Optimal energy management in series hybrid electric bicycles

Jacopo Guanetti a, Simone Formentin b, Matteo Corno b, Sergio M. Savaresi b

a Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA. E-mail: jacopoguanetti@berkeley.edu
b Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milano, Italy. E-mail: {simone.formentin,matteo.corno,sergio.savaresi}@polimi.it

Abstract

Light electric vehicles are a viable way of reducing urban congestion and local pollutant emissions. Electric bicycles combine electrical and human power, hence they represent an appealing class of hybrid vehicles in such a context. Differently from other hybrid vehicles, the energy management of hybrid bicycles is little investigated in the literature. In this work, we study the problem for a series electric-human-powered hybrid architecture, in which there is no direct mechanical link between the pedals and the wheel. We tackle the problem using optimal control principles, aiming to minimize the perceived physical exertion while guaranteeing a predetermined electric range. We build on an approximated solution of the problem and propose a control system that copes with incomplete trip information. In a series of simulation and experimental tests, the proposed strategy approaches the acausal optimum and significantly improves performance if compared to a baseline causal policy; the discussion also encompasses the sensitivity of the results to the requested information.

Key words: Optimal Control, human-in-the-loop, Energy Management Systems, Hybrid Electric Bicycles, real-time control.

1 Introduction

Electrical Power Assisted Bicycles (EPACs) are meeting growing success in every-day urban usage, due to their convenience in congested areas, to the absence of noise and pollutant emissions and to their efficient use of the energy stored in the battery [2]. EPACs are a class of light Hybrid Electrical Vehicles (HEVs), in that they combine the electrical energy stored in the battery with human power. While hybridization is extensively studied for passenger vehicles and trucks [3–13], energy management of Hybrid Electrical Bicycles (HEBs) has not received as much attention in the literature.

The existing literature is mainly devoted to parallel HEBs, in which the mechanical power at the wheel is supplied by the cyclist and a motor. As in passive bicycles, the cyclist’s cadence and the vehicle velocity are kinematically linked. Most products on the market let the cyclist determine the level of assistance, without explicitly accounting for energy efficiency or human dynamics. In [14,15] the optimal pacing to complete a track in minimum time is computed using a model of muscular fatigue; however, the approach is not for online implementation.

An online energy management approach for a Full HEB is presented in [16–18]: the algorithm improves the rider’s metabolic efficiency, reduces perceived muscular fatigue and sustains the charge of the battery, which needs not be recharged from the grid. The effects on the cyclist’s fatigue have been experimentally investigated as well.

Series HEBs lack the mechanical connection between the pedal and the wheel, as the power transmission is purely electric. This in principle lets the cyclist always pedal in optimal conditions, and provides more freedom to the designer to influence the pedal feel and the cyclist’s effort [19,20]. Possible practical applications include a light Electrical Vehicle (EV) with a human, emission-free range extender, and a moving exercise bike. On another front, the chainless concept opens several control problems, such as ensuring a comfortable feeling at the pedals or managing the dispatch of traction power between the battery and the cyclist.

In this paper, we address the real-time optimal energy management of series HEBs and test it experimentally. Our benchmark is SeNZA, the prototype depicted in Fig. 1 and previously presented in [21, 22]. The goal is here to minimize an index of perceived exertion and to cope with a constraint on the final state of charge of the battery, to avoid excessive depletion before a charging station is available.

Preprint submitted to Automatica 2 February 2017
Section 5. Section 6 presents the corresponding simulations. The approach performs closely to the acausal optimum, and the dependence of these results on the elevation profile. A sensitivity study investigates the approximation results, while Section 7 summarizes the experimental results.

2 System architecture

The test vehicle, depicted in Fig. 1, is the prototype of SeNZA, a series HEB developed by the mOve research group at the Politecnico di Milano and zeHus srl. For a detailed description of the prototype the reader is referred to [21, 22]. In sum, the bicycle is equipped with:

- A 500 W brushless DC traction motor/generator connected to the rear wheel.
- A 250 W brushless DC generator linked to the pedals.
- Two custom made Electronic Control Units (ECUs) to control the generator and motor. The generator ECU hosts the energy management system described in this paper. Measurements of motors and battery currents, vehicle velocity and pedal cadence are also available.
- A battery pack, with a Battery Management System (BMS) that performs several safety checks and estimates the state of charge SoC based on current and voltage measurements using a Kalman filter [24].
- Two brake switches, to detect friction braking.
- A CAN bus for the communication between all the ECUs and a data logger.
- A Mio ALPHA Heart Rate Monitor (see Fig. 1) to measure the cyclist’s heart rate HR.

Fig. 2 depicts the functional representation of the powertrain. Differently from standard HEVs, the prime mover is a cyclist and not a thermal machine. The energy management system splits the motor power \(P_m \) between battery power \(P_b \) and generated power \(P_g \). The motor power \(P_m \) depends on the wheel power \(P_w \), while the generated power \(P_g \) is a function of the output power of the cyclist \(P_c \). As the arrows in Fig. 2 show, power can only flow from the cyclist to the generator, to either recharge the battery or supply the motor. The motor works as a generator when the wheel power is negative and regenerative braking is performed [21, 22].

The control algorithm outputs the optimal amount of electrical power \(P_g \) that the cyclist should generate. Differently from other HEVs, \(P_g \) cannot be directly enforced, since it ultimately depends on the cyclist’s power output. Hence, a lower layer is introduced to control the human generator in our experiments. The optimal value of \(P_g \) is sent via CAN bus to a visual interface (see again Fig. 1) that shows to the cyclist the difference between suggested and measured \(P_g \). Since \(P_g \) is influenced by both the pedal speed \(\omega_p \) and the pedal torque \(T_p \), a PID controller regulates \(\omega_p \) to a constant value that is comfortable for the cyclist.

In this paper, we build on this approximated approach and propose a real-time strategy, in which the tuning parameter is adapted online to the current cycling conditions. The strategy can use a forecast of the elevation profile, to improve performance and enhance the use of battery charge, especially on hilly routes. While the focus is here on series HEBs, the approach could also be applied to parallel HEBs. An intuitive, simple strategy is also proposed as a baseline. In the proposed simulations, the approach performs closely to the acausal optimum, and outperforms the baseline. A sensitivity study investigates the dependence of these results on the elevation profile. Experimental results are in line with those from simulations, and suggest that the approach can have practical interest.

The paper is structured as follows. The architecture of the chainless bicycle is introduced in Section 2, while the model of the human-electric powertrain is detailed in Section 3. After presenting a baseline strategy in Section 4, the proposed energy management strategy is discussed in Section 5. Section 6 presents the corresponding simulations.
cyclist. Simultaneously, the cyclist adjusts T_w according to the information displayed on the interface, aiming to keep the error between suggested and measured P_g close to zero.

To enable a fair comparison between different tests, our experimental setup reproduces a given speed profile. The bicycle is mounted on a roller that replicates the road resistance, and the speed profile is tracked by a speed regulator, also implemented on the generator ECU, that directly controls the torque of the traction motor. For the sake of simplicity, we consider a flat road profile in the experiments; the effect of the elevation profile on performance is studied in simulation.

Finally, in our real-time framework we exploit:

- an estimate of the travel time \hat{T};
- an estimate of the distance to travel $\hat{d}(T)$;
- an estimate of the road grade profile $\hat{\theta}(d)$;
- a target for the final state of charge $SoC(T)$.

The first three pieces of information can be easily obtained with the aid of a navigation system. Setting $SoC(T)$, the user can limit the recharge time spent at destination before being able to travel again.

3 System Modeling

The supervisor will be designed based on a model of the human-electric hybrid powertrain, that is presented in this section.

Vehicle dynamics The longitudinal dynamics of the bike relate the longitudinal speed v and the road grade θ with the torque T_w and speed ω_w of the wheel

$$M \dot{v}(t) = \frac{T_w(t)}{R_w} - F_b(t) - F_f(t), \quad \omega_w(t) = \frac{v(t)}{R_w},$$ \hspace{1cm} (1)

where M is the mass of the bike and of the cyclist, R_w is the wheel radius, F_b is the mechanical braking force. The term F_f can be detailed as

$$F_f(t) = Mg \sin \theta(t) + C_r Mg \cos \theta(t) + \frac{1}{2} \rho AC_r v(t)^2,$$ \hspace{1cm} (2)

where g is the gravitational acceleration, ρ is the air density, A, C_r, C_x are respectively the reference area and the rolling friction and drag coefficients of the bike. Consistent with the above notation, we denote the mechanical power at the wheel by $P_w = T_w \omega_w$.

Traction Motor Since the traction motor is directly connected to the rear wheel, the motor power P_m is computed as

$$P_m(t) = P_w(t) \eta_m - \text{sign}(T_w(t)), \hspace{1cm} (3)$$

where the efficiency $\eta_m(T_w, \omega_w)$ depends on the mechanical operating point.

Battery The battery power can be computed as $P_b(t) = v_b(t)i_b(t)$, where v_b is the voltage across the battery pack and i_b is the current (positive in discharge). The equivalent circuit encompasses a voltage generator and a resistor. The former outputs the open circuit voltage v_{oc} that is measured when the battery is disconnected from any load. The resistor R_b accounts for Joule losses due to non-ideal electro-chemical conversion. The equation for battery voltage is therefore $v_b(t) = v_{oc}(t) - R_b i_b(t)$, where R_b is constant and v_{oc} is an affine function of the battery state of charge SoC [6], $v_{oc}(t) = A_b SoC(t) + B_b$. The parameters A_b, B_b are found experimentally.

In the model, the state of charge of the battery $SoC \in [0, 1]$ is defined [6] based on the battery capacity Q_b

$$SoC(t) = \frac{i_b(t)}{Q_b}.$$ \hspace{1cm} (4)

Human physiology and cyclist modeling The physiological effects of cycling have been fairly studied in the literature, for instance in [25–29]. Most models, however, are not developed for control purposes and rely on sophisticated equipment, experiments and tuning that make them unsuitable for real-time applications.

Our focus is on the penalization of physical exertion, which has been related e.g. to aerobic and anaerobic reserves [30, 31], to muscular fatigue [14, 15] and to heart rate [32]. Since the heart rate (HR) is easy to measure, real-time applications employing this variable are envisaged. In particular, in [32] it is shown that different exertion scales can be defined, each one having a different functional dependence on the HR.

A possible choice is the piecewise-quadratic running cost

$$l^*(t) = \begin{cases} 0, & HR(t) < \tilde{HR} \\ \nu (HR(t) - \tilde{HR})^2 dt, & HR(t) > \tilde{HR} \end{cases}.$$ \hspace{1cm} (5)

Ideally, a very high HR is penalized more because it is a reliable indicator of intense activity; below a threshold \tilde{HR}, no penalization is introduced, since small deviations are not penalized.
may be due to other reasons than physical activity. However, a non-smooth running cost complicates the mathematical analysis; thus, a smooth running cost is adopted

\[l(t) = \nu \frac{\kappa_1^2}{(\kappa_2 + e^{-\kappa_3 HR(t) + \kappa_4})^2}. \]

(6)

A comparison between the two choices \(l^* \) and \(l \) is shown in Fig. 3.

For a control oriented model of the \(HR \) as a function of the cyclist power \(P_c \) we refer to [33] and the references quoted therein. In [33] a dynamic model is proposed and experimentally validated for a cyclist riding a bicycle equipped with a Continuously Variable Transmission (CVT). The following model is found to be a reasonable compromise between accuracy and complexity:

\[HR = HR_0 + G_c(s)P_c, \]

(7)

where \(HR_0 \) is the base \(HR \) and \(G_c \) is the transfer function

\[G_c(s) = \frac{\mu_c}{(1 + sT_1)(1 + sT_2)}. \]

(8)

According to this model, deviations of the \(HR \) from its base value are proportional to the output power in steady state (with a factor \(\mu_c \)); this is consistent with energetic models and can be related to aerobic mechanisms. Transients – involving anaerobic mechanisms – are modeled through two time constants \(T_1, T_2 \).

The mechanical power produced by the cyclist is converted into electrical power by means of an electric machine with efficiency \(\eta_g \), \(P_g(t) = P_c(t)\eta_g \).

4 Baseline Strategy

Before introducing the proposed technique, a baseline strategy is presented. The latter only employs a \(SoC \) feedback, basic route information and a simple regulation architecture. It is used in the next sections as a real-world benchmark for the proposed control approach. Clearly, different baseline policies can be defined for other purposes: due to lack of space, this task is left to future research.

We consider as a baseline strategy a PI controller that employs only the \(SoC \) measurement to track a reference signal \(SoC^o \). While good tracking performance facilitates the fulfillment of the \(SoC \) constraints, it also requires higher levels of power generation to the cyclist. Tuning is therefore a compromise between these two conflicting objectives. We found an initial tuning linearizing the battery model (with input \(P_b \) and output \(SoC \)) and setting the closed loop bandwidth to about 0.01 rad/s. The final tuning (proportional gain 3.2 \(\times 10^4 \), integral gain 0.77) was then obtained with the aid of simulations on the cycling profiles analyzed in the remainder of the paper. The implemented power split logic also considers the case when the cyclist does not supply the requested power; the surplus power can still be supplied by the battery, unless the legislation constraints are exceeded (250 W in steady state for this work). In the latter case, less power than required is supplied to the motor.

The reference \(SoC^o \) influences the cyclist’s workload distribution along the trip. If no information is available (neither on the target \(SoC^o(T) \) at destination, nor on the distance to travel \(d(T) \)), the reference \(SoC^o \) is a ramp decreasing from the initial \(SoC \) to the minimum acceptable \(SoC \) and a constant afterwards; the slope of the ramp is decided at the design stage and clearly affects the overall performance. A more favorable situation is considered here, i.e. the target \(SoC^o(\hat{T}) \) and the estimate \(\hat{d}(\hat{T}) \) are known in advance. Hence, the reference \(SoC^o \) is simply generated as a ramp decreasing linearly with distance, from the initial \(SoC \) to the target \(SoC^o(\hat{T}) \).

5 Real-time Control

In this section we propose a real-time control strategy. We first summarize the acasual optimal control policy described in [1] that we use in the remainder of the paper (we refer to the original work for details); we then describe the proposed real-time control framework in detail.

5.1 Optimal and approximated acasual policies

In [1], the energy management of the series HEB is formulated as an OCP with time horizon \(T \). The output power of the generator is the control variable \(u = P_g \), the traction motor power is an exogenous input \(w = P_m \), and the state variables are (i) the \(SoC \) of the battery \(x_1 = SoC \), (ii) the deviation of the \(HR \) with respect to the base value \(x_2 = HR - HR_0 \) and (iii) its derivative \(x_3 = HR \), as defined by (7), (8). The control constraints \(u(x, w) < u(t) < \pi(x, w) \) depend on the current values of the states and of the exogenous input, as well as on static bounds on \(P_g \) and \(P_b \) (\(P_{gmin}, P_{gmax}, P_{bmin}, P_{bmax} \)). The \(SoC \) is constrained to the set \([SoC^l, SoC^u] \), and a soft terminal constraint is set to bring the terminal \(SoC(T) \) to a target value \(SoC^o(T) \).

The main analytical tool in [1] is Pontryagin’s Minimum Principle, which has also been used for HEV energy management (see e.g. the ECMS [5,7] and the least costly approach [34–37]). The Minimum Principle gives the analytical expressions of the Hamiltonian \(H \), of the adjoint states derivatives \(p_1, p_2, p_3 \) and of their boundary conditions \(p_1(T), p_2(T), p_3(T) \). An optimal control policy must
Fig. 5. Proposed control architecture. \(\dot{d}, \dot{\vartheta} \) indicate elapsed distance and estimated total distance, respectively.

\[
\pi_1(t) = \arg \min_{u(t) \in \mathcal{U}} \{ H(t) \}, \ \forall 0 \leq t \leq T, \tag{9}
\]

and the optimal trajectories are found solving numerically the resulting two point Boundary Value Problem (BVP). Policy \(\pi_1 \) will be used as the acausal benchmark in the remainder of the paper.

A suboptimal policy \(\pi_2 \) is also defined in [1], approximating (under some hypotheses detailed therein) the derivatives of the adjoint states to zero \(\dot{p}_1 = \dot{p}_2 = \dot{p}_3 \approx 0 \). Policy \(\pi_2 \) is still based on Hamiltonian minimization; however, the adjoint states are now constant and a simpler technique can be used instead of solving the BVP. Global performance is found to depend on the (constant) value of the first adjoint state \(\pi_1 \), which affects the final value of the \(\text{SoC} \). In the acausal setting considered in [1], the optimal value of \(\pi_1 \) can be found iteratively; the resulting performance is close to the optimum defined by \(\pi_1 \).

In the real-time setting considered here, future route information is incomplete and uncertain. Nonetheless, policy \(\pi_2 \) is a good starting point for real-time control. The main issue for real-time implementation is to exploit the available information to optimally adapt \(\hat{\pi}_1 \). In the literature on energy management of HEVs and plug-in HEVs, causal approaches like the Telemetry-based ECMS (T-ECMS) [8] and the Adaptive ECMS (A-ECMS) [9] mitigate the uncertainty adapting the adjoint state in real-time. In several literature contributions [10–13, 35, 38–40], this adaptation uses past data and limited information on the future driving schedule. Remarkably, in plug-in HEVs and extended range EVs this enables the optimal depletion of battery charge.

The causal implementation presented in this section is depicted in Fig. 5. The power split is based on policy \(\pi_2 \); since the optimal tuning of \(\pi_1 \) requires the full knowledge of future driving conditions, an estimate \(\hat{\pi}_1 \) is adapted according to a causal law, based on the error between the current \(\text{SoC} \) and its reference value \(\text{SoC}^o \). The causal law, presented in the next sub-section, is time invariant, but can be tuned at the beginning of the trip. The following sub-section shows how the reference \(\text{SoC}^o \) is generated at the beginning of the trip.

\[
\dot{\text{SoC}}(s) = \phi(\hat{P}_m) s Q_b v_{\text{oc}}, \tag{12}
\]

where \(\hat{P}_m \) is a prediction of the average motor power in the trip. A block diagram of the approximated system considered for the tuning is depicted in Fig. 7. A PI controller with proportional gain \(K_p \) and integral time \(T_i \) is tuned to achieve a closed loop cutoff frequency \(\omega_c \) in the \(\text{SoC} \) reference tracking. Assuming to choose \(T_i \gg 1/\omega_c \), in a neighborhood of the cutoff frequency the loop trans-
5.3 SoC reference generation

The real-time strategy is now completed with a generator of the reference SoC$. This can be done in a basic way as in the baseline strategy, where the reference SoC$ decreases linearly with the traveled distance, from the initial SoC to the target SoC(T). In this case, the only a-priori information needed is the overall trip distance. If more information on the route is available, it can be used to generate the reference SoC in a more accurate way. This is beneficial for instance when riding on hilly routes, where the optimal policy can yield very long segments of battery depletion during uphills and of regenerative braking during downhill; in such a case, the optimal SoC trend significantly deviates from a simple decreasing ramp, and a suboptimal policy can violate the SoC operating constraints, as well as not meet the target SoC.

In the simulations presented in this work, the reference generation procedure is run at the beginning of the trip and can be summarized as follows:

- A-priori information, i.e. target SoC(T) and desired/expected trip duration T, is collected from the user.
- Available information on the track, i.e. distance and elevation profile, is collected from a navigation system (here we use Google Maps API).
- Speed and slope profiles are estimated with a heuristic, ensuring that the trip distance d is covered in the expected duration T. A constant wheel power P_w is pursued on flat and uphill segments; in other words, in steady state the speed estimate is a function of slope only. Speed transients are done at constant acceleration and deceleration rates, for simplicity. Moreover, during downhill segments the speed is saturated to 25 km/h and the wheel power P_w is computed accordingly.
- The motor power is estimated simulating the models of the vehicle body dynamics and of the traction motor, presented in Section 3.
- The optimal power generation policy is estimated. The average generated power P_{avg} is assumed to equal the average motor power P_m minus the constant value of battery power P_b such that the target SoC is achieved at the end of the trip. In this computation, P_b is saturated to 250 W due to legislation limits; the average cyclist load is lowered to compensate the additional load when battery is saturated.
- The reference SoC signal is computed based on the estimated profile of the battery power

\[
 SoC^o(t) = SoC(0) - \frac{1}{Q_{soc}} \int_0^t P_b(\tau) d\tau. \quad (16)
\]

6 Simulation Results

In this section, we present a simulation study to compare the performance of:
- policy π_1, the acausal strategy presented in Subsec-
The three policies are compared in Fig. 8 for the case of policy π_s, the causal strategy proposed in Section 5 and summarized in Fig. 5; policy π_b, the baseline strategy presented in Section 4.

In particular, we inspect the trajectories of the most significant variables and compare the relative cost with respect to policy π_b:

$$
\Phi(HR) \triangleq 100 \frac{\int_0^T l(t) dt}{\int_0^T l(t) dt |_{\pi_b}}
$$

and the peak value of the HR

$$
\|HR\|_\infty \triangleq \sup_{0 \leq t \leq T} HR(t).
$$

Another index is defined as the error in battery internal energy at the end of the trip, normalized to the motor energy

$$
\Gamma_{SoC} = 100 \frac{v_{oc} Q_b}{\int_0^T P_m(t) dt} (SoC(T) - SoC^{\pi_1}(T)).
$$

Hence, the deviation from the final SoC target is weighted according to the total energy demanded during the trip. The model described in Section 3 is implemented in Simulink using the parameters summarized in Table 1.

Several real-world cycling profiles are compared: their main parameters are summarized in Table 2. Track T_1 shows significant distance, altitude variation and peaks in the road slope; the intensity is partially mitigated by the low average speed. Track T_2 combines altitude variations, peak slopes and average speed; it represents a brief but intense workout. Track T_3 covers a long distance at relatively high average speed, has significant altitude variations, and represents a long workout of an amateur cyclist.

6.1 Cycling Track T_1

The three policies are compared in Fig. 8 for the case of the cycling track T_1; the terminal target $SoC^{\pi_1}(T)$ is initially set to 55%, which is an intermediate value between charge sustenance (75%) and maximum assistance to the cyclist (37.2%).

The comparisons in Fig. 8 show some deviations of the proposed strategy π_s from the benchmark policy π_1. In

![Fig. 8. Simulation of policies π_1, π_s, π_b on Track T_1: speed and elevation, battery power P_b, heart rate HR, state of charge SoC.](image)

Table 3

<table>
<thead>
<tr>
<th>$SoC^{\pi_1}(T)$ (%)</th>
<th>$\Phi(HR)$ (%)</th>
<th>$|HR|_\infty$ (bpm)</th>
<th>Γ_{SoC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.2</td>
<td>π_s</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>π_b</td>
<td>79</td>
<td>-2</td>
</tr>
<tr>
<td>55</td>
<td>π_1</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>π_a</td>
<td>89</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>π_b</td>
<td>100</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>π_1</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>π_a</td>
<td>102</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>π_b</td>
<td>125</td>
<td>-3</td>
</tr>
</tbody>
</table>
battery usage, thus reducing the HR and the deviation of the SoC from the optimal trend.

Table 3 summarizes the performance indexes, showing that there is no significant difference in the cumulated cost: both \(\pi_1 \) and \(\pi_s \) keep the HR below \(\bar{HR} \), aside from two brief events; the peak HR is only 2 bpm higher with policy \(\pi_s \). Conversely, the baseline policy \(\pi_b \) leads to increased cumulated cost and to a peak HR 26 bpm higher than the optimum. This is also apparent from Fig. 8: the HR suggests that the load on the cyclist is not equally distributed along the route, which brings the HR well over \(\bar{HR} \) during the long uphill segments.

Table 3 summarizes also the performance for other SoC scenarios, namely - SoC\(^0\)(T) = 37.2\% and SoC\(^0\)(T) = 75\%. Although in both cases the baseline policy \(\pi_b \) achieves a final SoC closer to the target (the index \(\Gamma_{SoC} \) is smaller than in the other case), the performance in terms of HR is below that of policy \(\pi_s \). This is especially true in the charge sustaining case: the same comments as before apply and the only relevant difference is that due to the higher load on the cyclist – the peak HR is higher than \(\bar{HR} \) also for policy \(\pi_s \).

6.2 Cycling Track \(T_2 \)

The recorded speed and elevation profiles for this route are shown in Fig. 9. For this scenario, the feasible target set is found to be 67\% ≤ SoC\(^0\)(T) ≤ 75\%; the intermediate case of SoC\(^0\)(T) = 71\% is analyzed first. Both speed and elevation profiles are quite harsh and their combination make the cycle demanding, as the SoC profiles in Fig. 9 suggest. During the initial descent – until minute 10 approximately – the optimal policy \(\pi_1 \) maintains the SoC to the initial level, with little deviations due to local changes of slope and speed. In a specular way, the cyclist HR settles at about 80 bpm after an initial transient and again with some deviations due to local events. The uphill segment – until minute 17 – causes the steep drop of the SoC, which falls down to the final level. Notice that in this phase the battery is operating almost constantly at maximum power, meaning that the discharge rate and the assistance to the cyclist are maximum. This is the reason why the HR is so irregular during this segment, with a peak of about 170 bpm: the cyclist has to supply all the excess power required to follow the cycling profile. The final segment has a quite steep descent and a brief uphill in the very last portion of the route. It is observed that during the descent the battery is almost constantly recuperating energy, letting the SoC slightly increase and the HR decrease to a level of about 80 bpm. The very last ascent still requires some effort to the cyclist and quickly depletes the battery SoC down to the target value.

Performance is summarized in Table 4. Notice that in this case it is not possible to keep the HR below the threshold \(\bar{HR} \); the increase in the cumulated cost with policy \(\pi_s \) is of 4\% with respect to the optimum, while the peak HR is 7 bpm higher.

With the baseline strategy \(\pi_b \), the profile of battery power \(P_b \) is quite similar to the other strategies in the first segment (until minute 12); however, the level of assistance to the cyclist is slightly higher, as shown by the lower HR. As a consequence, the SoC decreases more rapidly than with other strategies. In the following segment, during the long uphill, policy \(\pi_b \) does not saturate the battery to avoid excessive depletion, therefore the load on the cy-

![Fig. 9. Simulation of policies \(\pi_1 \), \(\pi_s \), \(\pi_b \) on Track \(T_2 \): speed and elevation, battery power \(P_b \), heart rate HR, state of charge SoC.](image)
The results obtained when the elevation profile is not known in advance are shown in Fig. 10 and in Table 5. The case when the elevation is known in advance and is used in the generation of the reference SoC is depicted in Table 6.

6.3 Sensitivity study on Cycling Track T_3

In this sub-section, we investigate to what extent the performance of policy π_s is affected by the knowledge of the elevation profile. Policy π_b actually does not use that information and generates the reference SoC based on the trip length only.

To understand the effect of these different approaches, the two policies are here fed with the same reference SoC: it is generated as explained in Section 5, first assuming that the track is flat, then considering also the elevation profile. Fig. 11 shows the speed and elevation profiles on track T_3, which consists of 5 repetitions of a downhill-uphill track followed by a brief, almost flat segment.

The results obtained when the elevation profile is not known in advance are shown in Fig. 10 and in Table 5. Having the same SoC reference, policies π_s and π_b yield quite close SoC trends. Both strategies fail to keep an almost constant HR as policy π_l does, because the sub-optimal reference SoC does not consider the presence of long uphills and downhills. The cyclist load and HR are apparently influenced by the road profile; nonetheless, despite the reference SoC is the same, the two policies have different power split strategies, and policy π_s achieves a smoother HR trajectory, lower cumulated cost (71% less) and lower peak HR (36 bpm less).

The case when the elevation is known in advance and is used in the generation of the reference SoC is depicted in Fig. 11. Policies π_l, π_s, π_b on Track T_3: heart rate HR and state of charge SoC when the elevation profile is known in advance.

Table 5

Real-time control with unknown elevation profile: simulation results on Track T_3.

<table>
<thead>
<tr>
<th>SoC (T) (%)</th>
<th>$\Phi(\text{HR})$ (%)</th>
<th>$|HR|_{\infty}$ (bpm)</th>
<th>Γ_{SoC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td>0</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>π_s</td>
<td>29</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>π_b</td>
<td>100</td>
<td>152</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6

Real-time control with known elevation profile: simulation results on Track T_3.

<table>
<thead>
<tr>
<th>SoC (T) (%)</th>
<th>$\Phi(\text{HR})$ (%)</th>
<th>$|HR|_{\infty}$ (bpm)</th>
<th>Γ_{SoC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td>1</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>π_s</td>
<td>2</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>π_b</td>
<td>100</td>
<td>115</td>
<td>0</td>
</tr>
</tbody>
</table>
in Fig. 12 and in Table 6. The SoC trends are closer to the optimal one than in the previous case. As for the HR, policy π_s shows smaller and less frequent variations than the baseline policy π_b. This leads to a big difference in the cumulated cost (98% less) and to a reduction of 19 bpm of the peak HR.

7 Experimental Results

The experimental setup is described in Section 2. Fig. 13 depicts the speed profile tracked during the experiments: it is a real speed profile recorded on track T_4, an urban path, for a duration of about 15 min and a distance of 3.3 km, as summarized in Table 2. Tracking this speed profile using only battery power, i.e. letting $P_g = 0$, would deplete about 7.5% of the SoC. The experiments are performed setting a target $SoC^\pi(T) = SoC(0) - 4.5\%$ to reach at destination; in terms of battery charge usage, this represents an intermediate scenario between charge sustenance and maximum charge depletion, similar to those studied in simulation. We present here the results obtained in six experiments, all performed by one subject on the same bike equipped either with the proposed policy π_s (in three tests) or with the baseline policy π_b (in three other tests). Results from different tests under the same policy are shown in Fig. 13 with different lines of the same color and style.

The behavior of policy π_s in the experiments is affected by the parameters of the cyclist model. For the experiments, policy π_s is parametrized with the same values used so far, that were identified in [33] for a different subject. While this choice likely introduces uncertainty in the model, it also makes the experiments closer to a real application, because the identification procedure described in [33] is quite cumbersome and may not be repeated for every single user.

The results depicted in Fig. 13 and summarized in Table 7 suggest some observations. The trajectories of the battery power P_b, of the heart rate HR and of the state of charge SoC are pretty similar in the three different experiments, both with policy π_s and with policy π_b. Clearly the HR is subject to greater variations, that can be due also to other reasons than physical activity. When using policy π_s, variations in the HR imply variations of the reference P_g that is requested to the cyclist. Moreover, both with policy π_s and with policy π_b, it is not guaranteed that the cyclist actually produces as much P_g as requested. In closed loop, this mismatch justifies the small deviations in the trajectories of the SoC and P_b under the same policy.

Table 7	Real-time control: experimental results on Track T_4.		
$SoC^\pi(T)$ (%)	$\Phi(HR)$ (%)	$\|HR\|_\infty$ (bpm)	Γ_{SoC} (%)
π_s	29	107	−5
70.5	31	106	−2
π_b	31	109	−3
59	130	−4	
62	137	−4	
100	136	−3	

Fig. 13. Experimental validation of policies π_s and π_b on Track T_4, speed profile, battery power P_b, heart rate HR, state of charge SoC. Different lines of the same color and style refer to different tests performed using the same policy. The shaded areas highlight the segment when the experiment is ongoing.

In spite of small deviations, the experiments exhibit a behavior of the HR similar to that observed in simulation. In particular, policy π_s manages to keep the HR approximately constant by properly adjusting the requested P_g. Policy π_b instead causes large variations of the HR, that in two segments drops below the value obtained with policy π_s, but for most of the time is significantly higher. These apparent differences in the HR trajectories are reflected in less apparent differences in the P_b and SoC trajectories. Nonetheless, the target SoC^π is met by both policies in all the experiments, as can be inferred both from Fig. 13 and from the last column in Table 7.

As for the global performance, summarized in Table 7, the proposed policy π_s outperforms the baseline policy π_b, both in terms of cumulated cost and in terms of peak HR. A possible direction for future research is the adap-
Table 7 shows that the indexes of policy \(\pi_b \) are subject to a greater variability than those of policy \(\pi_s \). This paper deals with real-time energy management of a series HEB. The main goals of the supervisor are to minimize the exertion perceived by the cyclist and to guarantee that the battery SoC at the end of a trip approaches a target defined by the user; this in turn affects the global performance in terms of perceived exertion. Results from simulations and experiments are discussed to evaluate the performance of the proposed real-time framework, also in the presence of uncertain route information. Possible future work includes the extension of the approach to parallel HEBs.

8 Conclusion

This paper deals with real-time energy management of a series HEB. The main goals of the supervisor are to minimize the exertion perceived by the cyclist and to guarantee that the battery SoC at the end of a trip approaches a target defined by the cyclist. An approximated solution to the acausal OCP is used to develop a real-time algorithm. The use of route information is found to be quite important to ensure that the battery SoC at the end of the trip is close to the target set by the user; this in turn affects the global performance in terms of perceived exertion. Results from simulations and experiments are discussed to evaluate the performance of the proposed real-time framework, also in the presence of uncertain route information. Possible future work includes the extension of the approach to parallel HEBs.

References

