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OPTIMAL ELIMINATION FOR SPARSE SYMMETRIC SYSTEMS
AS A GRAPH PROBLEM*

\V. R. SPILLERS AND NORRIS HICKERSON
Columbia University

Abstract. The optimal (requiring the minimum number of multiplications) order-
ing of a sparse symmetric system of linear algebraic equations to be used with Gaussian
elimination is first developed as a graph problem which is then treated using the func-
tional equation techniques of dynamic programming. A simple algorithm is proposed as
an alternative to the more lengthy procedures of dynamic programming and this al-
gorithm is shown to be effective for systems whose graphs are "grids".

Introduction. The motivation for this work is the fact that there exists a large
class of physical problems which give rise to sparse symmetric linear systems, for which
the computational effort required to obtain a solution by elimination is highly dependent
upon the ordering of the equations. Here a system of n linear algebraic equations

A'x' = b' (1)

is called symmetric if the coefficient matrix is symmetric and sparse if A' has a large
number of zero elements. In many problems dealing with structures, networks, finite
difference formulations, etc., this is precisely the case. Certainly if there are no zero
elements, there is no such thing as an optimum procedure in the sense in which the
term is used here.

The origins of this work can be traced back to Ivron [1] in the work which he calls
"Diakoptics" and more recently to the work of Branin [2] and Roth [3]. It has been
pointed out (see also [4], [5]) that to solve these sparse systems by first computing the
inverse system matrix can be highly inefficient, and that Gaussian elimination, which is
in fact a special case of one of Kron's techniques, is apparently the most efficient pro-
cedure, excluding special cases such as, e.g., systems which are highly symmetric (systems
in which there is much repetition of elements or groups of elements).

There are now digital computer programs available for the automatic analysis of
many physical systems. Since the computational effort and therefore the cost is sensitive
to the procedure used, it is important to proceed efficiently. In the following, Gaussian
elimination is first developed as a graph problem; its functional equation is then treated
using the dynamic programming techniques of Bellman [6]; and finally a simple algorithm
is discussed which is a computationally attractive alternative to the dynamic pro-
gramming procedures and which can be easily included in computer programs for
automatic analysis.

Gaussian elimination. Given a system in the form of Eq. (1), the question con-
sidered here is how to find the solution matrix x' using elimination, so that the computing
time, and therefore computing cost, is as small as possible. Following von Neumann,
the number of multiplications required will be counted as a measure of the computing
time.
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Consider the distinct phases, elimination and backsubstitution. Generally, a typical
step in the elimination phase consists of using, e.g., the zth row of A' to remove all the
nonzero terms except a'tl in the jth column by taking linear combinations of rows. Here,
a restrictive form is used in which the zth row is used only to delete terms in the ith
column. This implies that the system is well conditioned; it also, however, makes the
problem tractable. In the backsubstitution phase, known components of the solution
matrix x' are used to compute, e.g., the unknown ith component.

In this restricted form, the numerical procedure is completely specified for a given
system once the equations have been ordered. Further, if only the number of multiplica-
tions are to be counted, a reduced matrix A whose elements are defined to be

a,, = 1 if a'a 9^ 0 ^

= 0 if a'a = 0

contains all the information necessary for the problem under discussion. (Note that at
this step, zeros which are generated "accidentally" by the elimination scheme are
neglected.)

The number of multiplications required may be counted in the following manner.
Assume for the moment that the equations are ordered in A in accordance with the
order in which elimination is to proceed. Let (i = 1, • • • , n) be the number of nonzero
terms remaining in the zth row ajter the elimination phase has been completed. The
number of multiplications for a system with one right-hand side is (using symmetry):

For the zth row—

Step 1 Divide all remaining terms in
the zth row by the diagonal term 6< mult.

Step 2 Eliminate the terms below the
ith row in the ith column 6,(6, — 1) mult.

Step 3 Backsubstitution 6, — 1 mult.
Total for the ith row (6; + 1)6( — 1

Total for the system <f> = y,?., (6; + 1)6,- — n.

In general the system will be given some arbitrary initial ordering 1, 2, 3, • • • , n.
Let (i = 1, ■ ■ ■ , n) describe a permutation of this ordering. The problem is then to
find the £,• for which <£(£,) is a minimum. Since the matrix A may be thought of as purely
topological, this is a combinatorial problem concerned only with the topology (con-
nectivity) of the system.

Problems of this kind fit into the very general, but here not very useful, classification
of nonlinear programming problems. Bellman [7] has discussed the solution of several
related problems, remarking on their deceptively simple appearance and the lack of any
systematic theory for their treatment. Motzkin and Straus [8] consider a combinatorial
problem which includes the present problem, but offer a solution with restrictions into
which it has not yet been possible to fit the present work. A point of general agreement
among these workers is that the large number of possibilities obviates solution by trial
and error for any but the most trivial examples.

As a final example of related work, in [5] the solution for the problem of minimizing



1968] OPTIMAL ELIMINATION FOR SPARSE SYMMETRIC SYSTEMS 427

the average "band width" has been given as the solution of a linear programming problem.
It may be noted that not only is a finer measure of computational effort used here,
but also that while the computational effort required by the scheme described in [5]
obviates its application to any but the most trivial cases, the algorithm proposed here
is simple enough to be quite useful.

A graph problem. It was pointed out in the preceding section that optimal elimina-
tion is actually a topological problem. In this section this property is exploited by re-
formulating the problem using notation from graph theory [9] in order to facilitate the
visualization of procedures and simplify the proofs.

Some systems, such as networks and skeletal structures, may be thought of as being
their own graph. That is, a picture of one of these physical systems, with slight modifica-
tion, could serve as its graph in the following discussion in spite of the fact that there
may be more than one scalar equation associated with each node (see later). Other
systems, such as those which arise from difference equations, may have no natural graph.
For these systems the following procedure may be used to construct a graph: With
each equation in A there is associated a node in the system graph and with each nonzero
term a,, (i = 1, • • • , n; j = i + 1, • • • , n) there is associated an undirected branch
between the ith and jLh nodes.

This system graph will be referred to as G. During the elimination procedure it is
modified just as the rows of the system matrix are modified; let G' refer to the graph
formed by the elimination of the ith node from G. Let G{ (i = 1, • • • , n) refer to the
set consisting of the ith node together with all nodes adjacent to the ith node. (Two
nodes i and j are adjacent if they are both endpoints of the same branch.) Elimination
of the ith row from A corresponds to first forming for each node j in the graph

V-g^g, tea. (i = li...in) (3)
= G, j £ Gi

and then deleting the ith node from each G) for which i £ G) to form G) . The implica-
tions of this on the system graph are shown in Fig. 1. Successive eliminations proceed
in a straightforward manner; e.g., elimination next of the fcth node would produce the
sets G),k. Introducing the norm which is defined to be the number of nodes
included in the set G] '" m, for an ordering , £2 , • • • , |n it is possible to identify =

which is in fact one plus the valence of the node £, inthegraph(?f"{"'"-£i~\
(The vale?ice of a node is defined to be the number of branches having that node for an
endpoint.) Since deletion of a vertex I alters the remaining graph only by addition of
branches JK if IJ and IK were branches, but not JI\, we have clearly the following
result.

GRAPH G GRAPH GL

FIG. I

EFFECT OF DELETING THE iTH NODE
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Theorem 1. Any graph which is obtained from another graph by deleting nodes in
an elimination procedure is independent of the order in ivhich the nodes are eliminated.

Theorem 2. When any two successive nodes in an optimum ordering are adjacent
either in the original graph or in the graphs generated by the elimination procedure, the
node with the smaller valence occurs first.

Let 1, 2, 3, • • • , n be an optimum ordering of the nodes. The theorem states that
if node (i + 2) £ then IGivV'"''! < |G\.;22'"'''|. It is sufficient to show this
for the first two nodes in the optimum ordering. From Theorem 1 and its discussion,
it follows that if |(?i| > |(?2|, then the order of these nodes could be interchanged with
a decrease in the value of , all other b{ (i = 2, , n) remaining unchanged. It would
then follow that the ordering of the nodes 2, 1, 3, • • • requires fewer multiplications
than the ordering 1, 2, 3, • • • , contradicting the assumption that the latter is optimal.

The functional equation. Let W(G) be defined to be the number of multiplications
required to solve optimally the system whose graph is G; let d, be one plus the degree
of the ith node in graph (?; and let et = d^di + 1) — 1. (TF(G) is, in fact, the minimum
value of <£('.) ii"d e. is the number of multiplications required to eliminate the zth row
first from the given system whose graph is G.) W(G) satisfies the functional equation

W{G) = min [et + W')]. (4)%
A. Uniqueness. Bellman uses the term "policy" to describe a specific permutation;

i.e., a certain policy results in a permutation for which it is then possible to evaluate
the number of multiplications or work. The optimal policy corresponds to minimum
work. It will now be shown that the solution of Eq. (4) is unique while the optimal policy
may not be. Let W and Y be two solutions of Eq. (4)

W(G) = min [e, + IF(G")] Y(G) = min [e,- + F(G")] (5)
» »

and I and J be the respective values of the index i for which the minimums occur.
Since it is of no consequence in the proof, it is assumed arbitrarily that W{G) > Y(G).
Then

W(G) = e, + W(G') <ej + W{GJ), Y(G) = e, + Y(GJ) (6)

and

\W(G) - Y(G)| < \W(GJ) - Y(GJ)|. (7)
These steps may now be repeated for the graph GJ and then the graph GJ'K, etc., with
the difference (Eq. (7)) in the solutions growing larger or remaining the same as each
node is eliminated. But by the definition of the elimination procedure, the work required
to solve any system whose graph is a single node is just 1. So that

W{GJ 'K'") = Y(GJ ■*•'") = 1 (8)

and therefore

W(G) = Y(G). (9)
B. Approximation in Policy Space. Following Bellman, it is possible to choose any

initial policy (method of ordering the nodes) and proceed iteratively to obtain the solu-
tion of Eq. (4). Let W0(G) be the number of multiplications (work) required using this
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initial policy on the graph G. Let

Wn(G) = min h + II-V^G1')] N = 1, 2, 3, • • • . (10)t
The sequence {TFat(G)} is clearly monotone-decreasing. First

TF0(G) = er + TF0(G7) (11)

and

WX{G) = min [e,- + l'F„(G')] < e, + 1F0(G') = W0(G). (12)

Then, inductively, assume WN{G) < TFw_i(G) from which if

TFjy(G) = min [«, + TF^_i(G')] = e, + WN-X(GJ) (13)

then

W„+1(g) = min [e, + IFA-(G')] ̂  es + WN{GJ) < W„{G). (14)
i

It follows that

Lim IFA-(G) = W(G) (15)
AT-+CO

is a solution of Eq. (4). If the policy chosen produces exact results when applied to a
system whose graph has a single node, a detailed examination of the iterative scheme
shows that at most n — 1 iterations are actually required for the sequence to converge.

C. Monotone-increasing Convergence. An alternative iterative scheme might be
used in which the convergence is monotone-increasing. Using Eq. (10) again to iterate
but starting with

TFo(G) = min [e,] = e, (16)
*

then

TFi((7) = min [e,- + TF0(<T)] > e, = W0(G). (17)

Proceeding inductively, if WN(G) > WN-i(G), then

Wn+1(G) = min [e{ + TFW((?')] > min [e< + WN^(G')] = JF„(G). (18)
»' i

This sequence will next be shown to be bounded. Let IF(G) be the solution of Eq. (4).
Obviously

TFo(G) < W(G). (19)
By induction, if TF,V(G) < W(G), then

JF„+1(G) = min [e, + TF^(G')] < min [e. + 1F(G')] = W(G). (20)
« •

The sequence {T'FA(G)} again converges to the solution of Eq. (4) as N —■> oo and again
at most n — 1 iterations are actually required.

The proposed algorithm. While the above iterative procedures provide the formal
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solution of the problem of the optimal ordering of the nodes, they involve considerable
computational effort themselves. If it is necessary to deal with systems containing
thousands of nodes, it appears unlikely that they could be of any practical use for the
optimization of an elimination scheme in the automatic analysis of linear systems. In
this section an algorithm or "policy" is discussed which is simple to automate and which
requires almost a minimal amount of calculations to execute. The authors have found
this algorithm useful and, in fact, know of no examples for which it does not produce
an optimal ordering.

Proposed Algorithm. At each step in the elimination scheme, eliminate the node with
the smallest degree.

Note that if it were not for the fact that the graph is modified at each step in the elimina-
tion, the execution of this algorithm would be completely trivial.

There are a number of ways to motivate this choice of an algorithm. Thinking in
terms of problems such as the "traveling salesman problem" in which it is necessary
to take a given number of steps, the proposed algorithm requires that the "smallest"
step be taken each time. Flood [10] and Motzkin [11] have noted that this policy can
be very effective. Bellman [12] has also discussed a policy as an approximation to the
optimal policy for multistage decision processes. Finally, Theorem 2 above provides addi-
tional motivation for this algorithm. Certainly, it is difficult to find a more simple
algorithm with any relevance.

Square grids. Figure 2 shows a system graph which occurs frequently in physical
applications together with a common numbering scheme. This numbering scheme
results in a fairly narrow "band width" and is quite convenient to use in computer ap-
plications. Figure 3 shows a comparison of the number of multiplications required to
solve this system using the indicated ordering, with the number of multiplications
required using an ordering which satisfies the proposed algorithm. Note that the number
of equations is n2. As the size of the system increases, the relative efficiency of the order-
ing scheme proposed here is seen to increase.

For large grids it is possible to follow both of these schemes a few steps in order to
attempt to understand their operation. Assume that in the execution of the proposed
algorithm the grid is large enough so that it is possible to neglect the edges and assume

 n NODES 

nxn SQUARE GRID
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FIG . 3

A COMPARISON FOR SQUARE GRIDS

that initially each node has the degree 4. It is possible to eliminate n2/2 alternate nodes
systematically so that the degree of the node eliminated remains four. Using the common
numbering scheme shown in Fig. 2, during the elimination of the first n2/2 nodes, the
degree of the node eliminated increases from 3 to n + 2. As the elimination process
continues it becomes more and more difficult to follow the proposed algorithm, but it
can be seen that the next n2/8 nodes eliminated have the degree eight.

A generalization. When the number of variables associated with each node is
not one but greater than one, the count of the multiplications must be modified slightly.
However, if matrix multiplications are assigned the same work as matrix divisions, the
preceding remark can be applied interpreting <j> as proportional to rather than equal to
the total work. Without this simplification the problem appears intractable.

Built-up systems. It is sometimes convenient to separate a system into component
parts, such as wings and fuselage in an aircraft, and to deal with each of these parts
independently before they are interconnected. The only concern is the effect of this on
the use of the proposed algorithm.

Let nodes 1,2, • • • , s belong to a subgraph S C G which is to be considered inde-
pendently. Under the assumption that G is a connected graph, G1'2''"'* has branches
between each node pair in R = G — S which is adjacent to nodes in S. Therefore, if
it is required to eliminate the nodes in S first, without so doing, the ordering of the nodes
in R can proceed using the proposed algorithm after adding branches between the above
node pairs where required.
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