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Optimal Lœ Error Estimates

for Galerkin Approximations to Solutions

of Two-Point Boundary Value Problems *

By Jim Douglas, Jr., Todd Dupont and Lars Wahlbin

Abstract.   A priori error estimates in the maximum norm are derived for Galerkin ap-

proximations to solutions of two-point boundary valué problems.   The class of Galer-

kin spaces considered includes almost all (quasiuniform) piecewise-polynomial spaces

that are used in practice.   The estimates are optimal in the sense that no better rate

of approximation is possible in general in the spaces employed.

1.   Introduction.   Consider the two-point boundary value problem

-iflix)y') + bixV + dix)y = fix),      xGI=iO, 1), y(0) = y(l) = 0,

or, in weak form, the problem of findings G H   such that

(1.1) (ay, v') + iby', v) + idy, v) = (/, u),      vGHx.

To seek an approximate solution to the problem (1.1), consider a piecewise-

polynomial spline space Mrk, —I < k <r, defined as

Mrk = {vG C*(I): v\j. G nr(/,.),  i = 1,- • •,N}.

Here, I( = ix¡_ j, *,), 0=jco<x1 < • • • <xN_x< xN = 1, and nr(/f) denotes

the set of polynomials on I¡ of degree not greater than r.  It is assumed that, as the

meshes vary, they are quasiuniform ;   i.e., with h¡ = x¡ — x¡_ ■, there exists a con-

stant c0 such that

(1.2) «M**i*T1<co-

Let h = max,- h¡.

The approximate solution Y to (1.1) is sought in the space

M = h = Mí H {v: u(0) = u(l) = 0}

according to the rule

(1.3) iaY', V) + ibY', V) + idY, V) = if, V),      VG M.
o

Here, it is assumed that 0 < k < r so that MC//1.
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Assume throughout the remainder of the paper that

(i) a(x)>c. > 0, xGI,

(ii) a,a',b,b',deL„,

(iii)  for all /G L2, there exists a unique y G H satisfying (1.1).

From these assumptions it follows that  (1.3) has a unique solution Y G M for h suffi-

ciently small (Schatz [5] ; see also [3] for a proof).   For h sufficiently small it is

known (Nitsche [4] ) that

(1.4) Hy - Y\\Li + /illy - Y\\Hl < c2hr+l\\y\\Hr+l,

where c2 depends on the L„-norms of the functions specified in assumption (ii).   For

simplicity, we shall also assume that the particular y of (1.1) that we shall approximate
O

is an element of Wj'l CMIX.

Under the assumptions above, our result for the error in the maximum norm is:

Theorem 1.1.  There exists a constant c

c = c(c0,Cl,c2, Wa\\wL, \\b\\Hl, \\d\\L2)

such that

lly-rllLo<j<c/i'+1lly w/•+!•

Theorem 1.1 was proved for k = 0, i.e.,continuous piecewise-polynomial splines

in [6] and, in that case, without the assumption of quasiuniformity.

Outline of the Paper.   In Section 2, the notation used is defined, and a basic ex-

tension lemma is proved.  In Section 3, the problem is reduced to the special case

when a(x) s l, h(x) = d(x) = 0.  In Section 4, it is first noted that, in this case, the
o

derivative of the elliptic projection W of y into Uk is the L2 -projection of y' into

Ukz\ •  An estimate for the error in the L2 -projection in the maximum norm is de-

rived, giving an estimate for y — W1.  The proof of this estimate uses the extension

lemma to prove that the L2-projection of a function of small support decreases rapidly

outside that support.  The estimate fory' — W' then gives an estimate for y — W via a

duality argument.

Remark 1.1. The result (4.4) below (stability in the maximum norm of the L2-

projection) also gives estimates for the error in the maximum norm for smooth spline

interpolation, see [1, Lemma 2.1].

2.  Notation and an Extension Lemma.   For an open interval /, let HS(J) and

WS(J) denote the closure of C°°(/) in the norms

■» W> = ( ¿ lll/0|lÍ2 w)       and     \\v\\ws(J) = Z  ^\(Jy
\i=0 I y '=0

respectively. When J = I = (0,1), we drop the dependence on the interval in the

notation.

We note that
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(2.1) Hull,     <2%bll„,.
Ia CO H l

° °1

Let HsiJ) denote the closure of C^(J) in the norm II • §Hs(Jy tnen f°r v G ™>

(2.2) \\v\\Hl<2A\\v'\\L2.

Let (u, u>) denote /' v(x)w(x)dx, and for I, l, m El, let   ,

/ft /, m) = (/,._, U /,_|+. U • - • U //+m) n /,

where • " ,I_2,I_1,I0,IN+i,' • ' are arbitrarily defined.

The letters c and C will denote constants, not necessarily the same at each occur-

rence unless indexed.

The rest of this section is devoted to the proof of the following lemma, which allows

us to construct appropriate piecewise-polynomial extensions.

Lemma 2.1. Given rand k, —Kk<r, and Wk subject to (1.2), there exist con-

stants n = n(k, r)El and c = c(c0, k, r) such that, given VE Hr(I¡), there exists a func-

tion f¡ E JK£ such that

ft=Von /,.;    supp/,. C /(/, „ , „);    lft\L% < clKl^,.

Proof. The case k = — 1 is trivial, since we can set/ = 0 outside I¡. Assume 0 < k

<r. We consider the problem of extending Kto the right of/(- to fulfill the conditions of

the lemma. Let (k + 1 )/(r — k) = n — o, where n is an integer and 0 < o < 1. Put s =

air — k). Assume for simplicity that i + n<N

Define fE M^X-X,-, 1) (in obvious notation) by the requirements

(2.3) f=0    outside Ii + n,

(2.4) fMfy,) = V<%i),      1=0, •••,*,

(2-5) f0)(xi+n) = 0,      l=0,---,k + s.

We must show that these requirements determine/on (x¡, 1).  Let

r

f\im = Z fj^x-Xm^i)1,      m = i+ 1, •••,«• + «.
/ = 0

We have n(r + 1) coefficients to determine and the requirements

"//,/+! = ^0(*/)>    / = o, ••-,*,

!)•••(/-/+ l)4m(^ -*m-iy_,-«/|^+l = 0,

/ = 0, • • •, k; m = i + 1, •••,/' + « — 1,

i) •••(/-/ + !)//,,+„ (*,+„ ~ **+,,_ i)'~' = o,

/ = 0, • • • , k + s,

(2.6)

(2.7)      /=o

I/o
(2.8)      /-°
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to fulfill. These requirements total

k + I + in - l)(k + 1) + k + s + I = n(k + l)+ (k + s + I)

= n(r + 1) + n(k - r) + k + s + 1 = n(r + 1),

since s = o(r — k) = nfr — k) — ik + 1 ).

Hence, it suffices to show that if V^'\x¡) = 0, / = 0,* • •, k, then/ = 0. for this,

consider the continuous function/^: This function is a piecewise polynomial of degree

not greater than r — k. On each of Ii+2," •, /,-+„_ 1 where f^k^ ^ 0, it has at most

r — k roots. Similarly, if f-k^ ^ 0 on the open interval I¡+., it has at most r~k~\

roots there, and onIi+n, it has at most r — k — s — 1 roots. Altogether, on subintervals

where fik^ f- 0, it has at most

(n - 2)(r - k) + r - k - I + r - k - s - I = n(r - k) - 2 - s

= (n-o)(r-k)-2 = k-l

roots not coinciding with x¡ or xi+ n. Hence, we can find a polynomial p(x) of degree

k — 1 such that

fik)(x)p(x) > 0, x¡ <x <x,.+ „,     and    f<-k\x)p(x) > 0    if /<fc>(x) # 0.

However, by repeated partial integration, we find that, since f^\x¡)=f^\xi+n) = 0,

Jxi + n   ,, .
/<fcV<ix = 0.

*/

Thus,/<k) = 0,and/=0. Hence, (2.3)-(2.5) determine /6 Mrk(x¡, 1).

To establish the norm inequality of the lemma, multiply (2.6)-(2.8) by h'm +.

(nm + 1 =xm + i ~xm). The corresponding linear system of equations for the quantities

Sj,m ~ Jj.m   m ls:

(2.6)' »g,,i+i = V(l)(Xi)hli+i,      l = 0,---,k,

(2.7)'      ¿W-«)-«-'*'^)'*--«*-«"*
I = 0, . . . , k; m = i + 1, . . . , /' + n — 1,

(2.8)' Zi(j-l)-'-Q-l+l)gj,i+n = 0'    l = 0,---,k + s.
j=0

Since the determinant of this system is never zero, and since, by (1.2), hm+1/hm varies

over a compact interval, it follows that there exists a constant c = (c0) such that

max \f, mhÍm\<c max I V(l)(xf)tii+ ! |.
m.i      ' i

Since

'/^2((*/,xf+B))<^max|//<mA/Ml
and m-'
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max\vW(xi)hli\<chr*\\V\\L2(I¡),

it follows that

(2-9) «/Wi(1><cSKlW

Apply the analogous construction leftwards; this concludes the proof.

3.   Comparison of Different Elliptic Projections.   We shall consider three different
o

elliptic projections, Y, Z, and W, of the solution y of (1.1) into M = M£.  Here, Y is

given by (1.3) or, equivalently, by

(3.1) iaiy'-Y'),V) + ib(y'-Y'),V) + id(y-Y),V)=0, VGM,

and Z and W axe given by

(3.2) (aiy'-Z'),V) = 0,     VGM,

(3.3) (y'-W',V)=0,     VGM.

Since the bilinear forms corresponding to (3.2) and (3.3) are positive definite on

M, Z and W are defined.  We shall prove that the three elliptic projections defined above

differ in//1 by Oihr+1).

Lemma 3.1.   There exists a constant c,

c = ciCl,c2, \\b\\Hl,\\d\\L2),

such that \\Y-Z\\Hl <clly- yllLr

Proof  (cf. [6] ).  We have

0 = iaiy' - Y'), V) + ibiy' - Y'), V) + idiy - Y), V)

= iaiZ' - Y), V) + 0y-Y),dV- (ÔV)').

Choosing V = Z — Y, we obtain

c.wz' - r'ii|2 < iiy - Y\\L2i\\d\\L2\[z - yiiLoo + \\b\\Ljz' - y\2+ iifc\2nz - yiiL j

< (\\d\\L2 + ML„ + He'll ¿2)iiy - y\\L2\\z' - r\2.

Lemma 3.2.   There exists a constant c, c = cic0, cT, Hall   ,), such that

\\Z-W\\Hi<ch\\y-W\\Hi.

Proof.   Let ¿> = Z — W.  From the definitions of Z and W, we see that for

c.W\\2L2<iaû',û') = iaiy-W)',û')=iy'-W',aû'-x')-

Since y — W' has zero average value, we can use instead of x' any v G M* = WkZ\-

Thus

(3.4) Wll2<cly-WlHl infjlai?'-^ll¿2.
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In order to prove the result, it suffices to show that for VG M*

(3.5) inf WaV-vW.    <ch\\V\\j   .
„eM* L2 h2

In order to establish (3.5), we first remark that there is a constant c such that, if

WG C*- !(/) and W\¡ G //r(/¿), / = 1, • • • , N, then

/ n y
(3.6) inf II W - v\\     < chr\\ W(r)W,   : =      £ 0 W& II? „ ,

This is easily seen by adding a function v. G M* to W so that W + v.GFF and

then noting that

inf IIIV-v II,   =   inf   WW+ v, -v\\j
,er h2    ven* l        Ll

<chr\\iW + v1)(r)WL2 = chlW<r\2.

Next, note that there exists a function \p G M* such that

(3.7) lia-Vllz,oo<clla'llLoo/z

and

(3.8) ll\¡/(/)|lLoo<clla'llLoo^1-',      /= l,2,---,r-1;

this is easily seen by modifying a and applying an estimate like (4.1) of the next

section.

Thus, from (3.6), (3.7) and (3.8), we see that for VG M*

inf laV-xh, < »(«-Wl, +   inf HV - xWL.
x<=M 2 2      x=H* 2

<ch\\V\\L    +chrZ U°\jVir-,\
i=i

<ch WVh2,

where we used the quasiuniformity of the mesh to estimate the terms IIK^-'^  .

4.   Proof of Theorem 1.1.  It is sufficient, as a consequence of the reduction of

the last section, to prove Theorem 1.1 in the case a=l,Z> = ri=0. We begin by

summarizing the approximation-theoretic properties of the space M;, — 1 < / < s, that

we need.

Lemma 4.1 (de Boor [2] ). There exists a constant c such that, ifuG W^1
_ o o

and vG W] n H\ there exists x E M?, and \p E M* such that

(4.1) ll«-XllLoo<c^+1llMllfvi+i,

(4.2) \\v-\¡j\\wi fichIIv\\W2.
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Let Pu denote the L2 -projection of a function u G L2 into M;, — 1 < / < s, de-

fined by

(Pu-u, V) = 0,      VGMj.

Lemma 4.2.   There exists a constant c = c(c0) such that, given u G W^ l,

WPu-uW,    <chs+x\\u\\ws+\.
•L~ Woo

The proof of this lemma is postponed until the end of this section.

Remark 4.1.  It is easily seen by duality using Lemma 4.2 that P gives optimal

approximation in the/,rnorm. It then follows from interpolation that P gives optimal

approximation in any L -norm, 1 <p <°°.

Lemma 4.3.  There exists a constant c = c(c0) such that, given y G WrJ^ ' n H1,

and with W defined by (3.3),

Wy-W^Laa<chr+HyWwr+i.

Proof.   Since (/ ~~ W, 1) = 0, (3.3) implies that W1 is the ¿2-projection of y

into U,kZ\-  By Lemma 4.2, it follows that

(4.3) |/-tflL„<<*'l/lir5;

We now apply a duality argument [4].  Given g E L., let G be such that G" =

-g, G(0) = Gil) = 0. Then

(y-W,g) = (y'- W', G') = iy'- W, G' - X'),      X £ M-

By Lemma 4.1, x can be chosen so that

\iy-W,g)\<ch\\y'-W\\LJg\\Li,

and it follows from (4.3) that

\\y-W\\L    =     sup     \iy-W,g)\<chr+1\\y\\wr+1.
lili !=i w°°

Proof of Theorem 1.1.  We have  (cf. (3.2), (3.3))

lly - FIL    < ||y - W\\,     + Il Y - Z\\,     + HZ - W\\L   .

Using (2.1), Lemmas 3.1, 3.2, and 4.3, and (1.4) and its counterpart for y — IV, the

theorem follows.

It remains to prove Lemma 4.2.

Proof of Lemma 4.2.   Let x be as in (4.1).   Since P\ = x, we have

«^ - "Hloo < II« - xllLoo + \Ku - x)iLae,

and hence it suffices to show that there exists a constant c such that

(4.4) \Pu\j   < ell«II,   ,      «£¿..

Let u = Sí= ! u¡, where

"'•w = io,
u(x),       X E I¡,

x £ /,-.
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Consider Pu¡ on Im, m < i.  By Lemma 2.1, there exists fim E M* which agrees with

Pu i on Im, and satisfies

iiAJIl2<^A2(/„,)-

Since the ¿2-projection Pu¡ minimizes the ¿2-norm of the difference V — u, for Kin

M;, and since u¡ = 0 outside It, it follows that Pu¡ minimizes the L2((0,xm_1))-norm

of elements of H, agreeing with Pu¡ on Im.  Thus,

Hence, withpim = U^Ml2 (/„,), we have

(4-5) Z   Pi,<*^C4Pi,m>        »»<'•
a<m

From this it follows that

(4.6) Pi,m>cí1(l+c-¡1)m-q-1P,,q,      0<q<m<i,

which we proceed to show by induction.  Assume that (4.6) holds for q, m such that

0 < q < m < L.  (Note that for L = 1, i.e., m = 1 and ¡7 = 0, (4.6) is immediate

from (4.5).)  For any q < L + 1, we then obtain by (4.5) and the induction hypoth-

esis

Pi,L + l>C-AlZ    Pi,«>C41(     Z       Pi,a+Pi.q)
a<L \q<a<L /

>c-i1PUq( Z   e;1(i + ^1)a_<?~1 + 1)
\q<a<L /

= c-4lPi,q(l+c-l)^+l^-1.

This establishes (4.6).

A similar result holds for intervals to the right of/,-, and, taking m = i in (4.6),

we find that there exist positive constants c and C, depending only on c0, such that

(4.7) in*iÍL2(lq)<Ce-eU-q{lFuA2W-

Since Pu is a polynomial of fixed degree on I , we have

WP»h„(iq)<</2]lPuh2(iqy

Using this, (1.2), (4.7), and the fact that ^Pu\\L   < """x.2» we have> for ^ 1'

^Ch-^Z^'-^^A.d^Ch-^Ze-^^WuA,
i '

<Ch-1AZe-cU-q^Wui\\Loo<c\\u\\L^.
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This proves (4.4) and establishes the lemma.
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