2). In the odd time intervals the fitted regret for the yes–no special education decision
is

µj.s̄j, āj/ = β1

[
aj − exp{30.sj − β2/}

1 + exp{30.sj − β2/}
]2

.15/

for aj ∈ {0, 1} (1, yes; 0, no), i.e. we approximate the non-smooth I{sj > β2} by the smooth
function exp{30.sj − β2/}=[1 + exp{30.sj − β2/}]. The choice of 30 is arbitrary; in the future
the pros and cons of other choices should be considered. In the even time intervals the fitted
regret for the amount of treatment (special education or tutoring) is

µj,2.s̄j, āj/ = β4aj−1{aj − .β3 + β5sj/}2 + β7.1 − aj−1/{aj − .β6 + β8sj/}2: .16/

So the fitted decision functions are smooth: dj = exp{30.sj − β2/}=[1 + exp{30.sj − β2/}] for
j odd and dj = aj−1.β3 + β5sj/+ .1 − aj−1/.β6 + β8sj/ for j even.

We conducted a number of simulations; here three are discussed. First for illustration we
provide, in Table 1, estimates of the βs for simulation 1. It is not surprising that β1 is poorly
estimated since we are fitting only an approximation of the optimal decision rule in the odd time
intervals.

Scientific interest is not directly concerned with the accurate estimation of the decision
regime but rather is most concerned with the ability of the estimated regime to produce an
optimal response. Thus to compare the simulation results we provide box plots and a table
that evaluate the mean response to the estimated decision regimes. For each data set in a sim-
ulation, we estimate first the βs and then the corresponding decision rule. The estimated rules
comprise the estimated regime. Then for each of these estimated decision regimes we calculate
the mean response under the estimated treatment regime by Monte Carlo methods. To be more
precise, we generate 10 000 observations (complying with the estimated decision regime) and
form the mean response. Thus we have a mean response corresponding to each estimated treat-
ment regime in the simulation. Since our simulations are of size 1000 data sets, we have 1000
(Monte-Carlo-estimated)mean responses per simulation:Table 2 andFig. 1.Thefirst simulation
is as above (labelled ‘simulation 1’). From Table 2, we see that on average (across estimations
of the regimes) the estimated regimes in simulation 1 lead to a mean response of 29.27; recall

Table 1. Estimates of parameters in the decision regime:
simulation 1†

True β Average β̂ Standard Average estimated
error standard error

6.0 6.89 0.210 0.210
0.56 0.56 0.002 0.002
0.0 0.05 0.184 0.181
1.5 1.50 0.125 0.125
2.0 2.01 0.255 0.247
0.0 0.06 0.128 0.125
1.5 1.48 0.078 0.083
5.5 5.54 0.358 0.358

†Simulations of 1000 data sets of size 1000.
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Table 2. Descriptive statistics for the mean response to each of
1000 estimated treatment regimes†

Statistic Results for the following simulations:

Simulation 1 Simulation 2 Simulation 3

Mean 29.27 29.54 28.22
Median 29.27 29.54 28.29
Standard deviation 0.19 0.16 0.47

†The mean response is evaluated by using 10 000 Monte Carlo repeti-
tions. The optimal mean response is 30.
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Fig. 1. Mean responses for estimated optimal regimes

that the optimal mean response is 30. This less-than-optimal performance is attributable to the
fact that we are approximating the discontinuous decision rule in the odd time intervals with a
smooth function. As a comparison, consider the following simple non-dynamic regime. In the
simulations the mean of Sj at each time j is between 0.4 and 0.5, indicating that the ‘average
child’ would not have been assigned to special education (0:5 < 5=9). In addition the amount of
academic tutoring that is optimally assigned for a child with Sj = 0:45 is 5:5×0:45 = 2:475. So
in our simple non-dynamic regime all children are assigned 2.475 units of academic tutoring at
each time interval. The use of this simple regime results in an average mean response of 15.98.
Thus the use of the estimated optimal rule compared with this simple rule results in an average
increase of 29:27 − 15:98 = 13:29 in the response.

Table 2 and Fig. 1 contain results for two further simulations. These two simulations differ
from simulation 1 only in the form of their true (i.e. simulated) regrets. In both cases the true
link function is non-quadratic (hence the fitted quadratic link is misspecified). Simulation 2 uses
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data simulated with the link

f.u/ =
{
u2 if u2 � 0:83,
0 otherwise

in the odd-numbered intervals and links

f.u/ =
{
u2 if u2 � 3:33,
0 otherwise

for both amounts of special education and tutoring respectively in the even-numbered intervals.
From Table 2, under simulation 2, we see that, even though the link function is misspecified,
the mean response to the estimated optimal regimes is closer to the optimal value of 30 than
in simulation 1 (where the link function is correctly specified). This is not surprising since in
simulation 2 the true regrets are 0 for a range of treatment levels; thus the estimated rules only
need to provide a treatment level within a range to produce nearly optimal results.

In simulation 3, we consider the opposite situation to that in simulation 2. In simulation 3
the regrets are ‘peaked’ at the optimal; here the link is

f.u/ =
{

|u| if u2 < 1:5,
u2 − 1:5 + √

1:5 otherwise

in the odd-numbered intervals and links

f.u/ =
{

|u| if u2 < 2:5,
u2 − 2:5 + √

2:5 otherwise

for both amounts of special education and tutoring respectively in the even-numbered intervals.
As might be expected a misspecification of the link (we fit a quadratic link) results in the poorest
mean response of the three simulations. Additionally the variability in mean response across
the 1000 estimated optimal regimes more than doubles. Here the ‘peakedness’ of the regret im-
plies that the estimated rules must provide treatment levels that are very close to the optimal
treatment levels to produce a nearly optimal response. The poor performance and increase in
variability are highlighted in Fig. 1 by the box plots of the mean responses.

In general our simulations indicate that the estimation procedure can be sensitive to mis-
specifications of the link function and the use of a smooth decision rule to approximate a
discrete-valued decision rule; thus in future we plan to explore the usefulness of more flexible
link functions and accurate parameterizations of the rules.

5.1. Discussion
Causal Bayesian networks provide a natural alternative to the method presented here. For
example, we construct a tentative causal Bayesian network (possibly containing unobserved
latent variables) that incorporates the assumption that the associated conditional distributions
would be the same even if the decisions are set by outside intervention. We ‘learn’ the struc-
ture of the causal Bayesian network from the data, i.e. we postulate multivariate models for
the group of observed and unobserved variables, estimate parameters and assess the fit. This is
an area of intense research. An overview of ‘learning’ the structure of the network with refer-
ences is provided by Cowell et al. (1999), chapter 11. See also Heckerman (1998). Then, given
a particular multivariate model with estimated parameters, we follow the dynamic program-
ming arguments. The dynamic programming steps are computationally difficult; Cooper (1990)
showed that probabilistic inference using these types of networks can be NP hard (problems that
cannot necessarily be solved in polynomial time on a sequential computer). Cowell et al. (1999),
chapter 11, discussed the use of local computations and decision potentials designed to reduce
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the computational burden. It would be most interesting to assess whether the methodology
proposed here is competitive. Note that these methods do not directly parameterize the optimal
decision rules; furthermore the learning process assumes that there is good scientific informa-
tion about the distribution of all unobserved variables and about the relationship between the
unobserved variables and the observed variables.

Another interesting alternative to the method presented here is the use of Robins’s structural
nested mean model (Robins, 1986, 1987, 1989, 1997). However, to form the mean response to a
dynamic regime we must (as is the case with Bayesian networks) model the distribution of each
status Sj as outcomes of past statuses and past treatment.

Lavori and Dawson (2000) proposed the use of an approximate Bayesian bootstrap to impute
the values of all potential outcomes. After all potential outcomes have been imputed, one would
calculate the mean response corresponding to each of a variety of dynamic treatment regimes
and compare these to find the best dynamic regime. Unfortunately, in the cases that we envision,
the number of time intervals combined with the continuity of the status will preclude the use of
the nonparametric approximate Bayesian bootstrap.

This work raises some interesting issues. An important practical problem is the appropriate
design of sequentially randomized trials to be used for estimating an optimal decision regime.
From a statistical standpoint this is a difficult area because practical and ethical considerations
might limit the variability in the treatment levels, yet variability in the treatment levels is crucial
for high quality estimates. We need to understand better the consequences of low variability in
the observed treatment decisions (Āj) given the past information. Clearly one consequence of
low variability and/or a small number of possible values of Aj will be less precise estimation
of the rules. A second type of problem that can arise is that in the experiment or observational
study expensive information or information that is difficult to collect may have been used
in the selection of the treatment. For practical applicability the rules should not depend on
this information. For example, in the Fast Track study, staff may have used information from
detailed summer interviews to assign the treatment; however, in future, summer interviews may
not be available. So the goal is to find the rules that optimally use a specified subset of the past
information. The work by van der Laan et al. (2001) should be useful in developing methodol-
ogy for this problem. A third issue is that we assume that decisions are made in discrete time;
practically, this means that, in any time interval, treatment decisions are made on all or most
subjects. However, when the timings of the treatment decisions are so variable across subjects
that the chance that a decision occurs in any time interval becomes exceedingly small it is better
to move to a continuous time framework. It would be very useful to generalize this work to
continuous time. Another useful generalization would allow for a time-varying response. We
could choose to estimate a regime that would optimize a one-dimensional summary of the time-
varying response such as a weighted average of the response with earlier responses contributing
less to the average than do later responses. This is similar to minimizing discounted expectations
in infinite horizon, sequential decision problems (see Bather (2000), chapter 9, or section 2.1.2
of Bertsekas and Tsitsiklis (1996)). When the one-dimensional summary can be expressed as an
average, the work presented here should generalize without much alteration.

Because of the similarity in the likelihood between this method and Robins’s nested struc-
tural mean model, many of Robins’s results should generalize to this setting. In particular, when
the available data are observational, the assumption of no unmeasured confounders is suspect.
In this setting Robins has developed sensitivity analyses for the nested structural mean model
(Robins et al. (1999), sections 8.1b and 8.2b). It would be most interesting to develop analyses
that examine how the rules would change as we allow for deviations from the no unmeasured
confounders assumption.
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An additional interesting area was described in Section 1: suppose that it is feasible to simu-
late from the known multivariate distribution. It is unclear whether the methodology presented
here can provide the basis for better computational algorithms that provide approximate op-
timal regimes. This could be of great utility as the traditional use of a Bayesian network is
computationally difficult.
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Appendix A

Lemma 1. Let (Z1, Z2, Z3) be a random vector where (Z1, Z2) are scalars, Z3 is an m-vector and Z2 is
countably discrete. Assume thatE|Z1| is finite. Denote a version of the regular conditional probability den-
sity of Z2 given Z3 by p.z2|z3/. Assume that d : Rm → R is measurable and that P [p{d.Z3/|Z3} > 0] = 1.
Then any two versions of E[Z1|Z3,Z2 = d.Z3/] are almost surely equal on the σ-field generated by Z3.

Proof. By definition of the conditional expectation of Z1 given Z3 on the set {Z2 = d.Z3/}, we have
that, for any B, a set in the σ-field generated by Z3,∫

B∩{w:Z2.w/=d{Z3.w/}}

Z1 dP =
∫

B∩{w:Z2.w/=d{Z3.w/}}

E[Z1|Z3,Z2 = d.Z3/] dP

where E[Z1|Z3,Z2 = d.Z3/] belongs to the σ-field generated by Z3 intersected with the set {w : Z2.w/ =
d{Z3.w/}}. Suppose that we have two versions of E[Z1|Z3,Z2 = d.Z3/]; on {Z2 = d.Z3/} these can be
written as h1.Z3/ and h2.Z3/. By definition,

0 =
∫

B∩{w:Z2.w/=d{Z3.w/}}

h1.Z3/− h2.Z3/ dP:

But this is the same as (by the definition of p)

0 =
∫
B

{h1.Z3/− h2.Z3/}p{d.Z3/|Z3} dP:

Since P [p{d.Z3/|Z3} > 0] = 1, P{h1.Z3/ = h2.Z3/} = 1 (not just on the set {w : Z2.w/ = d{Z3.w/}}).

Lemma 2. Assume that the range of the treatment decisions ĀK is countable and that E|Y | is finite.
Assume that no unmeasured confounders hold. Assume that the regime d̄K is measurable and satis-
fies equation (7), where pj.aj|S̄j , Āj−1/ is a regular conditional density for the conditional distribution
of Aj given S̄j and Āj−1. Then the repeated expectation (5)

E[E[. . .E[E[Y |S̄K, ĀK−1,AK = dK]|S̄K−1, ĀK−2,AK−1 = dK−1]. . . |S1,A1 = d1]]

is well defined and is equal to E[Y.d̄K/].

Proof. For the repeated expectation to be well defined it must be shown to assume a unique (only one!)
value. As discussed by Gill and Robins (2001), difficulties occur because the value of each conditional ex-
pectation is arbitrary when the conditioning set has probability 0. Assumption (7) and lemma 1 will allow
us to show uniqueness. Because each dj is measurable and by the definition of conditional expectations,
E[Y |S̄K, ĀK−1,AK = dK], E[E[Y |S̄K, ĀK−1,AK = dK]|S̄K−1, ĀK−2,AK−1 = dK−1], etc. are defined almost
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surely P . Using lemma 1 and assumption (7) (for example in the first case equate Y with Z1, (S̄K, ĀK−1)
with Z3 andAK with Z2) we see that the conditional expectation is uniquely defined almost surely P . Thus
expression (5) is well defined.

To see that expession (5) is equal to E[Y.d̄K/], first note that E[Y |S̄K, ĀK−1,AK = dK] is equal to
E[Y.ĀK−1, dK/|S̄K, ĀK−1,AK = dK] almost surely by definition of Y . But Osr is independent of AK condi-
tionally on (S̄K, ĀK−1); thus the above conditional expectation is equal to E[Y.ĀK−1, dK/|S̄K, ĀK−1] almost
surely. Thus expression (5) is equal to

E[E[. . .E[E[Y.ĀK−1, dK/|S̄K, ĀK−1]|S̄K−1, ĀK−2,AK−1 = dK−1]. . . |S1,A1 = d1]]:

Next the repeated expectation, E[E[Y.ĀK−1, dK/|S̄K, ĀK−1]|S̄K−1, ĀK−2,AK−1 = dK−1] is equal to
E[Y.ĀK−1, dK/|S̄K−1, ĀK−2,AK−1 = dK−1] almost surely. Now we repeat the arguments made before, i.e.
first use the definition of Y ; then, sinceOsr is independent ofAK−1 conditionally on (S̄K−1, ĀK−2), the above
conditional expectation becomes E[Y.ĀK−2, dK−1, dK/|S̄K−1, ĀK−2]. The repeated use of these arguments
proves that expression (5) is indeed equal to E[Y.d̄K/].

Lemma 3. Let Z1 be a random variable, Z3 a random m-vector and Z2 a random variable with range
A where A is countable.E[|Z1||Z2,Z3] is bounded almost everywhere. Denote a version of the regular con-
ditional density of Z2 given Z3 by p.z2|z3/. Then given " > 0 there is a measurable function d such that

E[Z1|Z3,Z2 = d.Z3/] � sup
a:p.a|Z3/>0

.E[Z1|Z3,Z2 = a]/− "

almost everywhere P .

Proof. Without loss of generality assume that A is the positive integers. Consider the set of positive
integers j for which

E[Z1|Z3 = z3,Z2 = j] � sup
i:p.i|z3/>0

.E[Z1|Z3 = z3,Z2 = i]/− "

and p.j|z3/ > 0. Let d.z3/ be the minimum integer in this set. Then we have

{z3 : d.z3/ > j} = {z3 : max
i�j,p.i|z3/>0

.E[Z1|Z3 = z3,Z2 = i]/ < sup
a:p.a|z3/>0

.E[Z1|Z3 = z3,Z2 = a]/− ":

This set is measurable for all values of j; thus d is measurable.

A.1. Proof of theorem 1
First expression (5) is no greater than

E[E[. . .E[J0.S̄K, ĀK−1/|S̄K−1, ĀK−2,AK−1 = dK−1]. . . |S1,A1 = d1]]:

This is because pK{dK.S̄K, ĀK−1/|S̄K, ĀK−1} > 0 almost surely and dK must take values in {aK : pK.aK|S̄K,
ĀK−1/ > 0}. Let " > 0. Furthermore use lemma 3 to see that expression (9) is at least as large as

sup
d̄K−1∈DP

{E[E[. . .E[J0.S̄K, ĀK−1/|S̄K−1, ĀK−2,AK−1 = dK−1]. . . |S1,A1 = d1]]} − "

because DP includes all measurable rules dK depending on S̄K and ĀK−1 with pK{dK.S̄K, ĀK−1/|S̄K,
ĀK−1} > 0 almost surely. Thus expression (9) is within " of the first term in the former display.

Evaluating the repeated expectation, the first term of the previous display is

sup
d̄K−1∈DP

{E[E[. . .E[Q1.S̄K−1, ĀK−2, dK−1/|S̄K−2, ĀK−3,AK−2 = dK−2]. . . |S1,A1 = d1]]}: .17/

Similarly we note that expression (17) is within " of

sup
d̄K−2∈DP

{E[E[. . .E[J1.S̄K−1, ĀK−2/|S̄K−2, ĀK−3,AK−2 = dK−2]. . . |S1,A1 = d1]]}
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and thus this display is within 2" of expression (9). Finish the proof by repeating this argument and
recognizing that " is arbitrary.

A.2. Proof of theorem 2
We only need inequality (13) to hold for m̄K = µ̄0K. Note that

E[µK.S̄K, ĀK/|S̄K, ĀK−1] = ∑
a

µK.S̄K, ĀK−1, a/ pK.a|S̄K, ĀK−1/:

Consider the Kth inequality

E

[
Y +

K∑
l=1

µl.S̄l, Āl/− E[µK.S̄K, ĀK/|S̄K, ĀK−1]
]2

� E

[
Y +

K−1∑
l=1

µl.S̄l, Āl/+ µ0K.S̄K, ĀK/

− E[µ0K.S̄K, ĀK/|S̄K, ĀK−1]
]2

:

Combining terms we have

2 E
[
Y +

K−1∑
l=1

µl.S̄l, Āl/+ µ0K.S̄K, ĀK/− E[µ0K|S̄K, ĀK−1]
]

{µK.S̄K, ĀK/− µ0K.S̄K, ĀK/

− E[µK − µ0K|S̄K, ĀK−1]} + E[µK.S̄K, ĀK/− µ0K.S̄K, ĀK/− E[µK − µ0K|S̄K, ĀK−1]]2 � 0:

Since the second part of the product in the first term has conditional mean 0, the first term simplifies to
yield

2 E[Y + µ0K.S̄K, ĀK/][µK.S̄K, ĀK/− µ0K.S̄K, ĀK/− E[µK − µ0K|S̄K, ĀK−1]] + E[µK.S̄K, ĀK/
− µ0K.S̄K, ĀK/− E[µK − µ0K|S̄K, ĀK−1]]2 � 0:

Recall that µ0K.S̄K, ĀK/ is equal to −E[Y |S̄K, ĀK] plus a term that is constant in AK; thus the first term is
identically 0 and we have

E[µK.S̄K, ĀK/− µ0K.S̄K, ĀK/− E[µK − µ0K|S̄K, ĀK−1]]2 � 0,

implying that the quantity inside the expectation is almost surely equal to 0. Thus,

E[[µK.S̄K, ĀK/− µ0K.S̄K, ĀK/− E[µK − µ0K|S̄K, ĀK−1]]2|S̄K, ĀK−1] = 0 almost surely,

i.e. ∑
a

[µK.S̄K, ĀK−1, a/− µ0K.S̄K, ĀK−1, a/− E[µK − µ0K|S̄K, ĀK−1]]2 pK.a|S̄K, ĀK−1/ = 0

almost surely. Fix a sample point in this set of probability 1. Then for each a with pK.a|S̄K, ĀK−1/ > 0 we
have

µ0K.S̄K, ĀK−1, a/− µK.S̄K, ĀK−1, a/ = E[µ0K − µK|S̄K, ĀK−1]:

Recall that the supremum of µ0K.S̄K, ĀK−1, a/ over such a is 0 and by assumption the same holds for µK.
Thus E[µ0K − µK|S̄K, ĀK−1] = 0 and

µ0K.S̄K, ĀK−1, a/− µK.S̄K, ĀK−1, a/ = 0:

We have that µ0K = µK with probability 1.
Next we consider inequality (13) for j = K− 1 and m̄K−1 = µ̄0,K−1. The proof is virtually identical with

the above. Using the result just shown that µ0K = µK, we have
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E

[
Y +

K−1∑
l=1

µl.S̄l, Āl/+ µ0K.S̄K, ĀK/− E[µK−1|S̄K−1, ĀK−2]
]2

� E

[
Y +

K−2∑
l=1

µl.S̄l, Āl/+
K∑

l=K−1
µ0l.S̄l, Āl/− E[µ0,K−1|S̄K−1, ĀK−2]

]2

:

Combining terms as before,

2 E
[
Y +

K−2∑
l=1

µl.S̄l, Āl/+
K∑

l=K−1
µ0l.S̄l, Āl/− E[µ0,K−1|S̄K−1, ĀK−2]

]
{µK−1.S̄K−1, ĀK−1/

− µ0,K−1.S̄K−1, ĀK−1/− E[µK−1 − µ0,K−1|S̄K−1, ĀK−2]} + E[µK−1.S̄K−1, ĀK−1/

− µ0,K−1.S̄K−1, ĀK−1/− E[µK−1 − µ0,K−1|S̄K−1, ĀK−2]]2 � 0:

Since the second part of the product in the first term has conditional mean 0, the first term simplifies to
yield

2 E[Y + µ0,K−1.S̄K−1, ĀK−1/+ µ0K.S̄K, ĀK/]{µK−1.S̄K−1, ĀK−1/− µ0,K−1.S̄K−1, ĀK−1/

− E[µK−1 − µ0,K−1|S̄K−1, ĀK−2]} + E[µK−1.S̄K−1, ĀK−1/− µ0,K−1.S̄K−1, ĀK−1/

− E[µK−1 − µ0,K−1|S̄K−1, ĀK−2]]2 � 0:

Since µ0,K−1.S̄K−1, ĀK−1/ is equal to −E[Y + µ0,K.S̄K, ĀK/|S̄K−1, ĀK−1] plus a term constant in AK−1 the
first term is 0. We have

E[µK−1.S̄K−1, ĀK−1/− µ0,K−1.S̄K−1, ĀK−1/− E[µK−1 − µ0,K−1|S̄K−1, ĀK−2]]2 = 0,

implying that the quantity inside the expectation is almost surely equal to 0. As in the arguments for j = K
this implies that µ0,K−1 = µK−1 with probability 1.

Continuing in this fashion we see that µ̄0K = µ̄K with probability 1. Also it is easy to see that we can
replace the ΣKl=1 by ΣKl�j and the sum ΣKl=1,l 
=j by ΣKl>j and the same result holds.

A.3. Variance of β̂
β̂ can be used when the regrets and optimal decisions are smooth functions of β. For a p column vector,
say V , denote VV T by V⊗2. Also denote the first derivative with respect to α of pj.Aj|S̄j , Āj−1; α/ by
ṗj.Aj|S̄j , Āj−1; α/ and set

Sα.S̄K, ĀK; α/ =
K∑
j=1
ṗj.Aj|S̄j , Āj−1; α/=pj.Aj|S̄j , Āj−1; α/:

Denote the second derivative with respect to α of Pn[ΣKj=1 log{pj.Aj|S̄j , Āj−1; α/}] and evaluated at
α = α̂n by −Îαα. Denote the first derivative of µj.S̄j , Āj; β/ with respect to β by µ̇j.S̄j , Āj; β/. Set ĉ.β, α/
equal to

−1
K

K∑
j=1

Pn

{
Y +

K∑
l=1

µl.S̄l, Āl; β/− ∑
aj

µj.S̄j , Āj−1, aj; β/ pj.aj|S̄j , Āj−1; α/

}
,

set Sβ.Y , S̄K, ĀK; β̂n, α̂n/ to

K∑
j=1

{
Y + ĉ.β̂n, α̂n/+

K∑
l=1

µl.S̄l, Āl; β̂n/−
∑
aj

µj.S̄j , Āj−1, aj; β̂n/ pj.aj|S̄j , Āj−1; α̂n/

}
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×
{
@

@β
ĉ.β, α̂n/

∣∣∣
β=β̂n

+ µ̇j.S̄j , Āj; β̂n/−
∑
aj

µ̇j.S̄j , Āj−1, aj; β̂n/ pj.aj|S̄j , Āj−1; α̂n/

}

and set −Îβα equal to

K∑
j=1

Pn

{
µ̇j.S̄j , Āj; β̂n/−

∑
aj

µ̇j.S̄j , Āj−1, aj; β̂n/ pj.aj|S̄j , Āj−1; α̂n/

}

×
{
@

@α
ĉ.β̂n, α/

∣∣∣
α=α̂n

− ∑
aj

µj.S̄j , Āj−1, aj; β̂n/ ṗj.aj|S̄j , Āj−1; α̂n/

}T

−
K∑
j=1

Pn

{
Y + ĉ.β̂n, α̂n/+

K∑
l=1

µl.S̄l, Āl; β̂n/−
∑
aj

µj.S̄j , Āj−1, aj; β̂n/ pj.aj|S̄j , Āj−1; α̂n/

}

× ∑
aj

µ̇j.S̄j , Āj−1, aj; β̂n/ ṗj.aj|S̄j , Āj−1; α̂n/
T:

Lastly set −Îββ equal to

K∑
j=1

Pn

{
@

@β
ĉ.β, α̂n/

∣∣∣
β=β̂n

+
K∑
l=1

µ̇l.S̄l, Āl; β̂n/−
∑
aj

µ̇j.S̄j , Āj−1, aj; β̂n/ pj.aj|S̄j , Āj−1; α̂n/

}

×
{

µ̇j.S̄j , Āj; β̂n/−
∑
aj

µ̇j.S̄j , Āj−1, aj; β̂n/ pj.aj|S̄j , Āj−1; α̂n/

}
:

For a sample of n subjects we estimate the asymptotic variance of β̂ by

.1=n/Î = .1=n/Î−1
ββ Pn{Sβ.Y , S̄K, ĀK; β̂n, α̂n/+ ÎβαÎ

−1
αα Sα.S̄K, ĀK; α̂n/}⊗2.Î−1

ββ /
T:

A.4. Variance of µ̂0
An estimator of the asymptotic variance of µ̂0 is given by

.1=n/Pn

[
K∑
j=1

µj.S̄j , Āj; β̂n/+ Y + Î0β Î
−1{Sβ.Y , S̄K, ĀK; β̂n, α̂n/+ ÎβαÎ

−1
αα Sα.S̄K, ĀK; α̂n/}

]2

where

Î0β = Pn

{
K∑
j=1

µ̇j.S̄j , Āj; β̂n/

}T

:
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Discussion on the paper by Murphy

Elja Arjas .University of Helsinki/
If I am right the burning issue in social and educational programmes, of which the Fast Track study is an
example, is not how to determine an individually optimal dynamic treatment regime but, rather, how a
limited total resource should be optimally shared between those who need help. Treatments cannot then be
assigned purely on the basis of individual status and treatment histories. The situation is different in clini-
cal trials, where the availability of drugs is not a problem but where they often have unwanted side-effects.
The simple logic ‘more is better’ does not then necessarily apply.

My second comment deals with the concept of potential outcomes and the no unmeasured confounders
postulate. I understand that it is tempting to postulate the existence of individual potential outcomes that
are indexed by a list of treatments received, the main advantage being that the appealing concept of an
‘individual causal effect’ associated with one regime versus another can then be defined directly as the
contrast between the corresponding potential outcomes. But I have great difficulty in understanding what
the postulate of no unmeasured confounders, as formulated in the paper, would mean in a concrete study.

To illustrate this point, consider again the Fast Track study. It is mentioned in Section 5.1 that

‘staff may have used information from detailed summer interviews to assign treatment; however, in
future, summer interviews may not be available’.

It is obvious that decision rules which are to be used later cannot be based on information which then
will not be available. But if the summer interviews were actually determinants of how the treatments
were assigned in the original study, but are no longer available when the data are analysed, the resulting
statistical inference can be seriously confounded. How does this problem relate to potential outcomes?
I think that it would be more natural to formulate the no unmeasured confounders assumption by refer-
ring, instead of to potential outcomes, to potential confounders. Somewhat more formally, we would say
that {U1,U2, . . . ,Uj} are potential confounders at time j if the prediction of the response Y , given the
observed past {S1,A1, S2,A2, . . . , Sj}, would change if the conditioning would also involve known values
of {U1,U2, . . . ,Uj}. A natural way to formulate the no unmeasured confounders assumption is now to
require that for each j, given the observed past {S1,A1, S2,A2, . . . , Sj},Aj is chosen independently of all
such potential confounders {U1,U2, . . . ,Uj}. Of course, such an assumption can never be verified from
the data if the potential confounders have not been measured. But at least this alternative formulation
would lead the analyst to contemplate the possible existence of factors whose values are unknown but that
nevertheless might have influenced the treatment assignments that were made when the original study was
carried out.

My third comment concerns the methods of statistical inference. Frankly, the many estimation methods,
ranging from maximum likelihood to least squares based on nonparametric frequency estimates, left me
in a state of considerable confusion. Would it not be more logical, and simpler, to start from the likelihood
expression (cf. the formula below equation (12) in the paper)

K∏
j=1
fj.Sj|S̄j−1, Āj−1/

K∏
j=1
pj.Aj|S̄j , Āj−1/ g.Y |S̄K, ĀK/:

Here we can see likelihood contributions coming, in an alternating fashion, for each j, first from observing
a new value for the status variable Sj and then from recording the corresponding treatment assignment
Aj , and ending after K steps with the contribution of the observed response Y given the entire status
and treatment history. Under the above-mentioned version of the no unobserved confounders postulate
the middle term in this likelihood does not depend on the potential confounder variables U1,U2, . . . ,UK.
Using statistical terminology in a somewhat liberal manner we include here parameters involved in the
definition of the functions fj and g among such potential confounders. But then, in likelihood inference
(including Bayesian), the middle term will only have the role of a proportionality constant, and therefore
the inference regarding the functions fj and g is unaffected by what particular distributions pj were used


