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Abstract We develop a full theory for the new class of Optimal Entropy-

Transport problems between nonnegative and finite Radon measures in general
topological spaces. These problems arise quite naturally by relaxing the
marginal constraints typical of Optimal Transport problems: given a pair of
finite measures (with possibly different total mass), one looks for minimizers
of the sum of a linear transport functional and two convex entropy functionals,
which quantify in some way the deviation of the marginals of the transport
plan from the assigned measures. As a powerful application of this theory,
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we study the particular case of Logarithmic Entropy-Transport problems and
introduce the new Hellinger–Kantorovich distance between measures in met-

ric spaces. The striking connection between these two seemingly far topics
allows for a deep analysis of the geometric properties of the new geodesic
distance, which lies somehow between the well-known Hellinger–Kakutani
and Kantorovich–Wasserstein distances.
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Main notation

M(X) Finite positive Radon measures on a
Hausdorff topological space X

η0 The null measure in some M(X)

P(X), P2(X) Radon probability measures on X (with
finite quadratic moment)

B(X) Borel subsets of X

T♯μ Push forward of μ ∈ M(X) by a map
T : X → Y , see (2.5)

γ = σμ+μ⊥, μ = ̺γ+γ⊥ Lebesgue decompositions of γ and μ,
Lemma 2.3

μ A Restriction of a measure to A:μ A(B)

:= μ(A ∩ B), Sect. 2.1
Cb(X) Continuous and bounded real functions

on X

Lipb(X), Lipbs(X) Bounded (with bounded support)
Lipschitz real functions on X

LSCb(X),LSCs(X) Lower semicontinuous and bounded (or
simple) real functions on X

USCb(X),USCs(X) Upper semicontinuous and bounded (or
simple) real functions on X

B(X),Bb(X) Borel (resp. bounded Borel) real func-
tions

Lp(X, μ), Lp(X, μ;Rd) Borel μ-integrable real (or R
d -valued)

functions
Ŵ(R+) Set of admissible entropy functions, see

(2.13), (2.14)
F(s), Fi (s) Admissible entropy functions
F∗(φ), F∗i (φ) Legendre transform of F, Fi , see (2.16)
F◦(ϕ), F◦i (ϕi ) Concave conjugate of an entropy func-

tion, see (2.45)
R(r), Ri (ri ) Reversed entropies, see (2.28)
D(F) Proper domain {F <∞}of an extended

real function F , see (2.14)
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972 M. Liero et al.

D̊(F) The interior of D(F)

F ′∞, F ′0, aff F∞ Recession, derivative at 0, and asymp-
totic coefficient of F , see (2.15)

IK The indicator function of a set K (0 on
K and +∞ outside)

χ A The characteristic function of a set A

(1 on A and 0 outside)
Hc(r1, r2), H(x1, r1; x2, r2) Marginal perspective function, see

(5.1), (5.10), (5.3)
c(x1, x2) Lower semicontinuous cost function

defined in X = X1 × X2
d(x1, x2), da(x1, x2) A metric on a space X and its truncated

version d ∧ a, see (6.8)
F (γ |μ),R(μ|γ ) Entropy functionals and their reverse

form, see (2.35) and (2.57)
E (γ |μ1, μ2),ET(μ1, μ2) General Entropy-Transport functional

and its minimum, see (3.4)
D(ϕ|μ1, μ2),D(μ1, μ2) Dual functional and its supremum, see

(4.10) and (4.8)
�,� Set of admissible Entropy-Kantorovich

potentials
LET(μ1, μ2), ℓ(d) Logarithmic Entropy Transport func-

tional and its cost, see Sect. 6.1
Wd(μ1, μ2) Kantorovich–Wasserstein distance in

P2(X)

HK(μ1, μ2) Hellinger–Kantorovich distance in
M(X), see Section 7.3

GHK(μ1, μ2) Gaussian Hellinger–Kantorovich dis-
tance in M(X), see Section 7.8

(C, dC), o Metric cone and its vertex, see Sec-
tion 7.1

C[r ] Ball of radius r centered at o in C

h2
i , dilθ,2(·) Homogeneous marginals and dilations,

see (7.16), (7.17)
H2
=(μ1, μ2), H2

≤(μ1, μ2) Plans in C× C with constrained homo-
geneous marginals, see (7.21)

ACp([0, 1]; X) Space of curves x : [0, 1] → X with
p-integrable metric speed

|x′|d Metric speed of a curve x∈AC([a, b];
(X,d)), see Sect. 8.1

|DZ f |, |DZ f |a Metric slope and asymptotic Lipschitz
constant in Z , see (8.37)
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When no ambiguity is possible, we will often adopt the convention to write
the integral of a composition of functions as

∫
F(φ) dμ =

∫
(F ◦ φ) dμ =

∫
F(φ(x)) dμ(x).

1 Introduction

The aim of the present paper is twofold: In Part I we develop a full theory of
the new class of Optimal Entropy-Transport problems between nonnegative
and finite Radon measures in general topological spaces. As a powerful appli-
cation of this theory, in Part II we study the particular case of Logarithmic

Entropy-Transport problems and introduce the new Hellinger–Kantorovich

(HK) distance between measures in metric spaces. The striking connection
between these two seemingly far topics is our main focus, and it paves the way
for a beautiful and deep analysis of the geometric properties of the geodesic
HK distance, which (as our proposed name suggests) can be understood as an
inf-convolution of the well-known Hellinger–Kakutani and the Kantorovich–
Wasserstein distances, see Remark 8.19 for a discussion of inf-convolutions of
distances. In fact, our approach to the theory was opposite: in trying to char-
acterize HK, we were first led to the Logarithmic Entropy-Transport problem,
see Section A.

From Transport to Entropy-Transport problems. In the classical Kan-
torovich formulation, Optimal Transport problems [2,40,49,50] deal with
minimization of a linear cost functional

C (γ ) =
∫

X1×X2

c(x1, x2) dγ (x1, x2), c : X1 × X2 → R, (1.1)

among all the transport plans, i.e. probability measures in P(X1 × X2), γ

whose marginals μi = π i
♯γ ∈ P(X i ) are prescribed. Typically, X1, X2 are

Polish spaces, μi are given Borel measures (but the case of Radon measures
in Hausdorff topological spaces has also been considered, see [26,40]), the
cost function c is a lower semicontinuous (or even Borel) function, possibly
assuming the value +∞, and π i (x1, x2) = xi are the projections on the i-th
coordinate, so that

π i
♯γ = μi ⇔

{
μ1(A1) = γ (A1 × X2),

μ2(A2) = γ (X1 × A2)
for every Ai ∈ B(X i ). (1.2)

Starting from the pioneering work of Kantorovich, an impressive theory
has been developed in the last two decades: from one side, typical intrin-
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974 M. Liero et al.

sic questions of linear programming problems concerning duality, optimality,
uniqueness and structural properties of optimal transport plans have been
addressed and fully analyzed. In a parallel way, this rich general theory has
been applied to many challenging problems in a variety of fields (probability
and statistics, functional analysis, PDEs, Riemannian geometry, nonsmooth
analysis in metric spaces, just to mention a few of them: since it is impossible
here to give an even partial account of the main contributions, we refer to the
books [42,50] for a more detailed overview and a complete list of references).

The class of Entropy-Transport problems, we are going to study, arises
quite naturally if one tries to relax the marginal constraints π i

♯γ = μi by
introducing suitable penalizing functionals Fi , that quantify in some way the
deviation from μi of the marginals γi := π i

♯γ of γ . In this paper we consider
the general case of integral functionals (also called Csiszàr f -divergences

[17]) of the form

Fi (γi |μi ) :=
∫

X i

Fi (σi (xi )) dμi + (Fi )
′
∞ γ⊥i (X i ),

σi =
dγi

dμi

, γi = σiμi + γ⊥i , (1.3)

where Fi : [0,∞) → [0,∞] are given convex entropy functions and (Fi )
′
∞

are their recession constants, see (2.15). Typical examples are the logarithmic
or power-like entropies

Up(s) :=
1

p(p − 1)

(
s p − p(s − 1)− 1

)
, p ∈ R \ {0, 1},

U0(s) := s − 1− log s, U1(s) := s log s − s + 1,
(1.4)

or for the total variation functional corresponding to the nonsmooth entropy
V (s) := |s − 1|, considered in [38]. We shall see that the presence of the
singular part γ⊥i in the Lebesgue decomposition of γi in (1.3) does not force
Fi (s) to be superlinear as s ↑ ∞ and allows for all the exponents p in (1.4).

Once a specific choice of entropies Fi and of finite nonnegative Radon mea-
sures μi ∈M(X i ) is given, the Entropy-Transport problem can be formulated
as

ET(μ1, μ2) := inf
{
E (γ |μ1, μ2) : γ ∈M(X1 × X2)

}
, (1.5)

where E is the convex functional

E (γ |μ1, μ2) := F1(γ1|μ1)+F2(γ2|μ2)+
∫

X1×X2

c(x1, x2) dγ . (1.6)
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Notice that the entropic formulation allows for measures μ1, μ2 and γ with
possibly different total mass.

The flexibility in the choice of the entropy functions Fi (which may also take
the value +∞) covers a wide spectrum of situations (see Sect. 3.3 for various
examples) and in particular guarantees that (1.5) is a real generalization of the
classical optimal transport problem, which can be recovered as a particular
case of (1.6) when Fi (s) is the indicator function of {1} (i.e. Fi (s) always
takes the value +∞ with the only exception of s = 1, where it vanishes).

Since we think that the structure (1.6) of Entropy-Transport problems will
lead to new and interesting models and applications, we have tried to estab-
lish their basic theory in the greatest generality, by pursuing the same line
of development of Transport problems: in particular we will obtain general
results concerning existence, duality and optimality conditions.

Considering e.g. the Logarithmic Entropy case, where Fi (s) = s log s −
s + 1, the dual formulation of (1.5) is given by

D(μ1, μ2) := sup
{
D(ϕ1, ϕ2|μ1, μ2) : ϕi : X i → R,

ϕ1(x1)+ϕ2(x2) ≤ c(x1, x2)
}
,

where D(ϕ1, ϕ2|μ1, μ2) :=
∫

X1

(
1− e−ϕ1

)
dμ1 +

∫

X2

(
1− e−ϕ2

)
dμ2,

(1.7)

where one can immediately recognize the same convex constraint of Transport
problems: the pair of dual potentials ϕi should satisfy ϕ1⊕ϕ2 ≤ c on X1×X2.
The main difference is due to the concavity of the objective functional

(ϕ1, ϕ2) �→
∫

X1

(
1− e−ϕ1

)
dμ1 +

∫

X2

(
1− e−ϕ2

)
dμ2,

whose form can be explicitly calculated in terms of the Lagrangian conjugates
F∗i of the entropy functions. Thus (1.7) consists in the supremum of a concave
functional on a convex set described by a system of affine inequalities.

The change of variables ψi := 1 − e−ϕi transforms (1.7) in the equivalent
problem of maximizing the linear functional

(ψ1, ψ2) �→
∑

i

∫

X1

ψ1 dμ1 +
∫

X2

ψ2 dμ2 (1.8)

on the more complicated convex set
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976 M. Liero et al.

{
(ψ1,ψ2) : ψi : X i → (−∞, 1), (1−ψ1(x1))(1−ψ2(x2)) ≥ e−c(x1,x2)

}
.

(1.9)

It will be useful to have both the representations at our disposal: (1.7) naturally
appears from the application of the von Neumann min–max principle from a
saddle point formulation of the primal problem (1.5). Moreover, (1.8)–(1.10)
will play an important role in the dynamic version of a particular case of ET,
the Hellinger–Kantorovich distance that we will introduce later on.

We will calculate the dual problem for every choice of Fi and show that
its value always coincide with ET(μ1, μ2). The dual problem also provides
optimality conditions, that involve the pair of potentials (ϕ1, ϕ2), the support
of the optimal plan γ and the densities σi of its marginals γi w.r.t. μi . For the
Logarithmic Entropy Transport problem above, they read

σi > 0, ϕi = − log σi μi a.e. in X i ,

ϕ1 ⊕ ϕ2 ≤ c in X1 × X2, ϕ1 ⊕ ϕ2 = c γ -a.e. in X1 × X2,

(1.10)

and they are necessary and sufficient for optimality.
The study of optimality conditions reveals a different behavior between pure

transport problems and entropic ones. In particular, the c-cyclical monotonicity
of the optimal plan γ (which is still satisfied in the entropic case) does not play
a crucial role in the construction of the potentials ϕi . When Fi (0) are finite
(as in the logarithmic case) it is possible to obtain a general existence result of
(generalized) optimal potentials even when c takes the value +∞.

A crucial feature of Entropy-Transport problems (which is not shared by
the pure transport ones) concerns a third homogeneous formulation, which
exhibits new and unexpected properties, in particular concerning the metric
and dynamical aspects of such problems. It is related to the 1-homogeneous

Marginal Perspective function

H(x1, r1; x2, r2) := inf
θ>0

(
r1 F1(θ/r1)+ r2 F2(θ/r2)+ θc(x1, x2)

)
(1.11)

and to the corresponding integral functional

H (μ1, μ2|γ ) :=
∫

X1×X2

H(x1, ̺1(x1); x2, ̺2(x2)) dγ

+
∑

i

Fi (0)μ
⊥
i (X i ), ̺i :=

dμi

dγi

, (1.12)
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whereμi = ̺iγi+μ⊥i is the “reverse” Lebesgue decomposition ofμi w.r.t. the
marginals γi of γ . We will prove that

ET(μ1, μ2) = min
{
H (μ1, μ2|γ ) : γ ∈M(X1 × X2)

}
(1.13)

with a precise relation between optimal plans. In the Logarithmic Entropy
case Fi (s) = s log s − (s − 1) the marginal perspective function H takes the
particular form

H(x1, r1; x2, r2) = r1 + r2 − 2
√

r1 r2 e−c(x1,x2)/2, (1.14)

which will be the starting point for understanding the deep connection with
the Hellinger–Kantorovich distance. Notice that in the case when X1 = X2
and c is the singular cost

c(x1, x2) :=
{

0 if x1 = x2,

+∞ otherwise,
(1.15)

(1.13) provides an equivalent formulation of the Hellinger–Kakutani distance
[22,25], see also Example E.5 in Sect. 3.3.

Other choices, still in the simple class (1.4), give raise to “transport” versions
of well known functionals (see e.g. [31] for a systematic presentation): starting
from the reversed entropies Fi (s) = s − 1− log s one gets

H(x1, r1; x2, r2) = r1 log r1 + r2 log r2 − (r1+r2) log
( r1 + r2

2+ c(x1, x2)

)
,

(1.16)
which in the extreme case (1.15) reduces to the Jensen–Shannon diver-

gence [32], a squared distance between measures derived from the celebrated
Kullback-Leibler divergence [28]. The quadratic entropy Fi (s) = 1

2 (s − 1)2

produces

H(x1, r1; x2, r2) =
1

2(r1+r2)

(
(r1−r2)

2 + h(c(x1, x2))r1r2

)
, (1.17)

where h(c) = c(4 − c) if 0 ≤ c ≤ 2 and 4 if c ≥ 2: Equation (1.17) can
be seen as the transport variant of the triangular discrimination (also called
symmetric χ2-measure), based on the Pearson χ2-divergence [31], and still
obtained by (1.12) when c has the form (1.15).

Also nonsmooth cases, as for V (s) = |s−1| associated to the total variation

distance (or nonsymmetric choices of Fi ) can be covered by the general theory.
In the case of Fi (s) = V (s) the marginal perspective function is
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H(x1, r1; x2, r2) = r1 + r2 −
(
2−c(x1, x2)

)
+(r1 ∧ r2)

= |r2−r1| + (c(x1, x2) ∧ 2)(r1 ∧ r2);

when X1 = X2 = R
d with c(x1, x2) := |x1−x2| we recover the general-

ized Wasserstein distance W
1,1
1 introduced and studied by [38]; it provides an

equivalent variational characterization of the flat metric [39].
However, because of our original motivation (see Section A), Part II will

focus on the case of the logarithmic entropy Fi = U1, where H is given by
(1.14). We will exploit its relevant geometric applications, reserving the other
examples for future investigations.

From the Kantorovich–Wasserstein distance to the Hellinger–Kantorovich

distance. From the analytic-geometric point of view, one of the most inter-
esting cases of transport problems occurs when X1 = X2 = X coincide and
the cost functional C is induced by a distance d on X : in the quadratic case,
the minimum value of (1.1) for given measures μ1, μ2 in the space P2(X)

of probability measures with finite quadratic moment defines the so called
L2-Kantorovich–Wasserstein distance

W2
d (μ1, μ2) := inf

{ ∫
d2(x1, x2) dγ (x1, x2) : γ ∈ P(X × X), π i

♯γ = μi

}
,

(1.18)
which metrizes the weak convergence (with quadratic moments) of probabil-
ity measures. The metric space (P2(X),Wd) inherits many geometric features
from the underlying (X,d) (as separability, completeness, length and geodesic
properties, positive curvature in the Alexandrov sense, see [2]). Its dynamic
characterization in terms of the continuity equation [7] and its dual formula-
tion in terms of the Hopf–Lax formula and the corresponding (sub-)solutions
of the Hamilton–Jacobi equation [37] lie at the core of the applications to gra-
dient flows and partial differential equations of diffusion type [2]. Finally, the
behavior of entropy functionals as in (1.3) along geodesics in (P2(X),Wd)

[16,35,37] encodes a valuable geometric information, with relevant applica-
tions to Riemannian geometry and to the recent theory of metric-measure
spaces with Ricci curvature bounded from below [3–5,21,34,47,48].

It has been a challenging question to find a corresponding distance (enjoying
analogous deep geometric properties) between finite positive Borel measures
with arbitrary mass in M(X). In the present paper we will show that by choos-
ing the particular cost function

c(x1, x2) := ℓ(d(x1, x2)), where ℓ(d) :=
{
− log

(
cos2(d)

)
if d < π/2,

+∞ otherwise,
(1.19)

123
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the corresponding Logarithmic-Entropy Transport problem

LET(μ1, μ2) := min
γ∈M(X)

∑

i

∫

X

(
σi log σi − σi + 1

)
dμi

+
∫

X2
ℓ
(
d(x1, x2)

)
dγ , σi =

dγi

dμi

, (1.20)

coincides with a (squared) distance in M(X) (which we will call Hellinger–

Kantorovich distance and denote by HK) that can play the same fundamental
role like the Kantorovich–Wasserstein distance for P2(X).

Here is a (still non exhaustive) list of our main results of part II concerning
the Hellinger–Kantorovich distance.

(i) The representation (1.13) based on the Marginal Perspective function
(1.14) yields

LET(μ1, μ2)

= min
{ ∫ (

̺1 + ̺2 − 2
√
̺1̺2 cos(d(x1, x2) ∧ π/2)

)
dγ : ̺i =

dμi

dγi

}
.

(1.21)

By performing the rescaling ri �→ r2
i we realize that the function

H(x1, r2
1 ; x2, r2

2 ) is strictly related to the squared (semi)-distance

d2
C(x1, r1; x2, r2) := r2

1+r2
2−2r1r2 cos(d(x1, x2)∧π), (xi , ri ) ∈ X×R+

(1.22)
which is the so-called cone distance in the metric cone C over X , cf. [10].
The latter is the quotient space of X ×R+ obtained by collapsing all the
points (x, 0), x ∈ X , in a single point o, called the vertex of the cone. We
introduce the notion of “2-homogeneous marginal”

μ = h2α := π x
♯ (r

2α),
∫

X

ζ(x) dμ =
∫

C

ζ(x)r2 dα(x, r) with ζ ∈ Cb(X), (1.23)

to “project” measures α ∈ M(C) on measures μ ∈ M(X). Conversely,
there are many ways to “lift” a measure μ ∈ M(X) to α ∈ M(C) (e.g.
by taking α := μ⊗ δ1). The Hellinger–Kantorovich distance HK(μ1, μ2)

can then be defined by taking the best Kantorovich–Wasserstein distance
between all the possible lifts of μ1, μ2 in P2(C), i.e.

HK(μ1, μ2) = min
{
WdC

(α1, α2) : αi ∈ P2(C), h2αi = μi

}
. (1.24)
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It turns out that (the square of) (1.24) yields an equivalent variational
representation of the LET functional. In particular, (1.24) shows that in
the case of concentrated measures

LET(a1δx1, a2δx2) = HK2(a1δx1, a2δx2) = d2
C(x1, a1; x2, a2). (1.25)

Notice that (1.24) resembles the very definition (1.18) of the Kantorovich–
Wasserstein distance, where now the role of the marginals π i

♯ is replaced

by the homogeneous marginals h2. It is a nontrivial part of the equivalence
statement to check that the difference between the cut-off thresholds (π/2
in (1.21) and π in (1.22) does not affect the identity LET = HK2.

(ii) By refining the representation formula (1.24) by a suitable rescaling and
gluing technique, we can prove that (M(X),HK) is a metric space, a
property that is not obvious from the LET-representation and depends on
a subtle interplay of the entropy functions Fi (σ ) = σ log σ − σ + 1
and the cost function c from (1.19). We show that the metric induces
the weak convergence of measures in duality with bounded and contin-
uous functions, thus it is topologically equivalent to the flat or Bounded
Lipschitz distance [19, Sect. 11.3], see also [27, Thm. 3]. It also inher-
its the separability, completeness, length and geodesic properties from
the correspondent ones of the underlying space (X,d). On top of that,
we will prove a precise superposition principle (in the same spirit of the
Kantorovich–Wasserstein one [2, Sect. 8], [33]) for general absolutely
continuous curves in (M(X),HK) in terms of dynamic plans in C: as a
byproduct, we can give a precise characterization of absolutely continuous
curves and geodesics as homogeneous marginals of corresponding curves
in (P2(C),WdC

). An interesting consequence of these results concerns the
lower curvature bound of (M(X),HK) in the sense of Alexandrov: it is
a positively curved space if and only if (X,d) is a geodesic space with
curvature ≥ 1.

(iii) The dual formulation of the LET problem provides a dual characterization
of HK, viz.

1

2
HK2(μ1, μ2) = sup

{ ∫
P1ξ dμ2 −

∫
ξ dμ1 :

ξ ∈ Lipb(X), inf
X

ξ > −1/2
}
, (1.26)

where (Pt )0≤t≤1 is given by the inf-convolution

Ptξ(x) := inf
x ′∈X

ξ(x ′)

1+ 2tξ(x ′)
+ sin2(dπ/2(x, x ′))

2+ 4tξ(x ′)
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= inf
x ′∈X

1

t

(
1− cos2(dπ/2(x, x ′))

1+ 2tξ(x ′)

)
.

(iv) By exploiting the Hopf–Lax representation formula for the Hamilton–
Jacobi equation in C, we will show that for arbitrary initial data ξ ∈
Lipb(X) with inf ξ > −1/2 the function ξt := Ptξ is a subsolution (a
solution, if (X,d) is a length space) of

∂+t ξt (x)+
1

2
|DXξt |2(x)+ 2ξ2

t (x) ≤ 0 pointwise in X × (0, 1).

If (X,d) is a length space we thus obtain the characterization

1

2
HK2(μ0, μ1) = sup

{ ∫

X

ξ1 dμ1 −
∫

X

ξ0 dμ0 : ξ ∈ Ck([0, 1];Lipb(X)),

∂tξt (x)+
1

2
|DXξt |2(x)+ 2ξ2

t (x) ≤ 0 in X × (0, 1)
}
,

(1.27)
which reproduces, at the level of HK, the nice link between Wd and
Hamilton–Jacobi equations. One of the direct applications of (1.27) is
a sharp contraction property w.r.t. HK for the Heat flow in RCD(0,∞)

metric measure spaces (and therefore in every Riemannian manifold with
nonnegative Ricci curvature).

(v) Formula (1.27) clarifies that the HK distance can be interpreted as a
sort of inf-convolution (see the Remark 8.19) between the Hellinger
(in duality with solutions to the ODE ∂tξ + 2ξ2

t = 0) and the
Kantorovich–Wasserstein distance (in duality with (sub-)solutions to
∂tξt (x)+ 1

2 |DXξt |2(x) ≤ 0). The Hellinger distance

He2(μ1, μ2) =
∫

X

(√
̺1 −

√
̺2
)2

dγ, μi = ̺iγ,

corresponds to the HK functional generated by the discrete distance
(d(x1, x2) = π/2 if x1 �= x2). We will prove that

HK(μ1, μ2) ≤ He(μ1, μ2), HK(μ1, μ2) ≤Wd(μ1, μ2),

HKnd(μ1, μ2) ↑ He(μ1, μ2), nHKd/n ↑Wd(μ1, μ2) as n ↑ ∞,

where HKnd (resp. HKd/n) is the HK distance induced by nd (resp. d/n).
(vi) Combining the superposition principle and the duality with Hamilton–

Jacobi equations, we eventually prove that HK admits an equivalent
dynamic characterization “à la Benamou-Brenier” [7,18] (see also the
recent [27]) in X = R

d :
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HK2(μ0, μ1) = min
{ ∫ 1

0

∫ (
|vt |2 +

1

4
|wt |2

)
dμt dt :

μ ∈ C([0, 1];M(Rd)), μt=i = μi ,

∂tμt + ∇·(vtμt ) = wtμt in D
′(Rd × (0, 1))

}
.

(1.28)

Moreover, for the length space X = R
d a curve [0, 1] ∋ t �→ μ(t) is

geodesic curve w.r.t. HK if and only if the coupled system

∂tμt + ∇ · (Dxξtμt ) = 4ξtμt , ∂tξt +
1

2
|Dxξ

2|2 + 2ξ2
t = 0 (1.29)

holds for a suitable solution ξt =Ptξ0. The representation (1.28) is the
starting point for further investigations concerning the link to gradient
systems and reaction-diffusion equations, the cone geometry, the repre-
sentation of geodesics and of λ-convex integral functionals: we refer the
interested reader to the examples collected in [30].

Recall that the HK variational problem is just one example in the realm
of Entropy-Transport problems, and we think that other interesting applica-
tions can arise by different choices of entropies and cost. One of the simplest
variations is to choose the (seemingly more natural) quadratic cost function
c(x1, x2) := d2(x1, x2) instead of the more “exotic” (1.19). The resulting
functional is still associated to a distance expressed by

GHK2(μ1, μ2) := min
{ ∫ (

r2
1 + r2

2 − 2r1r2 exp(−d2(x1, x2)/2)
)

dα
}

(1.30)
where the minimum runs among all the plans α ∈M(C×C) such that h2π i

♯α =
μi (we propose the name Gaussian Hellinger–Kantorovich distance). If (X,d)
is a complete, separable and length metric space, (M(X),GHK) is a complete
and separable metric space, inducing the weak topology as HK. However, it
is not a length space in general, and we will show that the length distance
generated by GHK is precisely HK.

The plan of the paper is as follows.

Part I develops the general theory of Optimal Entropy-Transport problems.
Section 2 collects some preliminary material, in particular concerning the
measure-theoretic setting in arbitrary Hausdorff topological spaces (here we
follow [44]) and entropy functionals. We devote some effort to deal with gen-
eral functionals (allowing a singular part in the Definition (1.3)) in order to
include entropies which may have only linear growth. The extension to this
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general framework of the duality Theorem 2.7 (well known in Polish topolo-
gies) requires some care and the use of lower semicontinuous test functions
instead of continuous ones.

Section 3 introduces the class of Entropy-Transport problems, discussing
some examples and proving a general existence result for optimal plans. The
“reverse” formulation of Theorem 3.11, though simple, justifies the importance
of dealing with the largest class of entropies and will play a crucial role in
Sect. 5.

Section 4 is devoted to finding the dual formulation, proving its equivalence
with the primal problem (cf. Theorem 4.11), deriving sharp optimality con-
ditions (cf. Theorem 4.6) and proving the existence of optimal potentials in a
suitable generalized sense (cf. Theorem 4.15). The particular class of “regular”
problems (where the results are richer) is also studied in some detail.

Section 5 introduces the third formulation (1.12) based on the marginal
perspective function (1.11) and its “homogeneous” version (Sect. 5.2). The
proof of the equivalence with the previous formulations is presented in The-
orem 5.5 and Theorem 5.8. This part provides the crucial link for the further
development in the cone setting.

Part II is devoted to Logarithmic Entropy-Transport (LET) problems (Sect. 6)
and to their applications to the Hellinger–Kantorovich distance HK on M(X).

The Hellinger–Kantorovich distance is introduced by the lifting technique
in the cone space in Sect. 7, where we try to follow a presentation modeled
on the standard one for the Kantorovich–Wasserstein distance, independently
from the results on the LET-problems. After a brief review of the cone geom-
etry (Sect. 7.1) we discuss in some detail the crucial notion of homogeneous
marginals in Sect. 7.2 and the useful tightness conditions (Lemma 7.3) for
plans with prescribed homogeneous marginals. Section 7.3 introduces the
definition of the HK distance and its basic properties. The crucial rescaling
and gluing techniques are discussed in Sect. 7.4: they lie at the core of the
main metric properties of HK, leading to the proof of the triangle inequality
and to the characterizations of various metric and topological properties in
Sect. 7.5. The equivalence with the LET formulation is the main achievement
of Sect. 7.6 (Theorem 7.20), with applications to the duality formula (Theo-
rem 7.21), to the comparisons with the classical Hellinger and Kantorovich
distances (Sect. 7.7) and with the Gaussian Hellinger–Kantorovich distance
(Sect. 7.8).

The last section of the paper collects various important properties of HK that
share a common “dynamic” flavor. After a preliminary discussion of absolutely
continuous curves and geodesics in the cone space C in Sect. 8.1, we derive the
basic superposition principle in Theorem 8.4. This is the cornerstone to obtain
a precise characterization of geodesics (Theorem 8.6), a sharp lower curva-
ture bound in the Alexandrov sense (Theorem 8.8), and to prove the dynamic
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characterization à la Benamou-Brenier of Sect. 8.5. The other powerful tool
is provided by the duality with subsolutions to the Hamilton–Jacobi equation
(Theorem 8.12), which we derive after a preliminary characterization of metric
slopes for a suitable class of test functions in C. One of the most striking results
of Sect. 8.4 is the explicit representation formula for solutions to the Hamilton–
Jacobi equation in X , that we obtain by a careful reduction technique from the
Hopf–Lax formula in C. In this respect, we think that Theorem 8.11 is interest-
ing by itself and could find important applications in different contexts. From
the point of view of Entropy-Transport problems, Theorem 8.11 is particularly
relevant since it provides a dynamic interpretation of the dual characterization
of the LET functional. In Sect. 8.6 we show that in the Euclidean case X = R

d

all geodesic curves are characterized by the system (1.29). The last Sect. 8.7
provides various contraction results: in particular we extend the well known
contraction property of the Heat flow in spaces with nonnegative Riemannian
Ricci curvature to HK.

Note during final preparation. The earliest parts of the work developed here
were first presented at the ERC Workshop on Optimal Transportation and
Applications in Pisa in 2012. Since then the authors developed the theory
continuously further and presented results at different workshops and seminars,
see Appendix A for some remarks concerning the chronological development
of our theory.

In June 2015 the authors became aware of the parallel work [27], which
mainly concerns the dynamical approach to the Hellinger–Kantorovich dis-
tance discussed in Sect. 8.5 and the metric-topological properties of Sect. 7.5
in the Euclidean case.

Moreover, in mid August 2015 they became aware of the works [13,14],
which start from the dynamical formulation of the Hellinger–Kantorovich
distance in the Euclidean case, prove existence of geodesics and sufficient
optimality and uniqueness conditions (which we state in a stronger form
in Sect. 8.6) with a precise characterization in the case of a pair of Dirac
masses. Moreover, they provide a detailed discussion of curvature properties
following Otto’s formalism [36], and study more general dynamic costs on the
cone space with their equivalent primal and dual static formulation (leading to
characterizations analogous to (7.1) and (6.14) in the Hellinger–Kantorovich
case).

Apart from the few above remarks, these independent works did not
influence the first (cf. arXiv1508.07941v1) and the present version of this
manuscript, which is essentially a minor modification and correction of the
first version. In the final Appendix A we give a brief account of the chrono-
logical development of our theory.
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Part I. Optimal Entropy-Transport problems

2 Preliminaries

2.1 Measure theoretic notation

Positive Radon measures, narrow and weak convergence, tightness. Let
(X, τ ) be a Hausdorff topological space. We will denote by B(X) theσ -algebra
of its Borel sets and by M(X) the set of finite nonnegative Radon measures
on X [44], i.e. σ -additive set functions μ : B(X)→ [0,∞) such that

∀ B ∈ B(X), ∀ ε > 0 ∃ Kε ⊂ B compact such that μ(B \Kε) ≤ ε. (2.1)

The restriction B �→ μ(B ∩ A) of a Radon measure μ to a Borel set A will be
denoted by μ A.

Radon measures have strong continuity properties with respect to monotone
convergence. For this, denote by LSC(X) the space of all lower semicontinu-
ous real-valued functions on X and consider a nondecreasing directed family
( fλ)λ∈L ⊂ LSC(X) (where L is a possibly uncountable directed set) of non-
negative and lower semicontinuous functions fλ converging to f , we have (cf.
[44, Prop. 5, p. 42])

lim
λ∈L

∫

X

fλ dμ =
∫

X

f dμ for all μ ∈M(X). (2.2)

We endow M(X) with the narrow topology, the coarsest (Hausdorff) topology
for which all the mapsμ �→

∫
X
ϕ dμ are lower semicontinuous, as ϕ : X → R

varies among the set LSCb(X) of all bounded lower semicontinuous functions
[44, p. 370, Def. 1].

Remark 2.1 (Radon versus Borel, narrow versus weak) When (X, τ ) is a
Radon space (in particular a Polish, or Lusin or Souslin space [44, p. 122])
then every Borel measure satisfies (2.1), so that M(X) coincides with the set
of all nonnegative and finite Borel measures. Narrow topology is in general
stronger than the standard weak topology induced by the duality with contin-
uous and bounded functions of Cb(X). However, when (X, τ ) is completely
regular, i.e.

for any closed set F ⊂ X and any x0 ∈ X \ F

there exists f ∈ Cb(X) with f (x0) > 0 and f ≡ 0 on F, (2.3)

(in particular when τ is metrizable), narrow and weak topology coincide [44,
p. 371]. Therefore when (X, τ ) is a Polish space we recover the usual setting
of Borel measures endowed with the weak topology.
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We now turn to the compactness properties of subsets of M(X). Let us first
recall that a set K ⊂ M(X) is bounded if supμ∈K μ(X) < ∞; it is equally

tight if

∀ ε > 0 ∃ Kε ⊂ X compact ∀μ ∈ K : μ(X \ Kε) ≤ ε. (2.4)

Compactness with respect to narrow topology is guaranteed by an extended
version of Prokhorov’s Theorem [44, Thm. 3, p. 379]. Tightness of weakly
convergent sequences in metrizable spaces is due to Le Cam [29].

Theorem 2.2 If a subset K ⊂ M(X) is bounded and equally tight then it is

relatively compact with respect to the narrow topology. The converse is also

true in the following cases:

(i) (X, τ ) is a locally compact or a Polish space;

(ii) (X, τ ) is metrizable and K = {μn : n ∈ N} for a given weakly convergent

sequence (μn).

Ifμ ∈M(X) and Y is another Hausdorff topological space, a map T : X →
Y is Lusin μ-measurable [44, Ch. I, Sect. 5] if for every ε > 0 there exists a
compact set Kε ⊂ X such that μ(X \ Kε) ≤ ε and the restriction of T to Kε

is continuous. We denote by T♯μ ∈ M(Y ) the push-forward measure defined
by

T♯μ(B) := μ(T−1(B)) for every B ∈ B(Y ). (2.5)

For μ ∈ M(X) and a Lusin μ-measurable T : X → Y , we have T♯μ ∈
M(Y ). The linear space B(X) (resp. Bb(X)) denotes the space of real Borel
(resp. bounded Borel) functions. If μ ∈ M(X), p ∈ [1,∞], we will denote
by Lp(X, μ) the subspace of Borel p-integrable functions w.r.t. μ, without
identifying μ-almost equal functions.

Lebesgue decomposition. Given γ, μ ∈M(X), we write γ ≪ μ if μ(A) = 0
yields γ (A) = 0 for every A ∈ B(X). We say that γ ⊥ μ if there exists
B ∈ B(X) such that μ(B) = 0 = γ (X \ B).

Lemma 2.3 (Lebesgue decomposition) For every γ, μ ∈M(X) with γ (X)+
μ(X) > 0 there exists Borel functionsσ, ̺ : X → [0,∞)and a Borel partition

(A, Aγ , Aμ) of X with the following properties:

A = {x ∈ X : σ(x) > 0} = {x ∈ X : ̺(x) > 0}, σ · ̺ ≡ 1 in A, (2.6)
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γ = σμ+ γ⊥, σ ∈ L1
+(X, μ), γ⊥ ⊥ μ, γ⊥(X \ Aγ ) = μ(Aγ ) = 0,

(2.7)

μ = ̺γ + μ⊥, ̺ ∈ L1
+(X, γ ), μ⊥ ⊥ γ, μ⊥(X \ Aμ) = γ (Aμ) = 0.

(2.8)

Moreover, the sets A, Aγ , Aμ and the densities σ, ̺ are uniquely determined

up to (μ+ γ )-negligible sets.

Proof Let θ ∈ B(X; [0, 1]) be the Lebesgue density of γ w.r.t. ν := μ + γ .
Thus, θ is uniquely determined up to ν-negligible sets. The Borel partition
can be defined by setting A := {x ∈ X : 0 < θ(x) < 1}, Aγ := {x ∈ X :
θ(x) = 1} and Aμ := {x ∈ X : θ(x) = 0}. By defining σ := θ/(1 − θ),
̺ := 1/σ = (1 − θ)/θ for every x ∈ A and σ = ̺ ≡ 0 in X \ A, we obtain
Borel functions satisfying (2.7) and (2.8).

Conversely, it is not difficult to check that starting from a decomposition
as in (2.6), (2.7), and (2.8) and defining θ ≡ 0 in Aμ, θ ≡ 1 in Aγ and
θ := σ/(1+σ) in A we obtain a Borel function with values in [0, 1] such that
γ = θ(μ+ γ ). ⊓⊔

2.2 Min–max and duality

We recall now a powerful form of von Neumann’s Theorem, concerning mini-
max properties of convex-concave functions in convex subsets of vector spaces
and refer to [20, Prop. 1.2+3.2, Chap. VI] for a general exposition.

Let A, B be nonempty convex sets of some vector spaces and let us suppose
that A is endowed with a Hausdorff topology. Let L : A × B → R be a
function such that

a �→ L(a, b) is convex and lower semicont. in A for every b ∈ B,

(2.9a)

b �→ L(a, b) is concave in B for every a ∈ A. (2.9b)

Notice that for arbitrary functions L one always has

inf
a∈A

sup
b∈B

L(a, b) ≥ sup
b∈B

inf
a∈A

L(a, b); (2.10)

so that equality holds in (2.10) if supb∈B infa∈A L(a, b) = +∞. When
supb∈B infa∈A L(a, b) is finite, we can still have equality thanks to the fol-
lowing result.

The statement has the advantage of involving a minimal set of topological
assumptions (we refer to [45, Thm. 3.1] for the proof; see also [9, Chapter 1,
Prop. 1.1]).
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Theorem 2.4 (Minimax duality) Assume that (2.9a) and (2.9b) hold. If there

exists b⋆ ∈ B and C > supb∈B infa∈A L(a, b) such that

{
a ∈ A : L(a, b⋆) ≤ C

}
is compact in A, (2.11)

then

inf
a∈A

sup
b∈B

L(a, b) = sup
b∈B

inf
a∈A

L(a, b). (2.12)

2.3 Entropy functions and their conjugates

Entropy functions in [0,∞). We say that F : [0,∞) → [0,∞] belongs to
the class Ŵ(R+) of admissible entropy function if it satisfies

F is convex and lower semicontinuous and D(F) ∩ (0,∞) �= ∅, (2.13)

where
D(F) := {s ≥ 0 : F(s) <∞}. (2.14)

It is useful to recall that for every x0 ∈ D(F) the map x �→ F(x)−F(x0)
x−x0

is
increasing in D(F)\{x0}, thanks to the convexity of F . The recession constant
F ′∞, the right derivative F ′0 at 0, and the asymptotic affine coefficient aff F∞
are defined by

F ′∞ := lim
s→∞

F(s)

s
= sup

s>0

F(s)− F(so)

s − so

, so ∈ D(F);

F ′0 :=

⎧
⎨
⎩
−∞ if F(0) = +∞,

lim
s↓0

F(s)−F(0)
s

otherwise;

aff F∞ :=

⎧
⎨
⎩
+∞ if F ′∞ = +∞,

lim
s→∞

(
F ′∞ s − F(s)

)
otherwise.

(2.15)

To avoid trivial cases, we assumed in (2.13) that the proper domain D(F)

contains at least one strictly positive real number. By convexity, D(F) is a
subinterval of [0,∞), and we will mainly focus on the case when D(F) has
nonempty interior and F has superlinear growth, i.e. F ′∞ = +∞. Still it will
be useful to deal with the general class defined by (2.13).

Legendre duality. The Legendre conjugate function F∗ : R→ (−∞,+∞]
is defined by

F∗(φ) := sup
s≥0

(
sφ − F(s)

)
, (2.16)
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with proper domain D(F∗) := {φ ∈ R : F∗(φ) ∈ R}; we will also denote
by D̊(F∗) the interior of D(F∗). Strictly speaking, F∗ is the conjugate of the
convex function F̃ : R→ (−∞,+∞], obtained by extending F to +∞ for
negative arguments, and it is related to the subdifferential ∂F : R→ 2R by

φ ∈ ∂F(s) ⇔ s ∈ D(F), φ ∈ D(F∗), F(s)+ F∗(φ) = sφ. (2.17)

Notice that

inf D(F∗) = −∞, sup D(F∗) = F ′∞, D̊(F∗) = (−∞, F ′∞), (2.18)

so that F∗ is finite and continuous in (−∞, F ′∞), nondecreasing, and satisfies

lim
φ↓−∞

F∗(φ) = inf F∗ = −F(0), sup F∗ = lim
φ↑+∞

F∗(φ) = +∞. (2.19)

Concerning the behavior of F∗ at the boundary of its proper domain we can
distinguish a few cases depending on the behavior of F at 0 and +∞:

• If F ′0 = −∞ (in particular if F(0) = +∞) then F∗ is strictly increasing
in D(F∗).
• If F ′0 is finite, then F∗ is strictly increasing in [F ′0, F ′∞) and takes the

constant value −F(0) in (−∞, F ′0]. Thus −F(0) belongs to the range of
F∗ only if F ′0 > −∞.
• If F ′∞ is finite, then limφ↑F ′∞ F∗(φ) = aff F∞. Thus F ′∞ ∈ D(F∗) only if

aff F∞ <∞.
• The degenerate case when F ′∞ = F ′0 occurs only when F is linear.

If F is not linear, we always have

F∗ is an increasing homeomorphism
between (F ′0, F ′∞) and (−F(0), aff F∞)

}
(2.20)

with the obvious extensions to the boundaries of the intervals when F ′0 or
aff F∞ are finite.

We introduce the closed convex subset F of R
2 associated to the epigraph

of F∗

F :=
{
(φ, ψ) ∈ R

2 : ψ ≤ −F∗(φ)
}

=
{
(φ, ψ) ∈ R

2 : sφ + ψ ≤ F(s) ∀ s > 0
}
;

(2.21)

since D(F∗) has nonempty interior, F has nonempty interior F̊ as well, with

F̊ =
{
(φ, ψ) ∈ R

2 : φ ∈ D̊(F∗), ψ < −F∗(φ)
}
, (2.22)
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and that F = F̊. The function F can be recovered from F∗ and from F through
the dual Fenchel–Moreau formula

F(s) = sup
φ∈R

(
sφ − F∗(φ)

)
= sup

(φ,ψ)∈F
sφ + ψ = sup

(φ,ψ)∈F̊
sφ + ψ. (2.23)

Notice that F satisfies the obvious monotonicity property

(φ, ψ) ∈ F̊, ψ̃ ≤ ψ, φ̃ ≤ φ ⇒ (φ̃, ψ̃) ∈ F̊. (2.24)

If F is finite in a neighborhood of +∞, then F∗ is superlinear as φ ↑ ∞.
More precisely, its asymptotic behavior as φ → ±∞ is related to the proper
domain of F by

s±F = lim
φ→±∞

F∗(φ)

φ
. (2.25)

We will also use the duality formula

(
λF(·)

)∗ = λF∗(·/λ) λ > 0

and we adopt the notationφ− andφ+ to denote the negative and the positive part
of a function φ, where φ−(x) := min{φ(x), 0} and φ+(x) := max{φ(x), 0}.

Example 2.5 (Power-like entropies) An important class of entropy functions
is provided by the power like functions Up : [0,∞) → [0,∞] with p ∈ R

characterized by

Up ∈ C∞(0,∞), Up(1) = U ′p(1) = 0,

U ′′p(s) = s p−2, Up(0) = lim
s↓0

Up(s).
(2.26)

Equivalently, we have the explicit formulas

Up(s) =

⎧
⎪⎨
⎪⎩

1
p(p−1)

(
s p − p(s − 1)− 1

)
if p �= 0, 1,

s log s − s + 1 if p = 1,

s − 1− log s if p = 0,

for s > 0, (2.27)

with Up(0) = 1/p if p > 0 and Up(0) = +∞ if p ≤ 0.
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Using the dual exponent q = p/(p − 1), the corresponding Legendre con-
jugates read

U∗q (φ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q − 1

q

[(
1+ φ

q − 1

)q
+ − 1

]
, D(U∗q ) = R, if p > 1, q > 1,

eφ − 1, D(U∗q ) = R, if p = 1, q = ∞,

q − 1

q

[(
1+ φ

q − 1

)q − 1
]
, D(U∗q ) = (−∞, 1− q), if 0 < p < 1, q < 0,

− log(1− φ), D(U∗q ) = (−∞, 1), if p = 0, q = 0,

q − 1

q

[(
1+ φ

q − 1

)q − 1
]
, D(U∗q ) = (−∞, 1− q], if p < 0, 0 < q < 1.

Reverse entropies. Let us now introduce the reverse density function R :
[0,∞)→ [0,∞] as

R(r) :=
{

r F(1/r) if r > 0,

F ′∞ if r = 0.
(2.28)

It is not difficult to check that R is a proper, convex and lower semicontinuous
function, with

R(0) = F ′∞, R′∞ = F(0), aff F∞ = −R′0, aff R∞ = −F ′0, (2.29)

so that R ∈ Ŵ(R+) and the map F �→ R is an involution on Ŵ(R+). A
further remarkable involution property is enjoyed by the dual convex set R :=
{(ψ, φ) ∈ R

2 : R∗(ψ)+ φ ≤ 0} defined as (2.21): it is easy to check that

(φ, ψ) ∈ F ⇔ (ψ, φ) ∈ R, (2.30)

a relation that obviously holds for the interiors of F and R as well. It follows
that the Legendre transform of R and F are related by

ψ ≤ −F∗(φ) ⇔ φ ≤ −R∗(ψ) ⇔ (φ, ψ) ∈ F for every φ,ψ ∈ R,

(2.31)
and, recalling (2.22),

φ ∈ D̊(F∗), ψ < −F∗(φ) ⇔ ψ ∈ D̊(R∗), φ < −R∗(ψ). (2.32)

Both the above conditions characterize the interior of F. As in (2.20) we have

R∗ is an increasing homeomorphism
between (−aff F∞, F(0)) and (−F ′∞,−F ′0)

}
(2.33)
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with D̊(R∗) = (−∞, F(0)). A last useful identity involves the subdifferentials
of F and R: for every s, r > 0 with sr = 1, and φ,ψ ∈ R we have

(
φ ∈ ∂F(r) and ψ = −F∗(φ)

)
⇐⇒

(
ψ ∈ ∂R(s) and φ = −R∗(ψ)

)
.

(2.34)
It is not difficult to check that the reverse entropy associated to Up is U1−p.

2.4 Relative entropy integral functionals

For F ∈ Ŵ(R+) we consider the functional F : M(X) ×M(X) → [0,∞]
defined by

F (γ |μ) :=
∫

X

F(σ ) dμ+ F ′∞ γ⊥(X), γ = σμ+ γ⊥, (2.35)

where γ = σμ + γ⊥ is the Lebesgue decomposition of γ w.r.t. μ, see
Lemma 2.3. Notice that

if F is superlinear then F (γ |μ) = +∞ if γ �≪ μ, (2.36)

and, whenever η0 is the null measure, we have

F (γ |η0) = F ′∞ γ (X), (2.37)

where, as usual in measure theory, we adopt the convention 0 · ∞ = 0.
Because of our applications in Sect. 3, our next lemma deals with Borel

functions ϕ ∈ B(X; R̄) taking values in the extended real line R̄ := R∪{±∞}.
By F̄ we denote the closure of F in R̄× R̄, i.e.

(φ, ψ) ∈ F̄ ⇔

⎧
⎪⎨
⎪⎩

ψ ≤ −F∗(φ) if −∞ < φ ≤ F ′∞, φ < +∞
ψ = −∞ if φ = F ′∞ = +∞,

ψ ∈ [−∞, F(0)] if φ = −∞,

(2.38)
and, symmetrically by (2.29) and (2.30),

(φ, ψ) ∈ F̄ ⇔

⎧
⎪⎨
⎪⎩

φ ≤ −R∗(ψ) if −∞ < ψ ≤ F(0), ψ < +∞
φ = −∞ if ψ = F(0) = +∞,

φ ∈ [−∞, F ′∞] if ψ = −∞.

(2.39)
In particular, we have

(φ, ψ) ∈ F̄ #⇒
(
φ ≤ F ′∞ and ψ ≤ F(0)

)
. (2.40)
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Lemma 2.6 If γ, μ ∈M(X) and (φ, ψ) ∈ B(X; F̄) satisfy

F (γ |μ) <∞, ψ− ∈ L1(X, μ) (resp. φ− ∈ L1(X, γ )),

then φ+ ∈ L1(X, γ ) (resp. ψ+ ∈ L1(X, μ)) and

F (γ |μ)−
∫

X

ψ dμ ≥
∫

X

φ dγ. (2.41)

Whenever ψ ∈ L1(X, μ) or φ ∈ L1(X, γ ), then equality holds in (2.41) if and

only if for the Lebesgue decomposition given by Lemma 2.3 one has

φ ∈ ∂F(σ ), ψ = −F∗(φ) (μ+γ )-a.e. in A, (2.42)

ψ = F(0) <∞ μ⊥-a.e. in Aμ, φ = F ′∞ <∞ γ⊥-a.e. in Aγ . (2.43)

Equation (2.42) can equivalently be formulated as ψ ∈ ∂R(̺) and φ =
−R∗(ψ).

Proof Let us first show that in both cases the two integrals of (2.41) are well
defined (possibly taking the value −∞). If ψ− ∈ L1(X, μ) (in particular
ψ > −∞μ-a.e.) with (φ, ψ) ∈ F̄ we use the pointwise bound sφ ≤ F(s)−ψ
that yields sφ+ ≤ (F(s)−ψ)+ ≤ F(s)+ψ− obtaining φ+ ∈ L1(X, γ ), since
(φ, ψ) ∈ F̄ yields φ+ ≤ F ′∞.

If φ− ∈ L1(X, γ ) (and thus φ > −∞ γ -a.e.) the analogous inequality
ψ+ ≤ F(s) + sφ− yields ψ+ ∈ L1(X, μ). Then, (2.41) follows from (2.21)
and (2.40).

Once φ ∈ L1(X, μ) (or ψ ∈ L1(X, γ )), estimate (2.41) can be written as

∫

A

(
F(σ )− σφ − ψ

)
dμ+

∫

Aμ

(
F(0)− ψ

)
dμ⊥+

∫

Aγ

(F ′∞ − φ) dγ⊥ ≥ 0,

and by (2.21) and (2.40) the equality case immediately yields that each of the
three integrals of the previous formula vanishes. Since (φ, ψ) lies in F̄ ⊂ R

2

(μ + γ )-a.e. in A, the vanishing of the first integrand yields ψ = −F∗(σ )
and φ ∈ ∂F(σ ) by (2.17) for μ and (μ + γ ) almost every point in A. The
equivalence (2.34) provides the reversed identities ψ ∈ ∂R(̺), φ = −R∗(ψ).

The relations in (2.43) follow easily by the vanishing of the last two integrals
and the fact that ψ is finite μ-a.e. and φ is finite γ -a.e. ⊓⊔

A simple application of (2.41) yields the following variant of Jensen’s
inequality

F (γ |μ) ≥ μ(X)F
(
γ (X)/μ(X)

)
whenever μ(X) > 0. (2.44)
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In order to prove it, we first choose arbitrary (φ̄, ψ̄) ∈ F and constant functions
φ(x) ≡ φ̄, ψ(x) ≡ ψ̄ in (2.41), obtaining

F (γ |μ) ≥ μ(X)
[
ψ̄ + γ (X)

μ(X)
φ̄
]
;

we then take the supremum with respect to (φ̄, ψ̄) ∈ F, recalling (2.23).
The next theorem gives a characterization of the relative entropy F , which

is the main result of this section. Its proof is a careful adaptation of [2, Lemma
9.4.4] to the present more general setting, which includes the sublinear case
when F ′∞ < ∞ and the lack of complete regularity of the space. This sug-
gests to deal with lower semicontinuous functions instead of continuous ones.
Whenever A ⊂ R, we denote by LSCs(X; A) the class of lower semicontinu-
ous simple real functions

LSCs(X) :=
{
ϕ : X → R : ϕ ∈ LSC(X), ϕ(X) is a finite subset of A

}
,

by omitting A when A = R; we introduce the notation ϕ = −φ and the
concave increasing function

F◦(ϕ) := −F∗(−ϕ), F◦(ϕ) = inf
s≥0

(
ϕs + F(s)

)
; (2.45)

by (2.18) and (2.19) the interior of the proper domain of F◦ is D̊(F◦) =
(−F ′∞,+∞) and limϕ↓−F ′∞ F◦(ϕ) = −∞, limϕ↑+∞ F◦(ϕ) = F(0).

Theorem 2.7 (Duality and lower semicontinuity) For every γ, μ ∈M(X) we

have

F (γ |μ) = sup
{ ∫

X

ψ dμ+
∫

X

φ dγ : φ,ψ ∈ LSCs(X),

(φ(x), ψ(x)) ∈ F̊ ∀ x ∈ X
}

(2.46)

= sup
{ ∫

X

ψ dμ−
∫

X

R∗(ψ) dγ : ψ ∈ LSCs(X, D̊(R∗))
}

(2.47)

= sup
{ ∫

X

F◦(ϕ) dμ−
∫

X

ϕ dγ : ϕ ∈ LSCs(X, D̊(F◦))
}
. (2.48)

Moreover, the space LSCs(X) in the supremum of (2.46), can also be replaced

by the space LSCb(X) of bounded l.s.c. functions or by the space Bb(X)

of bounded Borel functions and the constraint (φ(x), ψ(x)) ∈ F̊ in (2.46)
can also be relaxed to (φ(x), ψ(x)) ∈ F for every x ∈ X. Similarly, the
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spaces LSCs(X, D̊(R∗)) (resp. LSCs(X, D̊(F◦))) of (2.47) (resp. (2.48)) can

be replaced by LSCb(X,D(R∗)) or Bb(X,D(R∗)) (resp. LSCb(X,D(F◦)) or

Bb(X,D(F◦))).

Remark 2.8 If (X, τ ) is completely regular (recall (2.3)), then we can equiv-
alently replace lower semicontinuous functions by continuous ones in (2.46),
(2.47) and (2.48). E.g. in the case of (2.46) we have

F (γ |μ) = sup
{ ∫

X

ψ dμ+
∫

X

φ dγ : (φ, ψ) ∈ Cb(X; F̊)
}
, (2.49)

whereas (2.47) and (2.48) become

F (γ |μ) = sup
{ ∫

X

ψ dμ−
∫

X

R∗(ψ) dγ : ψ, R∗(ψ) ∈ Cb(X)
}

= sup
{ ∫

X

F◦(ϕ) dμ−
∫

X

ϕ dγ : ϕ, F◦(ϕ) ∈ Cb(X)
}
.

In fact, considering first (2.46), by complete regularity it is possible to express
every pair φ,ψ of bounded lower semicontinuous functions with values in F̊

as the supremum of a directed family of continuous and bounded functions
(φα, ψα)α∈A which still satisfy the constraint given by F̊ due to (2.24). We
can then apply the continuity (2.2) of the integrals with respect to the Radon
measures μ and γ .

In order to replace l.s.c. functions with continuous ones in (2.47) we can
approximate ψ by an increasing directed family of continuous functions
(ψα)α∈A. By truncation, one can always assume that maxψ ≥ supψα ≥
inf ψα ≥ minψ . Since R∗(ψ) is bounded, it is easy to check that also R∗(ψα)

is bounded and it is an increasing directed family converging to R∗(ψ). An
analogous argument works for (2.49).

Proof Since the statements are trivial in the case when μ = γ = η0 are the
null measure, it is clearly not restrictive to assume (μ + γ )(X) > 0. Let us
prove (2.46): denoting byF ′ its right-hand side, Lemma 2.6 yieldsF ≥ F ′. In
order to prove the opposite inequality we consider the Lebesgue decomposition
given by Lemma 2.3: let Aγ ∈ B(X) be a μ-negligible Borel set where γ⊥

is concentrated, let Ã := X \ Aγ = A ∪ Aμ and let σ : X → [0,∞) be a
Borel density for γ w.r.t. μ. We consider a countable subset (φn, ψn)

∞
n=1 with

ψ1 = φ1 = 0, which is dense in F̊ and an increasing sequence φ̄n ∈ (−∞, F ′∞)

converging to F ′∞, with ψ̄n := −F∗(φ̄n). By (2.23) we have

F(σ (x))= lim
N↑∞

FN (x), where ∀x ∈ X : FN (x) := sup
1≤n≤N

ψn+σ(x)φn.
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Hence, Beppo Levi’s monotone convergence theorem (notice that FN ≥ F1 =
0) implies F (γ |μ) = limN↑∞F ′N (γ |μ), where

F
′
N (γ |μ) :=

∫

Ã

FN (x) dμ(x)+ φ̄Nγ (Aγ ).

It is therefore sufficient to prove that

F
′(γ |μ) ≥ F

′
N (γ |μ) for every N ∈ N. (2.50)

We fix N ∈ N, set φ0 := φ̄N , ψ0 := ψ̄N , and recursively define the Borel
sets A j , for j = 0, . . . , N , with A0 := Aγ and

A1 := {x ∈ Ã : F1(x) = FN (x)},
A j := {x ∈ Ã : FN (x) = F j (x) > F j−1(x)} for j = 2, . . . , N .

(2.51)

Since F1 ≤ F2 ≤ · · · ≤ FN , the sets Ai , i = 1, . . . , N , form a Borel partition
of Ã. Asμ and γ are Radon measures, for every ε > 0 we find disjoint compact
sets K j ⊂ A j and disjoint open sets (by the Hausdorff separation property of
X ) G j ⊃ K j such that

N∑

j=0

(
μ(A j \ K j )+γ (A j \ K j )

)
=μ
(

X \
N⋃

j=0

K j

)
+γ
(

X \
N⋃

j=0

K j

)
≤ε/SN

where

SN := max
0≤n≤N

[(
φn − φN

min

)
+
(
ψn − ψN

min

)]
,

φN
min := min

0≤ j≤N
φ j , ψN

min := min
0≤ j≤N

ψ j .

Since (φn, ψn) ∈ F for every n ∈ N and F̊ satisfies the monotonicity property
(2.24) (φN

min, ψ
N
min) ∈ F̊; since the sets Gn are disjoint, the functions

ψN (x) :=
{
ψn if x ∈ Gn,

ψN
min if x ∈ X \

(
∪N

n=1 Gn

)

φN (x) :=
{
φn if x ∈ Gn,

φN
min if x ∈ X \

(
∪N

n=1 Gn

)
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take values in F̊ and are lower semicontinuous thanks to the representation
formula

ψN (x) = ψN
min +

N∑

n=0

(
ψn − ψN

min

)
χGn (x),

φN (x) = φN
min +

N∑

n=0

(
φn − φN

min

)
χGn (x). (2.52)

Moreover, they satisfy

F
′
N (γ |μ) =

N∑

j=1

∫

A j

F j dμ+ φ0γ (A0)

= φN
minγ (X)+ ψN

minμ(X)

+
N∑

j=0

( ∫

A j

(φ j − φN
min) dγ +

∫

A j

(ψ j − ψN
min) dμ

)

≤ φN
minγ (X)+ ψN

minμ(X)

+
N∑

j=0

( ∫

K j

(φ j − φN
min) dγ +

∫

K j

(ψ j − ψN
min) dμ

)
+ ε

≤
∫

X

φN dγ +
∫

X

ψN dμ+ ε.

Since ε is arbitrary we obtain (2.50).
Equation (2.47) follows directly by (2.46) and the previous Lemma 2.6. In

fact, denoting by F ′′ the right-hand side of (2.47), Lemma 2.6 shows that
F ′′(γ |μ) ≤ F (γ |μ) = F ′(γ |μ). On the other hand, if φ,ψ ∈ LSCs(X)

with (φ, ψ) ∈ F̊ then ψ takes values in D̊(R∗) and −R∗(ψ) ≥ φ. Hence,
the map x �→ R∗(ψ(x)) belongs to LSCs(X) since R∗ is real valued and
nondecreasing in the interior of its domain, and it is bounded from above by
−φ. We thus get F ′′(γ |μ) ≥ F ′(γ |μ).

In order to show (2.48), we observe that for everyψ ∈ LSCs(X, D̊(R∗)) and
ε > 0 we can set ϕ := R∗(ψ)+ ε ∈ LSCs(X, D̊(F◦)); since (ψ,−R∗(ψ)−
ε) ∈ R̊, (2.31) yieldsψ < −F∗(−ϕ) = F◦(ϕ) so that

∫
F◦(ϕ) dμ−

∫
ϕ dγ ≥∫

ψ dμ −
∫

R∗(ψ) dγ − εγ (X). By construction and (2.30) we also have
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(−ϕ, F◦(ϕ)) ∈ F̊ so that
∫

F◦(ϕ) dμ −
∫
ϕ dγ ≤ F (γ |μ) by Lemma 2.6.

Passing to the limit as ε ↓ 0 and recalling (2.47) we obtain (2.48).
When one replaces LSCs(X) with LSCb(X) or Bb(X) in (2.46) and the

constraint (φ(x), ψ(x)) ∈ F̊ with (φ(x), ψ(x)) ∈ F (or even F̄), the supremum
is taken on a larger set, so that the right-hand side of (2.46) cannot decrease.
On the other hand, Lemma 2.6 shows that F (γ |μ) still provides an upper
bound even if φ,ψ are in Bb(X); thus duality also holds in this case. The same
argument applies to (2.47) or (2.48). ⊓⊔

The following result provides lower semicontinuity of the relative entropy
or of an increasing sequence of relative entropies.

Corollary 2.9 The functional F is jointly convex and lower semicontinuous

in M(X)×M(X). More generally, if F ∈ Ŵ(R+) is the pointwise limit of an

increasing net (Fλ)λ∈L ⊂ Ŵ(R+) indexed by a directed set L and (μ, γ ) ∈
M(X) ×M(X) is the narrow limit of a net (μλ, γλ)λ∈L ⊂ M(X) ×M(X),

then the corresponding entropy functionals Fλ,F satisfy

lim inf
λ∈L

Fλ(γλ|μλ) ≥ F (γ |μ). (2.53)

Proof The lower semicontinuity of F follows by (2.46), which provides a
representation of F as the supremum of a family of lower semicontinuous
functionals for the narrow topology. Using Fα ≤ Fλ for α ≤ λ in L, α fixed,
we have

lim inf
λ∈L

Fλ(γλ|μλ) ≥ lim inf
λ∈L

Fα(γλ|μλ) ≥ Fα(γ |μ),

by the above lower semicontinuity. Hence, it suffices to check that

lim
λ∈L

Fλ(γ |μ) = F (γ |μ) for every γ, μ ∈M(X). (2.54)

This formula follows by the monotonicity of the convex sets Fλ (associated to
Fλ by (2.21)), i.e. Fα ⊂ Fλ if α ≤ λ in L, and by the fact that F̊ ⊂ ∪λ∈LF̊λ; in
order to show the latter property, we argue by contradiction and we suppose
that there exists (φ, ψ) ∈ F̊ which does not belong to F′ := ∪λ∈LF̊λ. Notice
that every Fλ has nonempty interior, so that F′ is a nonempty convex and open
set. We also notice that φ < F ′∞ and limλ∈L (Fλ)

′
∞ = F ′∞ so that there exists

α ∈ L with F∗α (φ) < ∞; thus there exists −ψ̄ > ψ such that (φ, ψ̄) ∈ F′.
Applying the geometric form of the Hahn-Banach theorem, we can find a non
vertical line separating (φ, ψ) from F′, i.e. there exists θ ∈ R such that

−ψ ′ ≥ −ψ + θ(φ′ − φ) for every (φ′, ψ ′) ∈ F′.
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Recalling that F̊λ = Fλ we deduce

F∗λ (φ
′) ≥ −ψ + θ(φ′ − φ) for every φ′ ∈ D(F∗λ ), λ ∈ L;

taking the supremum w.r.t. φ′ we obtain

ψ + θφ ≥ Fλ(θ) for every λ ∈ L

and passing to the limit w.r.t. λ ∈ L we get

ψ + θφ ≥ F(θ) so that − ψ ≤ θφ − F(φ) ≤ F∗(φ),

which contradicts the fact that (φ, ψ) ∈ int F.
Thus for every pair of simple and lower semicontinuous functions (φ, ψ)

taking values in int F we have (ψ(x), φ(x)) ∈ int Fα for every x ∈ X and
some α ∈ L so that

lim inf
λ∈L

Fλ(γ |μ) ≥ Fα(γ |μ) ≥
∫

X

ψ dμ+
∫

X

φ dγ.

Since φ,ψ are arbitrary we conclude applying the duality formula (2.46). ⊓⊔

Next, we provide a compactness result for the sublevels of the relative
entropy, which will be useful in Sect. 3.4 (see Theorem 3.3 and Lemma 3.9).

Proposition 2.10 (Boundedness and tightness) If K ⊂M(X) is bounded and

F ′∞ > 0, then for every C ≥ 0 the sublevels of F ,

�C :=
{
γ ∈M(X) : F (γ |μ) ≤ C for some μ ∈ K

}
, (2.55)

are bounded. If moreover K is equally tight and F ′∞ = +∞, then the sets �C

are equally tight.

Proof Concerning the properties of �C , we will use the inequality

λγ (B) ≤ F (γ |μ)+ F∗(λ)μ(B) for every λ ∈ (0, F ′∞), and B ∈ B(X).

(2.56)
This follows easily by considering the decomposition γ = σμ + γ⊥ and by
integrating the Young inequality λσ ≤ F(σ ) + F∗(λ) for λ > 0 in B with
respect to μ; notice that

λγ (B) = λ

∫

B

σ dμ+ λγ⊥(B) ≤ λ

∫

B

σ dμ+ F ′∞γ⊥(B) if 0 < λ < F ′∞.

123



1000 M. Liero et al.

Choosing first B = X in (2.56) and an arbitrary λ in (0, F ′∞) (notice that
F∗(λ) < ∞ thanks to (2.18)) we immediately get a uniform bound of γ (X)

for every γ ∈ �C .
In order to prove the tightness when F ′∞ = +∞, whenever ε > 0 is given,

we can choose λ = 2C/ε and η > 0 so small that ηF∗(λ)/λ ≤ ε/2, and then
a compact set K ⊂ X such that μ(X \ K ) ≤ η for every μ ∈ K. (2.56) shows
that γ (X \ K ) ≤ ε for every γ ∈ �. ⊓⊔

We conclude this section with a useful representation of F in terms of the
reverse entropy R (2.28) and the corresponding functional R. We will use the
result in Sect. 3.5 for the reverse formulation of the primal entropy-transport
problem.

Lemma 2.11 For every γ, μ ∈M(X) we define

R(μ|γ ) =
∫

X

R(̺) dγ + R′∞ μ⊥(X), (2.57)

where μ = ̺γ + μ⊥ is the reverse Lebesgue decomposition given by

Lemma 2.3. Then

F (γ |μ) = R(μ|γ ). (2.58)

Proof It is an immediate consequence of the dual characterization in (2.46)
and the equivalence in (2.30). ⊓⊔

3 Optimal Entropy-Transport problems

The major object of Part I is the entropy-transport functional, where two mea-
sures μ1 ∈M(X1) and μ2 ∈M(X2) are given, and one has to find a transport
plan γ ∈M(X1 × X2) that minimizes the functional.

3.1 The basic setting

Let us fix the basic set of data for Entropy-Transport problems. We are given

• two Hausdorff topological spaces (X i , τi ), i = 1, 2, which define the Carte-
sian product X := X1 × X2 and the canonical projections π i : X → X i ;
• two entropy functions Fi ∈ Ŵ(R+), thus satisfying (2.13);
• a proper, lower semicontinuous cost function c : X → [0,∞];
• a pair of nonnegative Radon measures μi ∈M(X i ) with finite mass mi :=
μi (X i ), satisfying the compatibility condition

J :=
(

m1 D(F1)
)
∩
(

m2 D(F2)
)
�= ∅. (3.1)
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We will often assume that the above basic setting is also coercive: this means
that at least one of the following two coercivity conditions holds:

F1 and F2 are superlinear, i.e. (Fi )
′
∞ = +∞; (3.2a)

(F1)
′
∞ + (F2)

′
∞ + inf c > 0 and c has compact sublevels. (3.2b)

For every transport plan γ ∈ M(X) we define the marginals γi := π i
♯γ and,

as in (2.35), we define the relative entropies

Fi (γ |μi ) :=
∫

X i

Fi (σi )dμi + (Fi )
′
∞γ⊥i (X i ), γi = σiμi + γ⊥i . (3.3)

With this, we introduce the Entropy-Transport functional as

E (γ |μ1, μ2) :=
∑

i

Fi (γ |μi )+
∫

X

c(x1, x2) dγ (x1, x2), (3.4)

possibly taking the value+∞. Our basic setting is feasible if the functional E is
not identically+∞, i.e. there exists at least one plan γ with E (γ |μ1, μ2) <∞.

3.2 The primal formulation of the optimal entropy-transport problem

In the basic setting described in the previous Sect. 3.1, we want to investigate
the following problem.

Problem 3.1 (Entropy-Transport minimization) Given μi ∈M(X i ) find γ ∈
M(X) =M(X1 × X2) minimizing E (γ |μ1, μ2), i.e.

E (γ |μ1, μ2) = ET(μ1, μ2) := inf
σ∈M(X)

E (σ |μ1, μ2). (3.5)

We denote by OptET(μ1, μ2) ⊂ M(X) the collection of all the minimizers of

(3.5).

Remark 3.2 (Feasibility conditions) Problem 3.1 is feasible if there exists at
least one plan γ with E (γ |μ1, μ2) < ∞. Notice that this is always the case
when

Fi (0) <∞, i = 1, 2, (3.6)

since among the competitors one can choose the null plan η0, so that

ET(μ1, μ2) ≤ E (η|μ1, μ2) = F1(0)μ1(X)+ F2(0)μ2(X). (3.7)
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More generally, thanks to (3.1) a sufficient condition for feasibility in the
nondegenerate case m1m2 �= 0 is that there exist functions B1 and B2 with

c(x1, x2) ≤ B1(x1)+ B2(x2), Bi ∈ L1(X i , μi ). (3.8)

In fact, the plans

γ = θ

m1m2
μ1 ⊗ μ2 with θ ∈ J given by (3.1) (3.9)

are Radon [44, Thm. 17, p. 63], have finite cost E (γ |μ1, μ1) <∞ and provide
the estimate

ET(μ1, μ2) ≤ E (γ |μ1, μ1) ≤m1 F1(θ/m1)+ m2 F2(θ/m2)

+ θ
∑

i

mi
−1‖Bi‖L1(X i ,μi )

, for every θ ∈ J.

Notice that (3.1) is also necessary for feasibility: in fact (2.44) yields

Fi (γ |μi ) ≥ mi Fi (m/mi ), where m := γi (X i ) = γ (X).

Thus, whenever E (γ |μ1, μ2) <∞, we have

E (γ |μ1, μ2) ≥ m inf c+ m1 F1(m/m1)+ m2 F2(m/m2), (3.10)

and therefore

m = γ (X) ∈
(
m1 D(F1)

)
∩
(
m2 D(F2)

)
= J. (3.11)

We will often strengthen (3.1) by assuming that at least one of the domains of
the entropies Fi has nonempty interior, containing a point of the other domain:

(
int
(
m1D(F1)

)
∩ m2 D(F2)

)
∪
(

m1 D(F1) ∩ int
(
m2D(F2)

))
�= ∅. (3.12)

This condition is surely satisfied if J has nonempty interior, i.e. max(m1s−1 ,

m2s−2 ) < min(m1s+1 ,m2s+2 ), where s−i = inf D(Fi ), s+i := sup D(Fi ).

We also observe that whenever μi (X i ) = 0 then the null plan γ := η0
provides the trivial solution to Problem 3.1. Another trivial case occurs when
Fi (0) <∞ and Fi are nondecreasing in D(Fi ) (in particular when Fi (0) = 0).
Then it is clear that the null plan is a minimizer and ET(μ1, μ2) = F1(0)m1+
F2(0)m2.
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3.3 Examples

Let us consider a few particular cases:
E.1 Costless transport: Consider the case c ≡ 0. Since Fi are convex, in

this case the minimum is attained when the marginals γi have constant
densities. Setting σi ≡ θ/mi in order to have m1σ1 = m2σ2, we thus have

ET(μ1, μ2)=H0(m1,m2) :=min
{

m1 F1(θ/m1)+m2 F2(θ/m2) : θ≥0
}
.

(3.13)

E.2 Entropy-potential problems: If μ2 ≡ η0 is the null measure and, just to
fix ideas, X i are Polish spaces with X2 compact and c is real valued, then
setting V (x1) := minx2∈X2 c(x1, x2) we get

ET(μ, η0) = inf
γ∈M(X1)

F1(γ |μ)+
∫

X1

V dγ + (F2)
′
∞γ (X1). (3.14)

In fact for every γ ∈ M(X) we have F2(γ2|η0) = (F2)
′
∞γ2(X2) =

(F2)
′
∞γ1(X1); moreover by applying the von Neumann measurable selec-

tion Theorem [44, Thm. 13, p. 127] it is not difficult to check that

min
{ ∫

X

c dγ : γ ∈M(X), π1
♯ γ = γ

}
=
∫

X1

V (x1) dγ (x1).

E.3 Pure transport problems: We choose Fi (r)= I1(r)=
{

0 if r = 1

+∞ otherwise.
In this case any feasible plan γ should have μ1 and μ2 as marginals and
the functional just reduces to the pure transport part

T(μ1, μ2) = min
{ ∫

X1×X2

c dγ : π i
♯γ = μi

}
. (3.15)

As a necessary condition for feasibility we get μ1(X1) = μ2(X2).
A situation equivalent to the optimal transport case occurs when (3.12)
does not hold. In this case, the set J defined by (3.1) contains only one
point θ which separates m1 D(F1) and m2 D(F2):

θ = m1s+1 = m2s−2 or θ = m1s−1 = m2s+2 . (3.16)

It is not difficult to check that in this case

ET(μ1, μ2) = m1 F1(θ/m1)+ m2 F2(θ/m2)+ T(μ1, μ2). (3.17)

123



1004 M. Liero et al.

E.4 Optimal transport with density constraints: We realize density con-
straints by introducing characteristic functions of intervals [ai , bi ], viz.
Fi (r) := I[ai ,bi ](r), ai ≤ 1 ≤ bi . E.g. when ai = 1, bi = +∞ we have

ET(μ1, μ2) = min
{ ∫

X1×X2

c dγ : π i
♯γ ≥ μi

}
. (3.18)

For [a1, b1] = [0, 1] and [a2, b2] = [1,∞] we get

ET(μ1, μ2) = min
{ ∫

X1×X2

c dγ : π1
♯ γ ≤ μ1, π2

♯ γ ≥ μ2

}
, (3.19)

whose feasibility requires μ2(X2) ≥ μ1(X1).

E.5 Pure entropy problems: These problems arise if X1 = X2 = X and

transport is forbidden, i.e. (Fi )
′
∞ = +∞, c(x1, x2) =

{
0 if x1 = x2

+∞ otherwise.
In this case the marginals of γ coincide: we denote them by γ . We can
write the density of γ w.r.t. any measure μ such that μi ≪ μ (say, e.g.,
μ = μ1 + μ2) as γ = ϑμ and then μi = ϑiμ. Since γ ≪ μi we have
ϑ(x) = 0 for μ-a.e. x where ϑ1(x)ϑ2(x) = 0. Thus σi = ϑ/ϑi is well
defined and we have

E (γ |μ1, μ2) =
∫

X

(
ϑ1 F1(ϑ/ϑ1)+ ϑ2 F2(ϑ/ϑ2)

)
dμ, (3.20)

with the convention that ϑi Fi (ϑ/ϑi ) = 0 if ϑ = ϑi = 0. Since we
expressed everything in terms of μ, by recalling the definition of the
function H0 given in (3.13) we get

ET(μ1, μ2) =
∫

X

H0

(dμ1

dμ
,

dμ2

dμ

)
dμ, whenever μi ≪ μ. (3.21)

In the Hellinger case Fi (s) = U1(s) = s log s−s+1 a simple calculation
yields

H0(θ1, θ2) = θ1 + θ2 − 2
√
θ1θ2 =

(√
θ1 −

√
θ2

)2
. (3.22)

In the Jensen–Shannon case, where Fi (s) = U0(s) = s − 1 − log s, we
obtain

H0(θ1; θ2) = θ1 log
( 2θ1

θ1 + θ2

)
+ θ2 log

( 2θ2

θ1 + θ2

)
.
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Two other interesting examples are provided by the quadratic case Fi(s) =
1
2 (s − 1)2 and by the nonsmooth “piecewise affine” case Fi (s) = |s − 1|,
for which we obtain

H0(θ1, θ2) =
1

2(θ1 + θ2)
(θ1 − θ2)

2, and

H0(θ1, θ2) = |θ1 − θ2|, respectively.

E.6 Regular Entropy-Transport problems: These problems correspond to
the choice of a pair of differentiable entropies Fi with D(Fi ) ⊃ (0,∞),
as in the case of the power-like entropies Up defined in (2.26). When
they vanish (and thus have a minimum) at s = 1, the Entropic Optimal
Transportation can be considered as a smooth relaxation of the Optimal
Transport case E.3.

E.7 Squared Hellinger–Kantorovich distances: For a metric space (X,d),
set X1 = X2 = X and let τ be induced by d. Further, set F1(s) =
F2(s) := U1(s) = s log s − s + 1 and

c(x1, x2) := − log
(

cos2 (d(x1, x2) ∧ π/2
))

or simply

c(x1, x2) := d2(x1, x2).

This case will be thoroughly studied in the second part of the present
paper, see Sect. 6.

E.8 Marginal Entropy-Transport problems: In this case one of the two
marginals of γ is fixed, say γ1, by choosing F1(r) := I1(r). Thus the
functional minimizes the sum of the transport cost and the relative entropy
of the second marginal F2(γ2|μ2)with respect to a reference measureμ2,
namely

ET(μ1, μ2) = min
γ2∈M(X2)

{
T(μ1, γ2)+F2(γ2|μ2)

}
,

where T has been defined by (3.15). This is the typical situation one has
to solve at each iteration step of the Minimizing Movement scheme [2],
when T is a (power of a) transport distance induced by c, as in the Jordan-
Kinderlehrer-Otto approach [24].
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E.9 The Piccoli-Rossi “generalized Wasserstein distance” [38,39]: For
a metric space (X,d), set X1 = X2 = X , let τ be induced by d,
and consider F1(s) = F2(s) := V (s) = |s − 1| with c(x1, x2) :=
d(x1, x2). This example can be considered as the natural extension of
the L1-Kantorovich–Wasserstein distance (corresponding to (3.15) with
the distance cost) to measures with different masses, due to its dual rep-
resentation in terms of the flat metric, see (7.47).

E.10 The discrete case. Let μ1 =
∑m

i=1 αiδxi
, μ2 =

∑N
j=1 β jδy j

with
αi , β j > 0, and let ci, j := c(xi , y j ). In the case of superlinear entropy
functions Fi , the Entropy-Transport problem for this discrete model con-
sists in finding coefficients γi, j ≥ 0 which minimize

E (γi, j |αi , β j ) :=
∑

i

αi F1

(∑
j γi, j

αi

)
+
∑

j

β j F2

(∑
i γi, j

β j

)
+
∑

i, j

ci, jγi, j .

(3.23)

3.4 Existence of solutions to the primal problem

The next result provides a first general existence result for Problem 3.1 in the
basic coercive setting of Sect. 3.1.

Theorem 3.3 (Existence of minimizers) Let us assume that Problem 3.1 is

feasible (see Remark 3.2) and coercive, namely at least one of the following

conditions hold:

(i) the entropy functions F1 and F2 are superlinear, i.e. (F1)
′
∞ = (F2)

′
∞ =

+∞;

(ii) c has compact sublevels in X and (F1)
′
∞ + (F2)

′
∞ + inf c > 0.

Then Problem 3.1 admits at least one optimal solution. In this case

OptET(μ1, μ2) is a compact convex set of M(X).

Proof We can apply the Direct Method of Calculus of Variations: since the map
γ �→ E (γ |μ1, μ2) is lower semicontinuous in M(X1×X2) by Theorem 2.7, it
is sufficient to show that its sublevels are relatively compact, thus bounded and
equally tight by the Prokhorov Theorem 2.2. In both cases boundedness follows
by the coercivity assumptions and the estimate (3.10). In particular, by formula
(2.15) defining (Fi )

′
∞, we can find s̄ ≥ 0 such that mi

m
Fi (

m
mi
) ≥ 1

2 (Fi )
′
∞

whenever m ≥ s̄ mi ; if a := inf c+
∑

i (Fi )
′
∞ > 0 the estimate (3.10) yields

γ (X) ≤ 2

a
E (γ |μ1, μ2) for every γ ∈M(X) with γ (X)
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≥ s̄ max(μ1(X1), μ2(X2)).

In case (ii) equal tightness is a consequence of the Markov inequality and the
nonnegativity of Fi : by considering the compact sublevels Kλ := {(x1, x2) ∈
X1 × X2 : c(x1, x2) ≤ λ}, we have

γ (X \ Kλ) ≤ λ−1
∫

c dγ ≤ λ−1
E (γ |μ1, μ2) for every λ > 0.

In the case (i), since c ≥ 0 Proposition 2.10 shows that both the marginals of
plans in a sublevel of the energy are equally tight and we thus conclude by [2,
Lemma 5.2.2]. ⊓⊔

Remark 3.4 The assumptions (i) and (ii) in the previous theorem are almost
optimal, and it is not hard to find examples violating them such that the state-
ment of Theorem 3.3 does not hold. In the case when 0 < (F1)

′
∞+(F2)

′
∞ <∞

but c does not have compact sublevels, one can just take Fi (s) := U0(s) =
s − log s − 1, X i := R, c(x1, x2) := 3e−x2

1−x2
2 , μi = δ0.

Any competitor is of the form γ := αδ0 ⊗ δ0 + ν1 ⊗ δ0 + δ0 ⊗ ν2 with
νi ∈M(R) and νi ({0}) = 0. Setting ni := νi (R) we find

E (γ |μ1, μ2) = F(α + n1)+ F(α + n2)

+3
(
α +
∫

e−x2
d(ν1 + ν2)

)
+ n1 + n2.

Since mins F(s)+ s = log 2 is attained at s = 1/2, we immediately see that

E (γ |μ1, μ2) ≥ 2 log 2+ α + 3
∫

e−x2
d(ν1 + ν2) ≥ 2 log 2.

Moreover, 2 log 2 is the infimum, which is reached by choosing α = 0 and
ν1 = ν2 = 1

2δx , and letting x →+∞. On the other hand, since n1+n2+α > 0,
the infimum can never be attained.

In the case when c has compact sublevels but (F1)
′
∞ = (F2)

′
∞ = min c = 0,

it is sufficient to take Fi (s) := s−1, X i = [−1, 1], c(x1, x2) = x2
1 + x2

2 , and
μi = δ0. Taking γn := nδ0 ⊗ δ0 one easily checks that inf E (γ |μ1, μ2) = 0
but E (γ |μ1, μ2) > 0 for every γ ∈M(R2).

Let us briefly discuss the question of uniqueness. The first result only
addresses the marginals γi = π i

♯γ .

Lemma 3.5 (Uniqueness of the marginals in the superlinear, strictly convex
case) Let us suppose that Fi are strictly convex functions. Then the μi -

absolutely continuous part σiμi of the marginals γi = π i
♯γ of any optimal
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plan are uniquely determined. In particular, if Fi are also superlinear, then

the marginals γi are uniquely determined, i.e. if γ ′, γ ′′ ∈ OptET(μ1, μ2) then

π i
♯γ
′ = π i

♯γ
′′, i = 1, 2.

Proof It is sufficient to take γ = 1
2γ ′ + 1

2γ ′′ which is still optimal in
OptET(μ1, μ2) since E is a convex functional w.r.t. γ . We have π i

♯γ = γi =
1
2γ
′
i + 1

2γ
′′
i = 1

2 (σ
′
i + σ ′′i )μ + 1

2 (γ
′
i )
⊥ + 1

2 (γ
′′
i )
⊥ and we observe that the

minimality of γ and the convexity of each addendum Fi in the functional
yield

Fi (γi |μi ) =
1

2
Fi (γ

′
i |μi )+

1

2
Fi (γ

′′
i |μi ) for i = 1, 2.

Since γ⊥i (X i ) = 1
2 (γ
′
i )
⊥(X i )+ 1

2 (γ
′′
i )
⊥(X i ) we obtain

∫

X

(
Fi (σi )−

1

2
Fi (σ

′
i )−

1

2
Fi (σ

′′
i )
)

dμi = 0 for i = 1, 2.

Since Fi is strictly convex, the above identity implies σi = σ ′i = σ ′′i μi -a.e. in
X . When Fi are superlinear then γi = σi thanks to (2.36). ⊓⊔

The next corollary reduces the uniqueness of optimal couplings in
OptET(μ1, μ2) to corresponding results for the Kantorovich problem asso-
ciated to the cost c.

Corollary 3.6 Let us suppose that Fi are superlinear strictly convex functions

and that for every pair of probability measures νi ∈ P(X i ) with νi ≪ μi

the optimal transport problem associated to the cost c (see Example E.3 of

Sect. 3.3) admits a unique solution. Then OptET(μ1, μ2) contains at most one

plan.

Proof We can assume mi = μi (X i ) > 0 for i = 1, 2. It is clear that any
γ ∈ OptET(μ1, μ2) is a solution of the optimal transport problem for the cost
c and given marginals γi . Since γi ≪ μi by (2.36) and γ1 and γ2 are unique
by Lemma 3.5, we conclude. ⊓⊔

Example 3.7 (Uniqueness in Euclidean spaces) If Fi are superlinear strictly

convex functions, c(x, y) = h(x − y) for a strictly convex function h : Rd →
[0,∞) and μ1 ≪ L d , then Problem 3.1 admits at most one solution. It is
sufficient to apply the previous corollary in conjunction with [2, Theorem
6.2.4]

Example 3.8 (Nonuniqueness of optimal couplings) Consider the logarithmic
density functionals Fi (s) = U1(s) = s log s − s + 1, the Euclidean space
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X1 = X2 = R
2 and any cost c of the form c(x1, x2) = h(|x1−x2|). For the

measures μ1 = δ(−1,0)+δ(1,0), and μ2 with support in {0}×R and containing
at least two points, there are an infinite number of optimal plans. In fact, we
shall see that the first marginal γ1 of any optimal plan γ will have full support
in A := {(−1, 0), (1, 0)}, i.e. it will of the form aδ(−1,0)+ bδ(1,0) with strictly
positive a, b, and the support of the second marginal γ2 will be concentrated in
B := {0} ×R and will contain at least two points. Any plan σ with marginals
γ1, γ2 will then be optimal, since it will be supported in A× B where the cost
c just depends on the second variable, since |(±1, 0)− (0, y)| =

√
1+ y2 for

every y ∈ R. Therefore the cost contribution of σ to the total energy is

∫

R

h

(√
1+ y2

)
dγ2(y),

and we can choose σ of the form [2, Sect. 5.3]

σ =
∫

R

(
α(y)δ(−1,0) + β(y)δ(1,0)

)
dγ2(y),

with arbitrary nonnegative densities α, β satisfying α + β = 1 and∫
α dγ2(y) = a,

∫
β dγ2(y) = b will be admissible.

We conclude this section by proving a simple lower semicontinuity property
for the energy-transport functional ET. Note that in metrizable spaces any
weakly convergent sequence of Radon measures is equally tight.

Lemma 3.9 Let L be a directed set, (Fλ
i )λ∈L and (cλ)λ∈L be monotone nets of

superlinear entropies and costs pointwise converging to Fi and c respectively,

and let (μλ
i )λ∈L be equally tight nets of measures narrowly converging to μi

in M(X i ). Denoting by ETλ (resp. ET) the corresponding Entropy-Transport

functionals induced by Fλ
i and cλ (resp. Fi and c) we have

lim inf
λ∈L

ETλ
(
μλ

1, μ
λ
2

)
≥ ET(μ1, μ2). (3.24)

Proof Let γ λ ∈ OptET(μ
λ
1, μ

λ
2) ⊂ M(X) be a corresponding net of optimal

plans. The statement follows if, assuming that E (γ λ|μλ
1, μ

λ
2) = ET(μλ

1, μ
λ
2) ≤

C < ∞, we can prove that ET(μ1, μ2) ≤ C . By applying Proposition 2.10,
we obtain that the sequences of marginals π i

♯γ
λ are equally tight in M(X i ),

so that the net γ λ is also equally tight by [2, Lemma 5.2.2]. By extracting a
suitable subnet (not relabeled) narrowly converging to γ in M(X), we can still
apply Proposition 2.10 and Corollary 2.9 to obtain

lim inf
λ∈L

∑

i

F
λ
i

(
γ λ|μλ

i

)
≥
∑

i

Fi (γ |μi ).
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A standard monotonicity argument and the lower semicontinuity of the cost
functions cλ show that for every α ∈ L

lim inf
λ∈L

∫
cλ dγ λ ≥ lim inf

λ∈L

∫
cα dγ λ ≥

∫
cα dγ .

Passing now to the limit with respect to α ∈ L and recalling (2.2) we conclude.
⊓⊔

As a simple application we prove the extremality of the class of Optimal
Transport problems (see Example E.3 in Sect. 3.3) in the set of entropy-
transport problems.

Corollary 3.10 Let F1, F2 ∈ Ŵ(R+) satisfy Fi (r) > Fi (1) = 0 for every

r ∈ [0,∞), r �= 1 and let ETn be the Optimal Entropy Transport value

(3.5) associated to (nF1, nF2). Then for every pair of equally tight sequences

(μ1,n, μ2,n) ⊂M(X1)×M(X2), n ∈ N, narrowly converging to (μ1, μ2) we

have

lim
n↑∞

ETn(μ1,n, μ2,n) = T(μ1, μ2). (3.25)

3.5 The reverse formulation of the primal problem

Let us recall the definition (2.28) of the reverse entropy functions Ri associated
to Fi by the formula

Ri (r) :=
{

r Fi (1/r) if r > 0,

(Fi )
′
∞ if r = 0,

(3.26)

and let Ri be the corresponding integral functionals as in (2.57).
Keeping the notation of Lemma 2.3

γi := π i
♯γ ∈M(X i ), μi = ̺iγi + μ⊥i , (3.27)

we can thus define

R(μ1, μ2|γ ) :=
∑

i

Ri (μi |γi )+
∫

X

c dγ

=
∫

X

(
R1(̺1(x1))+ R2(̺2(x2))+ c(x1, x2)

)
dγ +

∑

i

Fi (0)μ
⊥
i (X i ).

(3.28)
By Lemma 2.11 we easily get the reverse formulation of the optimal Entropy-
Transport Problem 3.1.
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Theorem 3.11 For every γ ∈M(X) and μi ∈M(X i )

E (γ |μ1, μ2) = R(μ1, μ2|γ ). (3.29)

In particular

ET(μ1, μ2) = inf
γ∈M(X)

R(μ1, μ2|γ ), (3.30)

and γ ∈ OptET(μ1, μ2) if and only if it minimizes R(μ1, μ2|·) in M(X).

The functional R(μ1, μ2|, ·) is still a convex functional, and it will be useful
in Sect. 5.

4 The dual problem

In this section we want to compute and study the dual problem and the corre-
sponding optimality conditions for the Entropy-Transport Problem 3.1 in the
basic coercive setting of Sect. 3.1. The derivation of the dual problem will be
carried out in Sect. 4.1 by writing a saddle-point formulation of the primal
problem 3.1 based on the duality Theorem 2.7 for the entropy functionals Fi .
The subsequent sections will then perform a systematic study of the duality
and of the related optimality conditions.

4.1 The “inf-sup” derivation of the dual problem in the basic coercive

setting

In order to write the first formulation of the dual problem we will use the reverse
entropy functions Ri defined as in (2.28) or Sect. 3.5 and their conjugates
R∗i : R→ (−∞,+∞], which can be expressed by

R∗i (ψ) := sup
s>0

(
sψ − s Fi (1/s)

)
= sup

r>0

(
ψ − Fi (r)

)
/r. (4.1)

The equivalences (2.31) yield, for all (φ, ψ) ∈ R
2, the equivalence

(φ, ψ) ∈ Fi ⇔ φ ≤ −R∗i (ψ). (4.2)

As a first step we use the dual formulation of the entropy functionals given by
Theorem 2.7 (cf. (2.47)) and find

E (γ |μ1, μ2) =
∫

c dγ + sup
{ ∑

i

( ∫

X i

ψi dμi −
∑

i

∫

X i

R∗i (ψi ) dγi

)
:

ψi ∈ LSCs(X i , D̊(R∗i ))
}
.
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It is now natural to introduce the saddle function L (γ ,ψ) depending on
γ ∈ M(X) and ψ = (ψ1, ψ2) with ψi ∈ LSCs(X i , D̊(R∗i )) (omitting the
dependence on the fixed measures μi ∈M(X i )) via

L (γ ,ψ) :=
∫

X

(
c(x1, x2)−R∗1(ψ1(x1))−R∗2(ψ2(x2))

)
dγ+

∑

i

∫

X i

ψi dμi .

(4.3)
Notice that R∗i (ψi ) are bounded, so L cannot take the value −∞; in order to
guarantee that L < +∞, we consider the convex set

M :=
{
γ ∈M(X) :

∫
c dγ <∞

}
. (4.4)

We thus have

E (γ |μ1, μ2) = sup
ψi∈LSCs(X i ,D̊(R∗i ))

L (γ ,ψ)

and the Entropy-Transport Problem can be written as

ET(μ1, μ2) = inf
γ∈M

sup
ψi∈LSCs(X i ,D̊(R∗i ))

L (γ ,ψ). (4.5)

The dual problem can be obtained by interchanging the order of inf and sup
as in Sect. 2.2. Let us denote by ϕ1 ⊕ ϕ2 the function (x1, x2) �→ ϕ1(x1) +
ϕ2(x2). Since for every ψ = (ψ1, ψ2) with ψi ∈ LSCs(X i , D̊(R∗i )),

inf
γ∈M

∫ (
c(x1, x2)− R∗1(ψ1(x1))− R∗2(ψ2(x2))

)
dγ

=
{

0 if R∗1(ψ1)⊕ R∗2(ψ2) ≤ c,

−∞ otherwise,

we obtain

inf
γ∈M

L (γ ,ψ) =

⎧
⎪⎨
⎪⎩

∑

i

∫

X i

ψi dμi if R∗1(ψ1)⊕ R∗2(ψ2) ≤ c,

−∞ otherwise.

(4.6)

Thus, (4.6) provides the dual formulation, that we will study in the next section.
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4.2 Dual problem and optimality conditions

Problem 4.1 (ψ-formulation of the dual problem) Let R∗i be the convex func-

tions defined by (4.1) and let � be the convex set

� :=
{
ψ ∈ LSCs(X1, D̊(R∗1))×LSCs(X2, D̊(R∗2)) : R∗1(ψ1)⊕R∗2(ψ2)≤c

}
.

(4.7)
The dual Entropy-Transport problem consists in finding a maximizer ψ ∈ �

for

D(μ1, μ2) = sup
ψ∈�

∫

X1

ψ1 dμ1 +
∫

X2

ψ2 dμ2. (4.8)

As usual, by the following change of variable

ϕi := R∗(ψi ), ψi = F◦i (ϕi ) := −F∗i (−ϕi ), (4.9)

as in (2.45) for the duality Theorem 2.7 (recall the notation φi = −ϕi we used
in Sect. 2.3), we can obtain an equivalent formulation of the dual functional
D as the supremum of the concave functionals

D(ϕ|μ1, μ2) :=
∑

i

∫

X i

F◦i (ϕi ) dμi , (4.10)

on the simpler convex set

� :=
{
ϕ ∈ LSCs(X1, D̊(F◦1 ))× LSCs(X2, D̊(F◦2 )), ϕ1 ⊕ ϕ2 ≤ c

}
. (4.11)

Problem 4.2 (ϕ-formulation of the dual problem) Let F◦i be the concave func-

tions defined by (4.9) and let � be the the convex set (4.11). The ϕ-formulation

of the dual Entropy-Transport problem consists in finding a maximizer ϕ ∈ �

for

D′(μ1, μ2) = sup
ϕ∈�

D(ϕ|μ1, μ2) = sup
ϕ∈�

∑

i

∫

X i

F◦i (ϕi ) dμi . (4.12)

Proposition 4.3 (Equivalence of the dual formulations) The ψ- and the φ-

formulations of the dual problem are equivalent, D(μ1, μ2) = D′(μ1, μ2).

Proof Let us first notice that replacing ψi with ψi − ε, ε > 0, and using
the strict monotonicity of R∗i in (aff(Fi )∞, Fi (0)), as well as the fact that
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R∗i ≡ −(Fi )
′
∞ in (−∞, aff(Fi )∞) and inf c > −(F1)

′
∞ − (F2)

′
∞, one can

replace � in (4.8) by the smaller set

�◦ :=
{
ψ ∈ LSCs(X1, D̊(R∗1))×LSCs(X2, D̊(R∗2)) : R∗1(ψ1)⊕ R∗2(ψ2)< c

}
.

Since R∗i is nondecreasing, for every ψ ∈ �◦ the functions ϕi := R∗i (ψi )+ δ,
where δ := 1

2 inf c− R∗1(ψ1)⊕ R∗2(ψ2) > 0, belong to LSCs(X i , D̊(R∗i )) and

satisfy ϕ1⊕ϕ2 < c, with (−ϕi , ψi ) ∈ F̊i . It then follows that (ϕ1, ϕ2) ∈ � and
ψ̃i := −F∗i (−ϕi ) = F◦i (ϕi ) ≥ ψi so that D′ ≥ D. An analogous argument
shows the converse inequality. ⊓⊔

Since “inf sup ≥ sup inf” (cf. (2.10)), our derivation via (4.5) yields

ET(μ1, μ2) ≥ D(μ1, μ2). (4.13)

Using Theorem 2.4 we will show in Sect. 4.3 that (4.13) is in fact an equality.
Before this, we first discuss for which class of functions ψi , ϕi the dual formu-
lations are still meaningful. Moreover, we analyze the optimality conditions
associated to the equality case in (4.13).

Extension to Borel functions. In some cases we will also consider larger
classes of potentials ψ or ϕ by allowing Borel functions with extended real
values, under suitable summability conditions. It is clear that in the formulation
of a dual problem it can be useful to deal with a smaller set of “competitors” (as
in Problem 4.1 where we consider simple and lower semicontinuous functions)
to derive various properties by exploiting the specific features of the involved
functions. On the other hand, when one aims to prove the existence of dual
optimizers, it is natural to enlarge the set of competitors in order to gain
better closure properties. This is one of the main motivation to extend the
dual formulation to general Borel functions.

First of all, recalling (2.19) and (2.29), we extend R∗ and F◦ to R̄ by setting

R∗(−∞) := − F ′∞, R∗(+∞) := +∞;
F◦(−∞) := −∞, F◦(+∞) := F(0),

(4.14)

and we observe that, with the definition above and according to (2.38)–(2.39),
the pairs

(−ϕ, F◦(ϕ)) and (−R∗(ψ), ψ) lie in F̄ if ψ ≤ F(0) and ϕ ≥ −F ′∞.

(4.15)

We also set
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ζ1+o ζ2 := lim
n→∞

(−n∨ζ1∧n)+(−n∨ζ2∧n) for every ζ1, ζ2 ∈ R̄. (4.16)

Notice that (±∞) +o (±∞) = ±∞ and in the ambiguous case +∞ −∞
this definition yields (+∞) +o (−∞) = 0. We correspondingly extend the
definition of ⊕ by setting

(ζ1 ⊕o ζ2)(x1, x2) := ζ1(x1)+o ζ2(x2) for every ζi ∈ B(X i ; R̄). (4.17)

The following result is the natural extension of Lemma 2.6, stating that
E (γ |μ1, μ2) ≥ D(ϕ|μ1, μ2) for a larger class of γ and ϕ than before.

Proposition 4.4 (Dual lower bound for extended real valued potentials) Let

γ be a feasible plan and let ϕ ∈ B(X1; R̄)× B(X2; R̄) satisfy ϕi ≥ −(Fi )
′
∞,

ϕ1 ⊕o ϕ2 ≤ c, and (F◦i ◦ ϕi )− ∈ L1(X i , μi ) (resp. (ϕi )+ ∈ L1(X i , γi )).

Then we have (ϕi )− ∈ L1(X i ; γi ) (resp. (F◦i ◦ ϕi )+ ∈ L1(X i , μi )) and

E (γ |μ1, μ2) ≥
∑

i

∫

X i

F◦i (ϕi ) dμi . (4.18)

Remark 4.5 In a similar way, if ψ ∈ B(X1, R̄)× B(X2, R̄) with ψi ≤ Fi (0),
R∗1(ψ1) ⊕o R∗2(ψ2) ≤ c, and (ψi )− ∈ L1(X i , μi ) (resp. (R∗i ◦ ψi )+ ∈
L1(X i , γi )), then (R∗i ◦ ψi )− ∈ L1(X i , γi ) (resp. (ψi )+ ∈ L1(X i , μi )) with

E (γ |μ1, μ2) ≥
∑

i

∫

X i

ψi dμi . (4.19)

⊓⊔

Proof Let us consider (4.18) in the case that (F◦i ◦ ϕi )− ∈ L1(X i , μi ) (the
calculations in the other cases, including (4.19), are completely analogous).
Applying Lemma 2.6 (with ψi := F◦i ◦ ϕi and φi := −ϕi ) and (2.40) we
obtain (ϕi )− ∈ L1(X i , γi ) and then

E (γ |μ1, μ2) =
∑

i

Fi (γi |μi )+
∫

X

c dγ

≥
∑

i

Fi (γi |μi )+
∫

X

(
ϕ1(x1)+o ϕ2(x2)

)
dγ

≥
∑

i

Fi (γi |μi )+
∫

X i

ϕi dγi

(2.41)
≥
∑

i

∫

X i

F◦i (ϕi ) dμi .

(4.20)
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Notice that the integrability of the negative part of ϕi w.r.t. γi yields
ϕi (π

i (x1, x2)) > −∞ for γ -a.e. (x1, x2) ∈ X so that ϕ1(x1) +o ϕ2(x2) =
ϕ1(x1)+ ϕ2(x2) and we can split the integral

+∞ >

∫ (∑

i

ϕi (xi )
)

dγ =
∑

i

∫
ϕi (xi ) dγ =

∑

i

∫
ϕi (xi ) dγi .

⊓⊔
Optimality conditions. If there exists a pair ϕ as in Proposition 4.4 such that
E (γ |μ1, μ2) = D(ϕ|μ1, μ2) then all the above inequalities (4.20) should be
identities so that we have

Fi (γi |μi ) =
∫

X i

F◦i (ϕi ) dμi , and

∫

X

(
c(x1, x2)− (ϕ1(x1)+o ϕ2(x2))

)
dγ = 0.

The second part of Lemma 2.6 then yields

ϕ1(x1)+o ϕ2(x2) = c(x1, x2) γ -a.e. in X, (4.21a)

−ϕi ∈ ∂Fi (σi ) (μi + γi )-a.e. in Ai (4.21b)

ϕi = −(Fi )
′
∞ γ⊥i -a.e. in Aγi

, (4.21c)

F◦i (ϕi ) = Fi (0) μ⊥i -a.e. in Aμi
, (4.21d)

where (Ai , Aμi
, Aγi

) is a Borel partition related to the Lebesgue decomposi-
tion of the pair (γi , μi ) as in Lemma 2.3. We will show now that the existence
of a pair ϕ satisfying

ϕ = (ϕ1, ϕ2) ∈ B(X1; R̄)× B(X2; R̄), ϕi ≥ −(Fi )
′
∞, ϕ1 ⊕o ϕ2 ≤ c,

(4.22)
and the joint optimality conditions 4.21 is also sufficient to prove that a feasible
γ ∈ M(X) is optimal. We emphasize that we do not need any integrability
assumption on ϕ.

Theorem 4.6 Let us suppose that Problem 3.1 is feasible (see Remark 3.2)

for μi ∈ M(X i ) and let γ ∈ M(X); if there exists a pair ϕ as in (4.22) that

satisfies the joint optimality conditions (4.21), then γ is optimal.

Proof We want to repeat the calculations in (4.20) of Proposition 4.4, but now
taking care of the integrability issues. We use a clever truncation argument of
[43], based on the maps

Tn : R→ R, Tn(ϕ) := −n ∨ ϕ ∧ n, (4.23)
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combined with a corresponding approximations of the entropies Fi given by

Fi,n(r) := max
|φ|≤n

(
φr − F∗i (φ)

)
. (4.24)

Recalling (4.16), it is not difficult to check that if ϕ1 +o ϕ2 ≥ 0 we have
0 ≤ Tn(ϕ1) + Tn(ϕ2) ↑ ϕ1 + ϕ2 as n ↑ ∞, whereas ϕ1 +o ϕ2 ≤ 0 yields
0 ≥ Tn(ϕ1) + Tn(ϕ2) ↓ ϕ1 + ϕ2 (notice that the cases when ϕ1 = ±∞,
ϕ2 = ∓∞ correspond to Tn(ϕ1)+ Tn(ϕ2) = ϕ1 +o ϕ2 = 0 ≤ c).

In particular ifϕ satisfies (4.22) then Tn(ϕi ) ∈ Bb(X i ), Tn(ϕ1)⊕Tn(ϕ2) ≤ c,
and Tn(ϕi ) ≥ −(Fi )

′
∞ due to (Fi )

′
∞ ≥ 0 and ϕi ≥ −(Fi )

′
∞. The boundedness

of Tn(ϕi ) and Proposition 4.4 yield for every γ̃ ∈M(X)

E (γ̃ |μ1, μ2) ≥
∑

i

∫

X i

F◦i (Tn(ϕi )) dμi . (4.25)

When (Fi )
′
∞ < ∞, choosing n ≥ (Fi )

′
∞ so that Tn(ϕi ) = ϕi = −(Fi )

′
∞

γ⊥i -a.e., and applying (ii) of the next Lemma 4.7, we obtain

∫

X i

F◦i (Tn(ϕi )) dμi
(4.21b, d)=

∫

X i

(
Fi,n(σi )+ σi Tn(ϕi )

)
dμi

(4.21c)=
∫

X i

Fi,n(σi ) dμi + (Fi )
′
∞γ⊥i (X i )+

∫

X i

Tn(ϕi ) dγi ,

and the same relation also holds when (Fi )
′
∞ = +∞ since in this case γ⊥i = 0.

Summing up the two contributions we get

E (γ̃ |μ1, μ2) ≥
∑

i

( ∫

X i

Fi,n(σi ) dμi + (Fi )
′
∞γ⊥i (X i )

)

+
∫

X

(
Tn(ϕ1)⊕ Tn(ϕ2)

)
dγ .

Applying Lemma 4.7 (i) and the fact that ϕ1⊕o ϕ2 = c ≥ 0 γ -a.e. by (4.21a),
we can pass to the limit as n ↑ ∞ by monotone convergence in the right-hand
side, obtaining the desired optimality E (γ̃ |μ1, μ2) ≥ E (γ |μ1, μ2). ⊓⊔

Lemma 4.7 Let Fi,n : [0,∞)→ [0,∞) be defined by (4.24). Then

(i) Fi,n are Lipschitz, Fi,n(s) ≤ Fi (s), and Fi,n(s) ↑ Fi (s) as n ↑ ∞.

(ii) For every s ∈ D(Fi ) and ϕi ∈ R ∪ {+∞} we have

−ϕi ∈ ∂Fi (s) ⇒ −Tn(ϕi ) ∈ ∂Fi,n(s),

ϕi = +∞, s = 0 ⇒ Fi,n(0) = F◦i (Tn(ϕi )) = F◦i (n).
(4.26)
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In particular, both cases in (4.26) give F◦i (Tn(ϕi )) = Fi,n(s)+ sTn(ϕi ).

Proof Property (i): By (2.23) and the definition in (4.24) we get Fi,n ≤ Fi .
Since −F∗i (0) = inf Fi ≥ 0 we see that Fi,n are nonnegative. Recalling that
F∗i are nondecreasing with D(F∗i ) ⊃ (−∞, 0) (see (2.18)), we also get the
upper bound Fi,n(s) ≤ −ns − F∗i (−n). Eventually, (4.24) defines Fi,n as the
maximum of a family of n-Lipschitz functions, so Fi,n is n-Lipschitz.

Property (ii): Let us set F∗i,n := F∗i + I[−n,n] and notice that Fi,n =
(
F∗i,n
)∗

so that (Fi,n)
∗ = F∗i,n . Recalling that (∂Fi )

−1 = ∂F∗i , (∂Fi,n)
−1 = ∂F∗i,n,

∂F∗i + ∂I[−n,n] ⊂ ∂F∗i,n and

∂I[−n,n](φ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if φ ∈ (−n, n),

[0,∞) if φ = n,

(−∞, 0] if φ = −n,

∅ if |φ| > n,

we can easily prove the first implication of (4.26). In fact−ϕi ∈ ∂Fi (s) yields
s ∈ ∂F∗i (−ϕi ) and s = Tn(s) ∈ ∂F∗i,n(−ϕi ) if |ϕi | ≤ n; when −ϕi > n the

monotonicity of the subdifferential and the fact that n ∈ D̊(F∗)i ⊂ D(∂F∗i )
yields s ≥ s′ for every s′ ∈ ∂Fi (n) so that s ∈ ∂F∗i + [0,∞) ⊂ ∂F∗i,n . A
similar argument holds when −ϕi < −n.

Eventually, if φi = −∞ and s = 0 (in particular Fi (0) = F∗i (−∞) <∞),
then (4.24) and the fact that F∗i is nondecreasing yields Fi,n(0) = −F∗i (−n) =
F◦i (n) = F◦i (Tn(ϕi )).

The last statement in (ii) is an immediate application of (4.26) and the link
between subdifferential and Fenchel duality stated in (2.17). ⊓⊔

4.3 A general duality result

The aim of this section is to show in complete generality the duality result
ET = D, by using the ϕ-formulation of the dual problem (4.12), which is
equivalent to (4.7) by Proposition 4.3.

We start with a simple lemma depending on a specific feature of the entropy
functions (which fails exactly in the case of pure transport problems, see Exam-
ple E.3 of Sect. 3.3), using the strengthened feasibility condition in (3.12). First
note that the pair ϕi ≡ 0 provides an obvious lower bound for D(μ1, μ2), viz.

D(μ1, μ2) ≥ D(0, 0|μ1, μ2) =
∑

i

mi F◦i (0) =
∑

i

mi inf Fi . (4.27)

We derive an upper and lower bound for the potential ϕ1 under the assumption
that c is bounded.
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Lemma 4.8 Let mi = μi (X i ) and assume int
(
m1D(F1)

)
∩ m2 D(F2) �= ∅,

so that

∃ s−1 , s+1 ∈ D(F1), s2 ∈ D(F2) : m1s−1 < m2s2 < m1s+1 , (4.28)

and S := sup c <∞. Then every pair ϕ = (ϕ1, ϕ2) ∈ � with D(ϕ|μ1, μ2) ≥∑
i mi inf Fi satisfies

�−1 ≤ supϕ1 ≤ �+1 ,

�±1 :=
m1(F1(s

±
1 )− inf F1)+ m2(F2(s2)− inf F2)+ m2s2S

m2s2 − m1s±1
. (4.29)

Proof Since ϕ = (ϕ1, ϕ2) ∈ � satisfies supϕ1 + supϕ2 ≤ S, the definition
of D in (4.10) and the monotonicity of F◦ yield

∑

i

mi inf Fi ≤ D(ϕ|μ1, μ2) ≤ m1 F◦1 (supϕ1)+ m2 F◦2 (S− supϕ1)

Using the dual bound F◦i (ϕi ) ≤ ϕi si + Fi (si ) for si ∈ D(Fi ) (cf. (4.9)) now
implies

∑

i

mi inf Fi ≤ D(ϕ|μ1, μ2)

≤ (m1s1−m2s2) supϕ1 + m1 F1(s1)+ m2 F2(s2)+ m2s2S.

Exploiting (4.28), the choice s1 := s−1 shows the upper bound in (4.29); and
s1 = s+1 the lower bound. ⊓⊔

We improve the previous result by showing that in the case of bounded cost
functions it is sufficient to consider bounded potentials ϕi . This lemma is well
known in the case of Optimal Transport problems and will provide a useful
a priori estimate in the case of bounded cost functions; it will also play an
important role in the third step of the proof of Theorem 4.11, which contains
the main result concerning the dual representation.

Lemma 4.9 If sup c = S <∞, then for every pair ϕ ∈ �, there exists ϕ̃ ∈ �

such that D(ϕ̃|μ1, μ2) ≥ D(ϕ|μ1, μ2) and

sup ϕ̃i − inf ϕ̃i ≤ S, 0 ≤ sup ϕ̃1 + sup ϕ̃2 ≤ S. (4.30)

If moreover (3.12) holds, than there exist a constant ϕmax ≥ 0 only depending

on Fi ,mi , S such that

− ϕmax ≤ inf ϕ̃i ≤ sup ϕ̃i ≤ ϕmax. (4.31)
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Proof Since c ≥ 0, possibly replacing ϕ1 with ϕ̃1 := ϕ1 ∨ (− supϕ2) we
obtain a new pair (ϕ̃1, ϕ2) with

ϕ̃1 ≥ ϕ1, ϕ̃1(x1)+ ϕ2(x2) ≤
(
ϕ1(x1)+ ϕ2(x2)

)
∧ 0 ≤ c(x1, x2)

so that (ϕ̃1, ϕ2) ∈ � and D(ϕ̃1, ϕ2|μ1, μ2) ≥ D(ϕ1, ϕ2|μ1, μ2) since F◦1 is
nondecreasing. It is then not restrictive to assume that inf ϕ1 ≥ − supϕ2; a
similar argument shows that we can assume inf ϕ2 ≥ − supϕ1. Since

supϕ1 + supϕ2 ≤ S (4.32)

we thus obtain a new pair (ϕ̃1, ϕ̃2) ∈ � with

D(ϕ̃1, ϕ̃2|μ1, μ2) ≥ D(ϕ1, ϕ2|μ1, μ2), sup ϕ̃i − inf ϕ̃i ≤ S. (4.33)

If moreover supϕ1 + supϕ2 = −δ < 0, we could always add the constant δ
to, e.g., ϕ1, thus increasing the value of D while still preserving the constraint
�. Thus, (4.30) is established.

When (3.12) holds (e.g. in the case considered by (4.28)) the previous
Lemma 4.8 provides constants ϕ±1 such that ϕ−1 ≤ sup ϕ̃1 ≤ ϕ+1 . Now, (4.30)
shows that ϕ−2 ≤ sup ϕ̃2 ≤ ϕ+2 with ϕ−2 := −ϕ

+
1 and ϕ+2 := S−ϕ−1 . Applying

(4.30) once again, we obtain (4.31) with ϕmax := S + ϕ+1 − ϕ−1 . ⊓⊔

Before stating the last lemma we recall the useful notion of c-transforms of
functions ϕi : X i → R̄ for a real valued cost c : X → [0,∞), defined via

ϕc
1(x2) := inf

x∈X1

(
c(x, x2)−ϕ1(x)

)
and ϕc

2(x1) := inf
x∈X2

(
c(x1, x)−ϕ2(x)

)
.

(4.34)
It is not difficult to show (see e.g. [2, Sect. 6.1]) that if ϕ1 ⊕ ϕ2 ≤ c with
supϕi <∞ then

ϕc
1 and ϕc

2 are bounded, ϕcc
1 ⊕ ϕc

1 ≤ c, ϕcc
1 ≥ ϕ1, and ϕc

1 ≥ ϕ2. (4.35)

Moreover, ϕ1 = ϕcc
1 if and only if ϕ1 = ϕc

2 for some function ϕ2; in this case
ϕ1 is called c-concave and (ϕcc

1 , ϕc
1) is a pair of c-concave potentials.

Since F◦i are nondecreasing, it is also clear that whenever ϕcc
1 , ϕc

1 are μi -
measurable we have the estimate

∀ϕ ∈ B(X1)× B(X2), ϕ1 ⊕ ϕ2 ≤ c :
D((ϕ1, ϕ2)|μ1, μ2) ≤ D((ϕcc

1 , ϕc
2)|μ1, μ2) (4.36)

The next lemma concerns the lower semicontinuity of ϕc
i in the case when c

has the particular form (cf. [26])
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c =
N∑

n=1

cnχ A1
n×A2

n
, with cn ≥ 0 and Ai

n open in X i . (4.37)

Lemma 4.10 Let us assume that c has the form (4.37) and that ϕ ∈ Bs(X1)×
Bs(X2) is a pair of simple functions taking values in D(F◦1 ) × D(F◦2 ) and

satisfying ϕ1 ⊕ ϕ2 ≤ c. Then (ϕcc
1 , ϕc

1) ∈ � with D((ϕcc
1 , ϕc

1)|μ1, μ2) ≥
D(ϕ|μ1, μ2).

Proof It is easy to check that ϕcc
1 , ϕc

1 are simple, since the infima in (4.34) are
taken on a finite number of possible values. By (4.35) it is thus sufficient to
check that they are lower semicontinuous functions.

We do this for ϕc
1 , the argument for ϕcc

1 = (ϕc
1)

c is completely analogous.
For this, consider the sets

Z :=
{

z = (zn)
N
n=1 ∈ {0, 1}N : ∃ y ∈ X1 ∀ n = 1, . . . , N : zn = χ

A1
n
(y)
}
,

Yz := {y ∈ X1 : ∀ n = 1, . . . , N : χ A1
n
(y) = zn}.

Clearly, (Yz)z∈Z defines a Borel partition of X1; we define ϕz := sup{ϕ1(y) :
y ∈ Yz}.

By construction, for every z ∈ Z and y ∈ Yz the map fz(x) := c(y, x)−ϕz

is independent of y in Yz and it is lower semicontinuous w.r.t. x ∈ X2 since
c is lower semicontinuous. Since ϕc

1(x2) is the minimum of a finite collection
of lower semicontinuous functions, viz.

ϕc
1(x2) = min

{
fz(x2) : z ∈ Z

}
(4.38)

we obtain ϕc
1 ∈ LSC(X1). ⊓⊔

With all these auxiliary results at hand, we are now ready to prove our main
result concerning the dual representation using Theorem 2.4.

Theorem 4.11 In the basic coercive setting of rm Sect. 3.1 (i.e. (3.2a) or (3.2b)
hold), the Entropy-Transport functional (3.4) and the dual functional (4.10)
satisfy

inf
γ∈M(X1×X2)

E (γ |μ1, μ2) = sup
ϕ∈�

D(ϕ|μ1, μ2) for every μi ∈M(X i ),

(4.39)
i.e. ET(μ1, μ2) = D(μ1, μ2) for every μi ∈M(X i ).

Proof Since ET ≥ D is obvious, it suffices to show ET ≤ D. In particular, it is
not restrictive to assume that D(μ1, μ2) is finite. We proceed in various steps,
considering first the case when c has compact sublevels. Starting from Step 2
we will assume that (Fi )

′
∞ = +∞ (so that F◦i are continuous and increasing
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1022 M. Liero et al.

on R, and F◦i ◦ϕi ∈ LSCb(X i )whenever ϕi ∈ LSCb(X i )), and we will remove
the compactness assumption on the sublevels of c.

Step 1. We show that if the cost c has compact sublevels then (4.39) holds:

We can directly apply Theorem 2.4 to the saddle functional L of (4.3) by
choosing A = M given by (4.4) endowed with the narrow topology and
B = LSCs(X1, D̊(R∗1)) × LSCs(X1, D̊(R∗1)). Conditions (2.9a) and (2.9b)
are clearly satisfied; in order to check (2.11) we make use of the coercivity
assumption (F1)

′
∞ + (F2)

′
∞ + min c > 0 to find ψ⋆ = (ψ̄1, ψ̄2) ∈ B with

constant functions ψ̄i ∈ D̊(R∗i ) and −R∗(ψ̄i ) = −ϕ̄i = φ̄i ∈ (−∞, (Fi )
′
∞)

such that

D = min
(
c− (ϕ̄1 ⊕ ϕ̄2)

)
= φ̄1 + φ̄2 +min c > 0.

Since

L (γ ,ψ⋆) =
∫

X

(
c−min c

)
dγ + Dγ (X)+

∑

i

ψ̄iμi (X i ),

we immediately see that for C sufficiently big the sublevels {γ ∈ M :
L (γ ,ψ∗) ≤ C

}
are closed, bounded (since D > 0) and equally tight (by

the compactness of the sublevels of c), thus narrowly compact. Thus, (4.39),
i.e. ET = D, follows from Theorem 2.4; this concludes the proof of Theo-
rem 4.11 in the case when (3.2b) holds.

From now on we consider the case (3.2a), by assuming Fi superlinear,
i.e. (Fi )

′
∞ = +∞.

Step 2. We show that if μi have compact support, if (3.12) is satisfied,

and if the cost c has the form (4.37), then (4.39) holds: Let us set X̃ i :=
supp(μi ). Since (Fi )

′
∞ = +∞ the support of all γ with E (γ |μ1, μ2) <∞ is

contained X̃1 × X̃2 so that the minimum of the functional E (γ |μ1, μ2) does
not change by restricting the spaces to X̃ i . By applying the previous step to
the problem stated in X̃1 × X̃2, for every constant E < ET(μ1, μ2) we find
ϕ ∈ LSCs(X̃1)× LSCs(X̃2) such that ϕ1 ⊕ ϕ2 ≤ c in X̃1 × X̃2, that F◦i (ϕi )

is finite, and that
∑

i

∫
X̃ i

F◦i (ϕi ) dμi ≥ E .

Extendingϕi to− sup c in X i \ X̃ i the value of D(ϕ|μ1, μ2) does not change
and we obtain a pair of simple Borel functions with ϕ1⊕ϕ2 ≤ c in X . We can
eventually apply Lemma 4.10 to find (ϕcc

1 , ϕc
1) ∈ � with D(ϕcc

1 , ϕc
1 |μ1, μ2) ≥

E . Since E < ET(μ1, μ2) was arbitrary, we conclude that (4.39) holds in this
case as well.

In the next step we remove the assumption on the compactness of supp(μi ).
Step 3. We show that if (3.12) is satisfied and if the cost c has the form (4.37),

then (4.39) holds: Since μi are Radon, we find two sequences of compact sets
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Ki,n ⊂ X i such that εi,n := μi (X i \ Ki,n) → 0 as n → ∞, i.e. μi,n :=
χKi,n

· μi converges narrowly to μi .
Let En := ET(μ1,n, μ2,n) and let E ′n < En with limn→∞ E ′n =

lim infn→∞ En . Since μi,n have compact support, by the previous step and
Lemma 4.9 we can find a sequence ϕn ∈ � and a constant ϕmax independent
of n such that

D(ϕn|μ1,n, μ2,n) ≥ E ′n and sup |ϕi
n| ≤ ϕmax.

This yields

D(ϕn|μ1, μ2) ≥
∑

i

∫

Ki,n

F◦i (ϕi,n) dμi +
∑

i

F◦i (−ϕmax)εi,n

≥ E ′n +
∑

i

F◦i (−ϕmax)εi,n.

Using the lower semicontinuity of ET from Lemma 3.9 we obtain

D(μ1, μ2) ≥ lim inf
n→∞

D(ϕn|μ1, μ2) ≥ lim
n→∞

E ′n

= lim inf
n→∞

ET(μ1,n, μ2,n) ≥ ET(μ1, μ2).

Thus, (4.39) is established.
In the next step we remove the assumption (3.12) on Fi .
Step 4. We show that if the cost c has the form (4.37), then (4.39) holds:

It is sufficient to approximate Fi by an increasing and pointwise converging
sequence Fn

i ∈ Ŵ(R+); we will denote by ETn the corresponding optimal
Entropy-Transport functional. The corresponding sequence (Fn

i )
◦ : ϕi �→

sups≥0(Fn
i (s) + sϕi ) of conjugate concave functions is also nondecreasing

and pointwise converging to F◦i . By the previous step, if En < ETn(μ1, μ2)

with limn→∞ En = limn→∞ ETn(μ1, μ2) = ET(μ1, μ2) (the latter limit
follows by Lemma 3.9) we can find ϕn ∈ � such that

En ≤
∑

i

∫

X i

(Fn
i )
◦(ϕn

i ) dμi ≤
∑

i

∫

X i

F◦i (ϕ
n
i ) dμi = D(ϕn|μ1, μ2).

Passing to the limit n→∞we conclude ET(μ1, μ2) ≤ D(μ1, μ2) as desired.
Step 5, conclusion. We show that (4.39) holds for a general cost c: Let

c : X → [0,∞] be an arbitrary proper l.s.c. cost and let us denote by
(cα)α∈A the class of costs characterized by (4.37) and majorized by c. Then,
A is a directed set with the pointwise order ≤, since maxima of a finite
number of cost functions in A can still be expressed as in (4.37). It is not
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difficult to check that c = supα∈A cα = limα∈A cα so that by Lemma 3.9
ET(μ1, μ2) = limα∈A ETα(μ1, μ2) = supα∈A ETα(μ1, μ2), where ETα

denotes the Entropy-Transport functional associated to cα .
Thus for every E < ET(μ1, μ2)we can findα ∈ A such that ETα(μ1, μ2) >

E and therefore, by the previous step, a pair ϕα ∈ LSCs(X1, D̊(F◦1 )) ×
LSCs(X2, D̊(F◦2 )) with such that ϕα

1 ⊕ϕα
2 ≤ cα in X and D(ϕα|μ1, μ2) ≥ E .

Since cα ≤ c we have ϕα ∈ � and ET(μ1, μ2) ≤ D(μ1, μ2) follows. ⊓⊔

Arguing as in Remark 2.8 we can change the spaces of test potentials ϕ =
(ϕ1, ϕ2) ∈ � introduced in (4.11).

Corollary 4.12 The duality formula (4.39) [and the equivalence with (4.8)]
still holds if we replace the spaces of simple lower semicontinuous functions

LSCs(X i , D̊(F◦i )) (resp. LSCs(X i , D̊(R∗i ))) in the definition of � (resp. �)

with the corresponding spaces of bounded lower semicontinuous functions

LSCb or with the spaces of bounded Borel functions Bb.

If (X i , τi ) are completely regular spaces, then we can equivalently replace

lower semicontinuous functions by continuous ones, obtaining

ET(μ1, μ2)=sup
{∑

i

∫

X i

F◦(ϕi ) dμi : ϕi , F◦i (ϕi )∈Cb(X i ), ϕ1 ⊕ ϕ2 ≤c
}

= sup
{∑

i

∫

X i

ψi dμi : ψi , R∗i (ψi ) ∈ Cb(X i ),

R∗1(ψ1)⊕ R∗2(ψ2) ≤ c
}
. (4.40)

Corollary 4.13 (Subadditivity of ET) The functional ET is convex and pos-

itively 1-homogeneous. In particular it is subadditive, in the sense that for

every μi , μ
′
i ∈M(X) and λ ≥ 0 we have

ET(λμ1, λμ2) = λET(μ1, μ2),

ET(μ1 + μ′1, μ2 + μ′2) ≤ ET(μ1, μ2)+ ET(μ′1, μ
′
2). (4.41)

Proof By Theorem 4.11 it is sufficient to prove the corresponding property
of D, which follows immediately from its representation formula (4.8) as a
supremum of linear functionals. ⊓⊔

4.4 Existence of optimal Entropy-Kantorovich potentials

In this section we will consider two cases, when the dual problem admits a
pair of optimal Entropy-Kantorovich potentials ϕ = (ϕ1, ϕ2).

The first case is completely analogous to the transport setting.
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Theorem 4.14 In the basic coercive setting of Sect. 3.1 (i.e. (3.2a) or (3.2b)
hold) let us suppose that (X i ,di ), i = 1, 2, are complete metric spaces, that

(3.12) holds, and that c is bounded and uniformly continuous with respect to the

product distance d((x1, x2), (x
′
1 x ′2)) :=

∑
i di (xi , x ′i ) in X = X1× X2. Then

there exists a pair of optimal Entropy-Kantorovich potentials ϕ ∈ Cb(X1) ×
Cb(X2) satisfying

ϕ1 ⊕ ϕ2 ≤ c, ϕi ≥ −(Fi )
′
∞, ET(μ1, μ2) = D(ϕ|μ1, μ2). (4.42)

Proof By the boundedness and uniform continuity of c we can find a continu-
ous and concave modulus of continuity ω : [0,∞)→ [0,∞) with ω(0) = 0
such that

∣∣c(x ′1, x2)− c(x1, x2)
∣∣ ≤ ω(d1(x

′
1, x1)),∣∣c(x1, x ′2)− c(x1, x2)

∣∣ ≤ ω(d2(x
′
2, x2)).

Possibly replacing the distances di with di + ω(di ), we may assume that
x1 �→ c(x1, x2) is 1-Lipschitz w.r.t. d1 for every x2 ∈ X2 and x2 �→ c(x1, x2)

is 1-Lipschitz with respect to d2 for every x1 ∈ X1. In particular, every c-
transform (4.34) of a bounded function is 1-Lipschitz (and in particular Borel).

We apply Corollary 4.12: let ϕn be a maximizing sequence in �. By Lemma
4.9 we can assume that ϕn is uniformly bounded; by (4.35) and (4.36) we can
also assume that ϕn are c-concave and thus 1-Lipschitz. If Ki,n is a family
of compact sets whose union Ai has a full μi measure in X i , by applying the
Ascoli-Arzelà theorem on each compact set Ki,n and a standard diagonal argu-
ment, we can extract a subsequence (still denoted by ϕn) pointwise convergent
to ϕ = (ϕ1, ϕ2) in A1 × A2. By setting ϕi := lim infn→∞ ϕi,n , i = 1, 2, we
extend ϕ to X and we obtain a pair ϕi ∈ Bb(X i ) satisfying ϕ1 ⊕ ϕ2 ≤ c,
ϕi ≥ −(Fi )

′
∞ and

D(ϕ|μ1, μ2) =
∑

i

∫

Ai

F◦i (ϕi ) dμi

≥ lim
n→∞

∑

i

∫

Ai

F◦i (ϕi,n) dμi = ET(μ1, μ2),

thanks to the pointwise convergence in Ai , Fatou’s Lemma and the fact that
F◦i (ϕi,n) are uniformly bounded from above since ϕi,n are uniformly bounded.
Eventually replacing (ϕ1, ϕ2) with (ϕcc

1 , ϕc
1) we obtain a pair in Cb(X1) ×

Cb(X2) satisfying (4.42) thanks to Proposition 4.4. ⊓⊔

The next result is of different type, since it does not require any boundedness
nor regularity of c (also allowing the value +∞ if Fi (0) <∞).
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Theorem 4.15 In the basic coercive setting of Sect. 3.1 (i.e. (3.2a) or (3.2b)
hold), let μi ∈ M(X i ) with ET(μ1, μ2) < ∞ (i.e. Problem 3.1 is feasible)

and let us suppose that at least one of the following two conditions hold:

(a) c is everywhere finite and (3.12) holds

(b) Fi (0) <∞.

Then a plan γ ∈ M(X) is optimal if and only if there exists a pair ϕ as

in (4.22) satisfying the optimality conditions (4.21) with respect to a Borel

partition (Ai , Aμi
, Aγi

) related to the Lebesgue decomposition of (γi , μi ) as

in Lemma 2.3.

Our proof starts with an auxiliary result on subdifferentials, which will be
used extensively.

Lemma 4.16 Let F ∈ Ŵ(R+), s ∈ D(F), let φ ∈ R ∪ {±∞} be an accumu-

lation point of a sequence (φn) ⊂ R satisfying

lim
n→∞

(
F(s)− sφn + F∗(φn)

)
= 0. (4.43)

If φ ∈ R then φ ∈ ∂F(s), if φ = +∞ then s = max D(F) and if φ = −∞
then s = min D(F). In particular, if s ∈ D̊(F) then φ is finite.

Proof Up to extracting a suitable subsequence, it is not restrictive to assume
that φ is the limit of φn as n→∞. For every w ∈ D(F) the Young inequality
wφn ≤ F(w)+ F∗(φn) yields

lim sup
n→∞

(w − s)φn ≤ lim sup
n→∞

F(w)−F(s)+
(

F(s)−sφn + F∗(φn)
)

=F(w)− F(s)

(4.44)

If D(F) = {s} then ∂F(s) = R and there is nothing to prove; let us assume
that D(F) has nonempty interior.

If φ ∈ R then (w − s)φ ≤ F(w) − F(s) for every w ∈ D(F), so that
φ ∈ ∂F(s). Since the right-hand side of (4.44) is finite for every w ∈ D(F),
if φ = +∞ then w ≤ s for every w ∈ D(F), so that s = max D(F). An
analogous argument holds when φ = −∞. ⊓⊔

Proof of Theorem 4.15 We already proved (Theorem 4.6) that the existence of
a pair ϕ as in (4.22) satisfying (4.21) yields the optimality of γ .

Let us now assume that γ ∈ M(X) is optimal. If μi ≡ η0, then we also
have γ = 0 and (4.21) is always satisfied, since we can choose ϕi ≡ 0.

We can therefore assume that at least one of the measures μi , say μ2,
has positive mass. Let γ ∈ OptET(μ1, μ2), and let us apply Theorem 4.11
to find a maximizing sequence ϕn ∈ � such that limn↑∞D(ϕn|μ1, μ2) =
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ET(μ1, μ2). Using the Borel partitions (Ai , Aμi
, Aγi

) for the pairs of measures
γi , μi provided by Lemma 2.3 and observing that the vanishing difference
ET(μ1, μ2)−D(ϕn|μ1, μ2) can be decomposed in the sum of the following
three nonnegative contributions

E (γ |μ1, μ2)−D(ϕn|μ1, μ2) =
∫

X1×X2

(
c(x1, x2)−ϕ1,n(x1)−ϕ2,n(x2)

)
dγ

+
∫

Ai∪Aμi

(
Fi (σi )+σiϕi,n−F◦i (ϕi,n)

)
dμi

+
∫

Aγi

(
ϕi,n + (Fi )

′
∞
)

dγ⊥i

we get

lim
n→∞

∫

X1×X2

(
c(x1, x2)− ϕ1,n(x1)− ϕ2,n(x2)

)
dγ = 0,

lim
n→∞

∫

Ai∪Aμi

(
Fi (σi )+ σiϕi,n − F◦i (ϕi,n)

)
dμi = 0,

lim
n→∞

∫

Aγi

(
ϕi,n + (Fi )

′
∞
)

dγ⊥i = 0.

Since all the integrands are nonnegative, up to selecting a suitable subsequence
(not relabeled) we can assume that the integrands are converging pointwise a.e.
to 0. We can thus find Borel sets A′i ⊂ Ai , A′μi

⊂ Aμi
, A′γi

⊂ Aγi
and A′ ⊂ X

with π i (A′) = A′i ∪ A′γi
, (μi+γi )

(
(Ai \ A′i )∪ (Aμi

\ A′μi
)∪ (Aγi

\ A′γi
)
)
= 0,

and γ (X \ A′) = 0 such that

c(x1, x2) <∞, lim
n→∞

c(x1, x2)− ϕ1,n(x1)− ϕ2,n(x2) = 0 in A′, (4.45)

Fi (σi ) <∞, lim
n→∞

Fi (σi )+ σiϕi,n − F◦i (ϕi,n) = 0 in A′i ∪ A′μi
,

(4.46)

lim
n→∞

(
ϕi,n + (Fi )

′
∞
)
= 0 in A′γi

.

(4.47)

For every xi ∈ X i we define the Borel functionsϕ1(x1) := lim supn→∞ ϕ1,n(x1)

and ϕ2(x2) := lim infn→∞ ϕ2,n(x2), taking values in R ∪ {±∞}. It is clear
that the pair ϕ = (ϕ1, ϕ2) complies with (4.22), (4.21d) and (4.21c).

If γ (X) = 0 then (4.21a) and (4.21b) are trivially satisfied, so that it is not
restrictive to assume γ (X) > 0.
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If μ1(X1) = 0 then (F1)
′
∞ is finite (since γ⊥1 (X1) = γ1(X1) = γ (X) > 0)

and ϕ1 ≡ (F1)
′
∞ on A′γ1

and on A′. It follows that ϕ2(x2) = c(x1, x2) −
(F1)

′
∞ ∈ R on A′ so that (4.21a) is satisfied. Since ϕ2(x2) is an accumulation

point of ϕ2,n(x2), Lemma 4.16 yields −ϕ2(x2) ∈ ∂F2(σ2(x2)) in A′2 so that
(4.21b) is also satisfied (in the case i = 1 one can choose A′1 = ∅).

We can thus assume that μi (X i ) > 0 and γ (X) > 0. In order to check
(4.21a) and (4.21b) we distinguish two cases.

Case a: c is everywhere finite and (3.12) holds. Let us first prove that
ϕ1 <∞ everywhere.

By contradiction, if there is a point x̄1 ∈ X1 such that ϕ1(x̄1) = ∞ we
deduce that ϕ2(x2) = −∞ for every x2 ∈ X2.

Since the set A′2 ∪ A′μ2
has positive μ2-measure, it contains some point

x̄2: Equation (4.46) and Lemma 4.16 (with F = F2, s = σ2(x̄2), φn :=
−ϕ2,n(x̄2)) yield s+2 = max D(F2) = σ2(x̄2) <∞ and σ2 ≡ s+2 in A′2 ∪ A′μ2

.
We thus have D(F2) ⊂ [0, s+2 ], (F2)

′
∞ = +∞ and therefore m2s+2 = γ (X).

On the other hand, if ϕ2 = −∞ in X2 we deduce that ϕ1(x1) = +∞ for
every x1 ∈ π1(A′). Since (F1)

′
∞ ≥ 0, it follows that γi (A′γi

) = 0 (i.e. γ⊥i = 0)
so that there is a point a1 in A′1 such that ϕ1(a1) = +∞. Arguing as before, a
further application of Lemma 4.16 yields that σ1 ≡ s−1 = min D(F1) μ1-a.e.
It follows that m1s−1 = γ1(X1) = γ (X) = m2s+2 , and this contradicts (3.12).

Since μ1(X1) > 0 the same argument shows that ϕ2 < ∞ everywhere
in X2. It follows that (4.21a) holds and ϕi > −∞ on A′i . Since ϕi (xi ) is an
accumulation point of ϕi,n(xi ), Lemma 4.16 yields −ϕi (xi ) ∈ ∂Fi (σi (xi )) in
A′i so that (4.21b) is also satisfied.

Case b: Fi (0) < ∞. In this case F◦i are bounded from above and ϕi ≥
−(Fi )

′
∞ everywhere in X i . By Theorem 4.11 limn→∞

∑
i

∫
F◦i (ϕi,n) dμi >

−∞, so that Fatou’s Lemma yields F◦1 (ϕ1) ∈ L1(X1, μ1) and ϕ1(x1) > −∞
for μ1-a.e. x1 ∈ X1, in particular for (μ1 + γ1)-a.e. x1 ∈ A′1. Applying
Lemma 4.16 , sinceσ1(x1) > 0 = min D(F1) in A′1, we deduce that−ϕ1(x1) ∈
∂F1(σ1(x1)) for (μ1+γ1)-a.e. x1 ∈ A′1, i.e. (4.21b) for i = 1. Since we already
checked that (4.21c) and (4.21d) hold, applying Lemma 2.6 (with φ := −ϕ1
and ψ := F◦1 (ϕ1))) we get ϕ1 ∈ L1(X1, γ1), in particular ϕ1 ◦ π1 ∈ R holds
γ -a.e. in X . It follows that (4.21a) holds andϕ2◦π2 ∈ L1(X, γ ) so thatϕ2 ∈ R

(μ2 + γ2)-a.e. in A′2. A further application of Lemma 4.16 yields (4.21b) for
i = 2. ⊓⊔

Corollary 4.17 Let us suppose that D(Fi ) ⊃ (0,∞) and Fi are differ-

entiable in (0,∞) and let μi ∈ M(X i ) with ET(μ1, μ2) < ∞. A plan

γ ∈ M(X) belongs to OptET(μ1, μ2) if and only if there exist Borel par-

titions (Ai , Aμi
, Aγi

) and corresponding Borel densities σi associated to γi

and μi as in Lemma 2.3 such that setting
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ϕi (xi ) :=

⎧
⎪⎨
⎪⎩

−F ′i (σi ) if xi ∈ Ai ,

−(Fi )
′
0 if xi ∈ Aμi

,

−(Fi )
′
∞ if xi ∈ X i \ (Ai ∪ Aμi

),

(4.48)

we have

ϕ1 ⊕o ϕ2 ≤ c in X1 × X2,

ϕ1 ⊕ ϕ2 = c γ -a.e. in (A1 ∪ Aγ1)× (A2 ∪ Aγ2). (4.49)

Proof Since ∂Fi (s) = {F ′i (s)} for every s ∈ (0,∞) and F◦i (ϕi ) = Fi (0) if and
only ifϕi ∈ [−(Fi )

′
0,∞], (4.49) is clearly a necessary condition for optimality,

thanks to Theorem 4.15. Since (Fi )
′
0 ≤ F ′i (s) ≤ (Fi )

′
∞ Theorem 4.6 shows

that conditions (4.48)–(4.49) are also sufficient. ⊓⊔

The next result (where we will keep the same notation of Corollary
4.17) shows that (4.48)–(4.49) take an even simpler form when −(Fi )

′
0 =

(Fi )
′
∞ = +∞; in particular, by assuming that c is continuous, the sup-

port of the marginals γi of an optimal plan γ cannot be too small, since
supp(γi ) ⊃ supp(μi ) \ supp(μ⊥i ).

Corollary 4.18 (Spread of the support) Let us suppose that

• c : X → [0,∞] is continuous.

• D(Fi ) ⊃ (0,∞), Fi are differentiable in (0,∞), and −(Fi )
′
0 = (Fi )

′
∞ =

∞,

and let μi ∈ M(X i ) with ET(μ1, μ2) < ∞ and γ ∈ M(X). Then γ is an

optimal plan if and only if γi ≪ μi , for every (x1, x2) ∈ supp(μ1)× supp(μ2)

we have c(x1, x2) = +∞ if x1 ∈ suppμ⊥1 or x2 ∈ suppμ⊥2 , and there

exist Borel sets Ai ⊂ supp γi with γi (X i \ Ai ) = 0 and Borel densities

σi : Ai → (0,∞) of γi w.r.t. μi such that

F ′1(σ1)⊕ F ′2(σ2) ≥ −c in A1 × A2,

F ′1(σ1)⊕ F ′2(σ2) = −c γ -a.e. in A1 × A2. (4.50)

Remark 4.19 Apart from the case of pure transport problems (Example E.3
of Sect. 3.3), where the existence of Kantorovich potentials is well known
(see [50, Thm. 5.10]), Theorem 4.15 covers essentially all the interesting
cases, at least when the cost c takes finite values if 0 /∈ D(Fi ). In fact, if
the strengthened feasibility condition (3.12) does not hold, it is not difficult to
construct an example of optimal plan γ for which conditions (4.22), (4.21a),
(4.21b) cannot be satisfied. Consider e.g. X i = R, c(x1, x2) := 1

2 |x1 − x2|2,

μ1 := e−
√
πx2

1 L 1, μ2 := e−
√
π(x2+1)2

L 1, and entropy functions Fi satis-
fying D(F1) = [a, 1], D(F2) = [1, b] with arbitrary choice of a ∈ [0, 1)
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and b ∈ (1,∞]. Since m1 = m2 = 1 the weak feasibility condition (3.1)
holds, but (3.12) is violated. We find γi = μi , σi ≡ 1, so that the opti-
mal plan γ can be obtained by solving the quadratic optimal transportation
problem, thus γ := t♯μ1 where t(x) := (x, x − 1). In this case the poten-
tials ϕi are uniquely determined up to an additive constant a ∈ R so that
we have ϕ1(x1) = x1 + a, ϕ2(x2) = −x2 − a − 1

2 , and it is clear that
condition −ϕi ∈ ∂Fi (1) corresponding to (4.21b) cannot be satisfied, since
∂Fi (1) are always proper subsets of R. We can also construct entropies such
that ∂Fi (1) = ∅ (e.g. F1(r) = (1−r) log(1−r) + r with D(F1) = [0, 1],
F2(r) = (r−1) log(r−1) − r + 2 with D(F2) = [1,∞)) so that (4.21b) can
never hold, independently of the cost c.

5 “Homogeneous” formulations of optimal Entropy-Transport
problems

Starting from the reverse formulation of the Entropy-Transport problem of
Sect. 3.5 via the functional R, see (3.28), in this section we will derive further
equivalent representations of the ET functional, which will also reveal new
interesting properties, in particular when we will apply these results to the
logarithmic Hellinger–Kantorovich functional. The advantage of the reverse
formulation is that it always admits a “1-homogeneous” representation, asso-
ciated to a modified cost functional that can be explicitly computed in terms
of Ri and c.

We will always tacitly assume the coercive setting of Sect. 3.1, see (3.2).

5.1 The homogeneous marginal perspective functional

First of all we introduce the marginal perspective function Hc depending on
the parameter c ≥ inf c (see [23, Chap. IV, Sect. 2.2] for the definition and
the basic properties of the perspective; we use the term “marginal perspective”
since we are infimizing w.r.t. the perspective parameter):

Definition 5.1 (Marginal perspective function and cost) For c ∈ [0,∞), the
marginal perspective function Hc : [0,∞) × [0,∞)→ [0,∞] is defined as
the lower semicontinuous envelope of

H̃c(r1, r2) := inf
θ>0

θ
(
R1(r1/θ)+ R2(r2/θ)+ c

)

= inf
θ>0

r1 F1(θ/r1)+ r2 F2(θ/r2)+ θc. (5.1)

For c = ∞ we set

H∞(r1, r2) := F1(0)r1 + F2(0)r2. (5.2)
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The induced marginal perspective cost is H : (X1 × R+) × (X2 × R+) →
[0,∞] with

H(x1, r1; x2, r2) := Hc(x1,x2)(r1, r2), for xi ∈ X i and ri ≥ 0. (5.3)

The last formula (5.2) is justified by the property Fi (0) = (Ri )
′
∞ and the

fact that Hc(r1, r2) ↑ H∞(r1, r2) as c ↑ ∞ for every r1, r2 ∈ [0,∞); see also
Lemma 5.3 below.

The marginal perspective cost (5.3) has an important interpretation in terms
of the optimal Entropy Transport problem 3.1 between two Dirac masses: at
least in the superlinear case (3.2a), it is easy to see that for every xi ∈ X and
ri > 0, i = 1, 2, we have

H(x1, r1; x2, r2) = ET(r1δx1, r2δx2), when (Fi )
′
∞ = +∞. (5.4)

It is in fact sufficient to minimize E (γ |r1δx1, r2δx2) among the plans γ of the
form θδ(x1,x2).

Example 5.2 Let us consider the symmetric cases associated to the entropies
Up introduced in (1.4) and Example 2.5 and V (s) = |s − 1|:
E.1 In the “logarithmic entropy case”, which we will extensively study in Part

II, we have

Fi (s) := U1(s) = s log s − (s − 1) and Ri (r) = U0(r) = r − 1− log r.

A direct computation shows

H̃c(r1, r2) = Hc(r1, r2) = r1 + r2 − 2
√

r1 r2 e−c/2

=
(√

r1 −
√

r2
)2 + 2

√
r1 r2

(
1− e−c/2).

(5.5)

E.2 For p = 0, Fi (s) = U0(s) = s− log s− 1, and Ri (r) = U1(r) we obtain

H̃c(r1, r2) = Hc(r1, r2) = r1 log r1 + r2 log r2 − (r1+r2) log
(r1 + r2

2+ c

)
.

(5.6)
E.3 In the power-like case with p ∈ R \ {0, 1} we start from

Fi (s) := Up(s) =
1

p(p−1)

(
s p − p(s−1)− 1

)
, Ri (r) = U1−p(r)

and obtain, for r1, r2 > 0,

H̃c(r1, r2) = Hc(r1, r2)
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1032 M. Liero et al.

= 1

p

[(
r1 + r2

)
− r1 r2(

r
p−1
1 + r

p−1
2

)1/(p−1)

(
2− (p−1)c

)q

+

]
, (5.7)

where q = p/(p−1). In fact, we have

θ
(
U1−p(

r1
θ
)+U1−p(

r2
θ
)+ c

)
= r

1−p
1 + r

1−p
2

p(p−1)
θ p

+ 1

p
(r1+r2)+

1

p−1
((p−1)c − 2)θ)

= 1

p
(r1+r2)+

1

p−1

[ 1

p

(
(r

1−p
1 + r

1−p
2 )1/p θ

)p

−
(
2− (p−1)c

)
θ
]
,

and (5.7) follows by minimizing w.r.t. θ . For example, when p = q = 2,

Hc(r1, r2) =
1

2

(
r1 + r2

)
− 1

2

r1r2

r1 + r2
(2− c)2

+

= 1

2(r1 + r2)

(
(r1 − r2)

2 + h(c)r1r2

)
, (5.8)

where h(c) = c(4 − c) if 0 ≤ c ≤ 2 and 4 if c ≥ 2. For p = −1 and
q = 1/2 equation (5.7) yields

H̃c(r1, r2) = Hc(r1, r2) =
√
(r2

1 + r2
2 )(2+ 2c)−

(
r1 + r2

)
. (5.9)

E.4 In the case of the total variation entropy Ri (s) = V (s) = |s − 1| we
easily find

H̃c(r1, r2) = Hc(r1, r2) = r1 + r2 − (2− c)+(r1 ∧ r2)

= |r2 − r1| + (c ∧ 2)(r1 ∧ r2).

The following dual characterization of Hc nicely explains the crucial role
of Hc.

Lemma 5.3 (Dual characterization of Hc) For every c ≥ 0 the function Hc

admits the dual representation

Hc(r1, r2)

= sup
{

r1ψ1 + r2ψ2 : ψi ∈ D(R∗i ), R∗1(ψ1)+ R∗2(ψ2) ≤ c
}

(5.10)

= sup
{

r1 F◦1 (ϕ1)+ r2 F◦2 (ϕ2) : ϕi ∈ D(F◦i ), ϕ1 + ϕ2 ≤ c
}
. (5.11)
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In particular it is lower semicontinuous, convex and positively 1-homogeneous

(thus sublinear) with respect to (r1, r2), nondecreasing and concave w.r.t. c,

and satisfies

Hc(r1, r2) ≤ H∞(r1, r2) =
∑

i

Fi (0)ri for every c ≥ 0, ri ≥ 0. (5.12)

Moreover,

(a) the function Hc coincides with H̃c in the interior of its domain; in partic-

ular, if Fi (0) <∞ then Hc(r1, r2) = H̃c(r1, r2) whenever r1r2 > 0.

(b) If (F1)
′
∞ + c ≥ −(F2)

′
0 and (F2)

′
∞ + c ≥ −(F1)

′
0, then

Hc(r1, r2) =
∑

i

Fi (0)ri if r1r2 = 0. (5.13)

Proof Since sup D(R∗i ) = Fi (0) by (2.33), one immediately gets (5.10) in the
case c = ∞; we can thus assume c <∞.

It is not difficult [23, Chap. IV, Sect. 2.2] to check that the perspective
function (r1, r2, θ) �→ θ

(
R1(r1/θ) + R2(r2/θ) + c

)
is jointly convex in

[0,∞)×[0,∞)× (0,∞) so that H̃c is a convex and positive 1-homogeneous
function. It is also proper (i.e. it is not identically +∞) thanks to (3.1), and it
is concave w.r.t c since it is the infimum of a family of affine functions in c.

By Legendre duality [41, Thm.12.2], its lower semicontinuous envelope is
given by

Hc(r1, r2) = sup
{∑

i

ψiri : H∗c (ψ1, ψ2) ≤ 0
}
, (5.14)

where

H∗c (ψ1, ψ2) = sup
{∑

i

ψiri − H̃c(r1, r2) : ri ≥ 0
}

= sup
ri≥0,θ>0

∑

i

(
ψiri − θRi (ri/θ)

)
− cθ

= sup
θ>0

θ
(∑

i

R∗i (ψi )− c
)

=
{

0 if R∗i (ψi ) <∞,
∑

i R∗i (ψi ) ≤ c

+∞ otherwise.

Now, (5.11) immediately follows from (5.10) by the usual change of variable
ϕi = R∗i (ψi ), recall (2.31) and F◦i (ϕi ) = −F∗i (−ϕi ).

In order to prove point (a) it is sufficient to recall that convex functions are
always continuous in the interior of their domain [41, Thm. 10.1]. In particular,
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since limθ↓0 θ
(
R1(r1/θ) + R2(r2/θ) + c) =

∑
i (Ri )

′
∞ri =

∑
i Fi (0)ri for

every r1, r2 > 0, we have H̃c(r1, r2) ≤
∑

i Fi (0)ri , so that H̃c is always finite
if Fi (0) <∞.

Concerning (b), it is obvious when r1 = r2 = 0. When r1 > r2 = 0, the facts
that sup D(R∗i ) = Fi (0), limr↑Fi (0) R∗i (r) = −(Fi )

′
0, and inf R∗i = −(Fi )

′
∞

(see (2.33)) yield

Hc(r1, 0) = sup
{
ψ1r1 : R∗1(ψ1) ≤ c − inf R∗2

}
= F1(0)r1.

An analogous formula holds when 0 = r1 < r2. ⊓⊔
A simple consequence of Lemma 5.3 and (2.31) is the lower bound

H̃c(r1, r2) ≥ Hc(r1, r2) ≥
∑

i

ψiri for (−ϕi , ψi ) ∈ Fi with ϕ1 + ϕ2 ≤ c.

(5.15)
We now introduce the integral functional associated with the marginal perspec-
tive cost (5.3), which is based on the Lebesgue decompositionμi = ̺iγi+μ⊥i
(see Lemma 2.3),

H (μ1, μ2|γ ) :=
∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ +
∑

i

Fi (0)μ
⊥
i (X i )

(5.16)
where we adopted the same notation as in (3.27). Let us first show that H is
always greater than D .

Lemma 5.4 For every γ ∈M(X), μi , μ
′
i ∈M(X i ), ϕ ∈ �, ̺i ∈ L1

+(X i , γi )

with μi = ̺iγi + μ′i , we have

∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ +
∑

i

Fi (0)μ
′
i (X i ) ≥ D(ϕ|μ1, μ2).

(5.17)

Proof Recalling that F◦i (ϕi ) = −F∗(−ϕi ) ≤ Fi (0) by (2.19) and (2.45), and
using (5.15) with r j = ρ j and ψ j = F◦j (ρ j ) we have

∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ +
∑

i

Fi (0)μ
′
i (X i )

(5.15)
≥
∫

X

(
F◦1 (ϕ1(x1))̺1(x1)+ F◦2 (ϕ2(x2))̺2(x2)

)
dγ +

∑

i

Fi (0)μ
′
i (X i )

=
∑

i

∫

X i

F◦i (ϕi )̺i (xi ) dγi +
∑

i

Fi (0)μ
′
i (X i )

123



Optimal Entropy-Transport problems 1035

(2.19)
≥
∑

i

∫

X i

F◦i (ϕi )̺i (xi ) dγi +
∑

i

∫

X i

F◦i (ϕi ) dμ′i

=
∑

i

∫

X i

F◦i (ϕi ) dμi = D(ϕ|μ1, μ2). ⊓⊔

An immediate consequence of the previous lemma is the following impor-
tant result concerning the marginal perspective cost functional H defined by
(5.16). It can be nicely compared to the Reverse Entropy-Transport functional
R for which Theorem 3.11 stated R(μ1, μ2|γ ) = E (γ |μ1, μ2).

Theorem 5.5 For every μi ∈M(X i ), γ ∈M(X) and ϕ ∈ � we have

R(μ1, μ2|γ ) ≥H (μ1, μ2|γ ) ≥ D(ϕ|μ1, μ2). (5.18)

In particular

ET(μ1, μ2) = H(μ1, μ2) := min
γ∈M(X)

H (μ1, μ2|γ ), (5.19)

and γ ∈ OptET(μ1, μ2) if and only if it minimizes H (μ1, μ2|·) in M(X) and

satisfies

H(x1, ̺1(x1); x2, ̺2(x2)) =
∑

i

Ri (̺i (xi ))+c(x1, x2) γ -a.e. inX, (5.20)

where ̺i is defined as in (2.8). If moreover the following conditions

F1(0) = +∞ or there exists x̄2 ∈ X2 with μ2({x̄2}) = 0,

F2(0) = +∞ or there exists x̄1 ∈ X1 with μ1({x̄1}) = 0, (5.21)

are satisfied, then

ET(μ1, μ2) = min
{ ∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ :

γ ∈M(X), μi = ̺iγi

}
. (5.22)

Proof The inequality R(μ1, μ2|γ ) ≥ H (μ1, μ2|γ ) is an immediate con-
sequence of the fact that

∑
i Ri (ri ) + c ≥ H̃c(r1, r2) ≥ Hc(r1, r2) for

every ri , c ∈ [0,∞], obtained by choosing θ = 1 in (5.1). The estimate
H (μ1, μ2|γ ) ≥ D(ϕ|μ1, μ2) was shown in Lemma 5.4.
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By using the “reverse” formulation of ET(μ1, μ2) in terms of the functional
R(μ1, μ2|γ ) given by Theorem 3.11 and applying Theorem 4.11 we obtain
(5.19) and the characterization (5.20).

To establish the identity (5.22) we note that the difference to (5.19) only lies
in dropping the additional restriction μ⊥i = 0. When both F1(0) = F2(0) =
+∞ the equivalence is obvious since the finiteness of the functional γ �→
H (μ1, μ2|γ ) yields μ⊥1 = μ⊥2 = 0.

In the general case, one immediately see that the right-hand side E ′ of (5.22)
(with “inf” instead of “min”) is larger than ET(μ1, μ2), since the infimum of
H (μ1, μ2|·) is constrained to the smaller set of plans γ satisfying μi ≪ γi .
On the other hand, if γ̄ ∈ OptET(μ1, μ2) with μi = ̺i γ̄i + μ⊥i and m̃i :=
μ⊥i (X i ) > 0, we can consider γ := γ̄ + 1

m̃1m̃2
μ⊥1 ⊗ μ⊥2 which satisfies

μi ≪ γi ; by exploiting the fact that H(x1, r1; x2, r2) ≤
∑

i Fi (0)ri by (5.12),
we obtain

H (μ1, μ2|γ ) =
∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ̄

+ 1

m̃1m̃2

∫

X

H(x1, m̃1; x2, m̃2) dμ⊥1 ⊗ μ⊥2

≤
∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ̄ +
∑

i

Fi (0)m̃i =H (μ1, μ2|γ̄ ),

so that we have E ′ ≤ ET(μ1, μ2). The case when only one (say μ⊥2 ) of
the measures μ⊥i vanishes can be treated in the same way: since in this case
m̃1 = μ⊥1 (X1) > 0 and therefore F1(0) < ∞, by applying (5.21) we can
choose γ := γ̄ + 1

m̃1
μ⊥1 ⊗ δx̄2 , obtaining

H (μ1, μ2|γ )

=
∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ̄ + 1

m̃1

∫

X1

H(x1, m̃1; x̄2, 0) dμ⊥1

≤
∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ̄ + F1(0)m̃1 =H (μ1, μ2|γ̄ ).

⊓⊔

Remark 5.6 Notice that (5.21) is always satisfied if the spaces X i are uncount-
able. If X i is countable, one can always add an isolated point x̄i (sometimes
called “cemetery”) to X i and consider the augmented space X̄ i = X i ⊔ {x̄i }
obtained as the disjoint union of X and x̄i , with augmented cost c̄ which
extends c to+∞ on X̄1× X̄2 \ (X1× X2). We can recover (5.22) by allowing
γ in M(X̄1 × X̄2).
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5.2 Entropy-transport problems with “homogeneous” marginal

constraints

In this section we will exploit the 1-homogeneity of the marginal perspective
function H in order to derive a last representation of the functional ET, related
to the new notion of homogeneous marginals. We will confine our presentation
to the basic facts, and we will devote the second part of the paper to develop
a full theory for the specific case of the Logarithmic Entropy-transport case.

In particular, the following construction (typical in the Young measure
approach to variational problems) allows us to consider the entropy-transport
problems in a setting of greater generality. We replace a pair (γ, ̺), where γ

and ̺ are a measure on X and a nonnegative Borel function, by a measure
α ∈ M(Y ) on the extended space Y = X × [0,∞). The original pair (γ, ̺)
corresponds to a measure α = (x, ̺(x))♯γ concentrated on the graph of ̺ in
Y and whose first marginal is γ .

Homogeneous marginals. In the usual setting of Sect. 3.1, we consider the
product spaces Yi := X i × [0,∞) endowed with the product topology and
denote the generic points in Yi with yi = (xi , ri ), xi ∈ X i and ri ∈ [0,∞) for
i = 1, 2. Projections from Y := Y1 × Y2 onto the various coordinates will be
denoted by π yi , π xi , πri with obvious meaning.

For p > 0 and y ∈ Y we will set | y|pp :=
∑

i |ri |p and call Mp(Y)

(resp. Pp(Y)) the space of measures α ∈M(Y) (resp. P(Y)) such that

∫

Y

| y|pp dα <∞. (5.23)

If α ∈Mp(Y) the measures r
p
i α belong to M(Y), which allow us to define

the “p-homogeneous” marginal hp
i (α) of α ∈ Mp(Y) as the xi -marginal of

r
p
i α, namely

hp
i (α) := π

xi

♯ (r
p
i α) ∈M(X i ). (5.24)

The maps hp
i : Mp(Y) → M(X i ) are linear and invariant with respect to

dilations: if ϑ : Y → (0,∞) is a Borel map in Lp(Y ,α) and prdϑ ( y) :=
(x1, r1/ϑ( y); x2, r2/ϑ( y)), we set

dilϑ,p(α) :=
(
prdϑ )♯

(
ϑ pα
)
, i.e. for ϕ∈Bb(Y)∫

ϕ( y) d(dilϑ,p(α))=
∫

ϕ(x1, r1/ϑ; x2, r2/ϑ)ϑ
p( y) dα( y).

(5.25)
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Using (5.24) we obviously have

hp
i (dilϑ,p(α)) = hp

i (α). (5.26)

In particular, for α ∈Mp(Y) with α(Y) > 0, by choosing

ϑ( y) := 1

r∗

{
| y|p if | y|p �= 0,

1 if | y|p = 0,
r∗ :=

( ∫

Y

| y|pp dα + α({| y|p = 0})
)1/p

(5.27a)
we obtain a rescaled probability measure α̃ with the same homogeneous
marginals as α and concentrated on Yr∗,p :=

{
y ∈ Y : | y|p ≤ r∗

}
⊂

(X × [0, r∗])× (X × [0, r∗]):

α̃ = dilϑ,p(α) ∈ Pp(Y), hp
i (α̃) = hp

i (α), α̃
(
Y \ Yr∗,p

)
= 0. (5.27b)

Entropy-transport problems with prescribed homogeneous marginals.

Given μ1, μ2 ∈M(X) we now introduce the convex sets

H
p
≤(μ1, μ2) :=

{
α ∈Mp(Y) : hp

i (α) ≤ μi

}
,

H
p
=(μ1, μ2) :=

{
α ∈Mp(Y) : hp

i (α) = μi

}
.

(5.28)

Clearly H p
=(μ1, μ2) ⊂ H

p
≤(μ1, μ2) and they are nonempty since every plan

of the form

α = 1

a
p
1 a

p
2

(
μ1 ⊗ δa1

)
⊗
(
μ2 ⊗ δa2

)
, with a1, a2 > 0 (5.29)

belongs to H p
=(μ1, μ2). It is not difficult to check that H

p
≤(μ1, μ2) is also

narrowly closed, while, on the contrary, this property fails for H p
=(μ1, μ2)

if μ1(X1)μ2(X2) �= 0. To see this, it is sufficient to consider any α ∈
H p
=(μ1, μ2) \ {0} and look at the vanishing sequence diln−1,p(α) for n→∞.
There is a natural correspondence between H

p
≤(μ1, μ2) (resp. H p

=(μ1, μ2))
andH1

≤(μ1, μ2) (resp.H1
=(μ1, μ2)) induced by the map Y ∋(x1, r1; x2, r2) �→

(x1, r
p
1 ; x2, r

p
2 ). For plans α ∈ H1

≤(μ1, μ2) we can prove a result similar to
Lemma 5.4 but now we obtain a linear functional in α.

Lemma 5.7 For p ∈ (0,∞), μi ∈ M(X i ), ϕ ∈ �, and α ∈ H
p
≤(μ1, μ2) we

have ∫

X

H(x1, r
p
1 ; x2, r

p
2 ) dα +

∑

i

Fi (0)μ
′
i (X i ) ≥ D(ϕ|μ1, μ2),

where μ′i := μi − hp
i (α). (5.30)
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Proof The calculations are quite similar to the proof of Lemma 5.4:

∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dα +

∑

i

Fi (0)μ
′
i (X i )

(5.15)
≥
∫

Y

(
F◦1 (ϕ1(x1))r

p
1 + F◦2 (ϕ2(x2))r

p
2

)
dα +

∑

i

Fi (0)μ
′
i (X i )

=
∑

i

∫

X i

F◦i (ϕi ) d(hp
i (α))+

∑

i

Fi (0)μ
′
i (X i )

(2.19)
≥
∑

i

∫

X i

F◦i (ϕi ) d(hp
i (α))+

∑

i

∫

X i

F◦i (ϕi ) dμ′i

=
∑

i

∫

X i

F◦i (ϕi ) dμi = D(ϕ|μ1, μ2).

⊓⊔

As a consequence, we can characterize the entropy-transport minimum via
measures α ∈M(Y).

Theorem 5.8 For every μi ∈M(X i ), p ∈ (0,∞) we have

ET(μ1, μ2) = min
α∈H p

≤(μ1,μ2)

∫

Y

(∑

i

Ri (r
p
i )+ c(x1, x2)

)
dα

+
∑

i

Fi (0)(μi − hp
i (α))(X i ) (5.31)

= min
α∈H p

≤(μ1,μ2)

∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dα +

∑

i

Fi (0)(μi − hp
i (α))(X i )

(5.32)

= min
α∈H p

=(μ1,μ2)

∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dα. (5.33)

Moreover, for every plan γ ∈ OptET(μ1, μ2) (resp. optimal for (5.19) or for

(5.22)) with μi = ̺iγi + μ⊥i , the plan α := (x1, ̺
1/p
1 (x1); x2, ̺

1/p
2 (x2))♯γ

realizes the minimum of (5.31) (resp. (5.32) or (5.33)).
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Remark 5.9 When Fi (0) = +∞ (5.31) and (5.32) simply read as

ET(μ1, μ2) = min
α∈H p

=(μ1,μ2)

∫

Y

(∑

i

Ri (r
p
i )+ c(x1, x2)

)
dα

= min
α∈H1=(μ1,μ2)

∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dα.

⊓⊔
Proof of Theorem 5.8 Let us denote by E ′ (resp. E ′′, E ′′′) the right-hand side
of (5.31) (resp. of (5.32), (5.33)), where “min” has been replaced by “inf”.
If γ ∈ M(X) and μi = ̺iγi + μ⊥i (in the case of (5.33) μ⊥i = 0) is the
usual Lebesgue decomposition as in Lemma 2.3 , we can consider the plan
α := (x1, ̺

1/p
1 (x1); x2, ̺

1/p
2 (x2))♯γ .

Since the map (̺
1/p
1 , ̺

1/p
2 ) : X → R

2 is Borel and takes values in a
metrizable and separable space, it is Lusin γ -measurable [44, Thm 5, p. 26],
so that α is a Radon measure in M(Y). For every nonnegative φi ∈ Bb(X i )

we easily get
∫

φi (xi )r
p
i dα =

∫
̺i (xi )φi (xi ) dγ =

∫
̺iφi dγi ≤

∫
φi dμi ,

so that α ∈ H
p
≤(μ1, μ2), hp

i (α) = ̺iγi , and

R(μ1, μ2|γ ) =
∫

X

(∑

i

Ri (̺i (xi ))+ c(x1, x2)
)

dγ +
∑

i

Fi (0)μ
⊥
i (X i )

=
∫

Y

∑

i

Ri (r
p
i )+ c(x1, x2)

)
dα

+
∑

i

Fi (0)(μi − hp
i (α))(X i ) ≥ E ′.

Taking the infimum w.r.t.γ and recalling (3.30) we get ET(μ1, μ2) ≥ E ′. Since∑
i Ri (r

p
i )+ c(x1, x2) ≥ H(x1, r

p
1 ; x2, r

p
2 ) it is also clear that E ′ ≥ E ′′.

On the other hand, Lemma 5.7 shows that E ′′ ≥ D(ϕ|μ1, μ2) for every
ϕ ∈ �. Applying Theorem 4.11 we get ET(μ1, μ2) = E ′ = E ′′.

Concerning E ′′′ it is clear that E ′′′ ≥ E ′′ = ET(μ1, μ2). When (5.21) hold,
by choosing α induced by a minimizer of (5.22) we get the opposite inequality
E ′′′ ≤ ET(μ1, μ2).

If (5.21) does not hold, we can still apply a slight modification of the argu-
ment at the end of the proof of Theorem 5.5. The only case to consider is when
only one of the two measures μ⊥i vanishes: just to fix the ideas, let us suppose
that m̃1 = μ⊥1 (X1) > 0 = μ⊥2 (X2). If γ̄ ∈ OptET(μ1, μ2) and ᾱ is obtained
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as above, we can just set α := ᾱ + (μ⊥1 × δ1) × (ν × δ0) for an arbitrary
ν ∈ P(X2). It is clear that hp

i (α) = μi and

∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dα =

∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ̄

+
∫

X

H(x1, 1; x2, 0) dμ⊥1 ⊗ ν

(5.12)
≤
∫

X

H(x1, ̺1(x1); x2, ̺2(x2)) dγ̄ + F1(0)m̃1

=H (μ1, μ2|γ̄ ) = ET(μ1, μ2),

which yields E ′′′ ≤ ET(μ1, μ2).

Remark 5.10 (Rescaling invariance) By recalling (5.27a,b) and exploiting the
1-homogeneity of H it is not restrictive to solve the minimum problem (5.32)
in the smaller class of probability plans concentrated in

Yr,p :=
{
(x1, r1; x2, r2) ∈ Y : r p

1 + r
p
2 ≤ r p

}
, r p =

∑

i

μi (X i ).

First, we note that it is not restrictive to assume that α({ y ∈ Y : | y|p =
0}) = 0 in (5.32): we can always replace α with α′ := α { y ∈ Y : | y|p > 0}
since H(x1, 0; x2, 0) = 0 for every xi ∈ X i and the homogeneous marginals of
α and α′ coincide. As a second step, for every α ∈ H

p
≤(μ1, μ2)with α(Y) > 0,

the choice α̃ given by (5.27a,b) yields a new probability plan concentrated on
Yr∗,p ⊂ Yr,p with the same homogeneous marginals as α and satisfying

∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dα =

∫

Y

H(x1, (r1/ϑ)
p; x2, (r2/ϑ)

p)ϑ p dᾱ

=
∫

Y

H(x1, r
p
1 ; x2, r

p
2 ) dᾱ,

where ϑ is the function defined in (5.27a) and we used the 1-homogeneity of
H w.r.t. the variables (r1, r2).

Part II. The Logarithmic Entropy-Transport problem and the Hellinger–

Kantorovich distance

6 The Logarithmic Entropy-Transport (LET) problem

Starting from this section we will study a particular Entropy-Transport prob-
lem, whose structure reveals surprising properties.
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6.1 The metric setting for Logarithmic Entropy-Transport problems

Let (X, τ )be a Hausdorff topological space endowed with an extended distance
function d : X × X → [0,∞] which is lower semicontinuous w.r.t. τ ; we
refer to (X, τ,d) as an extended metric-topological space. In the most common
situations, d will take finite values, (X,d) will be separable and complete
and τ will be the topology induced by d; nevertheless, there are interesting
applications where nonseparable extended distances play an important role,
so that it will be useful to deal with an auxiliary topology, see e.g. [1,3].

From now on we suppose that X1 = X2 = X . We choose the logarithmic
entropies

Fi (s) = U1(s) := s log s − s + 1, (6.1)

and a cost c depending on the distance d through the function ℓ : [0,∞] →
[0,∞] via

c(x1, x2) := ℓ
(
d(x1, x2)

)
, ℓ(d) :=

{
log(1+ tan2(d)) if d ∈ [0, π/2),

+∞ if d ≥ π/2,
(6.2)

so that

c(x1, x2) =
{
− log

(
cos2(d(x1, x2))

)
if d(x1, x2) < π/2

+∞ otherwise.
(6.3)

Let us collect a few key properties that will be relevant in the sequel.

LE.1 Fi are superlinear, C∞ in (0,∞), strictly convex, with D(Fi ) = [0,∞),
Fi (0) = 1, and (Fi )

′
0 = −∞. For s > 0 we have ∂Fi (s) = {log s}.

LE.2 Ri (r) = r Fi (1/r) = r − 1− log r , Ri (0) = +∞, (Ri )
′
∞ = 1.

LE.3 F∗i (φ) = exp(φ)− 1, F◦i (ϕ) = 1− exp(−ϕ), D(F∗i ) = D(F◦i ) = R.

LE.4 R∗i (ψ) = − log(1− ψ) for ψ < 1 and R∗i (ψ) = +∞ for ψ ≥ 1.

LE.5 The function ℓ can be characterized as the unique solution of the differ-
ential equation

ℓ′′(d) = 2 exp(ℓ(d)), ℓ(0) = ℓ′(0) = 0, (6.4)

since it satisfies

ℓ(d) = − log
(
cos2(d)

)
= 2
∫ d

0
tan(s) ds, d ∈ [0, π/2), (6.5)
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so that

ℓ(d) ≥ d2, ℓ′(d) = 2 tan d ≥ 2d, ℓ′′(d) ≥ 2. (6.6)

In particular ℓ is strictly increasing and uniformly 2-convex. It is not
difficult to check that

√
ℓ is also convex: this property is equivalent to

2ℓℓ′′ ≥ (ℓ′)2 and a direct calculation shows

2ℓℓ′′ − (ℓ′)2 = 4 log(1+ tan2(d))(1+ tan2(d))− 4 tan2(d) ≥ 0

since (1+ r) log(1+ r) ≥ r .
LE.6 Hc(r1, r2) = r1 + r2 − 2

√
r1r2 exp(−c/2) for c <∞, so that

H(x1, r1; x2, r2) = r1 + r2 − 2
√

r1r2 cos
(
dπ/2(x1, x2)

)
, (6.7)

where we set

da(x1, x2) := d(x1, x2) ∧ a for xi ∈ X, a ≥ 0. (6.8)

Since the function

H(x1, r2
1 ; x2, r2

2 ) = r2
1 + r2

2 − 2r1r2 cos(dπ/2(x1, x2)) (6.9)

will have an important geometric interpretation (see Sect. 7.1), in the
following we will choose the exponent p = 2 in the setting of Sect. 5.2.

We keep the usual notation X = X × X , identifying X1 and X2 with X and
letting the index i run between 1 and 2, e.g. for γ ∈ M(X) the marginals are
denoted by γi = (π i )♯γ .

Problem 6.1 (The Logarithmic Entropy-Transport problem) Let (X, τ,d) be

an extended metric-topological space, ℓ and c be as in (6.2). Givenμi ∈M(X)

find γ ∈M(X) minimizing

LET(μ1, μ2) = min
γ∈M(X)

(∑

i

∫

X

(
σi log σi−σi+1

)
dμi+

∫

X

ℓ
(
d(x1, x2)

)
dγ

)
,

(6.10)
where σi = dγi

dμi
. We denote by OptLET(μ1, μ2) the set of all the minimizers γ

in (6.10).

6.2 The Logarithmic Entropy-Transport problem: main results

In the next theorem we collect the main properties of the Logarithmic Entropy-
Transport (LET) problem relying on the reverse function R from Sect. 3.5, cf.
(3.28), and H from Sect. 5.1, cf. (5.16).
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Theorem 6.2 (Direct formulation of the LET problem) Let μi ∈ M(X) be

given and let ℓ,dπ/2 be defined as in (6.2) and (6.8).

(a) Existence of optimal plans. There exists an optimal planγ ∈ OptLET(μ1, μ2)

solving Problem 6.1. The set OptLET(μ1, μ2) is convex and compact in

M(X), LET is a convex and positively 1-homogeneous functional (see

(4.41)) satisfying 0 ≤ LET(μ1, μ2) ≤
∑

i μi (X).

(b) Reverse formulation (LET = min RLE). The functional LET has the equiv-

alent reverse formulation as

LET(μ1, μ2) = min
{
RLE(μ1, μ2|γ ) : γ ∈M(X), μi = ̺iγi + μ⊥i

}
,

where

RLE(μ1, μ2|γ ) :=
∑

i

(
μ⊥i (X)+

∫

X

(
̺i − 1− log ̺i

)
dγi

)

+
∫

X

ℓ
(
d(x1, x2)

)
dγ , (6.11)

and γ̄ is an optimal plan in OptLET(μ1, μ2) if and only if it minimizes

(6.11).
(c) The homogeneous perspective formulation (LET = min HLE). The func-

tional LET(μ1, μ2) can be equivalently characterized as

LET(μ1, μ2) = min
{
HLE(μ1, μ2|γ ) : γ ∈M(X)

}
, where

HLE(μ1, μ2|γ ) :=
∑

i

μi (X)−2
∫

X

√
̺1(x1)̺2(x2) cos(dπ/2(x1, x2)) dγ

=
∑

i

μ⊥i (X)+
∫

X

(
̺1(x1)+̺2(x2)−2

√
̺1(x1)̺2(x2) cos(dπ/2(x1, x2))

)
dγ

(6.12)

and γi = ̺iμi + μ⊥i . Moreover, every plan γ̄ ∈ OptLET(μ1, μ2) provides

a solution to (6.12).

Proof The variational problem (6.10) fits in the class considered by Prob-
lem 3.1, in the basic coercive setting of Sect. 3.1 since the logarithmic entropy
(6.1) is superlinear with domain [0,∞). The problem is always feasible since
U1(0) = 1 so that (3.6) holds.

(a) follows by Theorem 3.3(i); the upper bound of LET is a particular case of
(3.7), and its convexity and 1-homogeneity follows by Corollary 4.13.

(b) is a consequence of Theorem 3.11.
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(c) is an application of Theorem 5.5 and (6.7). ⊓⊔
We consider now the dual representation of LET; recall that LSCs(X)denotes

the space of simple (i.e. taking a finite number of values) lower semicontinuous
functions and for a pair φi : X → R the symbol φ1⊕ φ2 denotes the function
(x1, x2) �→ φ1(x1) + φ2(x2) defined in X . In part a) we relate to Sect. 4.2,
whereas b)–d) discusses the optimality conditions from Sect. 4.4.

Theorem 6.3 (Dual formulation and optimality conditions)
(a) The dual problem (LET = DLE = D′LE). For all μ1, μ2 ∈ M(X) we

have

LET(μ1, μ2) = sup
{
DLE(ϕ|μ1, μ2) : ϕi ∈ LSCs(X), ϕ1 ⊕ ϕ2 ≤ ℓ(d)

}
,

(6.13)

= sup
{∑

i

∫

X

ψi dμi : ψi ∈ LSCs(X), sup
X

ψi < 1,

(1− ψ1(x1))(1− ψ2(x2)) ≥ cos2(dπ/2(x1, x2)) in X
}
, (6.14)

where DLE(ϕ|μ1, μ) :=
∑

i

∫
X

(
1− e−ϕi

)
dμi . The same identities hold if the

space LSCs(X) is replaced by LSCb(X) or Bb(X) in (6.13) and (6.14). When

the topology τ is completely regular (in particular when d is a distance and τ

is induced by d) the space LSCs(X) can be replaced by Cb(X) as well.

(b) Optimality conditions. Let us assume that d is continuous. A plan γ ∈
M(X) is optimal if and only if its marginals γi are absolutely continuous

w.r.t. μi ,

d ≥ π/2 in
(

suppμ⊥1 × suppμ2

)⋃(
suppμ1 × suppμ⊥2

)
, (6.15)

and there exist Borel sets Ai ⊂ supp γi with γi (X \Ai ) = 0 and Borel densities

σi : Ai → (0,∞) of γi w.r.t. μi such that

σ1(x1)σ2(x2) ≥ cos2(dπ/2(x1, x2)) in A1 × A2, (6.16)

σ1(x1)σ2(x2) = cos2(dπ/2(x1, x2)) γ -a.e. in A1 × A2, (6.17)

or, equivalently, in terms of the densities ̺i = σ−1
i of μi w.r.t. γi

̺1(x1)̺2(x2) cos2(dπ/2(x1, x2)) ≤ 1 in A1 × A2, (6.18)

̺1(x1)̺2(x2) cos2(dπ/2(x1, x2)) = 1 γ -a.e. in A1 × A2. (6.19)

(c) ℓ(d)-cyclical monotonicity. Every optimal plan γ ∈ OptLET(μ1, μ2) is

a solution of the optimal transport problem T with cost ℓ(d) (see (3.15) of
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Sect. 3.3) between its marginals γi . In particular it is ℓ(d)-cyclically mono-

tone, i.e. it is concentrated on a Borel set G ⊂ X (G = supp(γ ) when d is

continuous) such that for every choice of (xn
1 , xn

2 )
N
n=1 ⊂ G and every permu-

tation κ : {1, . . . , N } → {1, . . . , N }

!N
n=1 cos2 (dπ/2(x

n
1 , xn

2 )
)
≥ !N

n=1 cos2
(
dπ/2(x

n
1 , x

κ(n)
2 )

)
. (6.20)

(d) Generalized potentials. If γ is optimal and Ai , σi are defined as in b)

above, the Borel potentials ϕi , ψi : X → R̄

ϕi :=

⎧
⎪⎨
⎪⎩

− log σi in Ai ,

−∞ in X \ suppμi ,

+∞ otherwise,

, ψi :=

⎧
⎪⎨
⎪⎩

1− σi in Ai ,

−∞ in X \ suppμi ,

1 otherwise,

(6.21)
satisfy ϕ1⊕o ϕ2 ≤ ℓ(d), log(1−ψ1)⊕o log(1−ψ2) ≥ ℓ(d), and the optimality

conditions corresponding to (4.50)

ϕ1(x1)+ ϕ2(x2) = log(1−ψ1(x1))+ log(1−ψ2(x2))

= ℓ(d(x1, x2)) γ -a.e. in A1 × A2.

Moreover e−ϕi , ψi ∈ L1(X, μi ) and

LET(μ1, μ2) =
∑

i

∫

X

(
1− e−ϕi

)
dμi

=
∑

i

∫

X

ψi dμi =
∑

i

μi (X)− 2γ (X). (6.22)

Proof Identity (6.13) follows by Theorem 4.11, recalling the definition (4.11)
of � and the fact that F◦i (ϕ) = 1− exp(−ϕ).

Identity (6.14) follows from Proposition 4.3 and the fact that R∗i (ψ) =
− log(1−ψ). Notice that the definition (4.7) of � ensures that we can restrict
the supremum in (6.14) to functions ψi with supX ψi < 1. We have discussed
the possibility to replace LSCs(X) with LSCb(X), Bb(X) or Cb(X) in Corol-
lary 4.12.

The statement of point (b) follows by Corollary 4.18; notice that the LET
problem is always feasible.

Point (c) is an obvious consequence of the optimality of γ .
Point (d) can be easily deduced by (b) or by applying Corollaries 4.17

and 4.18, observing that the formula defining ϕi of (6.21) corresponds to
(4.48) with (Fi )

′
∞ = +∞ = −(Fi )

′
0 and the optimality condition corresponds

to (4.50). Finally, ψi are just related to ϕi by ψi=F◦i (ϕi )=1− exp(−ϕi ). ⊓⊔
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In the one-dimensional case, the ℓ(d)-cyclic monotonicity of part (c) of the
previous theorem reduces to classical monotonicity.

Corollary 6.4 (Monotonicity of optimal plans in R) When X = R with the

usual distance, the support of every optimal plan γ is a monotone set, i.e.

(x1, x2), (x ′1, x ′2) ∈ supp(γ ), x1 < x ′1 ⇒ x2 ≤ x ′2. (6.23)

Proof As the function ℓ is uniformly convex, (6.20) is equivalent to mono-
tonicity. ⊓⊔

The next result provides a variant of the reverse formulation in Theorem 6.2,
which expresses the LET problem as a supremum of the linear mass functional
on γ on a convex set characterized by the marginals of γ and the cost.

Corollary 6.5 For all μ1, μ2 ∈M(X) we have

LET(μ1, μ2) =
∑

i

μi (X)− 2 max
{
γ (X) : γ ∈M(X), γi = σiμi ,

σ1(x1)σ2(x2) ≤ cos2(dπ/2(x1, x2)) γ -a.e. in X
}
. (6.24)

Proof Let us denote by M ′ the right-hand side and let γ ∈M(X) be a plan sat-
isfying the conditions of (6.24). If Ai are Borel sets withγi (X\Ai ) = 0 andσi :
X → (0,∞) are Borel densities of γi w.r.t. μi , the densities ̺i of μi w.r.t. γi

satisfy ̺i (xi ) = 1/σi (xi ) in Ai so that σ1(x1)σ2(x2) ≤ cos2(dπ/2(x1, x2))

yields ̺1(x1)̺2(x2) cos2(dπ/2(x1, x2)) ≥ 1. Since (log ̺i )+ ∈ L1(X, γi ) we
have
∑

i

(
μ⊥i (X)+

∫

X

(
̺i − 1− log ̺i

)
dγi

)
+
∫

X

ℓ
(
d(x1, x2)

)
dγ

=
∑

i

(
μi (X)− γi (X)

)
−
∫

X

log
(
̺1(x1)̺2(x2) cos2(dπ/2(x1, x2))

)
dγ

≤
∑

i

μi (X)− 2γ (X).

By (6.11) we get M ′ ≥ LET(μ1, μ2). On the other hand, choosing any γ̄ ∈
OptLET(μ1, μ2) the optimality condition (6.17) shows that γ̄ is an admissible
competitor for (6.24) and (6.22) shows that M ′ = LET(μ1, μ2). ⊓⊔

Combining (6.12), (6.13), (6.14), and (6.24), we find that the nonnegative
and concave functional (μ1, μ2) �→

∑
i μi (X) − LET(μ1, μ2) can be repre-

sented as in the following equivalent ways:
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∑

i

μi (X)−LET(μ1, μ2)=2 max
γ∈M(X)

∫

X

√
̺1(x1)̺2(x2) cos(dπ/2(x1, x2)) dγ

(6.25)

= inf
{∑

i

∫

X

e−ϕi dμi : ϕi ∈ LSCs(X), ϕ1 ⊕ ϕ2 ≤ ℓ(d)
}

(6.26)

= inf
{∑

i

∫

X

ψ̃i dμi : ψ̃i ∈ USCs(X), inf
X

ψ̃i > 0,

ψ1(x1)ψ2(x2) ≥ cos2(dπ/2(x1, x2)) in X
}

(6.27)

= 2 max
{
γ (X) : γ ∈M(X), γi = σiμi ,

σ1(x1)σ2(x2) ≤ cos2(dπ/2(x1, x2))γ -a.e. inX
}
. (6.28)

The next result concerns uniqueness of the optimal plan γ in the Euclidean
case X = R

d . We will use the notion of approximate differential (denoted by
D̃), see e.g. [2, Def. 5.5.1].

Theorem 6.6 (Uniqueness) Let μi ∈M(X) and γ ∈ OptLET(μ1, μ2).

(i) The marginals γi = π i
♯γ are uniquely determined.

(ii) If X = R with the usual distance then γ is the unique element of

OptLET(μ1, μ2).

(iii) If X = R
d with the usual distance, μ1 ≪ L d is absolutely continuous,

and Ai ⊂ R
d and σi : Ai → (0,∞) are as in Theorem 6.3 b), then σ1 is

approximately differentiable at μ1-a.e. point of A1 and γ is the unique

element of OptLET(μ1, μ2). The transport plan γ is concentrated on the

graph of a function t : Rd → R
d satisfying

t(x1) = x1 −
arctan(|ξ(x1)|)
|ξ(x1)|

ξ(x1),

ξ(x1) = −
1

2
D̃ log σ1(x1) (6.29)

Proof (i) follows directly from Lemma 3.5.
(ii) follows by Theorem 6.3(c), since whenever the marginals γi are fixed

there is only one plan with monotone support in R (see e.g. [42, Chap. 2]).
In order to prove (iii) we adapt the argument of [2, Thm. 6.2.4] to our

singular setting, where the cost c can take the value +∞.
Let Ai ⊂ R

d and σi : Ai → (0,∞) as in Theorem 6.3 b); notice that since
σ1 > 0 in A1 the classes of μ1- and γ1-negligible subsets of A1 coincide.

123



Optimal Entropy-Transport problems 1049

Since μ1 = uL d ≪ L d with density u ∈ L1(Rd), up to removing a μ1-
negligible set (and thus γ1-negligible) from A1, it is not restrictive to assume
that u(x1) > 0 everywhere in A1, so that the classes of L d - and μ1-negligible
subsets of A1 coincide. For every n ∈ N we define

A2,n := {x2 ∈ A2 : σ2(x2) ≥ 1/n}, sn(x1) := sup
x2∈A2,n

cos2(|x1−x2|)/σ2(x2).

(6.30)
The functions sn are bounded and Lipschitz in R

d and therefore differen-
tiable L d -a.e. by Rademacher’s Theorem. Since μ1 is absolutely continuous
w.r.t. L d we deduce that sn are differentiable μ1-a.e. in A1.

By (6.16) we have σ1(x1) ≥ sn(x1) in A1. By (6.17) we know that for γ1-
a.e. x1 ∈ A1 there exists x2 ∈ A2 such that |x1 − x2| < π/2 and σ1(x1) =
cos2(|x1 − x2|)/σ2(x2) so that σ1(x1) = sn(x1) for n sufficiently big and
hence the family (Bn)n∈N of sets Bn := {x1 ∈ A1 : σ1(x1) > sn(x1)} is
decreasing (since sn is increasing and dominated by σ1) and has L d -negligible
intersection.

It follows that γ1-a.e. x1 ∈ A1 is a point of L d -density 1 of {x1 ∈ A1 :
σ1(x1) = sn(x1)} for some n ∈ N and sn is differentiable at x1. Let us denote
by A′1 the set of all x1 ∈ A1 such that σ1 is approximately differentiable at
every x1 ∈ A′1 with approximate differential D̃σ1(x1) equal to Dsn(x1) for n

sufficiently big.
Suppose now that x1 ∈ A′1 and σ1(x1) = cos2(|x1 − x2|)/σ2(x2) for some

x2 ∈ A2. Since by (6.16) and (6.17) the map x ′1 �→ cos2(|x ′1 − x2|)/σ1(x
′
1)

attains its maximum at x ′1 = x1, we deduce that

tan(|x1 − x2|)
x1 − x2

|x1 − x2|
= −1

2
D̃ log σ1(x1),

so that x2 is uniquely determined, and (6.29) follows. ⊓⊔

We conclude this section with the last representation formula for LET(μ1, μ2)

given in terms of transport plans α in Y := Y ×Y with Y := X ×[0,∞) with
constraints on the homogeneous marginals, keeping the notation of Sect. 5.2.
Even if it seems the most complicated one, it will provide the natural point of
view in order to study the metric properties of the LET functional, and it will
play a crucial role in Sect. 7.6, where the link between the LET formulation
and the Hellinger–Kantorovich distance will be studied. The interest of (6.34)
relies in the particular form of its integrand, by recalling that by (5.4) and (6.9)
we have

LET(r2
1 δx1, r2

2 δ(x2)) = r2
1 + r2

2 − 2r1r2 cos(dπ/2(x1, x2)). (6.31)
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Theorem 6.7 For every μi ∈M(X) we have

LET(μ1, μ2) =
∑

i

μi (X)− 2 max
α∈H2

≤(μ1,μ2)

∫

X

r1r2 cos(dπ/2(x1, x2)) dα

(6.32)= min
{ ∫

Y

(
r2

1 + r2
2 − 2r1r2 cos(dπ/2(x1, x2))

)
dα

+
∑

i

(μi − h2
i (α))(X) : α ∈M(Y), h2

i (α) ≤ μi

}
(6.33)

= min
{ ∫

Y

(
r2

1+r2
2− 2r1r2 cos(dπ/2(x1, x2))

)
dα : α∈M(Y), h2

i (α)=μi

}

(6.34)

Moreover, for every plan γ̄ ∈ OptLET(μ1, μ2) and every pair of Borel densities

̺i as in (6.11) the plan ᾱ := (x1,
√
̺1(x1); x2,

√
̺2(x2))♯γ̄ is optimal for

(6.33) and (6.32).

Proof Identity (6.33) (resp. (6.34)) follows directly by (5.32) (resp. (5.33)) of
Theorem 5.8. Relation (6.32) is just a different form for (6.33). ⊓⊔

7 The metric side of the LET-functional: the Hellinger–Kantorovich
distance

In this section we want to show that the functional

(μ1, μ2) �→
√

LET(μ1, μ2) (7.1)

defines a distance in M(X), which is then called the Hellinger–Kantorovich
distance and denoted HK.

In order to introduce this distance we will adopt a geometric point of view,
which is strictly related to the characterization given in Theorem 6.7: it will
mainly exploit the link with Optimal Transport in the so-called geometric cone

C constructed on X , cf. [10, Sect. 3.6]. This is possible since the function

(x1, r1; x2, r2) �→ r2
1 + r2

2 − 2r1r2 cos(d(x1, x2) ∧ a), a > 0, (7.2)

appearing in (6.31) and (6.34) with a = π/2, is a (possibly extended) squared
semidistance in Y = X × [0,∞), whenever a ∈ (0, π ].

In the next two sections we will briefly study this function and the associated
metric for the particular choices of a = π (the canonical one in metric geom-
etry) and a = π/2 (related to the minimal cost between a pair of Dirac masses
(6.31)): the role of these two values will be clarified in Remark 7.2 and in
Sect. 7.6, we also refer to [30, Sect. 3] for more motivation and examples. The
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induced metric space C, can be obtained by taking the quotient with respect to
the equivalence classes of points with distance 0. Radon measures on C can be
projected to Radon measures on X by taking suitable homogeneous marginals,
which will be studied in Sect. 7.2.

The definition and the basic properties of the Hellinger–Kantorovich dis-
tance will be given in Sect. 7.3; the main metric properties will be derived in
Sects. 7.4 and 7.5: they rely on a refined gluing technique and on the flexibil-
ity of the notion of homogeneous marginals, which allow us to transfer many
useful properties of the Kantorovich–Wasserstein distance on the cone C to
corresponding properties for HK. Section 7.6 will then show the equivalent
characterization of HK in terms of the Logarithmic Entropy Transport problem
LET and its dual formulation, thus providing a direct and robust formulation of
HK as a convex minimization problem enjoying all the properties we recalled
in the previous section.

7.1 The cone construction

Let us quickly recall a few basic facts concerning the cone construction, refer-
ring to [10, Sect. 3.6] for further details. In the extended metric-topological
space (X, τ,d) of Sect. 6.1, we will denote by da := d ∧ a the truncated
distance and by y = (x, r), x ∈ X, r ∈ [0,∞), the generic points of
Y := X × [0,∞).

It is not difficult to show that the function dC : Y × Y → [0,∞)

d2
C((x1, r1), (x2, r2)) := r2

1 + r2
2 − 2r1r2 cos(dπ (x1, x2)) (7.3)

is nonnegative, symmetric, and satisfies the triangle inequality (see e.g. [10,
Prop. 3.6.13]). We also notice that

d2
C(y1, y2) = |r1 − r2|2 + 4r1r2 sin2 (dπ (x1, x2)/2

)
, (7.4)

which implies the useful estimates

max
(
|r1−r2|,

2

π

√
r1r2 dπ (x1, x2)

)
≤ dC(y1, y2)

≤ |r1−r2| +
√

r1r2 dπ (x1, x2). (7.5)

From this it follows that dC induces a true distance in the quotient space
C = Y/ ∼ where

y1 ∼ y2 ⇔ r1 = r2 = 0 or r1 = r2, x1 = x2. (7.6)
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Equivalence classes are usually denoted by y = [y] = [x, r ], where the vertex
[x, 0] plays a distinguished role. It is denoted by o, its complement is the
open set Co = C \ {o}. On C we introduce a topology τC, which is in general
weaker than the canonical quotient topology: τC neighborhoods of points in
Co coincide with neighborhoods in Y , whereas the sets

{
[x, r ] : 0 ≤ r < ε

}
=
{
y ∈ C : dC(y, o) < ε

}
, ε > 0, (7.7)

provide a system of open neighborhoods of o. τC coincides with the quotient
topology when X is compact.

It is easy to check that (C, τC) is a Hausdorff topological space and dC is τC-
lower semicontinuous. If τ is induced by d then τC is induced by dC. If (X,d)
is complete (resp. separable), then (C,dC) is also complete (resp. separable).

Perhaps the simplest example is provided by the unit sphere X = S
d−1 =

{x ∈ R
d : |x | = 1} in R

d endowed with the intrinsic Riemannian distance:
the corresponding cone C is precisely R

d .
We denote the canonical projection by

p : Y → C, p(x, r) = [x, r ]. (7.8)

Clearly p is continuous and is an homeomorphism between Y \ (X ×{0}) and
Co. A right inverse y : C→ Y of the map p can be obtained by fixing a point
x̄ ∈ X and defining

r : C→ [0,∞), r[x, r ] = r,

x : C→ X, x[x, r ] =
{

x if r > 0,

x̄ if r = 0,
and y := (x, r). (7.9)

Notice that r is continuous and x is continuous restricted to Co.
A continuous rescaling product from C× [0,∞) to C can be defined by

y · λ :=
{

o if y = o,

[x, λr ] if y = [x, r ], s > 0.
(7.10)

We conclude this introductory section by a characterization of compact sets in
(C, τC).

Lemma 7.1 (Compact sets in C) A closed set K of C is compact if and only if

there is r0 > 0 such that its upper sections

K (ρ) := {x ∈ X : [x, r ] ∈ K for some r ≥ ρ}

are empty for ρ > r0 and compact in X for 0 < ρ ≤ r0.
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Proof It is easy to check that the condition is necessary.
In order to show the sufficiency, let ρ = inf K r. If ρ > 0 then K is compact

since it is a closed subset of the compact set p
(
K (ρ)× [ρ, r0]

)
.

If ρ = 0 then o is an accumulation point of K by (7.7) and therefore o ∈ K

since K is closed. If U is an open covering of K , we can pick U0 ∈ U

such that o ∈ U0. By (7.7) there exists ε > 0 such that K \ U0 ⊂ p
(
K (ε) ×

[ε, r0]
)
: since p

(
K (ε)× [ε, r0]

)
is compact, we can thus find a finite subcover

{U1, · · · ,UN } ⊂ U of K\U0. {Un}Nn=0 is therefore a finite subcover of K . ⊓⊔

Remark 7.2 (Two different truncations) Notice that in the constitutive formula
defining dC we used the truncated distance dπ with upper thresholdπ , whereas
in Theorem 6.7 an analogous formula with dπ/2 and threshold π/2 played a
crucial role. We could then consider the distance

d2
π/2,C([x1, r1], [x2, r2]) := r2

1 + r2
2 − 2r1r2 cos(dπ/2(x1, x2)) (7.11a)

= |r1 − r2|2 + 4r1r2 sin2(dπ/2(x1, x2)/2) (7.11b)

on C, which satisfies
dπ/2,C ≤ dC ≤

√
2 dπ/2,C. (7.12)

The notation (7.11a) is justified by the fact that dπ/2,C is still a cone distance
associated to the metric space (X,dπ/2), since obviously (dπ/2)π = (dπ/2)∧
π/2 = dπ/2. From the geometric point of view, the choice of dC is natural,
since it preserves important metric properties concerning geodesics (see [10,
Thm. 3.6.17] and the next Sect. 8.1) and curvature (see [10, Sect. 4.7] and the
next Sect. 8.3).

On the other hand, the choice of dπ/2 is crucial for its link with the function H

of (6.9), with Entropy-Transport problems, and with a representation property
for the Hopf–Lax formula that we will see in the next sections. Notice that
the 1-homogeneous formula (6.7) would not be convex in (r1, r2) if one uses
dπ instead of dπ/2. Nevertheless, we will prove in Sect. 7.3 the remarkable
fact that both dπ and dπ/2 will lead to the same distance between positive
measures.

7.2 Radon measures in the cone C and homogeneous marginals

It is clear that any measure ν ∈ M(C) can be lifted to a measure ν̄ ∈ M(Y )

such that p♯ν̄ = ν: it is sufficient to take ν̄ = y♯ν where y is a right inverse of
p defined as in (7.9).
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We call M2(C) (resp. P2(C)) the space of measures ν ∈ M(C) (resp. ν ∈
P(C)) such that

∫

C

r2 dν =
∫

C

d2
C(y, o) dν =

∫

Y

r2 dν̄ <∞, ν̄ = y♯ν. (7.13)

Measures in M2(C) thus correspond to images p♯ν̄ of measures ν̄ ∈M2(Y )

and have finite second moment w.r.t. the distance dC, which justifies the index
2 in M2(C). Notice moreover that the measure r2ν̄ does not charge X × {0}
and it is independent of the choice of the point x̄ in (7.9).

The above considerations can be easily extended to plans in the product
spaces C⊗N (where typically N = 2, but also the general case will turn out to
be useful later on). To clarify the notation, we will denote by y = (yi )

N
i=1 =

([xi , ri ])N
i=1 a point in C⊗N and we will set ri (y) = r(yi ) = ri , xi (y) =

x(yi ) ∈ X . Projections on the i-coordinate from C⊗N to C are usually denoted
by π i or πyi , p = p⊗N : (Y )⊗N → C⊗N , y = y⊗N : C⊗N → (Y )⊗N are the
Cartesian products of the projections and of the lifts.

Recall that the L2-Kantorovich–Wasserstein (extended) distance WdC
in

M2(C) induced by dC is defined by

W2
dC
(ν1, ν2) := min

{ ∫
d2

C(y1, y2) dα : α ∈M(C), π
yi

♯ α = νi

}
, (7.14)

with the convention that WdC
(ν1, ν2) = +∞ if ν1(C) �= ν2(C) and thus the

minimum in (7.14) is taken on an empty set. We want to mimic the above defi-
nition, replacing the usual marginal conditions in (7.14) with the homogeneous
marginals h2

i which we are going to define.
Let us consider now a plan α in M(C⊗N ) with ᾱ = y♯α ∈ M(Y⊗N ): we

say that α lies in M2(C
⊗N ) if

∫

C⊗N

∑

i

r2
i dα =

∫

Y⊗N

∑

i

r2
i dᾱ <∞. (7.15)

Its “canonical” marginals inM(C) areαi = π
yi

♯ α, whereas the “homogeneous”
marginals correspond to (5.24) with p = 2:

h2
i (α) := (xi )♯(r

2
i α) = π

xi

♯ (r2
i ᾱ) = h2

i (ᾱ) ∈M(X), ᾱ := y♯α. (7.16)

We will omit the index i when N = 1. Notice that r2
i α does not charge

(π i )−1(o) (similarly, r2
i ᾱ does not charge Y⊗i−1× {(x̄, 0)} × Y⊗N−i ) so that

(7.16) is independent of the choice of the point x̄ in (7.9).
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As in (5.26), the homogeneous marginals on the cone are invariant with
respect to dilations: if ϑ : C⊗N → (0,∞) is a Borel map in L2(C⊗N ,α) we
set

(
prdϑ (y)

)
i
:= yi ·

(
ϑ(y)

)−1
and dilϑ,2(α) := (prdϑ )♯(ϑ

2 α), (7.17)

so that
h2

i (dilϑ,2(α)) = h2
i (α) for every α ∈M2(C

⊗N ). (7.18)

As for the canonical marginals, a uniform control of the homogeneous
marginals is sufficient to get equal tightness, cf. (2.4) for the definition. We
state this result for an arbitrary number of components, and we emphasize that
we are not claiming any closedness of the involved sets.

Lemma 7.3 (Homogeneous marginals and tightness) Let Ki , i = 1, · · · , N,

be a finite collection of bounded and equally tight sets in M(X). Then, the set

{
α ∈M2(C

N ) : h2
i α ∈ Ki for i = 1, . . . , N

}
(7.19)

is equally tight in M(CN ).

Proof By applying [2, Lem. 5.2.2], it is sufficient to consider the case N = 1:
given a bounded and equally tight set K ⊂ M(X) we prove that H :=

{
α ∈

M2(C) : h2α ∈ K
}

is equally tight. For A ⊂ X , R ⊂ (0,∞) we will use
the short notation A ×C R for p(A × R) ⊂ C. If A and R are compact, then
A ×C R is compact in C.

Let M := supμ∈K μ(X) < ∞; since K is equally tight, we can find an
increasing sequence of compact sets Kn ⊂ X such that μ(X \ Kn) ≤ 8−n

for every μ ∈ K. For an integer m ∈ N we then consider the compact sets
Km ⊂ C defined by

Km = {o} ∪ (Km ×C [2−m, 2m]) ∪
( ∞⋃

n=1

Kn+m ×C [2−n, 2−n+1]
)
. (7.20)

Setting K∞ =
⋃∞

n=1 Kn , we have μ(X \ K∞) = 0 and

C\ Km ⊂
(
Km ×C (2m,∞)

)
∪
( ∞⋃

n=1

(Kn+m \ Kn+m−1)×C (2−n+1,∞)
)

∪
(
(X \ K∞)×C (0,∞)

)
.

Since for every α ∈ H with h2α = μ and every A ∈ B(X) we have

α(A ×C (s,∞)) ≤ s−2μ(A) ≤ s−2 M and α
(
(X \ K∞)×C (0,∞)

)
= 0,
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we conclude

α(C \ Km) ≤ M 4−m +
∞∑

n=1

α
(
(X \ Kn+m−1)×C (2−n+1,∞)

)

≤ M 4−m +
∞∑

n=1

4n−181−n−m ≤ 4−m
(

M +
∞∑

n=1

4−n
)

≤ 4−m
(
1+ M

))
,

for every α ∈ H. Since all Km are compact, we obtain the desired equal
tightness. ⊓⊔

7.3 The Hellinger–Kantorovich problem

In this section we will always consider N = 2, keeping the shorter notation
Y = Y⊗2 and C = C⊗2. As in (5.28), for every μ1, μ2 ∈ M2(X) we define
the sets

H2
≤(μ1, μ2) :=

{
α ∈M2(C) : h2

i α ≤ μi

}
and

H2
=(μ1, μ2) :=

{
α ∈M2(C) : h2

i α = μi

}
.

(7.21)

They are the images of H2
≤(μ1, μ2) and H2

=(μ1, μ2) through the projections
p♯; in particular they always contain plans p♯α, where α is given by (5.29).
The condition α ∈ H2

≤(μ1, μ2) is equivalent to ask that

∫
r2
i ϕ(xi ) dα ≤

∫
ϕ dμi for every nonnegative ϕ ∈ Bb(X). (7.22)

We can thus define the following minimum problem:

Problem 7.4 (The Hellinger–Kantorovich problem) Given μ1, μ2 ∈ M(X)

find an optimal plan αopt ∈ H2
=(μ1, μ2) ⊂ M2(C) solving the minimum

problem

HK(μ1, μ2)
2 :=min

{ ∫
d2

C(y1, y2) dα : α ∈M2(C), h2
i α = μi

}
.

(7.23)
We denote by OptHK(μ1, μ2) ⊂M(C) the collection of all the optimal plans α

realizing the minimum in (7.23) and by HK2(μ1, μ2) the value of the minimum

in (7.23) (whose existence is guaranteed by the next Theorem 7.6).

Remark 7.5 (Lifting of plans in Y ) Since any plan α ∈M(C) can be lifted to
a plan ᾱ = y♯α ∈ P(Y × Y ) such that p♯ᾱ = α the previous problem 7.4 is
also equivalent to find
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min
{ ∫

d2
C(y1, y2) dᾱ : ᾱ ∈M(Y × Y ), h2

i (ᾱ) = μi

}
. (7.24)

The advantage to work in the quotient space C is to gain compactness, as the
next Theorem 7.6 will show.

An importance feature of the cone distance and the homogeneous marginals
is an invariance under rescaling, which can be done by the dilations from
(7.17). Let us set

C[R] :=
{
[x, r ] ∈ C : r ≤ R

}
and C[R] := C[R] × C[R]. (7.25)

It is not restrictive to solve the previous problem 7.4 by also assuming that α is
a probability plan in P(C) concentrated on C[R] with R2 =

∑
i μi (X), i.e.

HK2(μ1, μ2) = min
α∈C

∫
d2

C dα,

where C :=
{
α ∈ P(C) : h2

i α = μi , α
(
C \ C[R]

)
= 0
}
. (7.26)

In fact the functional d2
C and the constraints have a natural scaling invariance

induced by the dilation maps defined by (7.17). Since

∫
d2

C d(dilϑ,2(α)) =
∫

ϑ2d2
C([x1, r1/ϑ]; [x2, r2/ϑ]) dα =

∫
d2

C dα,

(7.27)
restricting first α to C\{(o, o)} and then choosingϑ as in (5.27a) with p = 2 we
obtain a probability plan dilϑ,2(α C \ {(o, o)}) in H2

=(μ1, μ2) concentrated
in C[R]\{(o, o)}with the same cost

∫
d2

C dα. In order to show that Problem 7.4
has a solution we can then use the formulation (7.26) and prove that the set C

where the minimum will be found is narrowly compact in P(C). Notice that
the analogous property would not be true in P(Y × Y ) (unless X is compact)
since the collection of measures concentrated in (X ×{0})× (X ×{0}) would
not be equally tight. Also the constraints h2

i α = μi would not be preserved by
narrow convergence, if one allows for arbitrary plans in P(C), as in (7.23).

Theorem 7.6 (Existence of optimal plans for the HK problem) For every

μ1, μ2 ∈ M(X) the Hellinger–Kantorovich problem 7.4 always admits a

solution α ∈ P(C) concentrated on C[R] \ {(o, o)} with R2 =
∑

i μi (X).

Proof By the rescaling (7.27) it is not restrictive to look for minimizers α

of (7.26). Since C[R] is closed in C and the maps r2
i are continuous and

bounded in C[R], C is clearly narrowly closed. By Lemma 7.3, C is also
equally tight in P(C), thus narrowly compact by Theorem 2.2. Since the d2

C is
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lower semicontinuous in C, the existence of a minimizer of (7.26) then follows
by the direct method of the calculus of variations. ⊓⊔

We can also prove an interesting characterization of HK in terms of the
Kantorovich–Wasserstein distance on P2(C) given by (7.14). An even deeper
connection will be discussed in the next section, see Corollary 7.13.

Corollary 7.7 (HK and the Kantorovich–Wasserstein distance on P2(C)) For

every μ1, μ2 ∈M(X) we have (recall the notation h explained after (7.16))

HK(μ1, μ2) = min
{
WdC

(α1, α2) : αi ∈ P2(C), h2αi = μi

}
, (7.28)

and there exist optimal measures ᾱi for (7.28) concentrated on C[R] with

R2 =
∑

i μi (X). In particular the map h2 : P2(C)→M(X) is a contraction,

i.e.

HK(h2α1, h
2α2) ≤WdC

(α1, α2) for every αi ∈ P2(C). (7.29)

Proof If αi ∈ P2(C) with h2αi = μi then any Kantorovich–Wasserstein
optimal plan α ∈ P(C × C) for (7.14) with marginals αi clearly belongs to
H2
=(μ1, μ2) and yields the bound HK(μ1, μ2) ≤ WdC

(α1, α2). On the other
hand, if α ∈ OptHK(μ1, μ2) is an optimal solution for (7.23) and αi := π i

♯α ∈
P2(C) are its marginals, we have HK(μ1, μ2) ≥WdC

(α1, α2), so that αi realize
the minimum for (7.28). ⊓⊔

We conclude this section with two simple properties of the HK functional.
We denote by η0 the null measure.

Lemma 7.8 (Subadditivity of HK2) The functional HK2 satisfies

HK2(μ, η0) = μ(X), HK2(μ1, μ2) ≤ μ1(X)+ μ2(X) (7.30)

for every μ,μi ∈ M(X), and it is subadditive, i.e. for every μi , μ
′
i ∈ M(X)

we have

HK2(μ1 + μ′1, μ2 + μ′2) ≤ HK2(μ1, μ2)+ HK2(μ′1, μ
′
2). (7.31)

Proof The relations in (7.30) are obvious. If α ∈ H2
=(μ1, μ2) and α′ ∈

H2
=(μ

′
1, μ

′
2) it is easy to check that α + α′ ∈ H2

=(μ1 + μ′1, μ2 + μ′2). Since
the cost functional is linear with respect to the plan, we get (7.31). ⊓⊔

Subsequently we will use the symbol “ ” for the restriction of measures.

Lemma 7.9 (A formulation with relaxed constraints) For every μ1, μ2 ∈
M(X) we have
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HK2(μ1, μ2)

= min
α∈H2

≤(μ1,μ2)

{ ∫
d2

C(y1, y2) dα +
∑

i

(
μi − h2

i α
)
(X)
}

(7.32a)

= μ1(X)+ μ2(X)− max
α∈H2

≤(μ1,μ2)

{
2
∫

r1 r2 cos(dπ (x1, x2)) dα
}
.

(7.32b)

Moreover,

(i) Equations (7.32a)–(7.32b) share the same class of optimal plans.

(ii) A plan α ∈ H2
≤(μ1, μ2) is optimal for (7.32a)–(7.32b) if and only if the

plan αo := α (Co × Co) is optimal as well.

(iii) If α is optimal for (7.32a)–(7.32b) withμ′i := μi−h2
i α, then α̃ := α+α′

is an optimal plan in OptHK(μ1, μ2) for all α′ ∈ H2
=(μ

′
1, μ

′
2).

(iv) A plan α ∈ H2
=(μ1, μ2) belongs to OptHK(μ1, μ2) if and only if αo :=

α (Co × Co) is optimal for (7.32a)–(7.32b).

Proof The formulas (7.32a) and (7.32b) are just two different ways to write
the same functional, since for every α ∈ H2

≤(μ1, μ2) we have

∫
d2

C dα +
∑

i

(
μi − h2

i α
)
(X) =

∑

i

μi (X)− 2
∫

r1 r2 cos(dπ (x1, x2)) dα.

(7.33)
Thus, to prove (i) it is sufficient to show (7.32a). The inequality ≥ is obvious,
since H2

≤(μ1, μ2) ⊃ H2
=(μ1, μ2) and for every α ∈ H2

=(μ1, μ2) the term∑
i

(
μi − h2

i α
)
(X) vanishes.

On the other hand, whenever α ∈ H2
≤(μ1, μ2), setting μ′′i := h2

i α ∈M(X),
μ′i := μi − μ′′i and observing that α ∈ H2

=(μ
′′
1, μ

′′
2) we get

∫
d2

C(y1, y2) dα +
∑

i

(
μi − h2

i α
)
(X) ≥ HK2(μ′′1, μ

′′
2)+ μ′1(X)+ μ′2(X)

(7.30)
≥ HK2(μ′1, μ

′
2)+ HK2(μ′′1, μ

′′
2)

(7.31)
≥ HK2(μ1, μ2).

The same calculations also prove point (iii).
In order to check (ii) it is sufficient to observe that the integrand in (7.32b)

vanishes on C \ (Co × Co).
Finally, if α ∈ OptHK(μ1, μ2) is optimal for (7.23), then by the consideration

above it is optimal for (7.32b) and therefore (ii) shows that αo is optimal as
well. The converse implication follows by (iii). ⊓⊔
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7.4 Gluing lemma and triangle inequality

In this section we will prove that HK satisfies the triangle inequality and there-
fore is a distance on M(X). As in Optimal Transport (see e.g. [2, Sect. 7.1]), the
triangle inequality can be obtained by a gluing technique that allows us to join
a couple of optimal transport plans with a common marginal. Here we will deal
with transport plans on the cone C and homogeneous marginals. We will also
consider a more general situation where a sequence of measures is involved:
it will turn out to be extremely useful in various topological (Theorem 7.15)
and metric (Theorems 7.17, 8.4, 8.6, 8.8) results.

The main technical step is provided by the following property for plans in
M(C⊗N ) with given homogeneous marginals, which is a simple application
of the rescaling invariance in (7.27). This property is nontrivial since homo-
geneous marginals are considerably less rigid than the usual marginals and
therefore the gluing technique requires a preliminary normalization, which
does not affect the computation of the HK distance.

Lemma 7.10 (Normalization of lifts) Let α ∈ M2(C
⊗N ), N ≥ 2, be a plan

satisfying

h2
i α = μi ∈M(X) for i = 1, ..., N ,

and ai =
∫

d2
C(yi−1, yi ) dα for i = 2, ..., N , (7.34)

and let j ∈ {1, . . . , N } be fixed. Then, it is possible to find a new plan ᾱ ∈
M2(C

⊗N ) which still satisfies (7.34) and additionally the normalization of the

j th lift,

π
j
♯ (ᾱ) = δo + p♯(μ j ⊗ δ1). (7.35)

Proof By possibly adding⊗N δo to α (which does not modify (7.34)) we may
suppose that

ω j := α
(
{y ∈ C⊗N : π j (y) = o}

)
≥ 1,

where j is fixed as in the lemma. In order to find ᾱ it is sufficient to rescale α

by the function

ϑ(y) :=
{

r j (y) if y j �= o,

ω
−1/2
j otherwise.

(7.36)

With the notation of (7.17) we set ᾱ := dilϑ,2(α) and we decompose α in
the sum α = α′ + α′′ where α′ = α {y ∈ C⊗N : π j (y) = o}. For every
ζ ∈ Bb(C) we have
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∫
ζ(y j ) dᾱ =

∫
ζ(y j · ϑ−1(y))ϑ2(y) dα

=
∫

ζ(o)ω−1
j dα′ +

∫
ζ([x j , r j/ϑ(y)])ϑ2(y) dα′′

= ζ(o)+
∫

ζ([x j , 1])r2
j dα′′ = ζ(o)+

∫
ζ([x j , 1])r2

j dα

= ζ(o)+
∫

ζ ◦ p d(μ j ⊗ δ1)

which yields (7.35). ⊓⊔

We can now prove a general form of the so-called “gluing lemma” that
is the natural extension of the well known result for transport problems (see
e.g. [2, Lem. 5.3.4]). Here its formulation is strongly related to the rescaling
invariance of optimal plans given by Lemma 7.10.

Lemma 7.11 (Gluing lemma) Let us consider a finite collection of measures

μi ∈M(X) for i = 1, . . . , N with N ≥ 2. Set

" :=
√
μ1(X)+

N∑

i=2

HK(μi−1, μi ) and M2 :=
N∑

i=1

μi (X). (7.37)

Then there exist plans α1, α2 ∈ P2(C
⊗N ) such that

h2
i αk = μi for i = 1, . . . , N and∫

d2
C(yi−1, yi ) dαk = HK2(μi−1, μi ) for i = 2, . . . , N . (7.38)

Moreover, the plans αk satisfy the following additional conditions:

α1 is concentrated on
{
y ∈ C⊗N :

∑

i

r2
i (y) ≤ M2}, (7.39)

α2 is concentrated on
{
y ∈ C⊗N : sup

i

ri (y) ≤ "
}
=
(
C["]

)⊗N
. (7.40)

Proof We first construct a plan α satisfying (7.38), then suitable rescalings
will provide αk satisfying (7.39) or (7.40). In order to clarify the argument,
we consider N -copies X1, X2, . . . , X N of X (and for C in a similar way) so
that X⊗N =

∏N
i=1 X i .

We argue by induction; the starting case N = 2 is covered by Theorem 7.6.
Let us now discuss the induction step, by assuming that the thesis holds for N

and proving it for N +1. We can thus find an optimal plan αN such that (7.38)
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hold, and another optimal plan α ∈ OptHK(μN , μN+1) for the pair μN , μN+1.
Applying the normalization Lemma 7.10 to αN (with j = N ) and to α (with
j = 1) we can assume that

π N
♯ (αN ) = δo + p♯(μN ⊗ δ1) = π1

♯ (α).

Therefore we can apply the standard gluing Lemma in
(∏N−1

i=1 Ci

)
,CN ,CN+1

(see e.g. [2, Lemma 5.3.2] and [1, Lemma 2.2] in the case of arbitrary topo-
logical spaces) obtaining a new plan αN+1 satisfying π

1,2,··· ,N
♯ αN+1 = αN

and π N ,N+1αN+1 = α. In particular, αN+1 satisfies (7.38).
A further application of the rescaling (7.27) with ϑ as in (5.27a) yields a

plan α1 satisfying also (7.39).
In order to obtain α2, we can assume α({|y| = 0}) = 0 and set α2 =

dilϑ,2(α), where we use the rescaling function

ϑ(y) := r−1|y|∞ = r−1 sup
i

ri (y) with r2 :=
∫

C⊗N

|y|2∞ dα.

To obtain (7.40) it remains to estimate r . We consider arbitrary coefficients
θi > 0 and use for n = 2, . . . , N the inequality

rn ≤ r1 +
n∑

i=2

|ri − ri−1| ≤
( n∑

i=1

θ−1
i

)1/2(
θ1r2

1 +
n∑

i=2

θi |ri − ri−1|2
)1/2

≤
( N∑

i=1

θ−1
i

)1/2(
θ1r2

1 +
N∑

i=2

θi d
2
C(yi , yi−1)

)1/2
,

which yields

sup
i

ri (y) ≤
( N∑

i=1

θ−1
i

)1/2(
θ1r2

1 +
N∑

i=2

θi d
2
C(yi , yi−1)

)1/2
,

and therefore

r2 =
∫

C⊗N

|y|2∞ dα ≤
( N∑

i=1

θ−1
i

) ∫

C⊗N

(
θ1r2

1 +
N∑

i=2

θi d
2
C(yi , yi−1)

)
dα

=
( N∑

i=1

θ−1
i

)
·
(
θ1μ1(X)+

N∑

i=2

θi HK2(μi−1, μi )
)
;

optimizing with respect to θi > 0 we obtain the value of " given by (7.37). ⊓⊔
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The next remark gives a similar rescaling result for probability couplings
β ∈ P2(C

⊗N ).

Remark 7.12 In a completely similar way (see [2, Lemma 5.3.4]), for every
N ≥ 2 and every finite collection of measures μi ∈M(X), there exists a plan
β ∈ P2(C

⊗N ) concentrated on
{
y ∈ C⊗N : supi ri (y) ≤ �

}
with

� :=
√
μ1(X)+

N∑

i=2

HK(μ1, μi ), (7.41)

such that

h2
i β = μi and

∫
d2

C(y1, yi ) dβ = HK2(μ1, μi ) (7.42)

for i = 1, . . . , N . ⊓⊔

Arguing as in the proof of Corollary 7.7 one immediately obtains the following
result, which will be needed for the proof of Theorem 8.8 and for the subsequent
corollary.

Corollary 7.13 For every finite collection of measures μi ∈ M(X), i =
1, . . . , N, there exist αi , βi ∈ P2(C) with αi concentrated in C[r ] where

r = min(M,") is given as in (7.37) and βi concentrated in C[�] given

by (7.41) such that

h2αi = μi and h2βi = μi for i = 1, . . . , N ,

HK(μ1, μi ) =WdC
(β1, βi ) and

HK(μi , μi+1) =WdC
(αi , αi+1) for i = 2, . . . , N .

We are now in the position to show that the functional HK is a true distance
on M(X), where we deduce the triangle inequality from that for WdC

by using
normalized lifts.

Corollary 7.14 (HK is a distance) HK is a distance on M(X); in particular,

for every μ1, μ2, μ3 ∈M(X) we have the triangle inequality

HK(μ1, μ3) ≤ HK(μ1, μ2)+ HK(μ2, μ3). (7.43)

Proof It is immediate to check that HK is symmetric and HK(μ1, μ2) = 0 if
and only if μ1 = μ2. In order to check (7.43) it is sufficient to apply the
previous corollary 7.13 to find measures αi ∈ P2(C), i = 1, 2, 3, such that
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h2αi = μi and HK(μ1, μ2) = WdC
(α1, α2) and HK(μ2, μ3) = WdC

(α2, α3).
Applying the triangle inequality for WdC

we obtain

HK(μ1, μ3) ≤ WdC
(α1, α3) ≤WdC

(α1, α2)+WdC
(α2, α3)

= HK(μ1, μ2)+ HK(μ2, μ3).

⊓⊔

As a consequence of the previous two results, the map h2 : P2(C)→M(X)

is a metric submersion.

7.5 Metric and topological properties

In this section we will assume that the topology τ on X is induced by d and that
(X,d) is separable, so that also (C,dC) is separable. Notice that in this case
there is no difference between weak and narrow topology in M(X). Moreover,
since X is separable, M(X) equipped with the weak topology is metrizable,
so that converging sequences are sufficient to characterize the weak-narrow
topology.

It turns out [2, Chap. 7] that (P2(C),WdC
) is a separable metric space:

convergence of a sequence (αn)n∈N to a limit measure α in (P2(C),WdC
)

corresponds to weak-narrow convergence in P(C) and convergence of the
quadratic moments, or, equivalently, to convergence of integrals of continuous
functions with quadratic growth, i.e.

lim
n→∞

∫

C

ϕ dαn =
∫

C

ϕ dα for every ϕ ∈ C(C) with |ϕ(y)| ≤ A + Br2(y),

(7.44)
for some constants A, B ≥ 0 depending on ϕ. Recall that r2(y) = d2

C(y, o).

Theorem 7.15 (HK metrizes the weak topology on M(X)) HK induces the

weak-narrow topology on M(X): a sequence (μn)n∈N ∈ M(X) converges to

a measureμ in (M,HK) if and only if (μn)n∈N converges weakly toμ in duality

with continuous and bounded functions.

In particular, the metric space (M(X),HK) is separable.

Proof Let us first suppose that limn→∞HK(μn, μ) = 0. We argue by con-
tradiction and we assume that there exists a function ζ ∈ Cb(X) and a
subsequence (still denoted by μn) such that

inf
n

∣∣∣
∫

X

ζ dμn −
∫

X

ζ dμ
∣∣∣ > 0. (7.45)
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The first estimate of (7.30) and the triangle inequality show that

lim sup
n→∞

μn(X) ≤ lim sup
n→∞

(
HK(μn, μ)+ HK(μ, η0)

)2 = μ(X),

so that supn μn(X) = M2 < ∞. By Corollary 7.7 we can find measures
αn, α

′
n ∈ P2(C) concentrated on C[2M] such that

h2αn = μ, h2α′n = μn, WdC
(αn, α

′
n) = HK(μ,μn).

By Lemma 7.3 the sequence (αn)n∈N is equally tight in P2(C); since it
is also uniformly bounded there exists a subsequence k �→ nk such that
αnk

weakly converges to a limit α ∈ P2(C). Since αn is concentrated on
C[2M] we also have limk→∞WdC

(αnk
, α) = 0 and therefore h2α = μ,

limk→∞WdC
(α′nk

, α) = 0.
We thus have

lim
k→∞

∫

X

ζ(x) dμnk
= lim

k→∞

∫

C

ζ(x)r2 dα′nk
=
∫

C

ζ(x)r2 dα =
∫

X

ζ(x) dμ

which contradicts (7.45).
In order to prove the converse implication, let us suppose thatμn is converg-

ing weakly toμ in M(X). Ifμ is the null measure η0, then limn→∞ μn(X) = 0
so that limn→∞HK(μn, μ) = 0 by (7.30).

So we can suppose that m := μ(X) > 0 and have mn := μn(X) ≥ m/2 > 0
for sufficiently large n. We now consider the measures αn, α ∈ P(C) given by

αn := p♯

(
m−1

n μn ⊗ δ√mn

)
and α := p♯

(
m−1μ⊗ δ√m

)
.

Since h2αn = μn and h2α = μ, by (7.29) we have HK(μn, μ) ≤WdC
(αn, α).

Since m−1
n μn is weakly converging to m−1μ in P(X) and mn → m, it

is easy to check that m−1
n μn ⊗ δ√mn

weakly converges to m−1μ ⊗ δ√m in
P(Y ) and therefore αn weakly converges to α in P(C) by the continuity of
the projection p. Hence, in order to conclude that WdC

(αn, α)→ 0 it is now
sufficient to prove the convergence of their quadratic moments with respect to
the vertex o. However, this is is immediate because of

lim
n→∞

∫
d2

C(y, o) dαn = lim
n→∞

∫
r2 dαn = lim

n→∞
mn = m =

∫
d2

C(y, o) dα.

⊓⊔
Corollary 7.16 (Compactness) If (X,d) is a compact metric space then

(M(X),HK) is a proper metric space, i.e. every bounded set is relatively com-

pact.

123



1066 M. Liero et al.

Proof It is sufficient to notice that a set C ⊂M(X) is bounded w.r.t. HK if and
only if supμ∈C μ(X) < ∞. Then the classical weak sequential compactness
of closed bounded sets in M(X) gives the result. ⊓⊔

The following completeness result for (M(X),HK) is obtained by suitable
liftings of measures μi to probability measures αi ∈ P2(C), supported in
some C["]. Then the completeness of the Kantorovich–Wasserstein space
(P2(C),WdC

) is exploited.

Theorem 7.17 (Completeness of (M(X),HK)) If (X,d) is complete than the

metric space (M(X),HK) is complete.

Proof We have to prove that every Cauchy sequence (μn)n∈N in (M(X),HK)

admits a convergent subsequence. By exploiting the Cauchy property, we can
find an increasing sequence of integers k �→ n(k) such that HK(μm, μm′) ≤
2−k whenever m,m′ ≥ n(k) and we consider the subsequence μ′i := μn(i), so
that

√
μ1(X)+

N∑

i=2

HK(μn(i), μn(i−1)) ≤
√
μ1(X)+ 1.

By applying the Gluing Lemma 7.11, for every N > 0 we can find measures
αN

i ∈ P2(C), i = 1, . . . , N , concentrated on C["] with " :=
√
μ1(X) + 1,

such that h2αN
i = μ′i and WdC

(αN
i , αN

i−1) = HK(μ′i , μ
′
i−1).

For every i the sequence N �→ αN
i ∈ P2(C) is equally tight by Lemma 7.3

and concentrated on the bounded set C["], so that by Prokhorov Theorem it
is relatively compact in (P2(C),WdC

).
By a standard diagonal argument, we can find a further increasing

subsequence m �→ N (m) and limit measures αi ∈ P2(C) such that
limm→∞WdC

(α
N (m)
i , αi ) = 0. The convergence with respect to WdC

yields
that

h2αi = μi , WdC
(αi , αi−1) = HK(μ′i , μ

′
i−1) ≤ 2i−1.

It follows that i �→ αi is a Cauchy sequence in (P2(C),WdC
) which is a

complete metric space [2, Prop. 7.1.5] and therefore there exists α ∈ P2(C)

such that limi→∞WdC
(αi , α) = 0. Setting μ := h2α ∈M(X) we thus obtain

limi→∞HK(μ′i , μ) = 0. ⊓⊔

We conclude this section by proving a simple comparison estimate for HK
with the Bounded Lipschitz metric (cf. [19, Sect. 11.3]), see also [27, Thm. 3],
and the flat metric. The Bounded Lipschitz metric is defined via
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BL(μ1, μ2) := sup
{ ∫

ξ d(μ1−μ2) : ξ ∈ Lipb(X), sup
X

|ξ |+Lip(ξ, X) ≤ 1
}
,

(7.46)
and it is metrically equivalent to the flat metric

B̃L(μ1, μ2) := sup
{ ∫

ξ d(μ1−μ2) : ξ ∈ Lipb(X), sup
X

|ξ | ∨Lip(ξ, X) ≤ 1
}
,

(7.47)
in the sense that BL(μ1, μ2) ≤ B̃L(μ1, μ2) ≤ 2BL(μ1, μ2). In its turn,
B̃L(μ1, μ2) coincides with the Piccoli-Rossi distance we considered in Exam-
ple E.9 of Sect. 3.3, see [39]. We do not claim that the constant C∗ below is
optimal.

Proposition 7.18 For every μ1, μ2 ∈M(X) we have

B̃L(μ1, μ2) ≤ C∗
(∑

i

μi (X)
)1/2

HK(μ1, μ2), where C∗ :=
√

2+ π2/2.

(7.48)

Proof Let ξ ∈ Lipb(X) with supX |ξ | ≤ 1 and Lip(ξ, X) ≤ 1, and let α ∈
P(C) optimal for (7.26) and concentrated on C[R] with R2 := μ1(X1) +
μ2(X2). Notice that

|ξ(x1)− ξ(x2)| ≤ min(d(x1, x2), 2) ≤ 2d2(x1, x2) ≤ 2dπ (x1, x2)

≤ 2π sin(dπ (x1, x2)/2).

We consider the function ζ : C → R defined by ζ(y) := ξ(x)r2. Hence, ζ
satisfies

∣∣∣ζ(y1)− ζ(y2)

∣∣∣ ≤ |ξ(x1)− ξ(x2)|r1r2 +
(
|ξ(x1)|r1 + |ξ(x2)|r2

)
|r1 − r2|

≤ 2π sin(dπ (x1, x2)/2)r1r2 + (r1 + r2)|r1 − r2|
(7.4)
≤
√
(r1 + r2)2 + π2r1r2 dC(y1, y2)

≤ C∗
√

r2
1 + r2

2 dC(y1, y2)

Since the optimal plan α is concentrated on {r2
1 + r2

2 ≤ R2} we obtain
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∣∣∣
∫

X

ξ d(μ1 − μ2)

∣∣∣ =
∣∣∣
∫

ζ(y1)− ζ(y2) dα

∣∣∣ ≤
∫
|ζ(y1)− ζ(y2)| dα

≤ C∗R

∫
dC(y1, y2) dα ≤ C∗R HK(μ1, μ2).

⊓⊔

7.6 Hellinger–Kantorovich distance and Entropy-Transport functionals

In this section we will establish our main result connecting the Hellinger–
Kantorovich Problem 7.4 defining HK with the Logarithmic Entropy-Transport
Problem 6.1 defining LET.

It is clear that the definition of HK does not change if we replace the distance
d on X by its truncation dπ = d ∧ π . It is less obvious that we can even
replace the threshold π with π/2 and use the distance dπ/2,C of Remark 7.2
in the formulation of the Hellinger–Kantorovich Problem 7.4. This property
is related to the particular structure of the homogeneous marginals (which are
not affected by masses concentrated in the vertex o of the cone C); in [30,
Sect. 3.2] it is is called the presence of a sufficiently large reservoir, which
shows that transport over distances larger than π/2 is never optimal, since it
is cheaper to transport into or out of the reservoir in o. This will provide an
essential piece of information to connect the HK and the LET functionals.

In order to prove that transport only occurs of distances ≤ π/2 we define
the subset

C′ :=
{
dπ/2,C < dC

}
=
{
(y1, y2) ∈ Co × Co : d(x1, x2) > π/2

}
(7.49)

and consider the partition (C′,C′′) of C = C × C, where C′′ := C \ C′ ={
dπ/2,C = dC

}
. Observe that

C′′o := C′′ ∩ (Co × Co) =
{
(y1, y2) ∈ Co × Co : d(x1, x2) ≤ π/2

}
. (7.50)

In the following lemma we show that minimizers α ∈ OptHK(μ1, μ2) are
concentrated on C′′, i.e. α(C′) = 0 which holds if and only if αo = α (Co ×
Co) is concentrated on C′′o . To handle the mass that is transported into or out
of o, we use the continuous projections

gi : C→ C, g1(y1, y2) := (y1, o), g2(y1, y2) := (o, y2). (7.51)

Lemma 7.19 (Plan restriction) For every α ∈M(C) the plan

α̂ := α′′ + (g1)♯α
′ + (g2)♯α

′ with α′ := α C′, α′′ := α C′′, (7.52)
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is concentrated on C′′, has the same homogeneous marginals as α, i.e. h2
i α̂ =

h2
i α, and ∫

C

d2
C dα̂ =

∫

C

d2
π/2,C dα̂ ≤

∫

C

d2
C dα, (7.53)

where the inequality is strict if α(C′) > 0. In particular for every μ1, μ2 ∈
M(X)

HK2(μ1, μ2) = min
{ ∫

d2
π/2,C(y1, y2) dα : α ∈M2(C), h2

i α = μi

}
.

(7.54)

Proof For every ζ ∈ Bb(X), since r1 ◦ g2 = 0 and r1 ◦ g1 = r1, we have

∫
ζ d(h2

1α̂) =
∫

ζ(x1)r
2
1 dα̂ =

∫
ζ(x1)r

2
1 dα′′ +

∑

k

∫
ζ(x1(gk))r1(gk)

2 dα′

=
∫

ζ(x1)r
2
1 dα′′+

∫
ζ(x1)r

2
1 dα′=

∫
ζ(x1)r

2
1 dα=

∫
ζ d(h2

1α),

so that h2
1α̂ = h2

1α; a similar calculation holds for h2
2 so that α̂ ∈ H2

=(μ1, μ2).
Moreover, if (y1, y2) ∈ C′ we easily get

d2
C(y1, y2) > r2

1 + r2
2 = d2

C(g1(y1, y2))+ d2
C(g2(y1, y2))

so that whenever α(C′) > 0 we get

∫
d2

C dα̂ =
∫ (

d2
C ◦ g1 + d2

C ◦ g2
)

dα′ +
∫

d2
C dα′′

<

∫
d2

C dα′ +
∫

d2
C dα′′ =

∫
d2

C dα,

which proves (7.53) and characterizes the equality case. (7.54) then follows
by (7.53) and the fact that the homogeneous marginals of α̂ and α coincide. ⊓⊔

In (7.54) we have established that α ∈ OptHK(μ1, μ2) has support in C′′.
This allows us to prove the identity LET = HK2. For this, we introduce the
open set G ⊂ C′′ via

G :=
{
([x1, r1], [x2, r2]) ∈ Co × Co : d(x1, x2) < π/2

}

and note that r1r2 cos(dπ/2(x1, x2)) > 0 in G. Recall also p = p⊗p : Y → C,
where p is defined in (7.8).
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Theorem 7.20 (HK2 = LET) For all μ1, μ2 ∈M(X) we have

HK2(μ1, μ2) = LET(μ1, μ2), (7.55)

and α(C′) = 0 for optimal solution α ∈ M(C) of Problem 7.4 or of (7.32a,
b). Moreover,

(i) α ∈M(C) is an optimal plan for (7.32a, b) if and only if α(C′) = 0 and

y♯(α Co×Co) is an optimal plan for (6.33)–(6.32).

(ii) ᾱ ∈ M(Y) is any optimal plan for (6.34) if and only if the plan α̂

obtained from α := p♯ᾱ as in (7.52) is an optimal plan for the Hellinger–

Kantorovich Problem 7.4.

(iii) In the case that γ ∈ M(X × X) belongs to OptLET(μ1, μ2) and

̺i : X → [0,∞) are Borel maps so that μi = ̺iγi + μ⊥i , then

β :=
(
p◦(x1, ̺

1/2
1 (x1); x2, ̺

1/2
2 (x2))

)
♯
γ is an optimal plan for (7.32a,b),

and it satisfies r1r2 cos(dπ/2(x1, x2)) = 1 β-a.e.; in particular β is con-

centrated on G.

(iv) If α ∈ M(C) is an optimal plan for Problem 7.4 then α̃ := α G is an

optimal plan for (7.32a,b). Moreover,

• the plan β := dilϑ,2(α̃), with ϑ :=
(
r1r2 cos(dπ/2(x1, x2))

)1/2
, is an

optimal plan for (7.32a,b) satisfying r1r2 cos(dπ/2(x1, x2)) = 1 β-a.e.

• If (X, τ ) is separable and metrizable, γ := (x1, x2)♯β belongs to

OptLET(μ1, μ2),

• If (X, τ ) is separable and metrizable, β =
(
p ◦ (x1, ̺

1/2
1 (x1); x2, ̺

1/2
2

(x2))
)
♯
γ .

Proof Identity (7.55) and the first statement immediately follow by combining
the previous Lemma 7.19 with Remark 7.5 and (6.34). Claim (ii) follows as
well.

In order to prove (i), we observe that if α is an optimal plan for the for-
mulation (7.32a,b) we can apply Lemma 7.9(iii) to find α̃ ≥ α optimal for
(7.23), so that α(C′) ≤ α̃(C′) = 0. Given this property, (7.32a,b) correspond
to (6.33)–(6.32).

(iii) is a consequence of Theorem 6.7 and of the optimality conditions (6.19),
which show that β is concentrated on G and satisfies r1r2 cos(dπ/2(x1, x2)) =
1 β-a.e. Therefore, β is optimal for (7.32a,b) thanks to claim (i).

Concerning (iv), the optimality of α̃ is obvious from the formulation (7.32b)
and the optimality of β = dilϑ,2(α̃) follows from the invariance of (7.32b)
with respect to dilations. We notice that β-almost everywhere in G we have

∑

i

U0(r
2
i )+ c(x1, x2) =

∑

i

(
r2
i − 1− log r2

i

)
− log(cos2(dπ/2(x1, x2)))
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=
∑

i

r2
i − 2− 2 log(r1r2 cos(dπ/2(x1, x2)))

= r2
1 + r2

2 − 2r1r2 cos(dπ/2(x1, x2)),

so that by (7.32a) we arrive at

∫ (∑

i

U0(r
2
i )+ c(x1, x2)

)
dβ +

∑

i

(
μi (X)− h2

i β(X)
)
= HK2(μ1, μ2).

(7.56)
Let us now set γ := (x1, x2)♯β ∈M(X × X) and βi := π i

♯β ∈M(C), which

yield γi := π i
♯γ = (xi )♯β = x♯βi ∈ M(X) and μ̃i := h2

i β = (xi )♯(r
2
i γ ) =

x♯(r
2βi ). Denoting by (βi,xi

)xi∈X the disintegration of βi with respect to γi

(here we need the metrizability and separability of (X, τ ), see [2, Sect. 5.3]),
we find

∫

X

ζ dμ̃i =
∫

C

ζ(x)r2 dβi =
∫

X

( ∫

C

ζ(x)r2 dβi,x

)
dγi

=
∫

X

ζ(x)
( ∫

C

r2 dβi,x

)
dγi

for all ζ ∈ Bb(X), so that

μ̃i = ˜̺ iγi ≤ μi with ˜̺ i (x) :=
∫

C

r2 dβi,x .

Applying Jensen’s inequality we obtain

∫
U0(r

2
i ) dβ =

∫
U0(r

2
i ) dβi =

∫ ( ∫
U0(r

2
i ) dβi,xi

(ri )
)

dγi

≥
∫

U0

( ∫
r2

i dβi,xi
(ri )
)

dγi =
∫

U0
(
˜̺ i (x)

)
dγi .

Now
∫

c(x1, x2) dβ =
∫

c(x1, x2) dγ and (7.56) imply

HK2(μ1, μ2) ≥
∑

i

∫

X

U0( ˜̺ i ) dγi +
∫

X×X

c dγ +
∑

i

νi (X)

with νi := μi − μ̃i ∈ M(X). Hence, since μi = ˜̺ iγi + νi and the standard
decomposition μi = ̺iγi +μ⊥i (cf. (2.8)) give νi = μ⊥i + (̺i − ˜̺ i )γi ≥ μ⊥i ,
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U0(s) = s − 1− log s and the monotonicity of the logarithm yield

HK2(μ1, μ2) ≥
∑

i

( ∫

X

U0( ˜̺ i ) dγi + νi (X)
)
+
∫

c dγ

=
∑

i

( ∫

X

(
U0( ˜̺ i )+ ̺i − ˜̺ i

)
dγi + μ⊥i (X)

)
+
∫

c dγ

≥
∑

i

( ∫

X

U0(̺i ) dγi + μ⊥i (X)
)
+
∫

c dγ ≥ LET(μ1, μ2),

where the last estimate follows from Theorem 6.2(b). Above, the first inequal-
ity is strict if νi �= μ⊥i so that ̺i > ˜̺ i on some set with positive γi -measure.

By the first statement of the Theorem it follows that γ ∈ OptLET(μ1, μ2).
Hence, all the inequalities are in fact identities, and we conclude ˜̺ i ≡ ̺i .
Since U0 is strictly convex, the disintegration measure βi,xi

is a Dirac measure

concentrated on
√
̺i (xi ), so that β=

(
p◦ (x1, ̺

1/2
1 (x1); x2, ̺

1/2
2 (x2))

)
♯
γ . ⊓⊔

We observe that the system (γ , ̺1, ̺2) provided by the previous Theorem
enjoys a few remarkable properties, that are not obvious from the original
Hellinger–Kantorovich formulation.

(a) First of all, thanks to (6.15), the annihilated part μ⊥i of the measures μi is
concentrated on the set

Mi, j := {xi ∈ X : d(xi , supp(μ j )) ≥ π/2}

When μi (Mi, j ) = 0 then μi ≪ γi .
(b) As a second property, an optimal plan γ ∈ OptLET(μ1, μ2) provides an

optimal plan α =
(
p ◦ (x1, ̺

1/2
1 (x1); x2, ̺

1/2
2 (x2))

)
♯
γ which is concen-

trated on the graph of the map (̺1/2
1 (x1); ̺1/2

2 (x2)) from X×X to R+×R+,
where the maps ̺i are independent, in the sense that ̺i only depends on
xi .

(c) A third important application of Theorem 7.20 is the duality formula for
the HK functional which directly follows from (6.14) of Theorem 6.3.
We will state it in a slightly different form in the next theorem, whose
interpretation will be clearer in the light of Sect. 8.4. It is based on the
inf-convolution formula

P1ξ(x) = inf
x ′∈X

(
ξ(x ′)

1+2ξ(x ′)
+ sin2(dπ/2(x, x ′))

2(1+2ξ(x ′))

)

= inf
x ′∈X

1

2

(
1− cos2(dπ/2(x, x ′))

1+ 2ξ(x ′)

)
. (7.57)
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where ξ ∈ B(X) with ξ > −1/2.

Theorem 7.21 (Duality formula for HK)

(i) If ξ ∈ Bb(X) with inf X ξ > −1/2 then the function P1ξ defined by (7.57)
belongs to Lipb(X), satisfies supX P1ξ < 1/2, and admits the equivalent

representation

P1ξ(x) = inf
x ′∈Bπ/2(x)

1

2

(
1− cos2(dπ/2(x, x ′))

1+ 2ξ(x ′)

)
. (7.58)

In particular, if ξ has bounded support then P1ξ ∈ Lipbs(X), the space

of Lipschitz functions with bounded support.

(ii) Let us suppose that (X,d) is a separable metric space and τ is induced

by d. For every μ0, μ1 ∈M(X) we have

1

2
HK2(μ0, μ1) = sup

{ ∫
P1ξ dμ1 −

∫
ξ dμ0 :

ξ ∈ Lipbs(X), inf
X

ξ > −1/2
}
. (7.59)

Proof Let us first observe that if

− 1

2
< a ≤ ξ ≤ b in X ⇒ a

1+ 2a
≤P1ξ ≤

b

1+ 2b
in X, (7.60)

where the upper bound follows using x ′ = x , while the lower bound is easily
seen from the first form of P1ξ in (7.57) and sin2 ≥ 0. Since 1/(1+2ξ(x ′)) ≤
1/(1+ 2a) for every x ′ ∈ X , the function P1ξ is also Lipschitz, because it is
the infimum of a family of uniformly Lipschitz functions.

Moreover we have the estimate

1

2

(
1− cos2(dπ/2(x, x ′))

1+ 2ξ(x ′)

)
= 1

2
>

b

1+ 2b
if d(x, x ′) ≥ π/2, (7.61)

which immediately gives (7.58). In particular, we have

ξ ≡ 0 in X \ B ⇒ P1ξ ≡ 0 in {x ∈ X : d(x, B) ≥ π/2}. (7.62)

Let us now prove statement (ii). We denote by E the the right-hand side of
(7.59) and by E ′ the analogous expression where ξ runs in Cb(X):

E ′ := sup
{ ∫

P1ξ dμ1 −
∫

ξ dμ0 : ξ ∈ Cb(X), inf
X

ξ > −1/2
}
. (7.63)
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It is clear that E ′ ≥ E . If ξ ∈ Cb(X) with inf ξ > −1/2, setting ψ1(x1) :=
−2ξ(x1), ψ2(x2) := 2(P1ξ)(x2), we know that supX ψ2 < 1 and ψ2 ∈
Lipb(X). Thus, ψ1 and ψ2 are continuous and satisfy

(
1−ψ2(x2)

)(
1−ψ1(x1)

)
≥ cos2(dπ/2(x1, x2)).

Hence, the pair (ψ1, ψ2) is admissible for (6.14) (with Cb(X) instead of
LSCs(X); note that τ is metrizable and thus completely regular), so that
HK2(μ0, μ1) = LET(μ0, μ1) ≥ E ′.

On the other hand, if (ψ1, ψ2) ∈ Cb(X) × Cb(X) with supX ψi < 1,
setting ξ1 = −1

2ψ1 and ξ̃2 := P1(−ξ1) we see that 2ξ̃2 ≥ ψ2 giving E ′ ≥
HK2(μ0, μ1), so that HK2(μ0, μ1) = E ′.

It remains to show that E ≥ E ′. We first approximate ξ ∈ Cb(X) with
inf X ξ > −1/2 by a decreasing sequence of Lipschitz and bounded functions
(e.g. by taking ξn(x) := supy ξ(y) − ndπ (x, y) ) pointwise converging to ξ ,
observing that P1ξn is also decreasing, uniformly bounded and pointwise
converging to P1ξ . We deduce that the supremum in (7.63) does not change
if we restrict it to Lipb(X).

In the last step of the proof we want to show that we can eventually restrict
the supremum in (7.63) to Lipbs(X), by a further approximation argument. We
fix a Lipschitz function ξ valued in [a, b] with −1/2 < a ≤ 0 ≤ b and we
consider the increasing sequence of nonnegative cut-off functions ζn(x) :=
0 ∨
(
n − d(x, x̄)) ∧ 1: they are uniformly 1-Lipschitz, have bounded support

and satisfy ζn ↑ 1 as n → ∞. It is easy to check that ξn := ζnξ belong to
Lipbs(X) and take values in the interval [a, b] so that a

1+2a
≤ P1ξn ≤ b

1+2b
for every n ∈ N by (7.60).

Since ξn(x) = 0 if d(x, x̄) ≥ n and ξn(x) = ξ(x) if d(x, x̄) ≤ n − 1, by
(7.58) we get

P1ξn(x) = 0 if d(x, x̄) ≥ n + π/2,

P1ξn(x) =P1ξ(x) if d(x, x̄) < n − 1− π/2. (7.64)

Thus P1ξn ∈ Lipbs(X) and P1ξn(x)→P1ξ(x) for every x ∈ X as n→∞.
Applying the Lebesgue Dominated Convergence theorem we conclude that

lim
n→∞

∫

X

P1ξn dμ1 −
∫

X

ξn dμ0 =
∫

X

P1ξ dμ1 −
∫

X

ξ dμ0.

⊓⊔
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7.7 Limiting cases: recovering the Hellinger—Kakutani distance and

the Kantorovich–Wasserstein distance

In this section we will show that we can recover the Hellinger–Kakutani and
the Kantorovich–Wasserstein distance by suitably rescaling the HK functional.
The Hellinger–Kakutani distance. As we have seen in Example E.5 of
Sect. 3.3, the Hellinger–Kakutani distance between two measures μ1, μ2 ∈
M(X) can be obtained as a limiting case when the space X is endowed with
the discrete distance

dHe(x1, x2) :=
{

a if x1 �= x2

0 if x1 = x2,
with a ∈ [π,∞]. (7.65)

The induced cone distance in this case is

d2
C([x1, r1], [x2, r2]) =

{
(r1−r2)

2 if x1 = x2,

(r1+r2)
2 if x1 �= x2.

(7.66)

and the induced cost function for the Entropy-Transport formalism is given by

cHe(x1, x2) :=
{

0 if x1 = x2,

+∞ otherwise.
(7.67)

Recalling (3.21)–(3.22) we obtain

He2(μ1, μ2) = LETHe(μ1, μ2) =
∫

X

(√
̺1 −

√
̺2
)2

dγ

with μi = ̺iγ ≪ γ ∈M(X). (7.68)

Since cHe ≥ c = ℓ(d) for every distance function on X , we always have the
upper bound

HK(μ1, μ2) ≤ He(μ1, μ2) for every μ1, μ2 ∈M(X). (7.69)

Applying Lemma 3.9 we easily get

Theorem 7.22 (Convergence of HK to He) Let (X, τ,d) be an extended metric

topological space and let HKλd be the Hellinger–Kantorovich distances in

M(X) induced by the distances dλ := λd, λ > 0. For every pair μ1, μ2 ∈
M(X) we have

HKλd(μ1, μ2) ↑ He(μ1, μ2) as λ ↑ ∞. (7.70)
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The Kantorovich–Wasserstein distance. Let us first observe that whenever
μ1, μ2 ∈M(X) have the same mass their HK-distance is always bounded form
above by the Kantorovich–Wasserstein distance Wd (the upper bound is trivial
when μ1(X) �= μ2(X), since in this case Wd(μ1, μ2) = +∞).

Proposition 7.23 For every pair μ1, μ2 ∈M(X) we have

HK(μ1, μ2) ≤Wdπ/2(μ1, μ2) ≤Wd(μ1, μ2). (7.71)

Proof It is not restrictive to assume that W2
dπ/2

(μ1, μ2) =
∫

d2
π/2γ < ∞ for

an optimal plan γ with marginals μi . We then define the plan α := s♯γ ∈
M(C × C) where s(x1, x2) := ([x1, 1], [x2, 1]), so that h2

i α = μi . By using
(7.54) and the identity 2− 2 cos2(d) = 4 sin2(d/2) we obtain

HK2(μ1, μ2) ≤ 4
∫

C

sin2(dπ/2(x1, x2)/2) dα ≤
∫

X

d2
π/2(x1, x2) dγ

≤W2
dπ/2

(μ1, μ2).

⊓⊔

In order to recover the Kantorovich–Wasserstein distance we perform a
simultaneous scaling, by taking the limit of nHKd/n where HKd/n is induced
by the distance d/n.

Theorem 7.24 (Convergence of HK to W) Let (X, τ,d) be an extended metric

topological space and let HKd/λ be the Hellinger–Kantorovich distances in

M(X) induced by the distances λ−1d for λ > 0. Then, for all μ1, μ2 ∈M(X)

we have

λHKd/λ(μ1, μ2) ↑Wd(μ1, μ2) as λ ↑ ∞. (7.72)

Proof Let us denote by LETλ = HK2
d/λ the optimal value of the LET-problem

associated to d/λ. Since the Kantorovich–Wasserstein distance is invariant by
the rescaling λWd/λ =Wd, estimate (7.71) shows that λHKd/λ ≤Wd.

As x �→ sin(x∧π/2) is concave in [0,∞), the function x �→ sin(x∧π/2)/x

is decreasing in [0,∞), so that α sin((d/α)∧ π/2) ≤ λ sin((d/λ)∧ π/2) for
every d ≥ 0 and 0 < α < λ. Combining (7.54) with (7.11b) we see that the
map λ �→ λHKd/λ(μ1, μ2) is nondecreasing.

It remains to prove that L := limλ→∞ λHKd/λ(μ1, μ2) = supλ≥1 λHKd/λ

(μ1, μ2) ≥Wd(μ1, μ2). For this, it is not restrictive to assume that L is finite.
Let γ λ be an optimal plan for HKd/λ(μ1, μ2) with marginals γλ,i = π i

♯γ λ.
We denote by F the entropy functionals associated to logarithmic entropy
U1(s) and by G the entropy functionals associated to I1(s) as in Example E.3
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of Sect. 3.3. Since the transport part of the LET-functional is associated to the
costs

cλ(x1, x2) = λ2ℓ(d(x1, x2)/λ)
(6.6)
≥ d2(x1, x2),

we obtain the estimate

L2 ≥ λ2LETλ(μ1, μ2) ≥
∑

i

λ2
F (γλ,i |μi )+

∫

X

d2(x1, x2) dγ λ. (7.73)

Proposition 2.10 shows that the family of plans (γ λ)λ≥1 is relatively compact
with respect to narrow convergence in M(X×X). Since λ2 F(s) ↑ I1(s), pass-
ing to the limit along a suitable subnet (λ(α))α∈A parametrized by a directed
set A, and applying Corollary 2.9 we get a limit plan γ ∈ M(X × X) with
marginals γi such that

∑

i

G (γi |μi ) ≤ L2, which implies γi = μi .

In particular, we conclude that μ1(X) = γ (X×X) = μ2(X). Since d is lower
semicontinuous, narrow convergence of γ λ(α) and (7.73) also yield

L2 ≥ lim inf
α∈A

∫

X

d2(x1, x2) dγ λ(α) ≥
∫

X

d2(x1, x2) dγ ≥W2
d(μ1, μ2).

⊓⊔

7.8 The Gaussian Hellinger–Kantorovich distance

We conclude this general introduction to the Hellinger–Kantorovich distance
by discussing another interesting example.

We consider the inverse function g : R+→ [0, π/2) of
√
ℓ:

g(z) := arccos(e−z2/2), giving g(0) = 0, g′(0) = 1, ℓ(g(d)) = d2. (7.74)

Since
√
ℓ is a convex function, g is a concave increasing function in [0,∞)

with g(z) ≤ z and limz→∞ g(z) = π/2.
It follows that g := g ◦ d is a distance in X , inducing the same topology as

d. We can now introduce a distance HKg associated to g. The corresponding
distance on C is given by

gC(y1, y2) := r2
1 + r2

2 − 2r1r2 exp(−d2(x1, x2)/2). (7.75)
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From g(z) ≤ z we have gC ≤ dC.
We can then apply Corollary 7.14, Theorems 7.15, 7.17, 7.20, and 6.3 to

obtain the following result.

Theorem 7.25 (The Gaussian Hellinger–Kantorovich distance) The func-

tional

GHK2(μ1, μ2) := HK2
g(μ1, μ2)

= min
{ ∫

g2
C(y1, y2) dα : α ∈M(C), h2

i α = μi

}
(7.76)

defines a distance on M(X) dominated by HK. If (X,d) is separable (resp. com-

plete) then (M(X),GHK) is a separable (resp. complete) metric space, whose

topology coincides with the weak convergence. We also have

GHK2(μ1, μ2) = min
{∑

i

F (γi |μi )+
∫

X

d2(x1, x2) dγ : γ ∈M(X)
}

= sup
{∑

i

∫ (
1− e−ϕi

)
dμi : ϕ1 ⊕ ϕ2 ≤ d2

}
.

(7.77)

We shall see in the next Sect. 8.2 that HK is the length distance induced by GHK
if d is a length distance on X .

8 Dynamic interpretation of the Hellinger–Kantorovich distance

In this section we collect our main results concerning the dynamic interpreta-
tion of the Hellinger–Kantorovich distance: it reveals another deep connection
with Optimal Transport problems, in particular as a natural generalization of
the Benamou-Brenier [7] characterization of the Kantorovich–Wasserstein dis-
tance, see the next Sect. 8.4 and [30, Sect. 4], where a more direct approach
has been adopted for the case X = R

d .
In order to deal with arbitrary geodesic spaces X and to obtain other impor-

tant results concerning general representation formulae for geodesics and
absolutely continuous curves (Sect. 8.2), lower curvature bounds (Sect. 8.3),
duality relations with subsolutions to Hamilton–Jacobi equations (Sects. 8.4
and 8.6), and contraction properties for diffusion semigroups (Sect. 8.7), we
adopted here the point of view of dynamic plans (i.e. probability measures on
continuous paths), which provide a powerful tool in Optimal Transport, cf. [2,
Chap. 8]. It is not difficult to imagine that the natural objects to deal with the
Hellinger–Kantorovich distance are dynamic plans in the cone C, so we will
devote the next section to recall the basic metric properties of curves in C.
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As in Sect. 7.5, in all this section we will suppose that (X,d) is a com-
plete and separable (possibly extended) metric space and τ coincides with the
topology induced by d. All the results admit a natural generalization to the
framework of extended metric-topological spaces [1, Sect. 4].

8.1 Absolutely continuous curves and geodesics in the cone C

Absolutely continuous curves and metric derivative. If (Z ,dZ ) is a (pos-
sibly extended) metric space and I is an interval of R, a curve z : I → Z is
absolutely continuous if there exists m ∈ L1(I ) such that

dZ (z(t0), z(t1)) ≤
∫ t1

t0

m(t) dt whenever t0, t1 ∈ I, t0 < t1. (8.1)

Its metric derivative |z′|dZ
(we will omit the index dZ when the choice of the

metric is clear from the context) is the Borel function defined by

|z′|dZ
(t) := lim sup

h→0

dZ (z(t + h), z(t))

|h| (8.2)

and it is possible to show (see [2]) that the lim sup above is in fact a limit for
L 1-a.e. points in I and it provides the minimal (up to possible modifications
in L 1-negligible sets) function m for which (8.1) holds. We will denote by
ACp(I ; Z) the class of all absolutely continuous curves z : I → Z with
|z′| ∈ Lp(I ); when I is an open set of R, we will also consider the local
space ACp

loc(I ; Z). If Z is complete and separable then ACp([0, 1]; Z) is a
Borel set in the space C([0, 1]; Z) endowed with the topology of uniform
convergence. (This property can be extended to the framework of extended
metric-topological spaces, see [3].)

A curve z : [0, 1] → Z is a (minimal, constant speed) geodesic if

dZ (z(t0), z(t1)) = |t1 − t0|dZ (z(0), z(1)) for every t0, t1 ∈ [0, 1]. (8.3)

In particular z is Lipschitz and |z′| ≡ dZ (z(t0), z(t1)) in [0, 1]. We denote by
Geo(Z) ⊂ C([0, 1]; Z) the closed subset of all the geodesics.

By using the fact that
∫ 1

0 f 2 dt ≥
( ∫ 1

0 f dt
)2

with equality if and only if f

is constant a.e. in (0, 1), it is easy to check that a curve

z ∈ AC2([0, 1]; Z) is a geodesic if and only if
∫ 1

0
|z′|2dZ

dt≤d2
Z (z(0), z(1));

(8.4)
notice that the opposite inequality in (8.4) is satisfied along any curve.
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A metric space (Z ,dZ ) is called a length (or intrinsic) space if the distance
between arbitrary pairs of points can be obtained as the infimum of the length of
the absolutely continuous curves connecting them; by a simple reparametriza-
tion technique (see e.g. [2, Lem. 1.1.4]), this property is equivalent to assume
that for every pair of points z0, z1 ∈ Z at finite distance and every κ > 1 there
exists a Lipschitz curve zκ : [0, 1] → Z such that

z(i) = zi , i = 0, 1, |z′|dZ
(t) ≤ κ dZ (z0, z1) for every t ∈ [0, 1]. (8.5)

(Z ,dZ ) is called a geodesic (or strictly intrinsic) space if every pair of points
z0, z1 at finite distance can be joined by a geodesic (for which (8.5) holds with
κ = 1).
Geodesics in C. If (X,d) is a geodesic (resp. length) space, then also C is a
geodesic (resp. length) space, cf. [10, Sect. 3.6]. The geodesic connecting a
point y = [x, r ] with o is

y(t) = [x, tr ] = y · t for t ∈ [0, 1]. (8.6)

If x1, x2 ∈ X with d(x1, x2) ≥ π , then a geodesic between yi = [xi , ri ] can be
easily obtained by joining two geodesics connecting yi to o as before; observe
that in this case dC(y1, y2) = r1 + r2.

In the case when d(x1, x2) < π and r1, r2 > 0, every geodesic y : I → C

connecting y1 to y2 is associated to a geodesic x in X joining x1 to x2 and
parametrized with unit speed in the interval [0,d(x1, x2)]. To find the radius
r(t), we use the complex plane C and write the curve connecting z1 = r1 ∈ C

to z2 = r2 exp(i d(x1, x2)) ∈ C in polar coordinates, namely

z(t) = r(t) exp(i θ(t)),

r2(t) = (1−t)2r2
1 + t2r2

2 + 2t (1−t)r1r2 cos(d(x1, x2)), (8.7)

cos(θ(t)) = (1−t)r1 + tr2 cos(d(x1, x2))

r(t)
, θ(t) ∈ [0, π ],

and then the geodesic curve and the distance in C take the form

y(t) = [x(θ(t)), r(t)], dC(y1, y2) = |z2 − z1|. (8.8)

Absolutely continuous curves in C. We want to obtain now a simple charac-
terizations of absolutely continuous curves in C. If t �→ y(t) is a continuous
curve in C, with t ∈ [0, 1], is clear that r(t) := r(y(t)) is a continuous curve
with values in [0,∞). We can then consider the open set Or = r−1

(
(0,∞)

)

and the map x : [0, 1] → X defined by x(t) := x(y(t)), whose restriction to
Or is also continuous. Thus any continuous curve y : I → C can be lifted
to a pair of maps y = y ◦ y = (x, r) : [0, 1] → Y with r continuous and x
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continuous on Or and constant on its complement. Conversely, it is clear that
starting from a pair y = (x, r) as above, then y = p ◦ y is continuous in C. We
thus introduce the set

C̃([0, 1]; Y ) :=
{
y = (x, r) : [0, 1] → Y :
r ∈ C([0, 1];R+), x|Or

is continuous
}

(8.9)

and for p ≥ 1 the analogous spaces

ÃCp([0, 1]; Y ) :=
{

y = (x, r) : r ∈ ACp([0, 1];R+),

x|Or
∈ ACp

loc(Or; X), r|x′| ∈ Lp(Or)
}
.

(8.10)

If y = (x, r) ∈ ÃCp([0, 1]; Y ) we define the Borel map |y′| : [0, 1] → R+ by

|y′|2(t) := |r′(t)|2+ r2(t)|x′|2d(t) if t ∈ Or, |y′|(t) = 0 otherwise. (8.11)

For absolutely continuous curves the following characterization holds:

Lemma 8.1 Let y ∈ C([0, 1];C) be lifted to y = y ◦ y ∈ C̃([0, 1]; Y ). Then

y ∈ ACp(I ;C) if and only if y = (x, r) ∈ ÃCp([0, 1]; Y ) and

|y′|dC
(t) = |y′|(t) for L

1-a.e. t ∈ [0, 1]. (8.12)

Proof By (7.5) one immediately sees that if y = p ◦ y ∈ ACp([0, 1];C)
then r belongs to ACp([0, 1];R) and x ∈ ACp

loc(Or; X). Since y is absolutely
continuous, we can evaluate the metric derivative at a.e. t ∈ Or where also r′

and |x′| exist: starting from (7.4) leads to the limit

lim
h↓0

d2
C(y(t + h), y(t))

h2

= lim
h↓0

|r(t + h)− r(t)|2 + 4r(t + h)r(t) sin2(1
2dπ (x(t + h), x(t)))

h2

= |r′(t)|2 + r2(t)|x′|2d(t)

which provides (8.12).
Moreover, the same calculations show that if the lifting y belongs to

ÃCp([0, 1]; Y ) then the restriction of y to each connected component of Or
is absolutely continuous with metric velocity given by (8.12) in Lp(0, 1).
Since y is globally continuous and constant in [0, 1] \ Or, we conclude that
y ∈ ACp([0, 1];C). ⊓⊔
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As a consequence, in a length space, we get the variational representation
formula

d2
C(y0, y1) = inf

{ ∫

[0,1]∩{r>0}

(
r2(t)|x′|2d(t)+ |r′(t)|2

)
dt :

(x, r) ∈ ÃC2([0, 1]; Y ), [x(i), r(i)] = yi , i = 0, 1
}
.

(8.13)

Remark 8.2 (The Euclidean case) In the Euclidean case X = R
d with the

usual Euclidean distance d(x1, x2) := |x1−x2| we can give a more explicit
interpretation of the metric velocity (8.12) and write a simple duality formula
for the chain rule of smooth functions that will turn out to be useful in Sect. 8.5.

For y = [x, r] ∈ AC2([0, 1];C), we can define a Borel vector field y′C :
[0, 1] → R

d+1 by

y′C(t) :=
{
(r(t)x′(t), r′(t)) whenever r(t) �= 0 and the derivatives exist,

(0, 0) otherwise.
(8.14)

Then, (8.12) yields |y′|dC
(t) = |y′C(t)|Rd+1 for L 1-a.e. t ∈ (0, 1) and the

Euclidean norm ofy′C(t) corresponds to the Riemannian norm of y′with respect
to the metric tensor g[x,r ](ẋ, ṙ) := r2|ẋ |2 + ṙ2.

For ξ ∈ C1(Rd × [0, 1]) we set ζ([x, r ], t) := ξ(x, t)r2 and obtain
∂tζ([x, r ], t) := ∂tξ(x, t)r2. Now defining the Borel map DCζ : C →
(Rd+1)∗ via

DCζ(y, t) :=
{
(rDxξ(x, t), 2rξ(x, t)) for y �= o,

(0, 0) otherwise,
(8.15)

we see that the map t �→ ζ(y(t), t) is absolutely continuous and satisfies

d

dt
ζ(y(t), t) = ∂tζ(y(t), t)+ 〈DCζ(y(t), t), y′C(t)〉Rd+1 (8.16)

L 1-a.e. in (0, 1). ⊓⊔
Note that the first component of DCζ contains the factor r rather than r2, since
y′C in (8.12) already has one factor r in its first component. The Euclidean
norm of DCζ corresponds to the dual Riemannian norm of the differential of
ζ .

8.2 Lifting of absolutely continuous curves and geodesics

Dynamic plans and time-dependent marginals. Let (Z ,dZ ) be a complete
and separable metric space. A dynamic plan π in Z is a probability measure
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in P(C(I ; Z)), and we say that π has finite 2-energy if it is concentrated on
AC2(I ; Z) and ∫ ( ∫ 1

0
|z′|2dZ

(t) dt
)

dπ(z) <∞. (8.17)

We denote by et the evaluation map on C(I ; Z) given by et (z) := z(t). If π

is a dynamic plan, αt = (et )♯π ∈ M(Z) is its marginal at time t ∈ I and
the curve t �→ αt belongs to C(I ; (M(Z),WdZ

)). If moreover π is a dynamic
plan with finite 2-energy, then α ∈ AC2(I ; (M(Z),WdZ

)) (see [33, Thm. 4]).
We say that π is an optimal geodesic plan between α0, α1 ∈ P(Z) if

(ei )♯π = αi for i = 0, 1, if it is a dynamic plan concentrated on Geo(Z),
and if

∫
d2

Z (z(0), z(1)) dπ(z) =
∫∫ 1

0
|z′|2 dt dπ(z) =W2

dZ
(α0, α1). (8.18)

Recalling (8.4), one immediately sees that for every dynamic plan π concen-
trated on AC2([0, 1]; Z) with (ei )♯π = αi the condition

∫∫ 1

0
|z′|2 dt dπ(z) ≤W2

dZ
(α0, α1) (8.19)

is sufficient to conclude that π is an optimal geodesic plan for α0, α1 ∈ P(Z).
When Z = C we will denote by h2

t = h2 ◦ (et )♯ the homogeneous marginal
at time t ∈ I . Since h2 : P(C) → M(X) is 1-Lipschitz (cf. Corollary 7.13),
it follows that for every dynamic plan π with finite 2-energy the curve μt :=
h2αt = h2

t π belongs to AC2(I ; (M(X),HK)) and moreover

|μ′t |2HK ≤
∫
|y′|2dC

(t) dπ(y) for a.e. t ∈ (0, 1). (8.20)

A simple consequence of this property is that (M(X),HK) inherits the length
(or geodesic) property of (X,d).

Proposition 8.3 (M(X),HK) is a length (resp. geodesic) space if and only if

(X,d) is a length (resp. geodesic) space.

Proof Let us first suppose that (X,d) is a length space (the argument in the
geodesic case is completely equivalent) and let μi ∈M(X). By Corollary 7.7
we find αi ∈ P2(C) such that h2αi = μi and HK(μ1, μ2) = WdC

(α1, α2).
Since C is a length space, it is well known that P2(C) is a length space (see [47]);
recalling (8.5), for every κ > 1 there exists α ∈ Lip([0, 1]; (P2(C),WdC

))

connecting α1 to α2 such that |α′|WdC
≤ κ WdC

(α1, α2). Setting μt := h2αt

we obtain a Lipschitz curve connecting μ1 to μ2 with length≤ κ HK(μ1, μ2).
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The converse property is a consequence of the next representation Theo-
rem 8.4 and the fact that if (P2(C),Wd) is a length (resp. geodesic) space, then
C and thus X are length (resp. geodesic) spaces.

We want to prove the converse representation result that every absolutely
continuous curve μ : [0, 1] → (M(X),HK) can be written via a dynamic plan
π as μt = h2

t π . The argument only depends on the metric properties of the
Lipschitz submersion h.

Theorem 8.4 Let (μt )t∈[0,1] be a curve in ACp([0, 1]; (M(X),HK)), p ∈
[1,∞], with

" :=
√
μ0(X)+

∫ 1

0
|μ′|HK dt. (8.21)

Then there exists a curve (αt )t∈[0,1] in ACp([0, 1]; (P2(C),WdC
)) such that αt

is concentrated on C["] for every t ∈ [0, 1] and

μt = h2αt in [0, 1], |μ′t |HK = |α′t |WdC
for a.e. t ∈ (0, 1). (8.22)

Moreover, when p = 2, there exists a dynamic plan π ∈ P(AC2([0, 1];C))
such that

αt = (et )♯π , μt = h2
t π = h2αt in [0, 1],

|μ′t |2HK = |α′t |2WdC

=
∫
|y′|2dC

(t) dπ(y) for a.e. t ∈ (0, 1).
(8.23)

Proof By Lisini’s lifting Theorem [33, Theorem 5] (8.23) is a consequence of
the first part of the statement and (8.22) in the case p = 2. It is therefore suffi-
cient to prove that for a givenμ ∈ AC([0, 1]; (M(X),HK)) there exists a curve
α ∈ AC([0, 1]; (P2(C),WdC

)) such that μt = h2(αt ) and |μ′t | = |α′t | a.e. in
(0, 1). By a standard reparametrization technique (see e.g. [2, Lem. 1.1.4]), we
may assume that μ is Lipschitz continuous and |μ′t | = L .

We divide the interval I = [0, 1] into 2N -intervals of size 2−N , namely
I N
i := [t N

i−1, t N
i ] with t N

i := i 2−N for i = 1, . . . , 2N . Setting μN
i := μt N

i

we can apply the Gluing Lemma 7.11 (starting from i = 0 to 2N ) to obtain
measures αN

i ∈ P2(C) such that

h
(
αN

i

)
= μN

i , WdC

(
αN

i , αN
i+1

)
= HK

(
μN

i , μN
i+1

)
≤ L2−N , (8.24)

and concentrated on C["N ] where

"N =
√
μ0(X)+

2N∑

i=1

HK
(
μN

i−1, μ
N
i

)
≤ ".
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Thus if t is a dyadic point, we obtain a sequence of probability measures
αN (t) ∈ P2(C) concentrated on C["] with h2(αN (t)) = μt and such that
WdC

(αN (t), αN (s)) ≤ L|t − s| if s = m2−N and t = n2−N are dyadic points
in the same grid. By the compactness Lemma 7.3 and a standard diagonal
argument, we can extract a subsequence N (k) such that αN (k)(t) converges
to α(t) in (P2(C),WdC

) for every dyadic point t . Since WdC
(α(s), α(t)) ≤

L|t − s| for every dyadic s, t , we can extend α to a L-Lipschitz curve, still
denoted by α, which satisfies h2(α(t)) = μt . Since h2 is 1-Lipschitz, we
conclude that |α′|(t) = |μ′t | a.e. in (0, 1). ⊓⊔

Corollary 8.5 Let (μt )t∈[0,1] be a curve in AC2([0, 1]; (M(X),HK)) and let

" as in (8.21). Then there exists a dynamic plan π̃ in P(C̃([0, 1]; Y )) concen-

trated on ÃC
2
([0, 1]; Y ) such that αt = (et )♯π is concentrated in X ×[0,"],

that μt = h2((et )♯π), and that

|μ′t |2HK =
∫
|y′|2(t) dπ(y) for L

1-a.e. t ∈ [0, 1], (8.25)

where |y′| is defined in (8.11).

Another important consequence of the previous representation result is a
precise characterization of the geodesics in (M(X),HK).

Theorem 8.6 (Geodesics in (M(X),HK))

(i) If (μt )t∈[0,1] is a geodesic in (M(X),HK) then there exists an optimal

geodesic plan π in P(Geo(C)) (recall (8.18)) such that

(a) π -a.e. curve y is a geodesic in C,

(b) [0, 1] ∋ t �→ αt := (et )♯π is a geodesic in (P2(C),WdC
), where all αt

are concentrated on C["] with "2 = 2(μ0(X)+ HK2(μ0, μ1)),

(c) μt = h2
t π = h2αt for every t ∈ [0, 1], and

(d) (es,et )♯π ∈ OptHK(μs, μt ) if 0 ≤ s < t ≤ 1.

(ii) If (X,d) is a geodesic space, for every μ0, μ1 ∈ M(X) and every α ∈
OptHK(μ0, μ1) there exists an optimal geodesic plan π ∈ P(Geo(C)) such

that (e0,e1)♯π = α.

Proof The statement (i) is an immediate consequence of Theorem 8.4. Notice
that |μ′t |2HK = HK2(μ0, μ1) in (0, 1) since (μt )t∈[0,1] is a geodesic, so that
(8.23) yields

∫ ∫ 1

0
|y′|2dC

(t) dt dπ(y) =
∫ 1

0
|μ′t |2HK dt = HK2(μ0, μ1) ≤W2

dC
(α0, α1),

so that π satisfies (8.19) in C and we deduce that it is an optimal geodesic plan.
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Statement (ii) is a well known property [33, Thm. 6] of the Kantorovich–
Wasserstein space (C,WdC

) in the case when C is geodesic. ⊓⊔

Theorem 8.4 also clarifies the relation between HK and GHK introduced in
Sect. 7.8.

Corollary 8.7 If (X,d) is separable and complete then AC2([0, 1];
(M(X),GHK)) coincides with AC2([0, 1]; (M(X),HK)) and for every curve

μ ∈ AC2([0, 1]; (M(X),GHK)) we have

|μ′|GHK(t) = |μ′|HK(t) for L
1-a.e. t ∈ [0, 1]. (8.26)

In particular if (X,d) is a length metric space then HK is the length distance

generated by GHK.

Proof Since GHK ≤ HK it is clear that AC2([0, 1]; (M(X),HK)) ⊂ AC2([0, 1];
(M(X),GHK)).

In order to prove the opposite inclusion and (8.26) it is sufficient to notice
that the classes of absolutely continuous curves in C w.r.t. dC and gC coin-
cide with equal metric derivatives |y′|dC

= |y′|gC
. Since GHK = HKg is the

Hellinger–Kantorovich distance induced by g, the assertion follows by (8.23)
of Theorem 8.4. ⊓⊔

8.3 Lower curvature bound in the sense of Alexandrov

Let us first recall two possible definitions of Positively Curved (PC) spaces
in the sense of Alexandrov, referring to [10] and to [11] for other equivalent
definitions and for the more general case of spaces with curvature ≥ k, k ∈
R. In the case of a smooth Riemannian manifold (M,g) equipped with the
Riemannian distance dg all the local definitions are equivalent to assume that
the sectional curvature of M is nonnegative (or bounded by kg, in the case of
curvature ≥ k).

According to Sturm [46], a metric space (Z ,dZ ) is a Positively Curved (PC)
metric space in the large if for every choice of points z0, z1, . . . , zN ∈ Z and
coefficients λ1, . . . , λN ∈ (0,∞) we have

N∑

i, j=1

λiλ j d
2
Z (zi , z j ) ≤ 2

N∑

i, j=1

λiλ j d
2
Z (z0, z j ). (8.27)

If every point of Z has a neighborhood that is PC, then we say that Z is locally
positively curved.

When the space Z is geodesic, the above (local and global) definitions
coincide with the corresponding one given by Alexandrov, which is based on
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triangle comparison: for every choice of z0, z1, z2 ∈ Z , every t ∈ [0, 1], and
every point zt such that dZ (zt , zk) = |k−t |dZ (z0, z1) for k = 0, 1 we have

d2
Z (z2, zt ) ≥ (1− t)d2

Z (z2, z0)+ t d2
Z (z2, z1)−2t (1− t)d2

Z (z0, z1). (8.28)

When Z is also complete, the local and the global definitions are equivalent [46,
Corollary 1.5]. Next we provide conditions on (X,d) or (C,dC) that guarantee
that (M(X),HK) is a PC space.

Theorem 8.8 Let (X,d) be a metric space.

(i) If X ⊂ R is convex (i.e. an interval) endowed with the standard distance,

then (M(X),HK) is a PC space.

(ii) If (C,dC) is a PC space in the large, cf. (8.27), then (M(X),HK(X)) is a

PC space.

(iii) If (X,d) is separable, complete and geodesic, then (M(X),HK) is a PC

space if and only if (X,d) has locally curvature ≥ 1.

Before we go into the proof of this result, we highlight that for a compact
convex subset # ⊂ R

d with d ≥ 2 equipped with the Euclidean distance, the
space (M(#),HK) is not PC, see [30, Sect. 5.6] for an explicit construction
showing the semiconcavity of the squared distance fails.

Proof Let us first prove statement (ii). If (C,dC) is a PC space then also
(P2(C),WdC

) is a PC space [47]. Applying Corollary 7.13, for every choice of
μi ∈M(X), i = 0, . . . , N , we can then find measures βi ∈ P2(C) such that

WdC
(β0, βi ) = HK(μ0, μi ) for i = 1, . . . , N , (8.29)

where it is crucial that β0 is the same for every i . It then follows that

N∑

i, j=1

λiλ j HK2(μi , μ j ) ≤
N∑

i, j=1

λiλ j W
2
dC
(βi , β j ) ≤ 2

N∑

i, j=1

λiλ j W
2
dC
(β0, βi )

= 2
N∑

i, j=1

λiλ j HK2(μ0, μi ).

Let us now consider (iii) “⇒”: If (M(X),HK) is PC, we have to prove that
(X,d) has locally curvature ≥ 1. By Theorem [10, Thm. 4.7.1] it is sufficient
to prove that C \ {o} is locally PC to conclude that (X,d) has locally curvature
≥ 1. We thus select points yi = [xi , ri ], i = 0, 1, 2, in a sufficiently small
neighborhood of y = [x, r ] with r > 0, so that d(xi , x j ) < π/2 for every
i, j and ri , r j > 0. We also consider a geodesic yt = [xt , st ], t ∈ [0, 1],
connecting y0 to y1, thus satisfying dC(yt , yi ) = |i − t |d(y0, y1) for i = 0, 1.
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Setting μi := riδxi
, μt := stδxt , it is easy to check (cf. [30, Sect. 3.3.1])

that
HK(μi , μ j ) = dC(yi , y j ) for i, j ∈ {0, 1, 2},
HK(μt , μk) = |k−t |HK(μ0, μ1) for k ∈ {0, 1}. (8.30)

We can thus apply (8.28) to μ0, μ1, μ2, μt and obtain the corresponding
inequality for y0, y1, y2, yt .

(iii) “⇐”: In order to prove the converse property we apply Remark 7.12.
For μ0, μ1, μ2, and μ3 = μt ∈ M(X) with t ∈ [0, 1] and HK(μ3, μk) =
|k− t |HK(μ0, μ1), we find a plan α ∈ P(X0× X1× X2× X3) (with the usual
convention to use copies of X ) such that

h2
i α = μi ,

∫
d2

C(yi , y j ) dα = HK2(μi , μ j ) (8.31)

for (i, j) ∈ A = {(0, 3), (1, 3), (2, 3)}. The triangle inequality, the elemen-
tary inequality t (1− t)(a + b)2 ≤ (1− t)a2 + tb2, and the very definition of
HK yield for t ∈ (0, 1) the estimate

t (1−t)HK2(μ0, μ1) ≤ t (1− t)

∫
d2

C(y0, y1) dα

≤
∫

t (1− t)
(
(dC(y0, y3)+ dC(y3, y1)

)2
dα

≤
∫

(1−t)d2
C(y0, y3)+ td2

C(y3, y1) dα

= (1−t)HK2(μ0, μ3)+ tHK2(μ3, μ1) = t (1− t)HK2(μ0, μ1).

This series of inequalities shows in particular that

(1− t)d2
C(y0, y3)+ td2

C(y3, y1) = t (1− t)
(
dC(y0, y3)+ dC(y3, y1)

)2

= t (1− t)d2
C(y0, y1) α-a.e.

so that

dC(y0, y3) = tdC(y0, y1) and dC(y3, y1) = (1− t)dC(y0, y1) α-a.e.

Moreover, πy0,y1
♯ α ∈ OptHK(μ0, μ1), so that (8.31) holds for (i, j) ∈ A′ =

A ∪ {(0, 1)}.
By Theorem 7.20 we deduce that

d(xi , x j ) ≤ π/2 α-a.e. for (i, j) ∈ A′.
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If one of the points yi , i = 0, 1, 2, is the vertex o, then it is not difficult to
check by a direct computation that

d2
C(y2, y3) ≥ (1−t)d2

C(y2, y0)+ td2
C(y2, y1)− 2t (1−t)d2

C(y0, y1). (8.32)

When yi ∈ C \ {o} for every i = 0, 1, 2, we use d(x0, x1) + d(x1, x2) +
d(x2, x0) ≤ 3

2π < 2π , and Theorem [10, Thm. 4.7.1] yields (8.32) because of
the assumption that X is PC. Integrating (8.32) w.r.t. α, by taking into account
(8.31), the fact that (π0, π1)♯α ∈ OptHK(μ0, μ1), and that

∫
d2

C(y2, yi ) dα ≥ HK2(μ2, μi ) for i = 0, 1,

we obtain

HK2(μ2, μ3) ≥ (1−t)HK2(μ2, μ0)+ tHK2(μ2, μ1)− 2t (1−t)HK2(μ0, μ1).

Finally, statement (i) is just a particular case of (iii). ⊓⊔
As simple applications of the Theorem above we obtain that M(R) and

M(Sd−1) endowed with HK are Positively Curved spaces.

8.4 Duality and Hamilton–Jacobi equation

In this section we will show the intimate connections of the duality formula of
Theorem 7.21 with Lipschitz subsolutions of the Hamilton–Jacobi equation in
X × (0, 1) given by

∂tξt +
1

2
|DXξt |2 + 2ξ2

t = 0 (8.33)

and its counterpart in the cone space

∂tζt +
1

2
|DCζt |2 = 0. (8.34)

Indeed, the first derivation of HK via LET was obtained by solving (8.33) for
X = R

d , see the remarks on the chronological development in Section A.
At a formal level, it is not difficult to check that solutions to (8.33) corre-

sponds to the special class of solutions to (8.34) of the form

ζt ([x, r ]) := ξt (x)r
2. (8.35)

Indeed, still on the formal level we have the formula

|DCζ |2 =
1

r2
|DXζ |2 + |∂rζ |2 = |DXξ |2r2 + 4ξ2r2 if ζ = ξ r2. (8.36)
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Since the Kantorovich–Wasserstein distance on P2(C) can be defined in dual-
ity with subsolutions to (8.34) via the Hopf–Lax formula (see e.g. [3,50])
and 2-homogeneous marginals are modeled on test functions as in (8.35), we
can expect to obtain a dual representation for the Hellinger–Kantorovich dis-
tance on M(X) by studying the Hopf–Lax formula for initial data of the form
ζ0(x, r) = ξ0(x)r

2.

Slope and asymptotic Lipschitz constant. In order to give a metric interpre-
tation to (8.33) and (8.34), let us first recall that for a locally Lipschitz function
f : Z → R defined in a metric space (Z ,dZ ) the metric slope |DZ f | and the
asymptotic Lipschitz constant |DZ f |a are defined by [2,3,12]

|DZ f |(z) := lim sup
x→z

| f (x)− f (z)|
dZ (x, z)

,

|DZ f |a(z) := lim
r↓0

sup
x,y∈Br (z)

y �=x

| f (y)− f (x)|
dZ (x, y)

(8.37)

with the convention that |DZ f |(z) = |DZ f |a(z) = 0 whenever z is an isolated
point. It is not difficult to check that |DZ f |a can also be defined as the minimal
constant L ≥ 0 such that there exists a function GL : Z × Z → [0,∞)

satisfying

| f (x)− f (y)| ≤ GL(x, y)dZ (x, y), lim sup
x,y→z

GL(x, y) ≤ L . (8.38)

Note that |DZ f |a is always an upper semicontinuous function clearly satisfying
|DZ f |a ≥ |DZ f |. When Z is a length space, (8.5) and the chain rule along
Lipschitz curves easily yield

| f (x)− f (y)| ≤ dZ (x, y) sup
Br (z)

|DZ f | for every x, y ∈ B2r (z),

so that |DZ f |a is the upper semicontinuous envelope of the metric slope |DZ f |.
We will often write |D f |, |D f |a whenever the space Z will be clear from the
context.

Remark 8.9 The notion of locally Lipschitz function and the value |DZ f |a
does not change if we replace the distance dZ with a distance d̃Z of the form
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d̃Z (z1, z2) := h(dZ (z1, z2)) for z1, z2 ∈ Z ,

with h : [0,∞)→ [0,∞) concave and lim
r↓0

h(r)

r
= 1.

(8.39)

In particular, the truncated distances dZ ∧ κ with κ > 0, the distances
a sin((dZ ∧ κ)/a) with a > 0 and κ ∈ (0, aπ/2], and the distance g = g(d)
given by (7.74) yield the same asymptotic Lipschitz constant.

In the case of the cone space C it is not difficult to see that the distance dC

and dπ/2,C coincide in suitably small neighborhoods of every point y ∈ C\{o},
so that they induce the same asymptotic Lipschitz constants in C \ {o}. The
same property holds for gC. In the case of the vertex o, relation (7.12) yields

|DC f |a(o) ≤ |D(C,dπ/2,C) f |a(o) ≤
√

2 |DC f |a(o). (8.40)

⊓⊔
The next result shows that the asymptotic Lipschitz constant satisfies for-

mula (8.36) for ζ([x, r ]) = ξ(x)r2.

Lemma 8.10 For ξ : X → R let ζ : C → R be defined by ζ([x, r ]) :=
ξ(x)r2.

(i) If ζ is dC-Lipschitz in C[R], then ξ ∈ Lipb(X) with

sup
X

|ξ | ≤ 1

R2
sup
C[R]
|ζ | ≤ 1

R
Lip(ζ,C[R]) and

Lip(ξ, X) ≤ 1

R
Lip(ζ,C[R]). (8.41)

(ii) If ξ ∈ Lipb(X), then ζ is dC-Lipschitz in C[R] for every R > 0 with

sup
C[R]
|ζ | ≤ R2 sup

X

|ξ | and

Lip2(ζ,C[R]) ≤ R2
(

Lip2(ξ, (X, d̃))+ 4 sup
X

|ξ |2
)
, (8.42)

where d̃ := 2 sin(dπ/2).
(iii) In the cases (i) or (ii) we have, for every x ∈ X and r ≥ 0, the relation

|DCζ |2a([x, r ]) =
{(
|DXξ |2a(x)+ 4ξ2(x)

)
r2 for r > 0,

0 for r = 0.
(8.43)

The analogous formula holds for the metric slope |DCζ |([x, r ]). More-

over, equation (8.43) remains true if dC is replaced by the distance dπ/2,C.
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Proof As usual we set yi = [xi , ri ] and y = [x, r ].
Let us first check statement (i). If ζ is locally Lipschitz then |ξ(x)| =

1
R2 |ζ([x, R])− ζ([x, 0])| ≤ 1

R
Lip(ζ ;C[R]) for every R sufficiently small, so

that ξ is uniformly bounded. Moreover, using (7.4) for every R > 0 we have

R2|ξ(x1)− ξ(x2)| ≤ |ζ(x1, R)− ζ(x2, R)| ≤ Lip(ζ ;C[R])Rd̃(x1, x2)

≤ Lip(ζ ;C[R])Rd(x1, x2),

so that ξ is uniformly Lipschitz and (8.41) holds.
Concerning (ii), for ξ ∈ Lipb(X) we set S := sup |ξ | and L :=

Lip(ξ, (X, d̃)) and use the identity

ζ(y1)− ζ(y2) = (ξ(x1)− ξ(x2))r1r2 + 2ξ(x)r(r1 − r2)

+ ω(y1, y2; y)(r1 − r2), (8.44)

where ω(y1, y2; y) := r1ξ(x1) + r2ξ(x2) − 2rξ(x) with limy1,y2→y ω(y1,

y2; y) = 0. Since |ω(y1, y2; 0)| ≤ 2RS if yi ∈ C[R], equation (8.44) with
r = 0 yields

|ζ(y1)− ζ(y2)| ≤ Ld̃(x1, x2)r1r2 + 2RS|r1 − r2|
≤
(
L2 + 4S2)1/2

R dC(y1, y2).

Letting R ↓ 0 the inequality above also proves (8.43) in the case r = 0.
In order to prove (8.43) when r �= 0 let us set LC := |DCζ |2a([x, r ]),

L X := |DXξ |a(x), and let GL be a function satisfying (8.38) with respect to
the distance d̃ (see Remark 8.9). Equation (8.44) yields, for all y = [x, r ], the
relation

|ζ(y1)−ζ(y2)| ≤ GL(x1, x2)d̃(x1, x2)r1r2+
(
2|ξ(x)|r+|ω(y1, y2; y)|

)
|r1−r2|

≤
(

G2
L(x1, x2)r1r2 +

(
2|ξ(x)|r + |ω(y1, y2; y)|

)2)1/2
dC(y1, y2).

Passing to the limit y1, y2 → y and using the fact that x1, x2 → x due to

r �= 0, we obtain LC ≤ r
(

L2
X + 4|ξ(x)|2

)1/2
.

In order to prove the converse inequality we observe that for every L ′ < L X

there exist two sequences of points (xi,n)n∈N converging to x w.r.t. d such that
ξ(x1,n) − ξ(x2,n) ≥ L ′δn where 0 < δn := d̃(x1,n, x2,n) → 0. Choosing
r1,n := r and r2,n = r(1+ λδn) for an arbitrary constant λ ∈ R with the same
sign as ξ(x), we can apply (8.44) and arrive at
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LC ≥ lim inf
n→∞

|ζ(y1,n)−ζ(y2,n)|
dC(y1,n, y2,n)

≥ lim inf
n→∞

L ′δnr2+2|ξ(x)|r2|λ|δn + o(δn)√
λ2r2δ2

n + r2δ2
n + o(δn)

= r
L ′+2|ξ(x)| |λ|√

λ2 + 1
.

Optimizing with respect to λ we obtain

L2
C ≥ r2((L ′)2 + 4|ξ(x)|2

)
, where L ′ ≤ L X is arbitrary.

This proves (8.43) for the asymptotic Lipschitz constant |DCζ |a . The argu-
ments for proving (8.43) for metric slopes |DCζ | are completely analogous.

⊓⊔

Hopf–Lax formula and subsolutions to metric Hamilton–Jacobi equation

in the cone C. Whenever f ∈ Lipb(C) the Hopf–Lax formula

Qt f (y) := inf
y′∈C

(
f (y′)+ 1

2t
d2

C(y, y
′)
)

for y ∈ C and t > 0, (8.45)

provides a function t �→ Qt f which is Lipschitz from [0,∞) to Cb(C),
satisfies the a-priori bounds

inf
C

f ≤ Qt f ≤ sup
C

f, Lip(Qt f ;C) ≤ 2 Lip( f,C), (8.46)

and solves

∂+t Qt f (z)+ 1

2
|DCQt f |2a(z) ≤ 0 for every z ∈ C, t > 0, (8.47)

where ∂+t denotes the partial right derivative w.r.t. t .
It is also possible to prove that for every y ∈ C the time derivative of Qt f (y)

exists with possibly countable exceptions and that (8.47) is in fact an equality
if (C,dC) is a length space, a property that always holds if (X,d) is a length
metric space. This is stated in our main result:

Theorem 8.11 (Metric subsolution of Hamilton–Jacobi equation in X ) Let

ξ ∈ Lipb(X) satisfy the uniform lower bound P := 1 + 2 inf X (ξ ∧ 0) > 0
and let us set ζ([x, r ]) := ξ(x)r2. Then, for every t ∈ [0, 1] we have

Qtζ([x, r ]) = ξt (x)r
2, where ξt (x) :=Ptξ(x) and

Ptξ(x) := inf
x ′∈X

( ξ(x ′)

1+2tξ(x ′)
+ sin2(dπ/2(x, x ′))

2t (1+2tξ(x ′))

)

= inf
x ′∈X

1

2t

(
1− cos2(dπ/2(x, x ′))

1+ 2tξ(x ′)

)
. (8.48)
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Moreover, for every R > 0 we have

ξt (x)r
2 = inf

y′=[x ′,r ′]∈C[R]

(
ξ(x ′)(r ′)2 + 1

2t
d2

C([x, r ]; [x ′, r ′])
)

for all x ∈ X, r ≤ P R. (8.49)

The map t �→ ξt is Lipschitz from [0, 1] to Cb(X) with ξt ∈ Lipb(X) for every

t ∈ [0, 1]. Moreover, ξt is a subsolution to the generalized Hamilton–Jacobi

equation

∂+t ξt (x)+
1

2
|DXξt |2a(x)+ 2ξ2

t (x) ≤ 0 for x ∈ X and t ∈ [0, 1]. (8.50a)

For every x ∈ X the map t �→ ξt (x) is time differentiable with at most

countable exceptions. If (X,d) is a length space, (8.50a) holds with equality

and |DXξt |a(x) = |DXξt |(x) for every x ∈ X and t ∈ [0, 1]:

∂+t ξt (x)+
1

2
|DXξt |2a(x)+ 2ξ2

t (x) = 0, |DXξt |a(x) = |DXξt |(x). (8.50b)

Notice that when ξ(x) ≡ ξ is constant, (8.48) reduces to Ptξ = ξ/(1+2tξ)

which is the solution to the elementary differential equation d
dt
ξ + 2ξ2 = 0.

Proof Let us observe that inf t∈[0,1],z∈X (1 + 2tξ(z)) = P > 0. A simple
calculation shows

ξ(x ′)(r ′)2 + 1

2t
d2

C([x, r ]; [x ′, r ′])

= 1

2t

(
(1+2tξ(x ′))(r ′)2 + r2 − 2r r ′ cos(dπ (x, x ′))

)

= 1

2t (1+2tξ(x ′))

[(
(1+2tξ(x ′))r ′ − cos(dπ (x, x ′))r

)2

+ r2
(

2tξ(x ′)+ sin2(dπ (x, x ′))
)]

.

Hence, if we choose

r ′ :=
{

r cos(dπ (x, x ′))/(1+2tξ(x ′)) if d(x, x ′) ≤ π/2

0 otherwise,
(8.51)

we find (notice the truncation at π/2 instead of π )

inf
r ′≥0

ξ(x ′)(r ′)2 + 1

2t
d2

C([x, r ]; [x ′, r ′])

= r2

2t (1+2tξ(x ′))

(
2tξ(x ′)+ sin2(dπ/2(x, x ′))

)
, (8.52)
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which yields (8.48). Now (8.49) also follows, since r ′ ≤ r/P in (8.51).
Equation (8.49) also shows that the function ζt = ξt (x)r

2 coincides on
C[P R] with the solution ζ R

t given by the Hopf–Lax formula in the metric
space C[R]. Since the initial datum ζ is bounded and Lipschitz on C[R] we
deduce that ζ R

t is bounded and Lipschitz, so that t �→ ξt is bounded and
Lipschitz in X by Lemma 8.10.

Equation (8.50a) and the other regularity properties then follow by (8.43)
and the general properties of the Hopf–Lax formula in C[R]. ⊓⊔

Duality between the Hellinger–Kantorovich distance and subsolutions to

the generalized Hamilton–Jacobi equation. We conclude this section with
the main application of the above results to the Hellinger–Kantorovich dis-
tance.

Theorem 8.12 Let us suppose that (X,d) is a complete and separable metric

space.

(i) If μ ∈ AC2([0, 1]; (M(X),HK)) and ξ : [0, 1] → Lipb(X) is uniformly

bounded, Lipschitz w.r.t. the uniform norm, and satisfies (8.50a), then the

curve t �→
∫
ξt dμt is absolutely continuous and

d

dt

∫

X

ξt dμt ≤
1

2
|μ′t |2HK (8.53)

(ii) If (X,d) is a length space, then for every μ0, μ1 and k ∈ N ∪ {∞} we

have

1

2
HK2(μ0, μ1) = sup

{ ∫

X

ξ1 dμ1 −
∫

X

ξ0 dμ0 : ξ ∈ Ck([0, 1];Lipb(X)),

∂tξt (x)+
1

2
|DXξt |2(x)+ 2ξ2

t (x) ≤ 0 in X × (0, 1)
}
.

(8.54)
Moreover, in the above formula we can also take the supremum over

functions ξ ∈ Ck([0, 1];Lipb(X)) with bounded support.

Proof If ξ satisfies (8.50a) then setting ζt ([x, r ]) := ξt (x)r
2 we obtain a

family of functions t �→ ζt , t ∈ [0, 1], whose restriction to every C[R] is
uniformly bounded and Lipschitz, and it is Lipschitz continuous with respect
to the uniform norm of Cb(C[R]). By Lemma 8.10 the function ζ solves

∂+t ζt +
1

2
|DCζt |2a ≤ 0 in C× (0, 1).
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According to Theorem 8.4 we find θ > 0 and a curveα∈AC2([0, 1]; (P2(C[θ ]),
WdC

)) satisfying (8.22). Applying the results of [6, Sect. 6], the map t �→∫
C ζt dαt is absolutely continuous with

d

dt

∫

C

ζt dαt ≤
1

2
|α′t |2WdC

L
1-a.e. in (0, 1).

Since
∫
C ζt dαt =

∫
X
ξt dμt we obtain (8.53).

Let us now prove (ii). As a first step, denoting by S the right-hand side of
(8.54), we prove that HK2(μ0, μ1) ≥ S. If ξ ∈ C1([0, 1];Lipb(X)) satisfies
the pointwise inequality

∂tξt (x)+
1

2
|DXξt |2(x)+ 2ξ2

t (x) ≤ 0, (8.55)

then it also satisfies (8.50a), because (8.55) provides the relation

1

2
|DXξt |2(x) ≤ −

(
∂tξt (x)+2ξ2

t (x)
)

for every (x, t) ∈ X× (0, 1), (8.56)

where the right hand side is bounded and continuous in X . Equation (8.56) thus
yields the same inequality for the upper semicontinuous envelope of |DXξt |
and this function coincides with |DXξt |a since X is a length space.

We can therefore apply the previous point (i) by choosing λ > 1 and a
Lipschitz curve μ : [0, 1] → M(X) joining μ0 to μ1 with metric velocity
|μ′t |HK ≤ λHK(μ0, μ1), whose existence is guaranteed by the length property
of X and a standard rescaling technique. Relation (8.53) yields

2
∫

X

ξ1 dμ1 − 2
∫

X

ξ0 dμ0 ≤
∫ 1

0
|μ′t |2HK dt ≤ λ2HK2(μ0, μ1).

Since λ > 1 is arbitrary, we get HK2(μ0, μ1) ≥ S.
In order to prove the converse inequality in (8.54) we fix η > 0 and apply the

duality Theorem 7.21 to get ξ0 ∈ Lipbs(X) (the space of Lipschitz functions
with bounded support) with inf ξ0 > −1/2 such that

2
∫

X

P1ξ0 dμ1 − 2
∫

X

ξ0 dμ0 ≥ HK2(μ0, μ1)− η. (8.57)

Setting ξt :=Ptξ0 we find a solution to (8.50a) which has bounded support, is
uniformly bounded in Lipb(X) and Lipschitz with respect to the uniform norm.
We have to show that (ξt )t∈[0,1] can be suitably approximated by smoother
solutions ξ ε ∈ C∞([0, 1];Lipb(X)), ε > 0, in such a way that

∫
ξ εi dμi →∫

ξi dμi as ε ↓ 0 for i = 0, 1.
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We use an argument of [1], which relies on the scaling invariance of the
generalized Hamilton–Jacobi equation: If ξ solves (8.55) and λ > 0, then
ξλt (x) := λξλt+t0(x) solves (8.55) as well. Hence, by approximating ξt with
λξ(λt+(1−λ)/2, x) with 0 < λ < 1 and passing to the limit λ ↑ 1, it
is not restrictive to assume that ξ is defined in a larger interval [a, b], with
a < 0, b > 1. Now, a time convolution is well defined on [0, 1], for which we
use a symmetric, nonnegative kernel κ ∈ C∞c (R) with integral 1 defined via

ξ εt (x) := (ξ(·)(x) ∗ κε)t =
∫

R

ξw(x)κε(t−w) dw, (8.58)

where κε(t) := ε−1κ(t/ε). It yields a curve ξ ε ∈ C∞([0, 1];Lipb(X)) satis-
fying

∂tξ
ε
t +

1

2

(
|DXξ(·)|2

)
∗ κε + 2

(
ξ2
(·)
)
∗ κε ≤ 0 in X × [0, 1].

By Jensen’s inequality, we have the two estimates ξ2
(·) ∗ κε ≥ (ξ(·) ∗ κε)2 and

|DXξ(·)|2∗κε ≥ (|DXξ(·)|∗κε)2. Moreover, applying the following Lemma 8.13
we also get |DXξ(·)|∗κε ≥ |DXξ

ε
(·)|, so that the smooth convolution ξ εt satisfies

(8.55). Since ξ εt → ξt uniformly in X for every t ∈ [0, 1], we easily get

S ≥ lim
ε↓0

2
( ∫

X

ξ ε1 dμ1 −
∫

X

ξ ε0 dμ0

)
≥ HK2(μ0, μ1)− η.

Since η > 0 is arbitrary the proof of (ii) is complete. ⊓⊔
The next result shows that averaging w.r.t. a probability measure π ∈ P(#)

does not increase the metric slope nor the asymptotic Lipschitz constant. This
was used in the last proof for the temporal smoothing and will be used for
spatial smoothing in Corollary 8.14.

Lemma 8.13 Let (X,d) be a separable metric space, let (#,B, π) be a

probability space (i.e. π(#) = 1) and let ξω ∈ Lipb(X), ω ∈ #, be a

family of uniformly bounded functions such that supω∈# Lip(ξω; X) < ∞
and ω �→ ξω(x) is B-measurable for every x ∈ X. Then the function

x �→ ξ(x) :=
∫
#
ξω(x) dπ(ω) belongs to Lipb(X) and for every x ∈ X the

maps ω �→ |DXξω|(x) and ω �→ |DXξω|a(x) are B-measurable and satisfy

|DXξ |a(x) ≤
∫

X

|DXξω|a(x) dπ(ω), |DXξ |(x) ≤
∫

X

|DXξω|(x) dπ(ω).

(8.59)

Proof The fact that ξ ∈ Lipb(X) is obvious. To show measurability we fix
x ∈ X and use the expression (8.37) for |DXξ |a(x). It is sufficient to prove that
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for every r > 0 the mapω �→ sr,ω(x) := supy �=z∈Br (x)
|ξω(y)−ξω(z)|/d(y, z)

is B-measurable. This property follows by the continuity of ξω and the sep-
arability of X , so that it is possible to restrict the supremum to a countable
dense collection of points B̃r (x) in Br (x). Thus, the measurability follows,
because the pointwise supremum of countably many measurable functions is
measurable. An analogous argument holds for |DXξω|.

Using the definition ξ :=
∫
ξωdπ we have

|ξ(y)− ξ(z)|
d(y, z)

≤
∫

#

|ξω(y)− ξω(z)|
d(y, z)

dπ(ω) for y �= z.

Taking the supremum with respect to y, z ∈ B̃r (x) and y �= z, we obtain

sup
y �=z∈Br (x)

|ξ(y)− ξ(z)|
d(y, z)

≤
∫

#

sr,ω(x) dπ(ω).

A further limit as r ↓ 0 and the application of the Lebesgue Dominated
convergence Theorem yields the first inequality of (8.59). The argument to
prove the second inequality is completely analogous. ⊓⊔

When X = R
d the characterization (8.54) of HK holds for an even smoother

class of subsolutions ξ of the generalized Hamilton–Jacobi equation.

Corollary 8.14 Let X = R
d be endowed with the Euclidean distance. Then

HK2(μ0, μ1) = 2 sup
{ ∫

X

ξ1 dμ1 −
∫

X

ξ0 dμ0 : ξ ∈ C∞c (Rd × [0, 1]),

∂tξt (x)+
1

2

∣∣Dxξt (x)
∣∣2 + 2ξ2

t (x) ≤ 0 in X × (0, 1)
}
.

(8.60)

Proof We just have to check that the supremum of (8.54) does not change if we
substitute C∞([0, 1];Lipbs(R

d)) with C∞c (Rd ×[0, 1]). This can be achieved
by approximating any subsolution ξ ∈ C∞([0, 1];Lipbs(R

d)) via convolution
in space with a smooth kernel with compact support, which still provides a
subsolution thanks to Lemma 8.13. ⊓⊔

8.5 The dynamic interpretation of the Hellinger–Kantorovich distance

“à la Benamou-Brenier”

In this section we will apply the superposition principle of Theorem 8.4 and
the duality result 8.12 with subsolutions of the Hamilton-Jacobi equation to
quickly derive a dynamic formulation “à la Benamou-Brenier” [7,37], [2,
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Sect. 8] of the Hellinger–Kantorovich distance, which has also been considered
in the recent [27]. In order to keep the exposition simpler, we will consider the
case X = R

d with the canonical Euclidean distance d(x1, x2) := |x1−x2|, but
the result can be extended to more general Riemannian and metric settings, e.g.
arguing as in [6, Sect. 6]. A different approach, based on suitable representation
formulae for the continuity equation, is discussed in our companion paper [30].

Our starting point is provided by a suitable class of linear continuity equa-
tions with reaction. In the following we will denote by μI ∈M(Rd × [0, 1])
the measure ∫

ξ dμI :=
∫ 1

0

∫

Rd

ξt (x) dμt (x) dt (8.61)

induced by a curve μ ∈ C0([0, 1];M(Rd)).

Definition 8.15 Letμ ∈ C0([0, 1];M(Rd)), let (v, w) : Rd×(0, 1)→ R
d+1

be a Borel vector field in L2(Rd × (0, 1), μI ;Rd+1), thus satisfying

∫ 1

0

∫

Rd

(
|vt (x)|2 + w2

t (x)
)

dμt (x) dt =
∫
|(v, w)|2 dμI <∞. (8.62)

We say thatμ satisfies the continuity equation with reaction governed by (v, w)

if
∂tμt +∇ · (vtμt ) = wtμt holds in D

′(Rd × (0, 1)), (8.63)

i.e. for every test function ξ ∈ C∞c (Rd × (0, 1))

∫ 1

0

∫

Rd

(
∂tξt (x)+ Dxξt (x)vt (x)+ ξt (x)wt (x)

)
dμt dt = 0. (8.64)

An equivalent formulation [2, Sect. 8.1] of (8.63) is

d

dt

∫

Rd

ξ(x) dμt (x) =
∫

Rd

(
Dxξ(x)vt (x)+ ξ(x)wt (x)

)
dμt in D

′(0, 1),

(8.65)
for every ξ ∈ C∞c (Rd). We have a first representation result for absolutely
continuous curves t �→ μt , which relies in Theorem 8.4, where we constructed
suitable lifted plans π ∈ P(AC2([0, 1];C)), i.e. μt = h2

t π , where C is now
the cone over R

d .

Theorem 8.16 Let (μt )t∈[0,1] be a curve in AC2([0, 1]; (M(Rd),HK)). Then

μ satisfies the continuity equation with reaction (8.63) with a Borel vector

field (v, w) ∈ L2(Rd × (0, 1), μI ;Rd+1) satisfying

(vt , wt ) ∈ L2(Rd;μt ),

∫ (
|vt |2 +

1

4
|wt |2

)
dμt ≤ |μ′t |2 (8.66)

for L 1-a.e. t ∈ (0, 1).
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Proof We will denote by I the interval [0, 1] endowed with the Lebesgue
measure λ = L 1 [0, 1]. Recalling the map (x, r) : C → R

d × [0,∞) we
define the maps xI : C(I ;C)× I → R

d × I and R : C(I ;C)× I → R+ via
xI (z, t) := (x(z(t)), t) and R(z, t) := r(z(t)).

Let π be a dynamic plan in C representingμt as in Theorem 8.4. We consider
the deformed dynamic plan π I := (R2π) ⊗ λ, the measure μ̂I := (xI )♯π I

and the disintegration (π̃ x,t )(x,t)∈Rd×I of π I with respect to μ̂I . Since π is
in fact a dynamic plan on C["], where " is given by (8.21), we notice that
π I ≤ "2(π ⊗ λ) so that π I has finite mass and

μ̂I =
∫ 1

0
(μt ⊗ δt ) dλ(t), (8.67)

coincides with μI in (8.61), because for every ξ ∈ Bb(R
d × I ) we have

∫
ξ dμ̂I =

∫
ξ(x(z(t)), t)r2(z(t)) d(π ⊗ λ)(z, t)

=
∫ 1

0

∫

Rd

ξt (x) dμt (x) dt =
∫

ξ dμI .

Let u ∈ L2(AC2(I ;C)× I ;π ⊗ λ;Rd+1) be the Borel vector field u(y, t) :=
y′C(t) for every curve y ∈ AC2(I ;C) and t ∈ I , where y′C is defined as in
(8.14). By taking the density of the vector measure (xI )♯(uπ I ) with respect
to μI we obtain a Borel vector field uI = (v, ŵ) ∈ L2(Rd × I ;μI ;Rd+1)

which satisfies

uI (x, t) =
∫

u dπ x,t for μI -a.e. (x, t) ∈ R
d × I and

∫ (
|vt |2+ŵ2

t

)
dμt ≤ |μ′t |2. (8.68)

Choosing a test function ζ([x, r ], t) := ξ(x)η(t)r2 with ξ ∈ C∞c (Rd) and
η ∈ C∞c (I ) we can exploit the chain rule (8.16) in R

d and find

−
∫ 1

0
η′
∫

Rd

ξ dμt dt = −
∫

Rd×I

η′(t)ξ(x) dμI

= −
∫

ξ(x(y(t)) r2(y(t))η′(t) d(π ⊗ λ)

= −
∫

∂tζ(y(t), t) d(π ⊗ λ)

=
∫ (
− d

dt
ζ(y(t), t)+ 〈DCζ(y(t), t), y′C(t)〉

)
d(π ⊗ λ)
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=
∫ ( ∫ 1

0
− d

dt
ζ(y(t), t) dt

)
dπ +

∫
〈(Dxξ(xI ), 2ξ(xI )), u〉R2 d(π ⊗ λ)

=
∫

η(t)〈(Dxξ(x), 2ξ(x)), uI 〉 dμI

=
∫ 1

0
η(t)

∫

Rd

(
〈Dxξ(x), vt (x)〉 + 2ξ(x)ŵt (x)

)
dμt dt.

Setting wt = 2ŵt the continuity equation with reaction (8.65) holds. ⊓⊔

The next result provides the opposite inequality, which will be deduced from
the duality between the solutions of the generalized Hamilton–Jacobi equation
and HK developed in Theorem 8.12.

Theorem 8.17 Let (μt )t∈[0,1] be a continuous curve in M(Rd) that solves

the continuity equation with reaction (8.63) governed by the Borel vector

field (v, w) ∈ L2(Rd × [0, 1], μI ;Rd+1) with μI given by (8.61). Then μ ∈
AC2([0, 1]; (M(Rd),HK)) and

|μ′t |2 ≤
∫

Rd

(
|vt |2 +

1

4
|wt |2

)
dμt for L

1-a.e. t ∈ (0, 1). (8.69)

Proof The simple scaling ξ(t, x) → (b−a)ξ(a+(b−a)t, x) transforms any
subsolution of the Hamilton–Jacobi equation in [0, 1] to a subsolution of the
same equation in [a, b]. Thus, Corollary 8.14 yields

HK2(μ0, μ1)=2(b−a) sup
{ ∫

Rd

ξb dμ1−
∫

Rd

ξa dμ0 : ξ ∈ C∞c (Rd×[a, b]),

∂tξt (x)+
1

2

∣∣Dx ξt (x)
∣∣2 + 2ξ2

t (x) ≤ 0 in R
d × (a, b)

}
.

(8.70)
Let ξ ∈ C∞c (Rd × [0, 1]) be a subsolution to the Hamilton–Jacobi equation
∂tξ + 1

2 |Dξ |2 + 2ξ2 ≤ 0 in R
d × [0, 1]. By a standard argument (see [2,

Lem. 8.1.2]), the integrability (8.62), the weak continuity of t �→ μt and
(8.64) yield

2
∫

Rd

ξt1 dμt1 − 2
∫

Rd

ξt0 dμt0 = 2
∫ t1

t0

∫

Rd

(
∂tξt + 〈Dxξt , vt 〉 + ξtwt

)
dμt dt

≤ 2
∫ t1

t0

∫

Rd

(
− 1

2
|Dxξt |2 − 2ξ2

t + 〈Dxξt , vt 〉 + ξtwt

)
dμt dt

≤
∫ t1

t0

∫

Rd

(
|vt |2 +

1

4
|wt |2

)
dμt dt.
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Applying Corollary 8.14 and (8.70) we find

HK2(μt0, μt1) ≤ (t1 − t0)

∫ t1

t0

∫

Rd

(
|vt |2 +

1

4
|wt |2

)
dμt dt

for every 0 ≤ t0 < t1 ≤ 1, which yields (8.69). ⊓⊔

Combining Theorems 8.16 and 8.17 with Theorem 8.4 and the geodesic
property of (M(Rd),HK) we immediately have the desired dynamic represen-
tation.

Theorem 8.18 (Representation of HK à la Benamou-Brenier) For every

μ0, μ1 ∈M(Rd) we have

HK2(μ0, μ1) =min
{ ∫ 1

0

∫

Rd

(
|vt |2 +

1

4
|wt |2

)
dμt dt :

μ ∈ C([0, 1];M(Rd)), μt=i = μi ,

∂tμt +∇ · (vtμt ) = wtμt in D
′(Rd × (0, 1))

}
. (8.71)

The Borel vector field (v, w) realizing the minimum in (8.71) is uniquely deter-

mined μI -a.e. in R
d × (0, 1).

The discussion in [30] reveals however that there may be many geodesic
curves, so in general μI is not unique. Indeed, the set of all geodesics con-
necting μ0 = a0δx0 and μ1 = a1δx1 with a0, a1 > 0 and |x1−x0| = π/2 is
infinite dimensional, see [30, Sect. 5.2].

Remark 8.19 (Inf-convolution of length distances) Here we want to explain
why we may interpret the characterization (8.71) of HK as an infimal convo-
lution (shortly inf-convolution) of the Kantorovich–Wasserstein distance Wd

and the Hellinger–Kakutani distance He.
Let us first recall that if ‖ · ‖i , i = 1, 2, are Hilbert norms on a linear

space V , the classical inf-convolution for convex functionals induces the inf-
convolution Hilbertian norm ‖ · ‖▽ defined by

‖v‖2
▽
:= inf

{
‖v1‖21 + ‖v2‖22 : v = v1 + v2

}
.

When a finite dimensional manifold M is endowed with two Riemannian
tensors g1 and g2, we can define the inf-convolution distance by computing
the inf-convolution of the metric tensors in each tangent space. This leads to
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the formula

d2
▽
(x0, x1) = inf

{ ∫ 1

0

(
|v1(s)|2g1(x(s))+|v2(s)|2g2(x(s))

)
ds :

x ∈ C1([0, 1];M), x(i) = xi ,

ẋ(s) = v1(s)+v2(s) in Tx(s)(M) for a.e. s ∈ (0, 1)

}
.

By optimizing the decomposition ẋ = v1+v2 we easily find that the inf-
convolution distance is generated by the metric tensor g▽ whose dual g∗

▽
is

given by g∗
▽
= g∗1 + g∗2. This formula reflects the fact that the Legendre

transform of an inf-convolution is the sum of the two Legendre transforms of
the convoluted functionals. One can think that (8.71) exhibits a non-smooth,
infinite dimensional example sharing the same structure. For another infinite-
dimensional application we refer to [8, Eq. (16)].

When di , i = 1, 2, are length metrics on a given set Z , a purely metric inf-
convolution d▽ = d1 ▽

inf
d2 respecting the local Hilbert-space structure reads

d2
▽
(z1, z2) := lim inf

N→∞
inf

{
N

N∑

i=1

(
d2

1(xi−1, yi )+d2
2(yi , xi )

)
:

xi , yi ∈ Z , x0 = z1, yN = z2

}
.

One can expect that this inf-convolution applied to Wd and He exactly gener-
ates HK, namely HK =Wd ▽

inf
He.

8.6 Geodesics in M(Rd)

As in the case of the Kantorovich–Wasserstein distance, one may expect that
geodesics (μt )t∈[0,1] in (M(Rd),HK) can be characterized by the system (cf.
[30, Sect. 5])

∂tμt + ∇ · (μt Dxξt ) = 4ξtμt , ∂tξt +
1

2
|Dxξt |2 + 2ξ2

t = 0. (8.72)

In order to give a precise meaning to (8.72) we first have to select an appro-
priate regularity for ξt . On the one hand we cannot expect C1 smoothness for
solutions of the Hamilton–Jacobi equation (8.72) (in contrast with subsolu-
tions, that can be regularized as in Corollary 8.14) and on the other hand the
L d a.e. differentiability of Lipschitz functions guaranteed by Rademacher’s
theorem is not sufficient, if we want to consider arbitrary measures μt that
could be singular with respect L d .
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A convenient choice for our aims is provided by locally Lipschitz functions
which are strictly differentiable at μI -a.e. points, where μI has been defined
by (8.61). A function f : Rd → R is strictly differentiable at x ∈ R

d if there
exists D f (x) ∈ (Rd)∗ such that

lim
x ′,x ′′→x

x ′ �=x ′′

f (x ′)− f (x ′′)− D f (x)(x ′ − x ′′)

|x ′ − x ′′| = 0. (8.73)

According to [15, Prop. 2.2.4] a locally Lipschitz function f is strictly dif-
ferentiable at x if and only if the Clarke subgradient [15, Sect. 2.1] of f at x

reduces to the singleton {D f (x)}. In particular, denoting by D ⊂ R
d the set

where f is differentiable and denoting by κε a smooth convolution kernel as
in (8.58), Rademacher’s theorem and [15, Thm. 2.5.1] yield

lim
x ′→x
x ′∈D

D f (x ′) = D f (x), lim
ε↓0

D( f ∗ κε)(x) = D f (x) for all x ∈ D. (8.74)

In the proofs we will also need to deal with pointwise representatives of the
time derivative of a locally Lipschitz function ξ : Rd × (0, 1)→ R: if D(∂tξ)

will denote the set (of full L d+1 measure) where ξ is differentiable w.r.t. time
and ∂̃tξ the extension of ∂tξ to 0 outside D(∂tξ), we set

(∂tξt )−(x) := lim inf
ε→0

(
∂̃tξt ∗ κε

)
(x), (∂tξt )

+(x) := lim sup
ε→0

(
∂̃tξt ∗ κε

)
(x).

(8.75)
It is not difficult to check that such functions are Borel; even if they depend
on the specific choice of κε, they will still be sufficient for our aims (a more
robust definition would require the use of approximate limits).

We are now ready to characterize the set of all geodesic curves by giving a
precise meaning to (8.72). The proof that the conditions (i)–(iv) below are suf-
ficient for geodesic follows directly with the subsequent Lemma 8.21, whereas
the proof of necessity is more involved and relies on the existence of optimal
potentials ψ1 for LET = HK2 in Theorem 6.3(d), on the characterization of
subsolutions of the generalized Hamilton–Jacobi equation in Theorem 8.11,
and on the characterization of curves t �→ μt in AC2

(
[0, 1]; (M(Rd),HK)

)
.

Theorem 8.20 Let μ ∈ C0([0, 1];M(Rd)) be a weakly continuous curve. If

there exists a map ξ ∈ Liploc((0, 1);Cb(R
d)) such that

(i) ξt ∈ Lipb(R
d) for every t ∈ (0, 1) with t �→ Lip(ξt ,R

d) locally bounded

in (0, 1) (equivalently, the map (x, t) �→ ξt (x) is bounded and Lipschitz

in R
d × [a, b] for every compact subinterval [a, b] ⊂ (0, 1)),

(ii) ξ is strictly differentiable w.r.t. x at μI -a.e. (x, t) ∈ R
d × (0, 1),
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(iii) ξ satisfies

∂tξt +
1

2

∣∣Dxξt (x)
∣∣2 + 2ξ2

t (x) = 0 L
d+1-a.e. in R

d × (0, 1), (8.76)

(iv) and the curve (μt )t∈[0,1] solves the continuity equation with reaction with

the vector field (Dxξ, 4ξ) in every compact subinterval of (0, 1), i.e.

∂tμt + ∇ · (μt Dxξt ) = 4ξtμt in D
′(Rd × (0, 1)), (8.77)

then μ is a geodesic w.r.t. the HK distance. Conversely, if μ is a geodesic then

it is possible to find ξ ∈ Liploc((0, 1);Cb(R
d)) that satisfies the properties

(i)–(iv) above, is right differentiable w.r.t. t in R
d× (0, 1), and fulfills (8.50b)

everywhere in R
d × (0, 1).

Notice that (8.76) seems the weakest natural formulation of the Hamilton–
Jacobi equation, in view of Rademacher’s Theorem. The assumption of strict
differentiability of ξ at μI -a.e. point provides an admissible vector field DXξ

for (8.77).

Proof The proof splits into a sufficiency and a necessity part, the latter having
several steps.

Sufficiency. Let us suppose that μ, ξ satisfy conditions (i), . . . , (iv).
Since D(∂tξ) has full L d+1-measure in R

d × (0, 1), Fubini’s Theorem
shows that N := {t ∈ (0, 1) : L d({x ∈ R

d : (x, t) /∈ D(∂tξ)}) > 0} is
L 1-negligible. By (8.76) we get

(∂tξ)−(x) = − lim sup
ε↓0

((1
2
|Dxξt |2+2ξ2

t

)
∗κε
)
(x) ≥ −1

2
|Dξt |2a(x)−2ξ2

t (x)

(8.78)
for every x ∈ R

d and t ∈ (0, 1) \ N .
We apply Lemma 8.21 below with v = Dxξ and w = 4ξ : observing that
|Dξt |a(x) = |Dxξt (x)| at every point x of strict differentiability of ξt , we get,
for all 0 < a < b < 1,

2
∫

Rd

ξb dμb−2
∫

Rd

ξa dμa ≥ 2
∫

Rd×(a,b)

(
(∂tξ)−+|Dxξt (x)|2 + 4ξ2

t (x)
)

dμI

(8.78)= 2
∫

Rd×(a,b)

(1

2
|Dxξt (x)|2 + 2ξ2

t (x)
)

dμI

(8.69)
≥
∫ b

a

|μ′t |2 dt ≥ 1

b−a
HK2(μa, μb).
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On the other hand, since R
d is a length space, Theorem 8.12 yields

1

b − a
HK2(μa, μb) ≥ 2

∫

Rd

ξb dμb − 2
∫

Rd

ξa dμa,

so that all the above inequalities are in fact identities and, hence,

HK(μa, μb) = (b − a) |μ′t | L
1-a.e. in [a, b].

This shows that μ is a geodesic. Passing to the limit as a ↓ 0 and b ↑ 1 we
conclude the proof of the first part of the Theorem.

Necessity. Let (μt )t∈[0,1] be a HK-geodesic in M(Rd) connecting μ0 to μ1;
applying Theorem 8.16 we can find a Borel vector field (v, w) ∈ L2(Rd ×
(0, 1), μI ;Rd+1) such that (8.63) and (8.66) hold. We also consider an optimal
plan γ ∈ OptLET(μ1, μ2).

Let ψ1, ψ2 : R
d → [−∞, 1] be a pair of optimal potentials given by

Theorem 6.3 d) and let us set ξ := −1
2ψ1 and ξt := Ptξ for t ∈ (0, 1).

Even if we are considering more general initial data ξ ∈ B(Rd; [−1/2,∞])
in (8.48), it is not difficult to check that the same statement of Theorem 8.11
holds in every subinterval [a, b] with 0 < a < b < 1 and

lim
t↓0

Ptξ(x) = sup
t>0

Ptξ(x) = ξ∗(x), where ξ∗(x) := lim
r↓0

inf
x ′∈Br (x)

ξ(x ′)

(8.79)
is the lower semicontinuous envelope of ξ . Moreover, setting

ξ1(x) =P1ξ(x) := lim
t↑1

ξt (x) = inf
0<t<1

ξt (x), (8.80)

the function ξ1 is upper semicontinuous with values in [−∞, 1/2] and the
optimality properties stated in Theorem 6.3 d) yield

1

2
ψ2 ≤ ξ1 in R

d ,
1

2
ψ2 = ξ1 μ1-a.e. in R

d . (8.81)

By introducing the semigroup P̄tξ := −Pt (−ξ) and reversing time, we can
define

ξ̄t := P̄1−t

(1
2ψ2
)
. (8.82)

By using the link with the Hopf–Lax semigroup in C given by Theorem 8.11,
the optimality of (ψ1, ψ2), and arguing as in [50, Thm. 7.36] it is not difficult
to check that

ξ̄t ≤ ξt in R
d , ξ̄0 = ξ0 = −

1

2
ψ1 μ0-a.e. in R

d . (8.83)
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Notice that the function x �→ − cos2(|x − x ′| ∧ π/2) has bounded first and
second derivatives, so it is semiconcave. It follows that the map x �→ ξt (x) is
semiconcave for every t ∈ (0, 1) and x �→ ξ̄t (x) is semiconvex.

Since t �→
∫
ξt dμt and t �→

∫
ξ̄t dμt are absolutely continuous in (0, 1),

Theorem 8.12(i) yields

d

dt

∫
ξt dμt ≤

1

2
|μ′t |2 =

1

2
HK2(μ0, μ1), (8.84)

so that
∫

ξb dμb −
∫

ξa dμa ≤
b − a

2
HK2(μ0, μ1).

Passing to the limit first as a ↓ 0 and then as b ↑ 1 by monotone convergence
(notice that ξt ≤ 1/2) and using optimality once again, we obtain

HK2(μ0, μ1) =
∫

ψ1 dμ0 +
∫

ψ2 dμ1 = 2
∫

ξ1 dμ1 − 2
∫

ξ0 dμ0

= lim
a↓0,b↑1

2
( ∫

ξb dμb −
∫

ξa dμa

)
.

(8.85)
By (8.84) it follows that

d

dt

∫
ξt dμt =

1

2
|μ′t |2 =

1

2
HK2(μ0, μ1) in (0, 1). (8.86)

Reversing time, the analogous argument yields

d

dt

∫
ξ̄t dμt =

1

2
|μ′t |2 =

1

2
HK2(μ0, μ1) in (0, 1). (8.87)

Hence, we have proved that the maps t �→
∫
ξt dμt and t �→

∫
ξ̄t dμt are

affine in [0, 1] and coincide at t = 0 and t = 1, which implies that

∫
ξt dμt =

∫
ξ̄t dμt for every t ∈ [0, 1]. (8.88)

Recalling (8.83), we deduce that the complement of the set Z t := {x ∈ R
d :

ξt (x) = ξ̄t (x)} is μt -negligible. Since ξt is Lipschitz and semiconcave (thus
everywhere superdifferentiable) for t ∈ (0, 1) and since ξ̄t is Lipschitz and
semiconvex (thus everywhere subdifferentiable), we conclude that ξt is strictly
differentiable in Z t , and thus it satisfies conditions (i) and (ii).
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Since (iii) is guaranteed by Theorem 8.11 (Rd is a length space), it remains
to check (8.77). We apply the following Lemma 8.21 by observing that [3,
Prop. 3.2,3.3] and Theorem 8.11 yield

lim sup
x ′→x

∂+t ξt (x
′) ≤ lim sup

x ′→x

∂−t ξt (x
′) ≤ ∂−t ξt (x), lim inf

x ′→x
∂+t ξt (x

′) ≥ ∂+t ξt (x);

since ∂−t ξt (x) = ∂+t ξt (x) μI -a.e. we get (∂tξ)
+ = (∂tξ)− = ∂+t ξ μI -a.e.

and therefore (8.89) holds with equality.
Recalling that |Dξt |2a(x) = |Dxξt (x)|2 at every point of Z t , for every 0 <

a < b < 1 we have

b − a

2
HK2(μ0, μ1) =

∫

Rd

ξb dμb −
∫

Rd

ξa dμa

(8.89)=
∫

Rd×(a,b)

(
∂+t ξ + Dxξ v + ξw

)
dμI

=
∫

Rd×(a,b)

(
− 1

2
|Dxξt |2 − 2ξ2

t + Dxξ v + ξw
)

dμI

=
∫

Rd×(a,b)

(
− 1

2
|Dxξt − v|2 − 2(ξt −

1

4
w)2 + 1

2
|v|2 + 1

8
w2
)

dμI

(8.66)
≤ −

∫

Rd×(a,b)

(1

2
|Dxξt − v|2 + 2(ξt −

1

4
w)2
)

dμI +
1

2

∫ b

a

|μ′t |2 dt

We deduce that v = Dxξ and w = 4ξ holds μI -a.e. ⊓⊔

The following lemma provides the “integration by parts” formulas that
where used in the sufficiency and necessity part of the previous proof of The-
orem 8.20. It is established by a suitable temporal and spatial smoothing,
involving a smooth kernel κε as in (8.58).

Lemma 8.21 Let μ ∈ AC2
loc((0, 1); (M(Rd),HK)) satisfy the continuity

equation with reaction (8.63) governed by the field (v, w) ∈ L2(Rd ×
(a, b), μI ) for every [a, b] ⊂ (0, 1). If ξ ∈ Liploc((0, 1);Cb(R

d)) satisfies

conditions (i, i i) of Theorem 8.20, then for all 0 < a ≤ b < 1 we have

∫

Rd×(a,b)

(
(∂tξ)

+ + Dxξ v + ξw
)

dμI ≥
∫

Rd

ξb dμb −
∫

Rd

ξa dμa

≥
∫

Rd×(a,b)

(
(∂tξ)− + Dxξ v + ξw

)
dμI ,

(8.89)

where (∂tξ)
+, (∂tξ)− are defined in terms of a space convolution kernel κε as

in (8.75).
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Proof We fix a compact subinterval [a, b] ⊂ (0, 1), b′ ∈ (b, 1), and set M :=
maxt∈[a,b′] μt (R

d) and L := Lip(ξ ;Rd × [a, b′])+ supRd×[a,b′] |ξ |.
We regularize ξ by space convolution as in (8.58) by setting ξ ε := ξ ∗ κε

and perform a further regularization in time, viz.

ξ
ε,τ
t (x) := 1

τ

∫ τ

0
ξ εt+r (x) dr, 0 < τ < b′ − b. (8.90)

Since ξ ε,τ ∈ C1
b(R

d ×[a, b]) and μ is a weakly continuous solution to (8.63),
we can argue as in [2, Lem. 8.1.2] and obtain, for every ε > 0 and τ ∈
(0, b′−b), the identity

∫

Rd

ξ
ε,τ
b dμb −

∫

Rd

ξ ε,τa dμa =
∫

Rd×(a,b)

(
∂tξ

ε,τ + Dxξ
ε,τ v + ξ ε,τw

)
dμI .

(8.91)
We first pass to the limit as τ ↓ 0, observing that ξ ε,τ → ξ ε uniformly
because ξ ε is bounded and Lipschitz. Similarly, since Dξ ε,τ = (Dξ ε)τ and
Dξ ε is bounded and Lipschitz, we have Dξ ε,τ → Dξ ε uniformly. Finally,
using

∂tξ
ε,τ
t (x) = 1

τ
(ξ εt+τ (x)− ξ εt (x)) =

∫

Rd

1

τ
(ξ εt+τ (x

′)− ξ εt (x
′))κε(x − x ′) dx ′,

and the fact that N := {t ∈ (0, 1) : L d({x ∈ R
d : (x, t) /∈ D(∂tξ)}) > 0} is

L 1-negligible by the theorems of Rademacher and Fubini, an application of
Lebesgue’s Dominated Convergence Theorem yields

lim
τ↓0

∂tξ
ε,τ
t (x)=∂tξ

ε
t (x) = ((∂tξ)∗κε)(x) for every x ∈ R

d , t ∈ (a, b)\N .

(8.92)
Since R

d × N is also μI -negligible, a further application of Lebesgue’s Dom-
inated Convergence Theorem yields

∫

Rd

ξ εb dμb −
∫

Rd

ξ εa dμa =
∫

Rd×(a,b)

(
∂tξ

ε +Dxξ
ε v + ξ εw

)
dμI . (8.93)

Now, (8.89) will be deduced by passing to the limit ε ↓ 0 in (8.93) as fol-
lows. We observe that ξ ε converges uniformly to ξ because ξ is bounded and
Lipschitz. Moreover, since limε↓0 Dxξ

ε
t (x) = Dxξt (x) at every point x ∈ R

d

where ξt is strictly differentiable, we obtain

|Dxξ
ε v| ≤ L|v| ∈ L1(Rd × (a, b);μI ) and

lim
ε↓0

Dxξ
ε = Dxξ μI -a.e. in R

d × [a, b],
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1110 M. Liero et al.

so that

lim
ε↓0

∫

Rd

ξ εa,b dμa,b =
∫

Rd

ξa,b dμa,b,

∫

Rd×(a,b)

(
Dxξ

ε v + ξ εw
)

dμI =
∫

Rd×(a,b)

(
Dxξ v + ξw

)
dμI .

Finally, since ∂tξ
ε
t is also uniformly bounded, Fatou’s Lemma yields

lim sup
ε↓0

∫

Rd×(a,b)

∂tξ
ε
t dμI ≤

∫

Rd×(a,b)

(∂tξt )
+ dμI ,

lim inf
ε↓0

∫

Rd×(a,b)

∂tξ
ε
t dμI ≥

∫

Rd×(a,b)

(∂tξt )− dμI .

Thus, (8.89) follows from (8.93). ⊓⊔

8.7 Contraction properties: convolution and Heat equation in

RCD(0, ∞) metric-measure spaces

We conclude this paper with a few applications concerning contraction prop-
erties of the HK distance. The first one concerns the behavior with respect
1-Lipschitz maps.

Lemma 8.22 Let (X,dX ), (Y,dY ) be separable metric spaces and let f :
X → Y be a 1-Lipschitz map. Then f♯ : M(X) → M(Y ) is 1-Lipschitz

w.r.t. HK:

HK( f♯μ1, f♯μ2) ≤ HK(μ1, μ2). (8.94)

Proof It is sufficient to observe that the map f : CX �→ CY defined by
f([x, r ]) := [ f (x), r ] satisfies dCY

(f([x1, r1]), f([x2, r2])) ≤ dCX
([x1, r1],

[x2, r2]) for every [xi , ri ] ∈ CX . Thus f♯ is a contraction from (P2(CX ),WdCX
)

to (P2(CY ),WdCY
), and hence f♯ satisfies (8.94). ⊓⊔

A second application concerns convolutions in R
d .

Theorem 8.23 Let X = R
d with the Euclidean distance and let ν ∈M(Rd).

Then the map μ �→ μ ∗ ν is contractive w.r.t. HK if ν(Rd) = 1 and, more

generally,
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HK2(μ1 ∗ ν, μ2 ∗ ν) ≤ ν(Rd)HK2(μ1, μ2) for μ1, μ2 ∈M(Rd). (8.95)

Proof The previous lemma shows that HK is invariant by isometries, in partic-
ular translations in R

d , so that

HK(μ1 ∗ δx , μ2 ∗ δx ) = HK(μ1, μ2) for every μ1, μ2 ∈M(Rd), x ∈ R
d .

By the subadditivity property (7.31), it follows that if ν =
∑

k akδxk
for some

ak ≥ 0, then

HK2(μ1 ∗ ν, μ2 ∗ ν) = HK2

(∑

k

akμ1 ∗ δxk
,
∑

k

akμ2 ∗ δxk

)

≤
∑

k

akHK2(μ1 ∗ δxk
, μ2 ∗ δxk

)

=
∑

k

akHK2(μ1, μ2) = ν(Rd)HK2(μ1, μ2).

The general case then follows by approximating ν by a sequence of discrete
measure νn converging to ν in M(Rd) and observing that μi ∗ νn → μi ∗ ν
weakly in M(Rd). Since HK is weakly continuous by Theorem 7.15, we obtain
(8.95). ⊓⊔

An easy application of the previous result is the contraction property of
the (adjoint) Heat semigroup (P∗t )t≥0 in R

d with respect to HK. In fact, we
can prove a much more general result for the Heat flow in RCD(0,∞) metric
measure spaces (X,d,m) [4,5]. It covers the case of the semigroups (Pt )t≥0
generated by
(A) the Heat equation on a open convex domain # ⊂ R

d with homogeneous
Neumann conditions

∂t u = $u in #× (0,∞), ∂nu = 0 on ∂#× (0,∞),

(B) the Heat equation on a complete Riemannian manifold (Md , g) with non-
negative Ricci curvature defined by

∂t u = $gu in M
d × (0,∞),

where $g is the usual Laplace-Beltrami operator, and
(C) the Fokker-Planck equation in R

d generated by the gradient of a convex
potentials V : Rd → R, viz.

∂t u = $u −∇ · (u DV ) in R
d × (0,∞).
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Theorem 8.24 Let (X,d,m) be a complete and separable metric-measure

space with nonnegative Riemannian Ricci Curvature, i.e. satisfying the

RCD(0,∞) condition, and let (P∗t )t≥0 : M(X)→ M(X) be the Heat semi-

group in the measure setting. Then

HK(P∗t μ1, P∗t μ2) ≤ HK(μ1, μ2) for all μ1, μ2 ∈M(X) and t > 0. (8.96)

Proof Recall that in RCD(0,∞) metric measure spaces the L2-gradient flow
of the Cheeger energy induces a symmetric Markov semigroup (Pt )t≥0 in
L2(X,m) [4, Sect. 6.1], which has a pointwise version satisfying the Feller
regularization property Pt (Bb(X)) ⊂ Lipb(X) for t > 0 and the estimate (cf.
[4, Thm. 6.2] or [5, Cor. 4.18])

|DX Pt f |2(x) ≤ Pt

(
|DX f |2

)
(x) for f ∈ Lipb(X), x ∈ X, t ≥ 0. (8.97)

Its adjoint (P∗t )t≥0 coincides with the Kantorovich–Wasserstein gradient flow
in P2(X) of the Entropy Functional F (·|m) where F is induced by F(s) =
U1(s) = s log s − s + 1 and defines a semigroup in M(X) by the formula

∫

X

f d(P∗t μ) =
∫

X

Pt f dμ for every f ∈ Bb(X) and μ ∈M(X). (8.98)

In order to prove (8.96) we use (8.54) (RCD-spaces satisfy the length property,
[4, Thm. 5.1]) and apply Pt to a subsolution (ψθ )θ∈[0,1] in C1([0, 1];Lipb(X))

of the Hamilton–Jacobi equation

∂θψθ +
1

4
|DXψθ |2 + ψ2

θ ≤ 0 in X × (0, 1). (8.99)

Since Pt is a linear and continuous map from Lipb(X) to Lipb(X) the curve
θ �→ ψθ,t := Pt (ψθ ) belongs to C1([0, 1];Lipb(X)). Now, (8.97) and the
Markov property yield

|DX Ptψθ |2(x) ≤ Pt

(
|DXψθ |2

)
(x),

(Ptψθ )
2(x) ≤ Pt (ψ

2
θ )(x) for x ∈ X, θ ∈ [0, 1], t ≥ 0.

Thus, for every t ≥ 0 we obtain

∂θψθ,t +
1

4
|DXψθ,t |2 + ψ2

θ,t ≤ 0 in X × (0, 1),
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and therefore
∫

X

ψ1 d(P∗t )μ1 −
∫

X

ψ0 d(P∗t )μ0

=
∫

X

Ptψ1 dμ1 −
∫

X

Ptψ0 dμ0 ≤ HK2(μ1, μ0).

We conclude by taking the supremum with respect to all the subsolutions of
(8.99) in C1([0, 1];Lipb(X)) and applying (8.54). ⊓⊔
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A On the chronological development of our theory

In this section we give a brief account of the order in which we developed the
different parts of the theory. The beginning was the mostly formal work in [30]
on reaction-diffusion systems, where a distance on vectors u of densities over
a domain # ⊂ R

d was formally defined in the Benamou-Brenier sense via

d(u0, u1)
2 = inf

∫ 1

0

∫

#

t :Mdiff(ut )t + ξ t ·Kreact(ut )ξ t dxdt

under the constraint of the continuity equation ∂t ut + ∇ ·
(
Mdiff(ut )t

)
=

Kreact(ut )ξ t . The central question was and still is the understanding of
diffusion equations with reactions in the gradient-flow form ∂t u = ∇ ·(
Mdiff(u)∇δF(u)

)
−Kreact(u)δF(u), see [30, Sect. 5.1].

It was natural to treat the scalar case first and to restrict to the case where
both mobility operator Mdiff(u) and Kreact(u) are linear in u. Only in that case
the formally derived system (1.29) for the geodesics (ut , ξt ) decouples in the
sense that ξt solves an Hamilton–Jacobi equation that does not depend on u.
Choosing Mdiff(u) = αu and Kreact(u) = βu with α, β ≥ 0, the relevant
Hamilton–Jacobi equation reads

∂tξt +
α

2
|Dxξt |2 +

β

2
ξ2

t = 0.
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As in the other parts of this paper, we restrict to the case α = 1 and β = 4
subsequently, but refer to [30] for the general case. Thus, the conjectured
characterization (8.54) was first presented in Pisa at the Workshop “Optimal
Transportation and Applications” in November 2012.

During a visit of the second author in Pavia, the generalized Hopf–Lax for-
mula via the nonlinear convolution Pt (cf. (8.48)) was derived via the classical
method of characteristics. This led to the unsymmetric representation (1.26) for
HK. To symmetrize this relation we used that P1ξ(x) = inf �(ξ(y), |y−x |)
with �(z, R) = 1

2

(
1− A(R)

1+2z

)
, where A(R) = cos2

(
R ∧ (π/2)

)
. Setting

ψ0 = −2ξ0 and ψ1 = 2ξ1 = 2P1, we have the equivalence

ξ1 =P1ξ0 ⇐⇒ (1−ψ0(x0))(1−ψ1(x1)) ≥ A(|x0−x1|) for all xi .

Setting ϕi = − log(1−ψi ) we arrived at the cost function

c(x0, x1) = − log A(|x0−x1|) =
{
−2 log

(
cos |x0−x1|

)
for |x0−x1| < π/2,

∞ otherwise,

for the first time and obtained the characterization (1.7), namely

HK(μ0, μ1)
2 = D(μ0, μ1) = sup

{
D(ϕ0, ϕ1|μ0, μ1) : ϕ0 ⊕ ϕ1 ≤ c

}
.

It was then easy to dualize D , and the Logarithmic Entropy functional LET in
(1.20) was derived in July 2013.

While the existence of minimizers for LET(μ0, μ1) = min E (γ |μ0, μ1)

was easily obtained, it was not clear at all, why and how HK defined via
HK2(μ0, μ1) = min E (·|μ0, μ1) generates a geodesic distance. The only thing
which could easily be checked was that the minimum was consistent with the
distance between two Dirac masses, which could easily be calculated via the
dynamic formulation.

So, in parallel we tried to develop the dynamic approach, which was not too
successful at the early stages. Only after realizing and exploiting the connection
to the cone distance in Summer and Autumn of 2013 we were able to connect
LET systematically with the dynamic approach. The crucial and surprising
observation was that optimal plans for E and lifts of measures μ ∈ M(X)

to measures λ on the cone C could be identified by exploiting the optimality
conditions systematically. Corresponding results were presented in workshops
on Optimal Transport in Banff (June 2014) and Pisa (November 2014).

Already at the Banff workshop, the general structure of the primal and dual
Entropy-Transport problem as well as the homogeneous perspective formu-
lation were presented. Several examples and refinements where developed
afterwards. The most recent part from Summer 2015 concerns our Hamilton–
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Jacobi equation in general metric spaces (X,d) and the induced cone C (cf.
Sect. 8.4) and the derivation of the geodesic equations in R

d (cf. Sect. 8.6).
This last achievement now closes the circle, by showing that all the initial
steps, which were done on a formal level in 2012 and the first half of 2013,
have indeed a rigorous interpretation.
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