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ABSTRACT The increasing penetration of renewable energy resources and volatility of energy prices

cause huge challenges in planning and regulating energy generation, transport, and distribution. A possible

solution can be a paradigm change of employing control actions from the demand side in addition to the

conventional generation control. To realize such shifts, the primary stage should be a proper and robust

analysis of the energy flexibility on the demand side. Recently, demand side control in buildings has become

a major research issue because buildings share a substantial portion of the total electricity consumption. The

increasing use of controllable devices in buildings combined with the advent of smart metering system has

paved the way to exploit the potential flexibility of managing the energy generation and demand of buildings

for optimal energy trading. In this paper, we investigate the benefits of demand resources in buildings for

optimal energy trading in day-ahead and real-time energy markets. The building flexible demand resources

considered are electric vehicles and batteries. The paper examines the combined optimization of EVs and

batteries in the day-ahead and regulation electricity markets with the objective of maximizing the total profit

of the building microgrid. It takes EVs driving pattern into consideration. The major contribution of the

paper is the exploitation of the energy flexibility of buildings using EVs as dynamic energy storage device

and batteries as manageable demand facility. The devised optimization problem is formulated as a double-

stage mixed-integer linear programming (MILP) problem, and solved using the CPLEX solver. Several

numerical results are presented to validate the effectiveness of the devised optimization framework using

actual data of building electricity demand and local renewable generation in the Otaniemi area of Espoo,

Finland. We demonstrate that the proposed optimization solution can achieve considerable increase in profit,

reduce renewable energy curtailment and decrease power demand in peak hours, compared to uncontrolled

or non-optimized operation.

INDEX TERMS Building, energy trading, energy market, optimization, demand response, battery, EV,

microgrid, renewable energy.

NOMENCLATURE

1T Length of time slot (h)

αh,b,t Incentive for voluntary load curtailment ($kWh)

βh,b,t Involuntary load curtailment penalty ($kWh)

σv,h,b,tr Length/duration of trip tr (h)

ϕt Bid mismatch penalty ($kWh)
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ηBat,cu Battery charging efficiency (%)

ηBat,du Battery discharging efficiency (%)

ηEV ,c
u EV charging efficiency (%)

ηEV ,d
u EV discharging efficiency (%)

b Building index

B Number of buildings

b
Bat,c
u,t Binary variable for battery charging

b
Bat,d
u,t Binary variable for battery discharging
b
EV ,c
v,h,b,t Binary variable for EV charging
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b
EV ,d
v,h,b,t Binary variable for EV discharging

cBatdeg,u,t Battery degradation cost ($kWh)

cBatom,u,t Battery O&M cost ($kWh)

CEV
v,h,b Storage capacity of EV (kWh)

cEVCDSom,t EV charging/discharging station O&M cost

($kWh)

cPVom,t PV system O&M cost ($kWh)

cPVcurt,t PV power curtailment penalty ($kWh)

eDAt Day-ahead electricity price ($kWh)

eRTt Real-time electricity price ($kWh)

h House inde

H Number of houses

lEVv,h,b,tr Distance of trip tr (km)

LSvolh,b,t Amount of voluntary load curtailment (kW)

LS involh,b,t Amount of involuntary load curtailment

(kW)

LS
invol,max
h,b Maximum involuntary load curtailment

(kW)

N Optimization horizon or scheduling period

NPV Number of PV systems

p PV system inde

P
Bat,c
u,t Battery charging power (kW)

P
Bat,d
u,t Battery discharging power (kW)

P
Bat,c,max
u,t Battery maximum charging power (kW)

P
Bat,d,max
u,t Battery maximum discharging power (kW)

PDAt Day-ahead power bid (kW)

P
EV ,c
u,t EV charging power (kW)

P
EV ,d
u,t EV discharging power (kW)

P
EV ,c,max
v,h,b,t EV maximum charging power (kW)

P
EV ,d,max
v,h,b,t EV maximum discharging power (kW)

PNFLt Aggregate nonflexible load (kW)

P
NFL,max
h,b Maximum nonflexible load (kW)

P
grid,max
t Maximum power exchange with the main

grid (kW)

PRTt Real-time power bid (kW)

PPVp,t PV system output power (kW)

P
PV ,curt
p,t Amount of PV power curtailment (kW)

qEVv,h,b Travel efficiency of EV (kWh/km)

SOCBat
u,t State of charge of battery (%)

SOCBat,min
u Battery minimum state of charge (%)

SOCBat,max
u Battery maximum state of charge (%)

SOCEV
v,h,b,t State of charge of EV (%)

SOC
EV ,min
v,h,b Minimum state of charge of EV (%)

SOC
EV ,max
v,h,b Maximum state of charge of EV (%)

t Time slot index

tarrv,h,b,tr EV arrival time for trip tr (h)

t
dep
v,h,b,tr EV departure time for trip tr (h)
tr EV trip index
u Battery inde
U Number of batterie
v EV index
V Number of EV

I. INTRODUCTION

Further enthusiastic involvement of the demand side into

the energy management and trading ventures and efficient

mixing of flexible loads (FLs), prosumers and renewable

energy sources (RESs) into the energy system are major

goals in planning the future smart grid. Actually, RESs have

numerous benefits over the conventional energy generation

sources because they are the clean energy suppliers with zero

emission costs. Moreover, RESs are available everywhere,

easy to install, require smaller space, noncomplex structures,

and contain smaller number of components. Nevertheless,

the integration of RESs causes several challenges to grid

operators and aggregators primarily due to their uncertain

and intermittent behaviors. Predominantly, the stochasticity

and instability of RESs can be overwhelmed through accurate

forecasting and effective storage and utilization.

A number of solutions for renewable generation forecast-

ing have been proposed in the literature such as the hybrid of

wavelet transform, particle swarm optimization and support

vector machines [1], integration of particle swarm optimiza-

tion and neural networks [2], hybrid of genetic algorithm

and neuro-fuzzy systems [3] and others. Similarly, several

solutions for storing renewable energy generation have been

devised in the literature, for example using vanadium redox

flow battery (VRB) [4], pumped storage hydro units [5],

multiple energy storage units [6], or compressed-air energy

storage [7] to smooth the instability of renewable generation.

However, although forecasting tools are performing

increasingly better, but robust and solid forecasting tech-

niques that can be used for balancing purposes are yet to

be developed. Moreover, the round trip costs and the storage

performance deterioration of energy storage devices is still a

big a challenge that needs further developments.

Demand response capable load (DRCL) or flexible

load (FL) is another important element in the forthcoming

smart grid. FL is a load whose consumption can be managed

to delay, advance, increase or decrease without sacrificing

its basic function or comfort. Generally, FLs are based on

customer needs and production capability. FLs can constitute

thermostatically controlled appliances (TCAs) comprising

refrigerator, electric water heater, and heating, ventilation,

and air conditioning (HVAC) devices. They can also include

electric vehicles (EVs) and energy storage devices such as

batteries. Research and development (R&D) on optimal con-

trol of TCAs has been a hot issue in the previous few years.

References [8] and [9] devised optimal control configurations

to reduce the electricity bills for HVAC systems taking into

account customer thermal comfort requirements. Because

of the economic and ecological benefits of EVs over the

conventional fuel-fired cars, it is estimated that EVs will

revolutionize the transportation system we have today. The

effect of a high EV penetration on a residential distribution

network was examined in [10]. Reference [11] investigated a

joint optimization of EVs and home energy scheduling tak-

ing into account customer thermal comfort needs. However,
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RESs were not included in this joint optimization problem.

The flexibility in the joint operation of EVs and HVACs can

be improved to lodge the uncertainties in RES generations.

Reference [12] devised an optimization model to exploit

the profit of a fleet of EVs in a multi-clearance electricity

price market with the help of energy storage devices. Nev-

ertheless, RESs were not included in this model, and the

devised model was not stochastic. The flexibility in the EV

charging/discharging practice can be enhanced to handle the

stochasticity of RESs. References [13], [14] analyzed the

influences of EVs on the dispatching and operations of energy

systems with RESs and fuel-fired generators.

Beyond those works which intended to reduce the running

cost of large-scale energy systems, [15] proposed an opti-

mization framework to exploit the advantages of coordinat-

ing EVs and RESs in a building microgrid setup with the

target of maximizing the microgrid income in the electricity

market while at the same time minimizing the microgrid

running cost (fuel cost of fuel-fired generators). Similarly,

[16] devised an optimization strategy for optimal bidding

of a community-scale microgrid to explore the benefits of

coordinating HVACs and RESs with the objective of mini-

mizing the microgrid running costs taking into account cus-

tomers’ thermal comfort preferences while simultaneously

maximizing the revenue of the microgrid in the electricity

market. However, the operation and maintenance (O& M)

costs of operating RESs, energy storage devices, EV charg-

ing/discharging stations were not considered in these works.

Moreover, the optimization models in these works consid-

ered the involuntary load curtailments only. The flexibility

potential that can be obtained from flexible loads can be

improved further if incentivized voluntary load curtailments

are included in the optimization model.

The works in [17] proposed and implemented a dual-step

stochastic optimization approach for a wholesale market

integration of prosumers. It demonstrates the interactions of

peer-to-peer energy exchanges and storages in residential

communities. Reference [18] has also devised a two-stage

stochastic optimization framework for evaluating the influ-

ence of wind power uncertainty on distributed energy storage.

Different from the prior works where the authors focused

to formulate the joint optimization of HVACs with EVs,

HVACs with RESs or EVs with RESs, this work proposes

the joint optimization of batteries and EVs with RESs by

considering the O&M costs of energy storage batteries, EV

charging/discharging facilities and RESs. Moreover, as far

we have investigated this is the first work that formulates

the impact of incentivized voluntary customer load curtail-

ment in a joint optimization framework where lower level

customers (for example households or homes in a residen-

tial community) or electricity end-users can participate in

controlling the grid condition or trade in the energy market.

We study the benefits of coordinating themajor flexible loads,

energy storage batteries and EVs, with RESs in a building

microgrid. The proposed objective is to maximize the revenue

of the building microgrid in the day-ahead and real-time

(regulation) electricity market while at the same time mini-

mizing the operation and maintenance costs of the microgrid.

The major contributions of this study are outlined below:

• The devised model targets to maximize the profit for the

BMG and minimize the demand and renewable energy

curtailments as well as bidmismatch penaltywhile keep-

ing the system constraints.

• The optimization setup includes incentivized volun-

tary load shedding and penalties for involuntary load

shedding, renewable generation curtailment and bid

mismatch.

• The devised energy trading optimization model consid-

ers EVs driving pattern and exploits the flexibility of

EVs as dynamic energy storage device and batteries as

manageable demand facility.

• The devised optimization model alleviates the uncer-

tainty of RESs, which can considerably enhance the

BMG revenue.

• The devised optimization framework is modeled as a

dual-step stochastic programming problem where the

uncertainties in the demands, energy prices and renew-

ables are managed by improved forecasts.

The findings of this study demonstrate an optimal and

coordinated EV charging/discharging approach enhances the

profit a BMG involving in an electricity market. It also shows

the optimal EV charging/discharging approach can assist to

decrease the renewable generation curtailment that is impor-

tant to alleviate the bid mismatch penalties.

The remaining sections of the paper are organized as

follows. The system model and solution methodology are

presented in Section II.

The detail optimization problem description is provided in

Section III. The case study and simulation results are given in

Section IV and the conclusions are drawn in Section V.

II. SYSTEM MODEL

A. SYSTEM CONFIGURATION

We consider a BMG operating in grid-connected mode which

contains the components below: RES (PV), energy storage

batteries, educational (office) buildings with several class-

rooms, offices or laboratories and their associated loads

(flexible and nonflexible), and EV charging/discharging sta-

tion (EV CDS). The BMG aggregate load demand is modeled

using a bottom-up approach where the load demand of each

house is formulated first and summed up to form the total

load demand of the BMG then. The flexible and nonflexi-

ble loads of each house are formulated independently. The

optimization horizon is one-day with one-hour resolution.

The BMG is supposed to involve in two-settlement energy

market where the BMG has to submit its hourly bids to

the day-ahead (DA) market a few hours ahead of the real-

time (RT) power transfer [5]. The bid can be to sell power to

the market or to buy power from the market. Any imbalance

between the RT power transfer and the DA submitted bid is

penalized. The imbalance is corrected by trading power in
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the RT regulation market. The BMG is a price-taker since it

cannot affect the electricity price compared to the main grid

[5]. The grid operator runs the market and clears the price.

The revenue of the BMG is calculated based on the cleared

market price. It shall be remarked that the DA electricity price

is cleared to the BMG when it submits the day-ahead bids to

the energy market [5], [19].

The stochasticities of the renewable generation, load

demand and electricity price make the bidding optimization

process of the BMG a complex task. To circumvent an excess

penalty on bid mismatch, it is occasionally desirable to cut

generated power of RESs to maintain the RT power transfer

as close as possible to the DA schedule. Nevertheless, cur-

tailment of renewable generation is unnecessary or it is not

the better option. Thus, we apply a high penalty charge to

limit the quantity of renewable generation curtailment. Load

shedding is the other solution to avoid the excess penalty

due to the power bid imbalance. However, load shedding is

not recommended in microgrids if it is involuntary without

the permission of the customer. On the other hand, voluntary

load shedding with the consent of the customer is encour-

aged and incentivized to overcome the bid mismatch penalty

charge. Therefore, we impose a high penalty charge payable

to the customer to limit the involuntary load curtailment while

we apply an incentive charge payable to the customer to

encourage voluntary load shedding when needed. Moreover,

the operation and maintenance (O&M) costs of the RESs,

batteries, and EV charging/discharging stations are consid-

ered in the optimization model. The batteries and EVs are the

major demand response sources in the proposed optimization

framework.

In this study, the flexibility in the battery and EV charg-

ing/discharging mechanisms are explored to assist the opera-

tion of the renewable generations.

Conventionally, EVs are charged instantaneously with the

maximum power when they reach at charging stations/points.

We call this as uncontrolled charging approach. Neverthe-

less, by regulating the charging/discharging plan for EVs

smartly taking into both the fluctuation in the energy prices

and renewable generations, we can improve the profit of

the BMG and decrease the quantity of renewable energy

curtailment.

Determining EVs travel plan including their trip distance,

arrival and departure times can be difficult and it is generally

uncertain. The EVs travel plan assumption in this work is

based on practical EV charging services in which EV own-

ers can check the charging facility availability or possibility

of EV charging points remotely or online. They can go to

charge or discharge if they are acknowledged to come by the

charging station operator. Similarly, to simplify our model,

we assume that EVs can send to the charging/discharging

operator their desired travel plans for the next operating day

and then the microgrid aggregator takes this into count in its

scheduling and bidding plans. Moreover, in order to ensure

that the EV owner drive the EV back home without running

out of battery energy, the optimization problem is subjected

to constraints that oblige the state of charge of the EV battery

to always lay in a specified range considering the trip distance

planned by the EV owner. Besides, when the energy price is at

its peak and/or when there is shortage of power in the BMG

to supply the local load demands, batteries and EVs can be

discharged to deliver power to the local demands. The cus-

tomers in the building microgrid submit their hourly desired

EVs travel plans to the building energy aggregator before the

operating day. The aggregator, on the other hand, requests

the customers to voluntary curtail part of their loads and get

incentivized in real-time when needed. Aggregators normally

allow voluntary load curtailments when the electricity price

is high, the bid mismatch penalty is high and/or there is a

shortage of power in the BMG.

B. SOLUTION APPROACH

In this study, we take into account the stochasticities of renew-

ables, load demands and electricity prices. Improved fore-

casts can be used to manage these uncertainties. We employ

the approach we used in our previous work [1] to model and

forecast the PV power generation. We use the method we

employed in our present work [20] to model and forecast the

BMG aggregate local load demand. Similarly, the technique

in [21] can be utilized to model and predict the real-time

electricity prices. Normally, day-ahead electricity prices are

cleared before several hours of the operating day [22] (i.e.,

before we run the optimization and submit the day-ahead

bids) and thus no forecast is used for day-ahead prices.

The devised optimization problem is described as a dual-

step stochastic program. The first-step decisions are per-

formed before any stochastic values (i.e., forecasted values)

are disclosed. The realization (regulating compensation) of

the stochasticities is made in the second-step decisions after

the disclosure of the stochasticities. The second-step deci-

sions rely on the outcome of the first-step decisions [5].

III. OPTIMIZATION PROBLEM FORMULATION

The proposed dual-step stochastic optimization problem is

described here. The first-step decision consists of the hourly

power bids submitted to the day-ahead electricity mar-

ket. The second-step decisions contain the curtailment of

voluntary/involuntary demands and renewable generation,

the battery charging/discharging decisions, the EV charg-

ing/discharging decisions, and the real-time power transfer

between the BMG and the main utility grid.

As described above, the energy market is a two-settlement

market (day-ahead and real-time/regulation markets). In the

first-stage, the decision is the determination of the amount of

day-ahead bid in the day-ahead market for the 24 hours of

next operating day. This decision is the amount of power the

buildingmicrogrid schedules (submits to themarket operator)

to buy or sell at each hour of the coming day. The build-

ing microgrid aggregator makes this decision based on the

forecast information of the renewable energy generation, load

demand and electricity price for each hour of the coming

day. It is known that no forecast is absolute or perfect, and
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FIGURE 1. Proposed double-stage optimization framework–schematic view.

thus the submitted day-ahead bids in the first-stage optimiza-

tion decisions may not actually be the same with the real-

time power transfer to/from the market. This is mismatch

between the predicted and real-time values of the renewable

energy generation, load demand and electricity price is the

major source of uncertainty in the proposed optimization

framework. This uncertainty is accounted for and managed

by second-stage decisions through the determination of the

amount of the power transfer at the each hour of the real-time

operation. This real-time power transfer decision is based on

the first-stage decision and its main purpose is to manage the

uncertainties or balance the first-stage decisions with real-

time power requirement.

Figure 1 illustrates how the double-stage optimization

operates and the inputs to and output from each optimization

step. We present the objective function, and all the capacity

and technical constraints in the next subsequent subsections.

A. OBJECTIVE FUNCTION

We devise to maximize the objective function formulated

in (1). The sign agreement here is that if the power

is exported to the utility grid, it will assign a posi-

tive value, and vice versa. The proposed objective func-

tion (1) aims to maximize the building microgrid profit in a

two-settlement (day-ahead and real-time) electricity market.

The profit is formulated by subtracting the power imbal-

ance penalty (ϕt
∣

∣PRTt − PDAt
∣

∣), the O&M cost of PV systems

(cPVom,t

∑NPV
p=1

(

PPVp,t − P
PV ,curt
p,t

)

), the O&M cost of bat-

teries (cBatom,u,t

∑U
u=1

(

P
Bat,d
u,t

η
Bat,d
u

+ ηBat,cu P
Bat,c

u,t

)

), the degrada-

tion cost of batteries (cBatdeg,u,t

∑U
u=1

(

P
Bat,d
u,t

η
Bat,d
u

+ ηBat,cu P
Bat,c

u,t

)

),

the O&M cost of EV charging/discharging station

(cEVCDSom,t

∑B
b=1

∑H
h=1

∑V
v=1

(

P
EV ,d
v,h,b,t + P

EV ,c
v,h,b,t

)

), the penalty

of PV curtailment (cPVcurt,t
∑NPV

p=1 P
PV ,curt
p,t ), the incentive to

customers for voluntary load curtailment

(
∑B

b=1

∑H
h=1 αh,b,tLS

vol
h,b,t ), and the involuntary load shed-

ding penalty (
∑B

b=1

∑H
h=1 βh,b,tLS

invol
h,b,t ) from the power sell-

ing incomes in the day-ahead market (PDAt eDAt ) and the

real-time or regulation market (
(

PRTt − PDAt
)

eRTt ).

max

N
∑

t=1

1T

{

PDAt eDAt +

(

PRTt − PDAt

)

eRTt

− ϕt

∣

∣

∣
PRTt − PDAt

∣

∣

∣
− cPVom,t

NPV
∑

p=1

(

PPVp,t − P
PV ,curt
p,t

)

− cBatom,u,t

U
∑

u=1

(

P
Bat,d
u,t

η
Bat,d
u

+ ηBat,cu P
Bat,c

u,t

)

− cBatdeg,u,t

U
∑

u=1

(

P
Bat,d
u,t

η
Bat,d
u

+ ηBat,cu P
Bat,c

u,t

)
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− cEVCDSom,t

B
∑

b=1

H
∑

h=1

V
∑

v=1

(

P
EV ,d
v,h,b,t + P

EV ,c
v,h,b,t

)

− cPVcurt,t

NPV
∑

p=1

P
PV ,curt
p,t

−

B
∑

b=1

H
∑

h=1

αh,b,tLS
vol
h,b,t −

B
∑

b=1

H
∑

h=1

βh,b,tLS
invol
h,b,t

}

(1)

The objective function therefore apprehends the costs

of energy trading in the day-ahead and real-time markets,

the penalty costs for bid mismatch, renewable generation

curtailment, and involuntary load shedding.

The objective problem also captures the incentives for

voluntary curtailment. Moreover, it considers the O&M costs

of the RESs, batteries and EV charging/discharging station,

and the degradation cost of the batteries.

It has to be noted that a positive value of PDAt eDAt +
(

PRTt − PDAt
)

eRTt indicates the BMG is making prof-

its by exporting power to the utility grid. The term

‘‘ϕt
∣

∣PRTt − PDAt
∣

∣’’ in (1) manages this uncertainty or imbal-

ance between day-ahead and real-time decisions. The

building microgrid aggregator is penalized by ϕt ($/kWh)

for the uncertainty it introduced which is the imbalance

(
∣

∣PRTt − PDAt
∣

∣) of its day-ahead and real-time decisions.

Besides, the other second-stage decisions such as the vol-

untary/involuntary load shedding, RES curtailment, the bat-

tery charging/discharging decisions, and the EV charging/

discharging decisions, assist to manage the stochasticities of

RESs, load demands and electricity prices.

B. POWER BALANCE CONSTRAINT

The sum of available local generation (RESs), the quantities

of voluntary and involuntary load curtailments, and the dis-

charging powers from the batteries and EVs should be equal

to the sum of the real-time power transfer, the BMG aggregate

nonflexible local load and the charging powers of batteries

and EVs, at each operating time slot of the optimization

horizon.
NPV
∑

p=1

(

PPVp,t − P
PV ,curt
p,t

)

+

B
∑

b=1

H
∑

h=1

(

LSvolh,b,t + LS involh,b,t+

V
∑

v=1

(

P
EV ,d
v,h,b,t − P

EV ,c
v,h,b,t

)

)

+

U
∑

u=1

(

P
Bat,d
u,t − P

Bat,c
u,t

)

= PRTt + PNFLt , ∀t. (2)

C. POWER EXCHANGE WITH THE MAIN/UTILITY GRID

The day-ahead hourly bids and the real-time power transfers

are limited by the line and transformer capacities between the

BMG and the utility grid.

−P
grid,max
t ≤ PDAt , PRTt ≤ P

grid,max
t , ∀t (3)

D. EV CONSTRAINTS

The EV behaviors and the traveling patterns shall also be

preciselymodeled. The important parameters while modeling

the EV charging/discharging characteristics are the EV bat-

tery capacity (kWh), the travel efficiency (kWh/km) and the

charging type (fast, slow, DC or AC). These characteristics

can be obtained from themanufacturer’s datasheet or website.

The traveling pattern of the EVs can be formulated by the

quantity of travels per day, the departure and returning times,

and the trip distance of each travel. A trip is described as

the period between the times when the EV departs from and

returns back to the charging/discharging station of the BMG.

This is associated with the customer travel plan, which can

be sent by the customer to the BMG aggregator a few hours

ahead of the operating day.

1) POWER CONSTRAINTS

We suppose the EVs are only charged/discharged when they

are parked at the BMGCDS. Furthermore, EVs are plugged to

the piles immediately they reach at the CDS. Thus, the charg-

ing/discharging power constraints are used only during the

times when the EV is parked at the CDS as:

0 ≤ P
EV ,c
v,h,b,t ≤ b

EV ,c
v,h,b,tP

EV ,c,max
v,h,b,t (4)

0 ≤ P
EV ,d
v,h,b,t ≤ b

EV ,d
v,h,b,tP

EV ,d,max
v,h,b,t (5)

b
EV ,c
v,h,b,t + b

EV ,d
v,h,b,t = 1, b

EV ,c
v,h,b,t , b

EV ,d
v,h,b,t ∈ {0, 1} (6)

where, b
EV ,c
v,h,b,t denotes the availability of EV v of house h of

building b at the CDS for charging at time t, b
EV ,d
v,h,b,t denotes

the availability of EV v of house h of building b at the CDS

for discharging at time t, P
EV ,c,max
v,h,b,t and P

EV ,d,max
v,h,b,t represent

the peak charging/discharging bounds, respectively. The EV

charging/discharging powers are zero if the EV is not at the

CDS (i.e., since b
EV ,c
v,h,b,t = b

EV ,d
v,h,b,t = 0).Moreover, (6) ensures

that an EV cannot charge and discharge at the same time.

2) SOC DYNAMICS AND CONSTRAINTS

We suppose the EVs can make a number of travels during

the optimization horizon (for example, one day). Let t
dep
v,h,b,tr

and tarrv,h,b,tr be the time slots when EV v of house h in

building b departs and arrives the BMG CDS or home for

trip tr, respectively. Then, the objective function must abide

the constraints below:

SOCEV
v,h,b,t+1 = SOCEV

v,h,b,t

+ 1T





η
EV ,c
v,h,bP

EV ,c
v,h,b,t

CEV
v,h,b

−
P
Ev,d
v,h,b,t

η
EV ,d
v,h,b C

EV

v,h,b





if t /∈

[

t
dep
v,h,b,tr , t

arr
v,h,b,tr

)

, ∀t, v, h, b, tr

(7)

SOCEV
v,h,b,t+σv,h,b,tr

= SOCEV
v,h,b,t −

lEVv,h,b,tr∗q
EV
v,h,b

CEV
v,h,b

if t = t
dep
v,h,b,tr , ∀t, v, h, b, tr (8)
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SOCEV
v,h,b,tarrv,h,b,tr

≤ SOCEV
v,h,b,t ≤ SOCEV

v,h,b,t
dep
v,h,b,tr

= SOC
EV ,max
v,h,b

if t ∈
[

t
dep
v,h,b,tr , t

arr
v,h,b,tr

]

, ∀t, v, h, b, tr

(9)

SOC
EV ,min
v,h,b ≤ SOCEV

v,h,b,t ≤ SOC
EV ,max
v,h,b , ∀t, v, h, b

(10)

The SOC of EV v of house h in building b varies based

on the charging/discharging powers when the EV parks at

the CDS (7) and the deviation of the SOCs at departing and

arriving times corresponds to the energy consumption while

driving the EV (8). Equation (9) guarantees that the SOC

decreases when the EV travels. Equation (10) ensures the

EV battery can keep long lifetime, following the SOC range

recommended by the manufacturer [23].

E. ENERGY STORAGE SYSTEM CONSTRAINTS

The constraints below denote the charging/discharging

bounds for battery u (11 and 12), SOC bounds (13), and

charging/discharging status restrictions where battery u is not

permitted to charge and discharge at the same time (14). The

battery SOC dynamics is formulated in (15).

0 ≤ P
Bat,c
u,t ≤ b

Bat,c
u,t P

Bat,c,max
u,t (11)

0 ≤ P
Bat,d
u,t ≤ b

Bat,d
u,t P

Bat,d,max
u,t (12)

SOCBat,min
u ≤ SOCBat

u,t ≤ SOCBat,max
u (13)

b
Bat,c
u,t + b

Bat,d
u,t = 1, b

Bat,c
u,t , b

Bat,d
u,t ∈ {0, 1} (14)

SOCBat
u,t+1 = SOCBat

u,t

+ 1T

(

ηBat,cu P
Bat,c
u,t

CBat
u

−
P
Bat,d
u,t

η
Bat,d
u C

Bat

u

)

, ∀t, u

(15)

F. RENEWABLE ENERGY CURTAILMENT

The quantity of renewable generation curtailment is restricted

by the peak available renewable generation:

0 ≤ P
PV ,curt
p,t ≤ PPVp,t , ∀t, p (16)

G. INCENTIVIZED VOLUNTARY LOAD CURTAILMENT

The voluntary load shedding is less than the maximum non-

flexible demand:

0 ≤ LSvolh,b,t ≤ P
NFL,max
h,b , ∀t, h, b (17)

H. INVOLUNTARY LOAD CURTAILMENT

The involuntary load shedding should be less than the peak

permissible involuntary shedding and the maximum nonflex-

ible demand:

0 ≤ LS involh,b,t ≤ LS
invol,max
h,b , ∀t, h, b (18)

0 ≤ LS involh,b,t ≤ P
NFL,max
h,b , ∀t, h, b (19)

To summarize, we have described the proposed optimiza-

tion problem as amixed integer linear program (MILP) which

can be solved by the CPLEX solver of the GAMS software

environment [24].

IV. CASE STUDY AND NUMERICAL RESULTS

We consider a building microgrid (BMG) that contains one

PV solar system, one energy storage battery and one edu-

cational building with several classrooms, laboratories and

offices with their associated loads. The BMG also contains

one large EV charging/discharging station with several charg-

ing/discharging piles to accommodate many EVs at a time.

For the purpose of computational simplicity and clarity of

illustrations, we consider the aggregate nonflexible load of

the building. The aggregate electricity demand is the sum

of the individual demands of all the classrooms, laborato-

ries and offices in the building. That means, the total build-

ing demand measured at the building electricity gateway is

used to demonstrate the obtained results in the study. Thus,

to achieve numerical results for the aggregate building sce-

nario, we simply set B = H = 1 in all the associated objec-

tive function, constraints and values. We consider ten EVs

(V = 10) in the BMG.

The electricity demand data is collected from an actual

building in Otaniemi area of Espoo, Finland with a suitable

scaling factor. Data for the PV system is collected from

real (operational) rooftop PV plant located in Otaniemi area

of Espoo, Finland with a suitable scaling factor. The PV is

indeed located on the rooftop of the case study building.

Improved forecasts for the PV power production and non-

flexible aggregate load are obtained using the approaches

in [1] and [20], respectively.We take the historical data for the

energy prices [22] as their predicted values. The forecasts for

the aggregate nonflexible base load and PV power are shown

in Figure 2. The historical day-ahead and real-time electricity

prices are also shown in Figure 3.

We suppose all the EVs are Nissan Leaf (‘Acenta’ model)

with a battery storage capacity of 40kWh [25] and maximum

charging/discharging power of 6kW [26]. In fact, this Nis-

san Leaf model can be charged/discharged at a maximum

power of 50kW but with a fast charging mode which is not

considered in this work. We also suppose the BMG charg-

ing/discharging station is furnished with Level 2 EV charg-

ing/discharging piles with a power ratings of 7.2kW. The EVs

are assumed to make a single trip in the optimization period

(one-day). The minimum and maximum SOCs of the EVs are

FIGURE 2. Forecasted base load and PV power production.
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FIGURE 3. Day-ahead and real-time electricity prices.

0.2 and 0.9, respectively. A charging/discharging efficiency

of 90% is assumed for the EVs. The initial SOCs of the EVs

are supposed to be evenly distributed in the range [0.2, 0.9].

The returning and leaving times of the EVs are represented

by normal distributions with the averages of 8:00 and 17:00,

respectively, and standard deviations of 2 hours for both. The

expected SOCs of the EVs when they depart the CDS is

supposed to be the maximum SOC. The travel efficiencies

of the EVs are taken as 16.5kWh/100km [27]. The driving

distance of the EVs is assumed to be 50km, which is the

average daily travel distance in Finland [28]. This is a typical

driving pattern in Finland, which is employed to achieve the

numerical results in the various scenarios in this study.

We illustrate a summer scenario in this paper; but, results

for scenarios from the other seasons (winter, spring and

autumn) can be demonstrated likewise. We assume a 24h

optimization horizon with one-hour time resolution/slot.

Penalty fees for involuntary load shedding (βh,b,t =

β, ∀t, b, h), PV power curtailment (cPVcurt,t = cPVcurt,∀t ) and bid

mismatch (ϕt = ϕ, ∀t) are 1 $/kWh, 0.02 $/kWh and 0.08

$/kWh, respectively. Incentive for voluntary load shedding

(αh,b,t = β, ∀t, b, h) is assumed to be 0.25 $/kWh [29]. The

maximum aggregate voluntary load shedding (LS
vol,max
h,b =

LSvol,max) at each time slot is assumed to be the aggregate

nonflexible load of the BMG at the same time slot. The

peak aggregate involuntary load shedding (LS
invol,max
h,b =

LSinvol,max) at each time slot is set as 10% of the aggre-

gate nonflexible load of the BMG at the same time slot.

The energy storage battery capacity is 100kWh. Its mini-

mum and maximum SOCs are 0.2 and 0.9, respectively. The

peak charging/discharging power is 25kW and the charg-

ing/discharging efficiency is assumed to be 90%. The utility

grid, constraint (3), is not considered. However, when the

maximum power trading in the day-ahead market is not lim-

ited, we have to assign ϕt a suitably large value to guarantee

the bid mismatch is not very big and the real-time power

transfer is near to the submitted day-ahead bid. Besides,

we neglect the battery degradation cost, the operation and

maintenance costs of the PV system, battery and EV CDS

(cBatdeg,u,t = cPVom,t = cBatom,u,t = cEVCDSom,t = 0, ∀t, u).

We describe a Load Scaling Factor (LSF) as the ratio

of the aggregate nonflexible load forecast to the aggregate

renewable generation forecast over the optimization horizon.

For instance, the LSF in Figure 2 is 0.6, which is selected as

FIGURE 4. Comparison between optimally controlled and uncontrolled EV
charging/discharging strategies with various PV power curtailment
penalties.

the benchmark or base scenario. For all the results shown in

this section, only the system data clearly shown in the results

are varied, the other data remain similar as in the benchmark

scenario.

Figures 4(a), 4(b) show the benefits of the devised optimal

EV charging/discharging strategy over the uncontrolled (non-

optimized) one.

In the uncontrolled EV charging/discharging strategy, EVs

are charged instantly with the maximum power when they

reach at the BMG CDS, and the charging terminates when

the EVs reach their desired SOCs. As shown in Figure 4,

the proposed optimal EV charging/discharging strategy pro-

vides a higher profit (optimal objective value) and a smaller

PV power curtailment compared to the uncontrolled strategy.

In addition, the BMG profit and the amount of PV power

curtailment decrease as the penalty for renewable energy cur-

tailment (cPVcurt ) increases, and they finally become saturated

since cPVcurt is suitably high.

Figures 5(a), 5(b) compare the advantages of the two

strategies by varying the bid mismatch penalty (ϕ) for two

cases, namely with and without an energy storage battery

in the BMG. We can see that the BMG profit decreases

and the amount of PV power curtailment increases as ϕ

increases. This is due the fact that when ϕ increases,

we must keep a stricter condition where the real-time

power transfer should be much closer to the day-ahead

submitted bid. In addition, it is obvious that the optimal

EV charging/discharging strategy achieves a higher profit

and smaller PV power curtailment than the uncontrolled

strategy.
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FIGURE 5. Comparison between optimally controlled and uncontrolled EV
charging/discharging strategies with various power imbalance penalties.

FIGURE 6. Optimal day-ahead bids for various LSF values.

The optimal hourly bids that BMG can submit to the

day-ahead market with various values of LSF are shown

in Figure 6. As shown in Figure 6, the amount of the

day-ahead bid submission decreases as the LSF value

increases. This is because higher LSF indicates the availabil-

ity of more load demand in the microgrid than the renew-

able power generation. Thus, the microgrid supplies its local

demands rather exporting or bidding its power to the main

grid. That means the power export (bid) to the main grid

decreases.

V. CONCLUSION

Optimal energy trading problem for a BMGwith battery, EVs

andRES in day-ahead and real-time energymarkets is consid-

ered in this study. The battery and EVs are the major demand

response resources of the BMG.We formulate the problem as

a dual-step optimization process considering uncertainties of

RES, electricity demand and electricity prices. The batteries

as static energy storage and the EVs as dynamic energy

storage capabilities are used to balance the variability of the

demands, prices and RESs. The proposed optimization model

aimed to maximize the profit for the BMG and minimize

the demand and renewable energy curtailments as well as

bid mismatch penalty while keeping the system capacity and

technical constraints. Incentivized voluntary load shedding

and penalties for involuntary load shedding, renewable gen-

eration curtailment and bid imbalance have also been consid-

ered in the devised model. Simulation findings demonstrate

that the optimal coordination of energy storage batteries and

EVs with renewable generation can improve significantly the

profit of the BMG in the energy market, decrease the BMG

operating cost and reduce the quantity of renewable energy

curtailment.
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