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Abstract An alleged weakness of heuristic optimisation methods is the stochastic
character of their solutions: instead of finding the truly optimal solution, they only
provide a stochastic approximation of this optimum. In this paper we look into a par-
ticular application, portfolio optimisation. We demonstrate that the randomness of
the ‘optimal’ solution obtained from the algorithm can be made so small that for all
practical purposes it can be neglected. More importantly, we look at the relevance
of the remaining uncertainty in the out-of-sample period. The relationship between
in-sample fit and out-of-sample performance is not monotonous, but still, we observe
that up to a point better solutions in-sample lead to better solutions out-of-sample.
Beyond this point there is no more cause for improving the solution any further:
any in-sample improvement leads out-of-sample only to financially meaningless im-
provements and unpredictable changes (noise) in performance.

Keywords Optimisation heuristics · Portfolio optimisation · Threshold accepting

1 Introduction

The aim of portfolio selection is to derive decision rules that help investors to allo-
cate their wealth. The best known of these rules, mean-variance selection (Markowitz
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1952), is often criticised for failing to take into account the non-Gaussian nature of
financial time series. Hence alternative and—at least theoretically—superior mod-
els have been proposed, with selection criteria that take into account ‘fat tails’ or
asymmetric return distributions (an example are partial moments, see Fishburn 1977).
Unfortunately, many of these alternative models lead to optimisation problems that
are much harder to solve, and are often infeasible for standard optimisation tech-
niques like linear or quadratic programming. For several specific models, like Ex-
pected Shortfall (Rockafellar and Uryasev 2000), exact solutions are available, but
these techniques are in general not flexible and often cannot accommodate even mi-
nor changes in the model; neither can they generally handle realistic constraints like
cardinality restrictions or limits to transaction costs.

There is an alternative approach to solve such optimisation problems: heuristics.
The term ‘heuristic’ is used in different scientific areas, with different but related
meanings. Mathematicians use it to describe an explanation that is not provable,
sometimes even incorrect, but leads to a correct conclusion nonetheless; in the lan-
guage of psychologists, heuristics are rules of thumb for decision making that, though
sometimes seemingly crude, work robustly in many circumstances (Gigerenzer 2004,
2008); in computer science heuristics have been described as methods or rules for de-
cision making that are (i) simple, and (ii) give good results sufficiently often (Pearl
1984, p. 3). Winker and Maringer (2007), following Barr et al. (1995) and similarly
Zanakis and Evans (1981), characterise the term ‘heuristic optimisation’ through sev-
eral criteria:

• The method should produce ‘good’ stochastic approximations of the true optimum,
where ‘good’ is measured in terms of solution quality and computing time.

• The method should be robust in case of comparatively small changes to the given
problem, and also for changes in the parameter settings of the heuristic itself. Ro-
bustness, again, is measured in (changes in) solution quality and computing time.

• The technique should be easy to implement.
• Implementation and application of the technique should not require subjective el-

ements.

For many techniques like Genetic Algorithms (Holland 1992) or Simulated An-
nealing (Kirkpatrick et al. 1983) a considerable theoretical background is available,
including mathematical analysis of their convergence. More importantly, heuristics
have been shown to work well for problems that are completely infeasible for classi-
cal optimisation approaches (Michalewicz and Fogel 2004; for applications in finance
see Maringer 2005).

1.1 The stochastics of ‘optimal’ solutions

Heuristics are, with only few exceptions (like a standard Tabu Search), stochastic
algorithms. Thus repeated runs, called restarts, of the optimisation algorithm will
result in different solutions—even for identical starting points. It is this stochastic
nature of the solutions that sometimes causes distrust, for how can we judge whether
we have actually found a good solution?

When it comes to the stochastics of solutions, there are similarities and differences
between heuristics and classical, deterministic methods. For a given problem with
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multiple local minima—and very few practical problems are truly convex—repeated
runs with different starting points will result in different solutions, for both types of
techniques. If we characterise a solution (in our case, a portfolio) by its associated
objective function value, we may consider the result of one restart as a realisation of
a random variable with some unknown distribution F . The shape of F will depend
on the chosen method, hence when we try to solve a given multi-modal problem with
a deterministic method, the probability of obtaining, from one optimisation run, a so-
lution of a given quality remains fixed (though unknown). Heuristics on the other
hand can move away from local minima, hence allowing more iterations per restart
generally changes the shape of F . If the algorithm works properly, with an increas-
ing number of iterations, the distribution becomes steeper (the solutions become less
dispersed), and moves to the left, closer to the global minimum. In other words, with
a heuristic, the probability for obtaining a solution of a given quality will also depend
on the computational resources (iterations) spent on the problem.

In this paper we solve a portfolio optimisation problem with a heuristic technique
called Threshold Accepting (Dueck and Scheuer 1990; Moscato and Fontanari 1990;
Dueck and Winker 1992), a variant of Simulated Annealing. Our main argument
does not relate to a specific technique, so we describe the algorithm only informally
here. Threshold Accepting (TA) builds on a simple concept in optimisation called
local search. A local search starts with a random feasible solution (that is, a random
portfolio) which we call the ‘current solution’, representing the best solution we have
so far. Then again randomly, a new solution close-by is chosen. ‘Close-by’ means
that we slightly perturb the weights of the portfolio (e.g., we ‘sell’ a small quantity
of one asset, and invest the proceeds in another asset). This new solution is called a
neighbour. If it is better than the current solution, the new solution is accepted and
becomes the current solution, if not, it is rejected, and another neighbour is selected.
This procedure stops after a preset number of iterations.

Since a local search stops at the first local minimum encountered, TA makes a small
adjustment to the procedure: when the algorithm evaluates a neighbour solution, it
may also accept this new solution if it is worse than the current solution—as long as
the impairment does not exceed a given threshold (hence the method’s name). This
threshold is set rather generously initially, so that the algorithm may move freely in
the search space. Over time, the thresholds are decreased; hence the algorithm gets
more select and finally turns into a local search. For a detailed description of TA, see
Winker (2001).

So, how to judge the quality of a solution obtained from a TA run? For some
problems, the objective function can directly be interpreted. The simplest approach
then is to look at the realised value of the objective function associated with the
returned solution. Assume we minimise a portfolio’s Value-at-Risk, then we could
compare our results with the Value-at-Risk of a benchmark portfolio. In principle,
if we had an exact method available, we could then also judge how much we lose
from using a heuristic. But there is an important empirical question to be asked:
how is the in-sample ‘performance’ that our solution achieves related to its out-of-
sample performance? Much research in portfolio optimisation relates to in-sample
properties of different methods: given a data set, we aim to minimise drawdown, or
ratios of losses to gains. But what we actually want to minimise is future drawdown,
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or the ratio of future losses to future gains. There exists comparatively little research
into how these objectives relate to the quantities that we actually optimise. In other
words, when we evaluate the quality of a solution, we need to look at its out-of-sample
performance.1

The point that we stress in this paper can be summarised as follows: the aim of
portfolio selection is to find decision rules that tell investors how to invest. To this
purpose, we set up a model (a selection criterion and constraints), but this model will
depend on future asset prices which we do not know. Hence, we need to approxi-
mate/forecast/estimate/simulate these prices, and then solve the model. Zanakis and
Evans (1981, p. 85) list cases where a heuristic should be the method of choice, their
first case being ‘Inexact or limited data used to estimate model parameters [that] may
inherently contain errors much larger than the “suboptimality” of a good heuristic.’
We shall argue that portfolio selection belongs to this class of optimisation problems.

We show that a heuristic technique can give a good solution to the model. Better
solutions in-sample (i.e., solutions of the model) also lead to better solutions out-of-
sample (the actual problem). But this holds true only up to a certain point: beyond this
point, further improvement in-sample does not lead to meaningful improvement out-
of-sample any more. If our in-sample solution is ‘good enough’, there is no more need
to find a better one. The remainder of this paper is structured as follows: in Sect. 2
we briefly describe the optimisation problem and our data. Sections 3 and 4 then
discuss both the in-sample and out-of-sample performance of our model. Section 5
concludes.

2 Data and methodology

There are nA risky assets available, with current prices collected in a vector p0.
We are endowed with an initial wealth v0, and wish to select a portfolio x =
[x1 x2 . . . xnA ]′ of the given assets such that

v0 = x′p0.

The vector x stores the number of shares or contracts, that is, integer numbers. The
chosen portfolio is held for one period, from now (time 0) to time T . End-of-period
wealth is given by

vT = x′pT ,

where the vector pT holds the asset prices at T . Since these prices are not known at
the time when the portfolio is formed, vT will be a random variable, following some

1This also holds for optimisation strategies that aim to incorporate estimation uncertainty into the pro-
cedure, so notably robust optimisation approaches. If a robust optimisation model can only be solved by
a stochastic method, we should again evaluate the stochastics of the solution in relation to out-of-sample
performance; we need to check whether we have a meaningful, exploitable relationship between in-sample
and out-of-sample quality.
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unknown distribution. It is often convenient to rescale vT to a return rT , that is

rT = vT

v0
− 1.

Let J be the set of assets in the portfolio, then our optimisation problem can be
written as

min
x

�,

xinf
j ≤ xj ≤ x

sup
j j ∈ J ,

Kinf ≤ #{J } ≤ Ksup.

We use downside semi-variance, or more precisely the lower partial moment of order
two, as our objective function �. Semi-variance is defined as E(max(0, rd − rT )2),
where E is the expectations operator and rd is a desired-return threshold. (Later on,
we will always set rd to zero.) For a sample of portfolio returns r

(1)
T , r

(2)
T , . . . , r

(nS )
T ,

the semi-variance can be computed as

1

nS

nS∑

s=1

max
(
0, rd − r

(s)
T

)2
,

where nS stands for the number of observations, or scenarios. xinf
j and x

sup
j are mini-

mum and maximum holding sizes, respectively, for those assets included in the port-
folio (i.e., those in J ). Kinf and Ksup are cardinality constraints which set a minimum
and maximum number of assets in J . We set xinf = 1% and xsup = 5%, thus we do
not allow short positions. An upper cardinality is set to 50; a lower cardinality of 20
is implicitly defined by xsup. We do not include a riskless asset. Since our algorithm
works with actual position sizes, that is integer numbers, a small fraction of less than
1% of the portfolio is usually left uninvested.

We do not include a minimum-return constraint, but solely minimise the risk
of the portfolio (defined as the semi-variance). This is equivalent to assuming
equal means for all assets. There are several reasons that justify such a model.
Firstly, individual future stock returns are so difficult to predict that the cost of
an equal-mean assumption is often lower than the cost of incorrectly measured
means, see Brandt (2009) for an overview of analytic and empirical results. Sec-
ondly, if we cannot really control the reward-side of the portfolio, then lowering
portfolio risk may still lead to better risk-adjusted performance (Chan et al. 1999;
Clarke et al. 2006). Furthermore, there is evidence that low-risk stocks actually yield
higher returns than justified by pricing models (Blitz and van Vliet 2007). In any
case, a low-risk portfolio is still a risky portfolio and should thus command a risk
premium. Altogether there is strong empirical evidence that such an approach leads
to portfolios that perform well in out-of-sample tests (see Board and Sutcliffe 1994,
Chan et al. 1999 for variance-minimisation, Gilli and Schumann (forthcoming) for
alternative risk functions).

The data set comprises more than 500 price series of European companies from
the Dow Jones STOXX universe, at a daily frequency, spanning the period from
March 2000 to March 2008. All stocks are denominated in euro.
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Fig. 1 Moving-window
optimisation

2.1 Moving windows

We conduct rolling-window backtests with an historical window of length H , and
an out-of-sample holding period of length F . We set H to 250 business days, F to
63 business days. Thus we optimise at point in time t1 on data from t1 − H to t1 − 1,
the resulting portfolio is held until t2 = t1 +F . At this point, a new optimal portfolio is
computed, using data from t2 −H until t2 −1, and the existing portfolio is rebalanced.
This new portfolio is then held until t3 = t2 + F , and so on. This is illustrated in
Fig. 1 for the first two periods. With our data set, we have 35 investment periods. We
optimise the first time on 06 March 2000 (t1), the last date is 31 December 2007 (t35).
All periods are summarised in Table 1.

To solve our optimisation model, we need to obtain a sample of returns
r
(1)
T , r

(2)
T , . . . , r

(nS )
T for a given period. The simplest approach is to use historic re-

turns as scenarios, i.e., to treat them as a sample of realisations of rT ; but there is
evidence that the empirical performance of portfolio models can be improved by
alternative scenario generation methods. Therefore, from the historical window in
every period we create scenarios via the bootstrapping procedure described in Gilli
and Schumann (forthcoming); the out-of-sample data for every period are the actual,
historical data. A thorough discussion of the scenario generation technique is beyond
the scope of this paper, and it is not necessary here: what is important is that the
scenarios are created once and then saved, so all optimisation runs are conducted on
the same data set. In other words, any variation in the results of repeated optimisation
runs must arise from the fact that the optimisation technique is stochastic.

3 In-sample results

The portfolio optimisation is handled with Threshold Accepting (TA; see Gilli and
Schumann 2010, for more details on the implementation for portfolio selection prob-
lems). We measure the computational resources that the optimisation algorithm em-
ploys by the number of iterations (i.e., the total number of objective function evalu-
ations). With an increasing number of iterations the average quality of a solution per
restart should improve while the solutions’ variability should decrease; eventually the
solutions’ distribution F should collapse into a single point (the global minimum) as
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Table 1 Investment periods: rank correlations between in-sample fit and out-of-sample risk and return.
The in-sample dates correspond to tperiod − H and tperiod − 1 in Fig. 1; the out-of-sample dates to tperiod
and tperiod + F

Period In-sample period Out-of-sample period Rank correlation in-sample

(dd.mm.yyyy) (dd.mm.yyyy) fit vs out-of-sample . . .

. . . risk . . . return

1 05.03.1999–06.03.2000 07.03.2000–26.05.2000 −0.53 0.70

2 27.05.1999–26.05.2000 29.05.2000–21.08.2000 0.51 0.25

3 20.08.1999–21.08.2000 22.08.2000–13.11.2000 0.77 −0.70

4 12.11.1999–13.11.2000 14.11.2000–05.02.2001 0.59 0.07

5 04.02.2000–05.02.2001 06.02.2001–30.04.2001 0.88 −0.25

6 28.04.2000–30.04.2001 01.05.2001–23.07.2001 0.79 −0.65

7 21.07.2000–23.07.2001 24.07.2001–15.10.2001 0.92 −0.83

8 13.10.2000–15.10.2001 16.10.2001–07.01.2002 0.91 0.71

9 05.01.2001–07.01.2002 08.01.2002–01.04.2002 0.88 0.13

10 30.03.2001–01.04.2002 02.04.2002–24.06.2002 0.91 −0.88

11 22.06.2001–24.06.2002 25.06.2002–16.09.2002 0.96 −0.58

12 10.09.2001–16.09.2002 17.09.2002–09.12.2002 0.97 0.73

13 07.12.2001–09.12.2002 10.12.2002–03.03.2003 0.98 −0.93

14 01.03.2002–03.03.2003 04.03.2003–23.05.2003 0.97 0.29

15 23.05.2002–23.05.2003 26.05.2003–18.08.2003 0.95 0.72

16 16.08.2002–18.08.2003 19.08.2003–10.11.2003 0.94 0.76

17 08.11.2002–10.11.2003 11.11.2003–02.02.2004 0.87 0.22

18 31.01.2003–02.02.2004 03.02.2004–26.04.2004 0.95 −0.74

19 25.04.2003–26.04.2004 27.04.2004–19.07.2004 0.86 −0.90

20 18.07.2003–19.07.2004 20.07.2004–11.10.2004 0.95 −0.30

21 10.10.2003–11.10.2004 12.10.2004–03.01.2005 0.92 −0.79

22 02.01.2004–03.01.2005 04.01.2005–28.03.2005 0.68 0.23

23 26.03.2004–28.03.2005 29.03.2005–20.06.2005 0.87 −0.63

24 18.06.2004–20.06.2005 21.06.2005–12.09.2005 0.90 −0.11

25 10.09.2004–12.09.2005 13.09.2005–05.12.2005 0.52 0.55

26 03.12.2004–05.12.2005 06.12.2005–27.02.2006 0.86 −0.36

27 25.02.2005–27.02.2006 28.02.2006–22.05.2006 0.12 −0.16

28 20.05.2005–22.05.2006 23.05.2006–14.08.2006 0.89 −0.39

29 12.08.2005–14.08.2006 15.08.2006–06.11.2006 0.93 −0.44

30 04.11.2005–06.11.2006 07.11.2006–29.01.2007 0.66 −0.19

31 27.01.2006–29.01.2007 30.01.2007–23.04.2007 0.89 0.85

32 21.04.2006–23.04.2007 24.04.2007–16.07.2007 0.12 0.86

33 14.07.2006–16.07.2007 17.07.2007–08.10.2007 0.84 0.32

34 06.10.2006–08.10.2007 09.10.2007–31.12.2007 0.92 −0.87

35 29.12.2006–31.12.2007 01.01.2008–24.03.2008 0.94 −0.37

Average 0.77 −0.11
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Fig. 2 In-sample convergence: estimates of the distribution F with different numbers of iterations

the number of iterations goes to infinity.2 In other words, if we run a TA with I1 it-
erations, and one with I2 iterations, where I1 < I2, then on average the TA with I2
iterations will give better solutions. In-sample, thus, we face a trade-off between so-
lution quality and computational resources spent.

We test the performance of TA with 1, 1 000, 5 000, 15 000, 50 000 and 100 000 it-
erations. With only 1 iteration, we practically obtain random (but feasible) portfolios.
Hence we will write ‘random portfolios’ instead of ‘1 iteration’. Setting the compu-
tational resources fixes the distributions F (as described in the Introduction) from
which we draw our solutions. To approximate these distributions, we run the algo-
rithm 100 times for every level of iterations, and compute the empirical cumulative
distributions functions as estimates of the true distributions. Figure 2 shows the em-
pirical results for the first four periods; for later periods we obtain similar results. In
all figures we take the square root of the objective function values in order to obtain
interpretable numbers.

With an increasing number of iterations the distributions become rapidly steeper
and move to the left. There is little difference any more between the results for 50 000
and 100 000 iterations. Thus we can make the randomness of the in-sample objective
function very small. To give a concrete example: in period 4 (the lower panel in
Fig. 2) the realised objective function values range between 0.2845% and 0.2997%
for 100 000 steps, while for our sample of random portfolios there is a range between
0.6031% and 0.9437%. (We generally give 4 digits to illustrate how small certain

2Winker and Maringer (2009) discuss the convergence of heuristics in the context of maximum likelihood
estimation. Their analysis of convergence is also application-driven, that is, they investigate the conver-
gence of a maximum likelihood estimator to the true parameter values in conjunction with the numerical
convergence of the heuristic.
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differences are, not because we think that working with such ‘precision’ is a good
idea.) Of course, we have no guarantee that we have found the global minimum.
But with a bound at zero, and a typical randomly-drawn portfolio having more than
double the risk of our optimised portfolios, TA seems to consistently find ‘good’
solutions. In other words, TA seems well capable of solving our model.

4 Out-of-sample results

A given portfolio maps into an in-sample objective function value, but also into an
out-of-sample risk (semi-variance) and return. This link between in-sample fit and
actual out-of-sample performance is noisy, though: Fig. 3 shows a scatter plot of in-
sample against out-of-sample risk for the first four periods (measured on a daily basis;
again we take the square root of the semi-variance).

The picture shows characteristic features also present in the other periods. First
of all, there is no monotonous relationship between in-sample fit and out-of-sample
performance. For high in-sample objective function values (associated with the ran-
dom portfolios), the out-of-sample results are widely scattered. When we move to

Fig. 3 In-sample risk (x-axis)
and associated out-of-sample
risk (y-axis)
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the left, closer to the in-sample optimum, the cloud becomes denser. In particular, the
leftmost part of the cloud, which covers only a narrow range in terms of the in-sample
objective function, gives rise to comparatively more variable out-of-sample results.
A concrete example: the objective function values of the 10 in-sample-best solutions
for the third period pictured in Fig. 3 cover a range from 0.2798% to 0.2824%. We
thus have a range of 0.0025%, or one-fourth of a basis point. The resulting out-of-
sample risk associated with these solutions ranges between 0.3518% and 0.3875%,
a range of 0.0357%, or three and a half basis points.

Altogether (and except for period one), the picture still is encouraging: lower in-
sample risk leads to lower out-of-sample risk. Market conditions change, but on aver-
age when portfolio x is less risky than portfolio x′ in-sample, it is also less risky out-
of-sample. Table 1 gives the rank correlation between in-sample and out-of-sample
risk for every subperiod. The average correlation coefficient is 0.77. So it seems that
we can indeed control the risk of the portfolio.

But we do not want low-risk portfolios per se. We want a high risk-adjusted return,
expressed for instance as a high ratio of return to volatility (the Sharpe ratio), or a high
ratio of return to the square root of semi-variance (the Sortino ratio). Table 1 also
gives the correlation between in-sample fit and out-of-sample return for all periods,
but here the average correlation is only −0.11, and generally correlations are varying
strongly from one period to the next. So whatever the effect of portfolio optimisation
on risk-adjusted performance, we need to check the longer term. For this purpose
we compute the performance of ‘rank-portfolios’. Rank-portfolios are constructed as
follows. In every period, with iterations set to six different levels (1, 1 000, 5 000,
15 000, 50 000 and 100 000), and 100 restarts for each level, we have a total of 600
portfolios. We sort these portfolios according to their in-sample objective function
value. A natural decision rule is to select the best in-sample portfolio, that is the
portfolio with the lowest objective function value. We call this the rank-1 portfolio.
Likewise, we can determine portfolios ranked from 2 to 600 for every period.

While the rank is determined in-sample, let us write ri
t for the out-of-sample return

of the portfolio with rank i in period t . The total out-of-sample return Ri along the
path of the ith rank portfolio is

Ri =
35∏

t=1

(
1 + ri

t

)
.

Hence R1 is the total return for an investor who always chooses the best (rank-1)
in-sample portfolio, R2 is the total return for an investor who always chooses the
second-best (rank-2) in-sample portfolio, and so on, until R600 gives the total return
for the worst in-sample portfolios.

Figure 4 pictures the risk, the total return Ri − 1, the Sharpe ratio, and the Sortino
ratio (all computed from daily data along the time paths and annualised) for all
600 rank portfolios, plotted against the respective rank. Portfolio risk has the clearest
relationship with in-sample fit: it declines smoothly, but for the 200 best portfolios or
so it is practically flat. The relation between rank and return is negative (as desired),
but it is much more noisy, so it is less clear that improving a portfolio in-sample (i.e.,
advancing a rank) improves out-of-sample performance. Accordingly, the measures
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Fig. 4 In-sample rank (lower is
better) vs out-of-sample
performance

Table 2 Correlation between in-sample rank (lower is better) and out-of-sample risk, return, Sharpe ratio,
and Sortino ratio

Rank correlation Sharpe ratio Sortino ratio

Ranks Risk Return

all 0.99 −0.73 −0.87 −0.86

1–100 0.38 −0.02 −0.04 −0.04

101–200 0.57 −0.08 −0.14 −0.14

201–300 0.72 0.05 −0.03 −0.02

301–400 0.84 −0.13 −0.21 −0.20

401–500 0.95 −0.36 −0.47 −0.46

501–600 0.94 −0.49 −0.56 −0.55

of risk-adjusted return, which necessarily take into account returns, show a similarly
noisy relation with in-sample rank.

To quantify these relations, we compute rank correlations between in-sample rank
and out-of-sample performance. The results, given in Table 2, show that with de-
creasing ranks, the absolute correlations also decrease. Thus it becomes increasingly
difficult to predict a portfolio’s out-of-sample quality from its in-sample fit. For the
100 best portfolios, the return and the return-risk ratios are hardly correlated any more
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with the in-sample objective function, but there still appears to be a sizeable correla-
tion of 0.38 between risk and in-sample fit that warrants investigation. For those 100
best portfolios the daily out-of-sample risk was on average 0.5029%, with a minimum
of 0.4964% and a maximum of 0.5127%. Regressing risk on the ranks, we obtain a
constant of 0.5050%, and a slope of −0.0000%. We regard this ‘improvement’ as
zero. In other words, for the 100 in-sample-best portfolios, the associated out-of-
sample risk cannot be meaningfully reduced by further improving the in-sample fit.

4.1 A portfolio contest

A correlation is actually a poor measure of financial relevance. As seen above, a high
correlation may be obtained but still not signal a financially meaningful relationship.
On the other hand, a low correlation does not necessarily imply that there is no ex-
ploitable relationship. We thus conduct a more direct test whether it is worth finding
better portfolios. Given the relationship between in-sample and out-of-sample qual-
ity seen in Fig. 4—improving initially but then getting flat —we will consider returns
here.

Assume there are two investors, A and B; both use TA to find portfolios. Investor A

always lets his algorithm run for 100 000 iterations, while B uses only one iteration
(i.e., random portfolios). Going back to Fig. 2, A will always pick portfolio from the
leftmost distribution, while B will choose from the more dispersed random portfolios.
In-sample, A’s portfolios will thus look much better than B’s, but how likely is A to
outperform B? Given the noisy link in-sample to out-of-sample, we will unlikely
observe that A’s portfolio dominates B’s in every period (not even to a higher order),
but maybe it ‘almost dominates’ (Leshno and Levy 2002).

We start by randomly drawing one period from the 35 periods available. As ex-
plained before, each period can be split into an in-sample and an out-of-sample part.
Then, for A, we randomly pick one portfolio out of the 100 that were optimised with
100 000 iterations on the in-sample part of this period, and record its out-of-sample
performance rA

1 . We do the same for B, and hence obtain rB
1 . Next we pick again

randomly one period (could even be the same period), choose again a portfolio for A

and one for B, and record their out-of-sample returns, rA
2 and rB

2 . After p such draws,
A’s normalised net worth will be

(
1 + rA

1

)(
1 + rA

2

)(
1 + rA

3

) · · · (1 + rA
p

)
,

and B’s will have grown to
(
1 + rB

1

)(
1 + rB

2

)(
1 + rB

3

) · · · (1 + rB
p

)
.

We then compute the geometric outperformance of A over B as

g =
∏p

i=1(1 + rA
i )

∏p

i=1(1 + rB
i )

− 1.

We repeat this exercise 10 000 times, for different levels of p. Thus, for a fixed
investment horizon p, we obtain a distribution of g and can now compare how much
better A’s portfolio performed compared with B’s.
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Fig. 5 Distribution of outperformance of portfolios with 100 000 iterations over portfolios with 50 000
iterations and random portfolios

Figure 5 shows these distributions of g. A value of g = 1 means that A’s wealth has
grown to twice the wealth of B, while g = 0 indicates that A and B are equally wealthy.
One period (p = 1) in our setting was three months, hence five years are 20 periods
(p = 20), and twenty years are 80 periods (p = 80). There is only a probability of
57% that A outperforms B (i.e., a probability that g > 0) after one period of three
months. After five years, the probability is 78%, and even after twenty years it is
‘only’ 94%. Note, however, that these distributions are not symmetric.

Now let B switch to a TA with 50 000 iterations, half the computational resources
that A employs. Figure 5 gives a clear answer: even after twenty years, the distribution
of g is symmetric around g = 0, hence there is little predictable difference between
the portfolios of A and B.

We repeated this analysis with the Sortino ratio (results are available on request)
with essentially identical results. In summary then, there seems little practical differ-
ence anymore between running an optimisation with 50 000 or 100 000 iterations.

5 Conclusion

In this paper we have analysed the stochastics of solutions obtained from a heuristic
optimisation method when applied to a financial problem, portfolio optimisation. Our
findings indicate that the uncertainty stemming from the optimisation technique can
be made very (in fact, arbitrarily) small. The relationship between in-sample fit and
out-of-sample performance is not monotonous, but still, on average, portfolios that
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are better in-sample perform better out-of-sample. In essence, however, we show that
finding ‘good’ portfolios suffices, with further in-sample improvements only leading
to financially meaningless improvements (and unpredictable changes) out-of-sample.

This finding does not just apply to heuristics, but to ‘exact’ methods as well, with
the difference that the latter techniques give the false impression of having provided
the ‘optimal’ solution. The advantage of heuristics is that they give the analyst more
freedom when setting up the optimisation model in the first place, since heuristics can
accommodate alternative ways to model the data, or alternative objective functions.
Thus, heuristics may be a valuable tool for truly improving the solution not of the
model, but of the actual problem.
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