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OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE
GAUGE-UZAWA METHOD

FOR THE NAVIER-STOKES EQUATIONS

Jae-Hong Pyo

Abstract. The gauge-Uzawa method which has been constructed in [11]
is a projection type method to solve the evolution Navier-Stokes equa-
tions. The method overcomes many shortcomings of projection methods
and displays superior numerical performance [11, 12, 15, 16]. However,
we have obtained only suboptimal accuracy via the energy estimate in
[11]. In this paper, we study semi-discrete gauge-Uzawa method to prove
optimal accuracy via energy estimate. The main key in this proof is
to construct the intermediate equation which is formed to gauge-Uzawa
algorithm. We will estimate velocity errors via comparing with the in-
termediate equation and then evaluate pressure errors via subtracting
gauge-Uzawa algorithm from Navier-Stokes equations.

1. Introduction and the gauge-Uzawa method

Given an open bounded polygon (or polyhedron) Ω in Rd with d = 2 (or 3),
we consider the time dependent Navier-Stokes Equations (NSE):

(1.1)

ut + (u · ∇)u +∇p− µ4u = f , in Ω,

∇· u = 0, in Ω,

u(x, 0) = u0, in Ω,

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure mean-
value

∫
Ω

p = 0. One of the main numerical difficulties in solving (1.1) is that
the velocity and the pressure are coupled together through the incompressibil-
ity condition ∇ · u = 0. The original projection method was introduced by
Chorin [2] and Temam [17] in the late 60’s to decouple the computation of
velocity from the pressure, it quickly gained popularity in the computational
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fluid dynamics community, and over the years, an enormous amount of efforts
have been devoted to develop more accurate and efficient projection schemes.

Recently, E and Liu in [5] constructed a consistent projection type scheme
which is called the gauge method. It introduces new variables a and φ (gauge)
such that u = a +∇φ and couple them via the boundary condition a = −∇φ
for u = 0. The method has been studied in [18] using asymptotic method,
in [10] employing variational technique, and in [1, 15] applying normal mode
analysis. The boundary coupling is responsible for accuracy degradation in
problems as illustrated in [11], specially for singular solutions due to reen-
trant corners. It also makes the use of finite element methods problematic for
space discretization. To overcome these difficulties, Nochetto and Pyo in [11]
constructed the gauge-Uzawa Algorithm 1 below which inherits some beneficial
properties of both the gauge method and the Uzawa method and avoids dealing
with boundary derivatives.

The numerical analysis of projection type methods are usually carried out
by using an energy method or a normal mode analysis: the energy method is
capable of providing rigorous estimates for general settings but often overlooks
particular error structures of projection errors; on the other hand, the normal
mode analysis is only applicable to very special domains such as a periodic
channel or a quarter plane but often reveals more precise information on the
error behaviors. So the gauge-Uzawa Algorithm 1 has been studied via both
normal mode analysis in [1, 15] and energy method in [11]. The normal mode
solution of the BDF2 time discrete gauge-Uzawa has been proved fully accu-
rate on quarter plane [1] and on periodic channel [15]. Pyo and Shen in [15]
compared normal mode solutions of several projection methods and discovered
that only the gauge-Uzawa has no spurious boundary layer term.

In [11], authors proved its stability and estimated errors for both velocity
and pressure via energy method as summarized in (1.10)-(1.12) below. The es-
timates are performed very rigorously under realistic regularity requirements,
but those are only suboptimal for velocity in L2(0, T ;H1(Ω)) and for pressure
in L2(0, T ; L2(Ω)). GU-FEM has been degraded by the sub-optimality, even
though it has many advantages numerically and theoretically [10, 15, 12, 16].
The purpose of this paper is to prove the optimal convergence which are sum-
marized in Theorems 1.2 and 1.3.

Since the gauge-Uzawa method has been precisely derived from the gauge
method via changing variables in [11], we here introduce the gauge-Uzawa
method briefly and directly from the backward Euler time discrete formula for
linearized NSE:

(1.2) un+1 − un

τ
+∇pn+1 − µ4un+1 = f(tn+1).

Gauge-Uzawa hires artificial variables ûn+1 and ρn+1 satisfying ûn+1 = un+1−
∇ρn+1, and rewrite ρn+1 as ρn+1 = φn+1 − φn, which means

(1.3) ûn+1 = un+1 −∇ρn+1 = un+1 −∇(φn+1 − φn).
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Inserting (1.3) into (1.2) yields

ûn+1 − un

τ
+∇

(
pn+1 +

φn+1 − φn

τ
− µ4 (

φn+1 − φn
))−µ4ûn+1 = f(tn+1).

If we impose φn+1 as a solution of the backward Euler time discrete heat
equation

(1.4)
φn+1 − φn

τ
− µ4φn+1 = −pn+1,

then we obtain a time discrete momentum equation

ûn+1 − un

τ
+ µ∇4φn − µ4ûn+1 = f(tn+1).

To deal with the third order term ∇4φn, which is a source of trouble due
to lack of commutativity of the differential operators at the discrete level, we
introduce the variable sn+1 = 4φn+1 and note the connection with the Uzawa
iteration:

(1.5)
sn+1 = 4φn+1

= 4φn −∇· ûn+1 = sn −∇· ûn+1.

If one take divergence on each term in (1.3), then ∇· un+1 = 0 gives

(1.6) −4ρn+1 = ∇· ûn+1.

One advantage of gauge-Uzawa method comes from the gauge formula (1.4).
Since no initial and boundary conditions for pressure are given in NSE, some
projection methods require an effort to find a suitable initial value or suffer
from artificially imposed boundary condition on pressure [13]. In the view
of (1.4), we can impose initial and boundary conditions on the non-physical
variable φn+1 instead of on pressure pn+1, and the value of pn+1 is not changed
by the imposed conditions on φn+1. But the Neumann condition ∂νννφn+1 = 0
on boundary is essential to make the compatibility condition hold on (1.6).
However, there is no special restriction on initial s0, and so we take simply
s0 = 0. Finally, we arrive at the gauge-Uzawa method by combining above
equations after add an available time discrete convection term.

Algorithm 1 (Gauge-Uzawa method). Start with s0 = 0 and u0 = u(0,x).
Repeat for 1 ≤ n ≤ N ,

Step 1: Find ûn+1 as the solution of

(1.7)
ûn+1 − un

τ
+ (un · ∇)ûn+1 + µ∇sn − µ4ûn+1 = f(tn+1), in Ω,

ûn+1 = 0, on ∂Ω,

Step 2: Find ρn+1 as the solution of

−4ρn+1 = ∇· ûn+1, in Ω,

∂νννρn+1 = 0, on ∂Ω,
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Step 3: Update un+1 and sn+1

(1.8)
un+1 = ûn+1 +∇ρn+1,

sn+1 = sn −∇· ûn+1.

Remark 1.1 (Pressure). One may compute the pressure whenever necessary as

(1.9) pn+1 = −ρn+1

τ
+ µsn+1.

We note here that φn+1 is not concerned variable any more, because it is
replaced by variable ρn+1 and sn+1 in (1.3) and (1.5), respectively.

The treating on the convection term is a sensitive issue for stability condition,
computing cost, and applicability to more complicate fluid problems. There
are many numerical treatments for the convection term and we can use any
techniques in (1.7). In this paper, we impose the semi-implicit scheme, namely
(un · ∇)ûn+1, to make the stability result in [11] satisfy: the gauge-Uzawa
Algorithm 1 is unconditionally stable in the sense that, for all τ > 0, the
following a priori bound holds:

(1.10)

∥∥uN+1
∥∥2

0
+

N∑
n=0

∥∥un+1 − un
∥∥2

0
+

µτ

2

N∑
n=0

∥∥∇ûn+1
∥∥2

0

+ 2
N∑

n=0

∥∥∇ρn+1
∥∥2

0
+ µτ

∥∥sN+1
∥∥2

0

≤
∥∥u0

∥∥2

0
+ Cτ

N∑
n=0

∥∥f(tn+1)
∥∥2

−1
.

In [11], the convergence results are obtained via the energy estimates as follows:
if A1-3 below hold, then we have the error estimates for velocity

(1.11)

τ

N∑
n=0

∥∥∇ (
u(tn+1)− ûn+1

)∥∥2

0
≤ Cτ,

τ

N∑
n=0

(∥∥u(tn+1)− un+1
∥∥2

0
+

∥∥u(tn+1)− ûn+1
∥∥2

0

)
≤ Cτ2,

and for pressure and time-derivative of velocity; if A1-4 below hold, then the
following error estimates are valid

(1.12) τ

N∑
n=0

(∥∥δu(tn+1)− δun+1
∥∥2

0
+

∥∥p(tn+1)− pn+1
∥∥2

0

)
≤ Cτ,

where δ is the discrete time derivative for a sequence {Wn}N
n=0 to be

δWn+1 :=
Wn+1 −Wn

τ
.
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The suboptimal order in (1.11) and (1.12) is due to mismatching between pres-
sure p in NSE and artificial variables ρn and sn in Algorithm 1. Duality argu-
ment using Stokes operators has been applied to cancel out the mismatching
terms and this process derives error analysis in L2 for time instead of L∞ for
time. In this paper, we introduce an intermediate equation (3.7) in which pres-
sure term is replaced to be well matched with Algorithm 1 by using a heat
equation (3.1) in §3. And we estimate velocity errors by comparing with the
intermediate equation (3.7) to get optimal accuracy. To control the solution of
the heat equation (3.1), we need additional assumptions A5 in §3 and A6 in
§5.

We now summarize the results of this paper along with its organization. In
§2, we recall some well known lemmas to use in the proof of main theorems,
and introduce an intermediate momentum equation (3.7) in §3. We will prove
the errors of velocity in §4.

Theorem 1.2 (Error estimate for velocity). Suppose A1-4 hold. If A5 in §3
also hold, then we have

∥∥u(tn+1)− un+1
∥∥2

0
+ τ

N∑
n=0

∥∥∇ (
u(tn+1)− un+1

)∥∥2

0
≤ Cτ2,

∥∥u(tn+1)− ûn+1
∥∥2

0
+ τ

N∑
n=0

∥∥∇ (
u(tn+1)− ûn+1

)∥∥2

0
≤ Cτ2.

In addition, the following results will be proved in §5.

Theorem 1.3 (Error estimates for time-derivative of velocity and for pressure).
Suppose A1-4 hold. If A6 in §5 also hold, then we have

(1.13)
∥∥δu(tn+1)− δun+1

∥∥
0

+
∥∥δu(tn+1)− δûn+1

∥∥
0
≤ Cτ.

Finally, the error of pressure will be derived in §6.∥∥p(tn+1)− pn+1
∥∥

0
≤ Cτ.

2. Preliminaries

This section is mainly devoted to reviewing some well-known lemmas. Let
Hs(Ω) be the Sobolev space with s derivatives in L2(Ω), L2(Ω) =

(
L2(Ω)

)d

and Hs(Ω) = (Hs(Ω))d, where d = 2, 3. Let ‖·‖0 denote the L2(Ω) norm, and
〈· , ·〉 the corresponding inner product. Let ‖·‖s denote the norm of Hs(Ω) for
s ∈ R.

We start with three basic assumptions about Ω, u0, f , and u. We consider
first the stationary Stokes equations:

(2.1)

−4w +∇r = g, in Ω,

∇· w = 0, in Ω,

w = 0, on ∂Ω.
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Assumption 1 (Regularity of (w, r)). The unique solution (w, r) ∈ H1
0(Ω)×

L2
0(Ω) of the stationary Stokes equations (2.1) satisfies

‖w‖2 + ‖r‖1 ≤ C‖g‖0.
We remark that A1 is valid provided ∂Ω is of class C 2 [3], or if Ω is a convex
two-dimensional polygon [8] or three-dimensional polyhedron [4].

Assumption 2 (Data regularity). The initial velocity u0 and the forcing term
f in (1.1) satisfy

u0 ∈ H2(Ω) ∩ Z and f , ft ∈ L∞(0, T ;L2(Ω)),

where Z := {z ∈ H1
0(Ω) : ∇· z = 0}.

Assumption 3 (Regularity of the solution u). There exists M > 0 such that

sup
t∈[0,T ]

‖∇u(t)‖0 ≤ M.

We note that A3 is always satisfied in 2d, whereas it is valid in 3d provided∥∥u0
∥∥

1
and ‖f‖L∞(0,T ;L2(Ω)) are sufficiently small [7].

Lemma 2.1 (Uniform and weighted a priori estimates [7]). Let σ(t)= min{t, 1}
be a weight function and 0 < T ≤ ∞. If A1-3 hold, the solution (u, p) of (1.1)
satisfies

sup
0<t<T

(
‖u‖2 + ‖ut‖0 + ‖p‖1

)
≤ M,

∫ T

0

‖ut‖21dt ≤ M,

and

sup
0<t<T

(
σ(t)‖ut‖21

)
≤ M,

∫ T

0

σ(t)
(
‖ut‖22 + ‖utt‖20 + ‖pt‖21

)
dt ≤ M.

Consequently, (u, p) ∈ L∞(0, T ;H2(Ω)×H1(Ω)) provided A1-3 are valid. The
following A4 is used to remove the weight σ(t) for the error estimates.

Assumption 4 (Nonlocal compatibility). Let u0 and f0 = f(0, ·) be such that

‖∇ut(0)‖0 ≤ M.

The following lemma is proved in [7].

Lemma 2.2 (Uniform a priori estimates). Suppose A1-3 hold and let 0 < T ≤
∞. Then A4 is valid if and only if

∫ T

0

‖utt(t)‖20dt + sup
0<t<T

‖∇ut(t)‖20 ≤ M.

Furthermore, if A4 holds, then
∫ T

0

(
‖pt(t)‖21 + ‖ut(t)‖22

)
dt ≤ M .
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We now define the trilinear form N associated with the convection term in
(1.1)

N (u,v,w) :=
∫

Ω

(u · ∇)v ·wdx,

for which the following properties are well-known [6].

Lemma 2.3 (Properties of N ). Let u,v,w ∈ H1(Ω) and ∇· u = 0. If

u · ννν = 0 or v = 0 on ∂Ω,

then
N (u,v,w) = −N (u,w,v) and N (u,v,v) = 0.

Sobolev imbedding lemma yields the following results, which will be used
later in dealing with the convection term of (1.1).

Lemma 2.4 (Bounds on trilinear form).
∫

Ω

u · v ·wdx ≤ C

{ ‖u‖0‖v‖1‖w‖1,
‖u‖2‖v‖0‖w‖0.

The following elementary but crucial relation is derived in [9, 14].

Lemma 2.5 (Div-Grad relation). If v ∈ H1
0(Ω), then

‖∇· v‖0 ≤ ‖∇v‖0.

3. The intermediate equations

In this section, we define an intermediate momentum equation and evaluate
its error by comparing with (1.1) to use as a reference equation. We start to
construct the intermediate momentum equation with defining Φ as the solution
of the heat equation:

(3.1)

Φt − µ4Φ = −p, in Ω,

Φ(0,x) = 0, in Ω,

∂νννΦ = 0, on ∂Ω.

Let (v, q) be the solution of Stokes equations

(3.2)

vt +∇q −4v = 0, in Ω,

∇· v = 0, in Ω,

v(0) = 0, in Ω,

v = ε∇Φt, on ∂Ω.

From [6], we know that there exists a unique pair (v, q) solution of (3.2) because
of the boundary condition ∂νννΦt = 0. In addition, we can readily get:
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Lemma 3.1. If v is the solution of (3.2), then

(3.3) ‖∇v(T )‖20 +
∫ T

0

‖vt(t)‖20dt ≤ Cε2

∫ T

0

(
‖Φtt(t)‖21

2 ,Γ + ‖∇Φt(t)‖23
2 ,Γ

)
dt.

In order to use (3.3) in proof of main theorems, we need an additional assump-
tion.

Assumption 5 (Regularity for Φ). There exists M > 0 such that
∫ T

0

(
‖Φtt(t)‖21

2 ,Γ + ‖∇Φt(t)‖23
2 ,Γ

)
dt ≤ M.

We now denote a new variable v̂ as a solution of the heat equation

(3.4)

v̂t −4v̂ = −∇ (q + εΦtt − ε4Φt) , in Ω,

v̂(0) = 0, in Ω,

v̂ = 0, on ∂Ω,

where q is the pressure on (3.2). Then the solutions of (3.2) and (3.4) satisfy

v̂ := v − ε∇Φt,

and so, in conjunction with A5 and (3.3), we arrive at

(3.5) ‖∇v̂‖0 + ‖∇v‖0 ≤ Cε.

We now define intermediate variables as

(3.6) Û := u + v̂ and U := u + v.

Then divergence free property of u yields the following lemmas:

Lemma 3.2 (Properties of Û and v̂).

∇· Û = ∇· v̂ = −τ4Φt,

Û = v̂ = 0, on ∂Ω.

Lemma 3.3 (Properties of U and v).

∇· U = ∇· v = 0,

U · ννν = v · ννν = ∂νννΦt = 0, on ∂Ω.

In order to define the intermediate momentum equation, we fix ε = τ from
now.

Lemma 3.4 (Intermediate momentum equation). The functions Û and U
satisfy

(3.7)
Û(tn+1)−U(tn)

τ
+ (u(tn+1) · ∇)u(tn+1) + µ4∇Φ(tn+1)

−µ4Û(tn+1) = f(tn+1) + Rn+1 + Qn+1,
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where

Rn+1 := −1
τ

∫ tn+1

tn

(t− tn)utt(t)dt, Qn+1:= δv(tn+1)− µ4v̂(tn+1).

In view of (3.5) and (3.6), we arrive at:

Lemma 3.5 (Error estimates of U and Û). If A1-5 hold, then we have

‖u−U‖1 +
∥∥∥u− Û

∥∥∥
1
≤ Cτ.

4. Error analysis for velocity

In this section, we carry out error estimate for velocity. Since we have
Lemma 3.5, it is enough to estimate

∥∥Un+1 − un+1
∥∥

0
≤ Cτ . In this proof, we

use that
(
ûn+1,un+1, pn+1, sn+1, ρn+1

)
as the solution of the Algorithm 1 and

denote the corresponding errors by

Ên+1 : = Û(tn+1)− ûn+1, εn+1 : = 4Φ(tn+1)− sn+1,

En+1 : = U(tn+1)− un+1, γn+1 := ρn+1 − τΦt(tn+1).

Before embarking on this discussion, we mention several useful properties of
the error functions. In view of Lemmas 3.2 and 3.3, we have

(4.1)
∇· En+1 = 0, Ên+1 = En+1 +∇γn+1,

En+1 · ννν = 0 and Ên+1 = 0 on ∂Ω.

In conjunction with (1.8), Lemma 3.2 derives

(4.2)
∇· Ên+1 = −τ4Φt(tn+1) + sn+1 − sn

= −
∫ tn+1

tn

(t− tn)4Φtt(t)dt− εn+1 + εn.

If we apply U(0) = Û(0) = u(0), then we readily get

E0 = Ê0 = 0.

As well as, (4.1) derives

(4.3)

∥∥En+1
∥∥2

0
=

〈
Ên+1 , En+1

〉
,

∥∥∥Ên+1
∥∥∥

2

0
=

∥∥En+1
∥∥2

0
+

∥∥∇γn+1
∥∥2

0
.

We use (4.1) again and apply Lemma 2.5 to obtain
∥∥4γn+1

∥∥2

0
=

∥∥∥∇· Ên+1
∥∥∥

2

0
≤

∥∥∥∇Ên+1
∥∥∥

2

0

and

(4.4)
∥∥∇En+1

∥∥2

0
≤ C

∥∥∥∇Ên+1
∥∥∥

2

0
+ C

∥∥4γn+1
∥∥2

0
≤ 2C

∥∥∥∇Ên+1
∥∥∥

2

0
.
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In light of the definition of εn+1 in (4.1), applying (4.2) and Lemma 2.5 yield

(4.5)

∥∥εn+1 − εn
∥∥2

0
=

∥∥4 (
Φ(tn+1)− Φ(tn)

)− (
sn+1 − sn

)∥∥2

0

≤ Cτ3

∫ tn+1

tn

‖4Φtt(t)‖20dt +
21
20

∥∥∥∇Ên+1
∥∥∥

2

0
.

We now start to estimate error of velocity.

Lemma 4.1 (Estimate
∥∥En+1

∥∥
0
). Let Assumptions A1-5 hold. Then we have

(4.6)

∥∥∥Ên+1
∥∥∥

2

0
+

∥∥En+1
∥∥2

0
+

N∑
n=0

∥∥En+1 −En
∥∥2

0
+ 2

N∑
n=0

∥∥∇γn+1
∥∥2

0

+
µ

2
τ

N∑
n=0

(∥∥∥∇Ên+1
∥∥∥

2

0
+

∥∥∇En+1
∥∥2

0

)
+ τµ

∥∥εN+1
∥∥2

0
≤ Cτ2.

Proof. We subtract (1.7) from (3.7) to get

(4.7)
Ên+1 −En

τ
− µ4Ên+1 = Rn+1 + Qn+1 − µ∇ (4Φ(tn+1)− sn

)

− (u(tn+1) · ∇)u(tn+1) + (un · ∇)ûn+1.

Multiplying (4.7) by 2τÊn+1 ∈ H1
0(Ω) and invoking (4.3) yields

(4.8)
∥∥En+1

∥∥2

0
− ‖En‖20 +

∥∥En+1 −En
∥∥2

0
+ 2µτ

∥∥∥∇Ên+1
∥∥∥

2

0
+ 2

∥∥∇γn+1
∥∥2

0
=

3∑

i=1

Ai,

where

A1 := 2τ
〈
Rn+1 + Qn+1 , Ên+1

〉
,

A2 := 2µτ
〈
4Φ(tn+1)− sn , ∇· Ên+1

〉
,

A3 := 2τ
(
N (un, ûn+1, Ên+1)−N (u(tn+1),u(tn+1), Ên+1)

)
.

We now estimate terms A1 to A3 separately. We use the Hölder inequality to
get

A1 ≤ µ

20
τ
∥∥∥∇Ên+1

∥∥∥
2

0
+Cµτ

∥∥∇v̂(tn+1)
∥∥2

0
+

C

µ

∫ tn+1

tn

(
τ2‖utt(t)‖2−1+‖vt(t)‖20

)
dt.

On employing (4.2), A2 becomes

A2 = 2µτ

〈
4 (

Φ(tn+1)− Φ(tn)
)

+ εn , −
∫ tn+1

tn

(t− tn)4Φtt(t)dt− εn+1 + εn

〉

≤ − 2τµ
〈
εn , εn+1 − εn

〉
+

µτ

20

∥∥εn+1 − εn
∥∥2

0
+ Cτ2µ‖εn‖20

+ Cτ2µ

∫ tn+1

tn

(
‖4Φt(t)‖20 + ‖4Φtt(t)‖20

)
dt.
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If we apply−2
〈
εn , εn+1 − εn

〉
= −

(∥∥εn+1
∥∥2

0
− ‖εn‖20 −

∥∥εn+1 − εn
∥∥2

0

)
in con-

junction with (4.5), then we obtain

A2 ≤− τµ
(∥∥εn+1

∥∥2

0
− ‖εn‖20

)
+ Cτ2µ‖εn‖20 +

22µτ

20

∥∥∥∇Ên+1
∥∥∥

2

0

+ Cµτ2

∫ tn+1

tn

(
‖4Φt(t)‖20 + ‖4Φtt(t)‖20

)
dt.

At the same time, the convection term A3 can be rewritten as A3 = A3,1 +A3,2

with

A3,1 :=− 2τN (u(tn+1)− u(tn)− v(tn) + En,u(tn+1), Ên+1),

A3,2 :=− 2τN (un, Ên+1 − v̂(tn+1), Ên+1).

Since
∥∥u(tn+1)

∥∥
2
≤ M , Lemma 2.4 gives

A3,1 ≤ Cτ
(∥∥u(tn+1)− u(tn)

∥∥
0

+ ‖v(tn)‖0 + ‖En‖0
) ∥∥u(tn+1)

∥∥
2

∥∥∥∇Ên+1
∥∥∥

2

0

≤ C

µ
τ2

∫ tn+1

tn

‖ut(t)‖20dt +
C

µ
τ

(
‖v(tn)‖20 + ‖En‖20

)
+

µ

20
τ
∥∥∥∇Ên+1

∥∥∥
2

0
.

To estimate A3,2, we first note N (un, Ên+1, Ên+1) = 0 from Lemma 2.3. We
next invoke

∥∥∇v̂(tn+1)
∥∥

0
≤ Cτ , which comes from (3.5), to get

A3,2 = 2τN (u(tn)− v(tn)−En, v̂(tn+1), Ên+1)

≤ Cτ
(‖u(tn)‖2

∥∥v̂(tn+1)
∥∥

0
+ ‖∇(v(tn) + En)‖0

∥∥∇v̂(tn+1)
∥∥

0

) ∥∥∥∇Ên+1
∥∥∥

0

≤ C

µ
τ
∥∥v̂(tn+1)

∥∥2

0
+

C

µ
τ3(‖∇v(tn)‖20 + ‖∇En‖20) +

µ

20
τ
∥∥∥∇Ên+1

∥∥∥
2

0
.

Inserting the above estimates A1 − A3 into (4.8) and summing over n from 0
to N lead to

∥∥EN+1
∥∥2

0
+

N∑
n=0

∥∥En+1 −En
∥∥2

0
+

3µ

4
τ

N∑
n=0

∥∥∥∇Ên+1
∥∥∥

2

0

+ µτ
∥∥εN+1

∥∥2

0
+ 2

N∑
n=0

∥∥∇γn+1
∥∥2

0

≤ Cµτ

N∑
n=0

∥∥∇v̂(tn+1)
∥∥2

0
+ Cµτ2

N∑
n=0

‖εn‖20

+
C

µ
τ

N∑
n=0

(
‖En‖20 + ‖v(tn)‖20 +

∥∥v̂(tn+1)
∥∥2

0

)
+

C

µ
τ3

(
‖∇En‖20 + ‖∇v(tn)‖20

)

+ Cτ2

∫ tN+1

t0

(
‖ut(t)‖20 + ‖utt(t)‖2−1 + ‖4Φtt(t)‖20 + ‖vt(t)‖20

)
dt.
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On employing (4.4), C
µ τ3

∑N
n=0 ‖∇En‖20 can be canceled with

µ

4

N∑
n=0

∥∥∥∇Ên+1
∥∥∥

2

0

if τ is small enough. Finally, we apply Lemma 3.1 and the discrete Gronwall
lemma to obtain (4.6) and to finish this proof. ¤

5. Error analysis for time-derivative of velocity

In this section, we carry out the error analysis for the time-derivative of
velocity which is stated in (1.13) of Theorem 1.3. To do this, we need to use
the following lemma.

Lemma 5.1. If v is the solution of (3.2), then we have
(5.1)

‖∇vt‖20 +
∫ T

0

‖vtt‖20dt ≤ Cε2

(
‖Φtt(0)‖22 +

∫ T

0

(
‖Φttt‖21

2 ,Γ + ‖∇Φtt‖23
2 ,Γ

)
dt

)
.

In order to use (5.1) in the proof of main theorems and treat high order time
derivative velocity terms, we need rather strong regularity assumption.

Assumption 6 (Additional regularity for Φ and u). There exists M > 0 such
that

max
0≤t≤τ

(
‖∇4Φt(t)‖20 + ‖utt(t)‖20 + ‖Φtt(t)‖22

)
≤ M,

∫ T

0

(
‖Φttt‖21

2 ,Γ + ‖∇Φtt‖23
2 ,Γ + ‖uttt‖2−1

)
dt ≤ M.

We start to evaluate errors at t = t1. It will be utilize in Lemma 5.3.

Lemma 5.2 (Initial errors). Suppose A1-6 hold. Then we have

(5.2)
∥∥∥Ê1

∥∥∥
2

0
+

∥∥E1
∥∥2

0
+ µτ

∥∥∥∇Ê1
∥∥∥

2

0
+

∥∥∇γ1
∥∥2

0
+

∥∥ε1
∥∥2

0
≤ Cτ4.

Proof. Since E0 = 0, (4.8) for the case n = 0 becomes

(5.3)
∥∥E1

∥∥2

0
+ µτ

∥∥∥∇Ê1
∥∥∥

2

0
+

∥∥∇γ1
∥∥2

0
=

3∑

i=1

Ai,

where
A1 := τ

〈
R1 + Q1 , Ê1

〉
,

A2 := µτ
〈
∇4Φ(t1) , ∇· Ê1

〉
,

A3 := τ
(
N (u0, û1, Ê1)−N (u(t1),u(t1), Ê1)

)
.

We now estimate terms A1 to A3 separately. We first remark
∥∥v̂(t1)

∥∥2

1
=

∥∥v̂(t1)− v̂(0)
∥∥2

1
≤ Cτ

∫ τ

0

‖v̂t(t)‖20dt
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to estimate A1 as

A1 ≤ µ

2
τ
∥∥∥∇Ê1

∥∥∥
2

0
+

1
6

∥∥∥Ê1
∥∥∥

2

0
+ Cτ3

∫ τ

0

‖utt(t)‖20dt

+ Cτ

∫ τ

0

‖vt(t)‖20dt + Cµτ

∫ τ

0

‖∇v̂t(t)‖20dt.

If we use Φ(0) = 0, then we can readily get

A2 = 2µτ
〈
4(Φ(t1)− Φ(0)) , ∇· Ê1

〉
≤ Cτ3

∫ τ

0

‖∇4Φt(t)‖20dt +
1
6

∥∥∥Ê1
∥∥∥

2

0
.

Since u(t0) = u0, Lemmas 2.3 and 2.4 yield

A3 = − 2τN (u(t1)− u(t0),u(t1), Ê1)− 2τN (u(t0), Ê1 − v̂(t1), Ê1)

≤ Cτ
(∥∥u(t1)− u(t0)

∥∥
1

∥∥u(t1)
∥∥

2
+

∥∥u(t0)
∥∥

2

∥∥v̂(t1)
∥∥

1

) ∥∥∥Ê1
∥∥∥

0

≤ Cτ3

∫ τ

0

‖ut(t)‖21dt + Cτ2
∥∥v̂(t1)

∥∥2

1
+

1
6

∥∥∥Ê1
∥∥∥

2

0
.

Inserting A1-A3 into (5.3) and applying (4.3), we arrive at

(5.4)
∥∥∥Ê1

∥∥∥
2

0
+

∥∥E1
∥∥2

0
+ µτ

∥∥∥∇Ê1
∥∥∥

2

0
+

∥∥∇γ1
∥∥2

0
≤ Cτ4.

If we know (4.5) and (5.4), then we can readily get
∥∥ε1

∥∥2

0
≤ Cτ2 and arrive at

(5.2). ¤

We now prove error for time-derivative of velocity.

Lemma 5.3 (Estimate
∥∥δEn+1

∥∥
0
). Suppose A1-6 hold. Then we have

(5.5)

∥∥∥δÊN+1
∥∥∥

2

0
+

∥∥δEN+1
∥∥2

0
+

N∑
n=1

∥∥δEn+1 − δEn
∥∥2

0
+ 2

N∑
n=1

∥∥∇δγn+1
∥∥2

0

+
µ

2
τ

N∑
n=1

(∥∥∥∇δÊn+1
∥∥∥

2

0
+

∥∥∇δEn+1
∥∥2

0

)
+ µτ

∥∥δεn+1
∥∥2

0
≤ Cτ2.

Proof. Subtracting two consecutive expressions (4.7), multiplying by 2δÊn+1 ∈
H1

0(Ω), and arguments leading to (4.3), yield

∥∥δEn+1
∥∥2

0
−‖δEn‖20+

∥∥δEn+1−δEn
∥∥2

0
+2

∥∥∇δγn+1
∥∥2

0
+2µτ

∥∥∥∇δÊn+1
∥∥∥

2

0
=

3∑

i=1

Ai,
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where

A1 := 2τ
〈
δRn+1 + δQn+1 , δÊn+1

〉
,

A2 := 2µτ
〈
4δΦ(tn+1)− δsn , ∇· δÊn+1

〉
,

A3 := − 2N (u(tn+1),u(tn+1), δÊn+1) + 2N (u(tn),u(tn), δÊn+1),

+ 2N (un, ûn+1, δÊn+1)− 2N (un−1, ûn, δÊn+1).

We will estimate Ai separately. We can readily get

A1 ≤ µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
+

C

µ

∫ tn+1

tn−1

(
τ2‖uttt‖2−1 + ‖vtt‖20

)
dt +

C

µ

∫ tn+1

tn

‖∇vt‖20dt.

On employing (4.2) and (4.5), A2 becomes

A2 = − 2µτ
〈4 (

δΦ(tn+1)− δΦ(tn)
)

+ δεn , −τ4δΦt(tn+1) + δ(sn+1 − sn)
〉

≤ − µτ
(∥∥δεn+1

∥∥2

0
− ‖δεn‖20

)
+

23µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
+ Cµτ2‖δεn‖20

+ Cµτ2

∫ tn+1

tn−1
(‖4Φtt(t)‖+ ‖4Φttt(t)‖) dt.

On the other hand, an elementary manipulation rewrite A3 as A3 =
∑6

i=1 A3,i

with

A3,1 :=− 2N (u(tn+1)− 2u(tn) + u(tn−1),u(tn+1), δÊn+1),

A3,2 :=− 2N (u(tn)− u(tn−1), Ên+1 − v̂(tn+1), δÊn+1),

A3,3 :=− 2N ((En −En−1)− (v(tn)− v(tn−1)), ûn+1, δÊn+1),

A3,4 :=− 2N (En−1 − v(tn−1),u(tn+1)− u(tn), δÊn+1),

A3,5 :=− 2N (un−1, (Ên+1 − Ên)− (v̂(tn+1)− v̂(tn)), δÊn+1),

A3,6 =− 2N (u(tn)− u(tn−1),u(tn+1)− u(tn), δÊn+1).

In estimate A3, we will use frequently Lemma 2.4 without notice. Applying∥∥u(tn+1)
∥∥

2
≤ M , we have

A3,1 ≤ C
∥∥u(tn+1)− 2u(tn) + u(tn−1)

∥∥
0

∥∥u(tn+1)
∥∥

2

∥∥∥∇δÊn+1
∥∥∥

0

≤ C

µ
τ2

∫ tn+1

tn−1
‖utt(t)‖20dt +

µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
.

Since we have
∥∥∥Ên+1 − v̂(tn+1)

∥∥∥
0
≤ Cτ which is the result of Lemma 4.1, A3,2

becomes

A3,2 ≤ C

µ
τ2

∫ tn+1

tn

‖ut(t)‖22dt +
µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
.
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Rewriting ûn+1 = u(tn+1)+v̂(tn+1)−Ên+1, applying Λ :=
∥∥∥v̂(tn+1)− Ên+1

∥∥∥
1

≤ Cτ
1
2 which is obtained from the result of Lemma 4.1 lead us

A3,3 ≤ Cτ
(
‖δEn − δv(tn)‖1Λ + ‖δEn − δv(tn)‖0

∥∥u(tn+1)
∥∥

2

)∥∥∥∇δÊn+1
∥∥∥

0

≤ C

µ
τ2

(
‖∇δEn‖20 + ‖∇δv(tn)‖20

)
+

C

µ
τ

(
‖δEn‖20 + ‖δv(tn)‖20

)

+
µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
.

Likewise, we use
∥∥En−1 − v(tn−1)

∥∥
0
≤ Cτ again to get

A3,4 ≤ C

µ
τ2

∫ tn+1

tn

‖ut(t)‖20dt +
µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
.

We note here N (un−1, δÊn+1, δÊn+1) = 0 and un−1 = u(tn−1) − Ên−1 +
v̂(tn−1). If we apply

∥∥∥Ên−1 − v̂(tn−1)
∥∥∥

1
≤ Cτ

1
2 again, then A3,5 becomes

A3,5

= 2τN (u(tn−1)− Ên−1 + v̂(tn−1), δv̂(tn+1), δÊn+1)

≤ Cτ
(∥∥u(tn−1)

∥∥
2

∥∥δv̂(tn+1)
∥∥

0
+

∥∥∥Ên−1− v̂(tn−1)
∥∥∥

1

∥∥δv̂(tn+1)
∥∥

1

)∥∥∥∇δÊn+1
∥∥∥

0

≤ µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
+

C

µ
τ

(∥∥δv̂(tn+1)
∥∥2

0
+ τ

∥∥∇δv̂(tn+1)
∥∥2

0

)
.

We impose
∥∥u(tn)− u(tn−1)

∥∥
1
≤ Cτ to have

A3,6 ≤ C

µ
τ2

∫ tn+1

tn

‖ut(t)‖21dt +
µ

20
τ
∥∥∥∇δÊn+1

∥∥∥
2

0
.

In conjunction with τ
∑N

n=1

∥∥δv(tn+1)
∥∥2

0
≤ ∫ tN+1

t0
‖vt(t)‖20dt, collecting all

these estimates and summing over n from 1 to N lead to

∥∥δEN+1
∥∥2

0
+

N∑
n=1

∥∥δEn+1 − δEn
∥∥2

0
+

µ

2
τ

N∑
n=1

∥∥∥∇δÊn+1
∥∥∥

2

0
+ µτ

∥∥δεN+1
∥∥2

0

+ 2
N∑

n=1

∥∥∇δγn+1
∥∥2

0

≤
∥∥δE1

∥∥2

0
+ µτ

∥∥δε1
∥∥2

0
+ Cµτ2

N∑
n=1

‖δεn‖20

+
C

µ

N∑
n=1

(
τ2‖∇δEn‖20 + τ‖δEn‖20

)
+

C

µ

∫ tN+1

t0

(
‖vtt‖20 + ‖∇vt‖20‖∇v̂t‖20

)
dt

+ C(µ)τ2

∫ tN+1

t0

(
‖ut‖22 + ‖utt‖20 + ‖uttt‖2−1 + ‖4Φtt‖20 + ‖∇φttt(t)‖20

)
dt.
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We note that Lemma 5.2 leads
∥∥δE1

∥∥2

0
+ µτ

∥∥δε1
∥∥2

0
≤ Cτ2 and that (4.4) de-

rives Cµτ2
∑N

n=1 ‖∇δEn‖20 cancellation with µ
4 τ

∑N
n=1

∥∥∥∇δÊn+1
∥∥∥

2

0
, if τ is small

enough. The discrete Gronwall lemma allows us to remove τ
∑N

n=1 ‖δEn‖20 +
Cµτ2

∑N
n=1 ‖δεn‖20. Finally, we apply (4.3) to obtain (5.5) and complete this

proof. ¤

6. Error analysis for pressure

The goal of this section is to estimate the pressure error for Algorithm 1.
To do this, we first derive the following equation by inserting (1.9) into (1.7).

(6.1)
un+1 − un

τ
+(un ·∇)ûn+1+∇pn+1−µ∇(sn+1−sn)−µ4ûn+1 = f(tn+1).

We now use Taylor theorem to derive

(6.2)
u(tn+1)− u(tn)

τ
+ (u(tn+1) · ∇)û(tn+1) +∇p(tn+1)

− µ4u(tn+1) = f(tn+1) + Rn+1,

where Rn+1 is defined at (3.7). If we use notations

Ξ̂n+1 := u(tn+1)− ûn+1, Ξn+1 := U(tn+1)−un+1, en+1 := p(tn+1)−pn+1,

then subtracting (6.1) from (6.2) yields

(6.3)
Ξn+1 − Ξn

τ
+∇en+1 − µ4Ξ̂n+1 = Rn+1 − µ∇(sn+1 − sn)

− (u(tn+1) · ∇)u(tn+1) + (un · ∇)ûn+1.

This hinges on the error estimate for velocity in §4 and §5.

Lemma 6.1 (Rate of convergence for pressure). Suppose A1-6 hold. Then we
have

(6.4)
∥∥en+1

∥∥
0
≤ Cτ.

Proof. We recall the existence of β > 0 such that (inf-sup condition) [6]

(6.5) β‖q‖0 ≤ sup
w∈H1

0(Ω)

〈q , ∇· w〉
‖∇w‖0

, ∀q ∈ L2
0(Ω).

Consequently, it suffices to estimate
〈
en+1 , ∇· w〉

in terms of ‖∇w‖0. Multi-
plying (6.3) by w ∈ H1

0(Ω), we end up with

(6.6)
〈
en+1 , ∇· w〉

=
3∑

i=1

Ai,
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where
A1 =

〈
δΞn+1 , w

〉
+ µ

〈
∇Ξ̂n+1 , ∇w

〉
− 〈

Rn+1 , w
〉
,

A2 =− µ
〈
sn+1 − sn , ∇· w〉

,

A3 =N (
u(tn+1),u(tn+1),w

)−N (
un, ûn+1,w

)
.

We now proceed to estimate each term A1 to A3 separately. In view of Hölder
inequality, A1 becomes

A1 ≤ C
(∥∥δΞn+1

∥∥
0

+ µ
∥∥∥∇Ξ̂n+1

∥∥∥
0

+ τ‖utt‖−1

)
‖∇w‖0.

On other hand, we have

A2 = µ
〈∇· ûn+1 , ∇· w〉

= −µ
〈
∇· Ξ̂n+1 , ∇· w

〉
≤ C

∥∥∥∇Ξ̂n+1
∥∥∥

0
‖∇w‖0.

The remaining term A3 can be further split as follow:

A3 = N (u(tn+1)− u(tn) + Ξn,u(tn+1),w) +N (u(tn)− Ξn, Ξ̂n+1,w)

and it can be bounded by

A3 ≤ C
(∥∥u(tn+1)− u(tn)

∥∥
0

+ ‖Ξn‖0
) ∥∥u(tn+1)

∥∥
2
‖∇w‖0

+ C (‖u(tn)‖1 + ‖Ξn‖1)
∥∥∥Ξ̂n+1

∥∥∥
1
‖∇w‖0.

Inserting the estimates for A1 to A3 back into (6.6), and employing (6.5), we
obtain

β
∥∥en+1

∥∥
0
≤ C

(∥∥δΞn+1
∥∥

0
+ µ

∥∥∥∇Ξ̂n+1
∥∥∥

0
+ τ‖utt‖−1

)

+ C
(∥∥u(tn+1)− u(tn)

∥∥
0

+ ‖Ξn‖0
)
.

Finally, combining the results of Lemmas 4.1 and 5.3, we obtain (6.4) and
complete the proof. ¤
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