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OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE

METHODS FOR THE GROSS-PITAEVSKII EQUATION

WITH ANGULAR MOMENTUM ROTATION

WEIZHU BAO AND YONGYONG CAI

Abstract. We analyze finite difference methods for the Gross-Pitaevskii equa-
tion with an angular momentum rotation term in two and three dimensions
and obtain the optimal convergence rate, for the conservative Crank-Nicolson
finite difference (CNFD) method and semi-implicit finite difference (SIFD)
method, at the order of O(h2 + τ2) in the l2-norm and discrete H1-norm with

time step τ and mesh size h. Besides the standard techniques of the energy
method, the key technique in the analysis for the SIFD method is to use the
mathematical induction, and resp., for the CNFD method is to obtain a priori
bound of the numerical solution in the l∞-norm by using the inverse inequality
and the l2-norm error estimate. In addition, for the SIFD method, we also de-
rive error bounds on the errors between the mass and energy in the discretized
level and their corresponding continuous counterparts, respectively, which are
at the same order of the convergence rate as that of the numerical solution
itself. Finally, numerical results are reported to confirm our error estimates of
the numerical methods.

1. Introduction

In this paper, we analyze different finite difference approximations of the Gross-
Pitaevskii equation (GPE) with an angular momentum rotation term in d-
dimensions (d = 2, 3) for modeling a rotating Bose-Einstein condensate (BEC)
[35, 12]:

(1.1)
i∂tψ(x, t) =

[
−1

2
∇2 + V (x)− ΩLz + β|ψ(x, t)|2

]
ψ(x, t),

x ∈ U ⊂ R
d, t > 0,

with the homogeneous Dirichlet boundary condition

(1.2) ψ(x, t) = 0, x ∈ Γ = ∂U, t ≥ 0,

and initial condition

(1.3) ψ(x, 0) = ψ0(x), x ∈ U.

Here t is time, x = (x, y) in two dimensions (2D), i.e., d = 2, and resp., x = (x, y, z)
in three dimensions (3D), i.e., d = 3, are the cartesian coordinates, U is a bounded
computational domain, ψ := ψ(x, t) is the complex-valued wave function, Ω is a
dimensionless constant corresponding to the angular speed of the laser beam in
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experiments, β is a dimensionless constant characterizing the interaction (positive
for repulsive interaction and negative for attractive interaction) between particles
in the rotating BEC. V (x) is a real-valued function corresponding to the external
trap potential and it is chosen as a harmonic potential, i.e., a quadratic polynomial,
in most experiments. Lz is the z-component of the angular momentum defined as

(1.4) Lz = −i(x∂y − y∂x) = −i∂θ,

where (r, θ) and (r, θ, z) are the polar coordinates in 2D and cylindrical coordinates
in 3D, respectively. In fact, since the first experimental realization of BEC in 1995
[5, 18] and the observation of quantized vortices in rotating BEC [1, 14, 32] which
is related to superfluidity, theoretical studies of BEC and quantized vortices based
on the above GPE have stimulated great research interests in quantum physics and
applied and computational mathematics communities.

Extensive mathematical and numerical studies have been carried out for the
above GPE (1.1) in the literature. Along the mathematical front, for the derivation,
well-posedness and dynamical properties of the GPE (1.1) with (i.e., Ω �= 0) and
without (i.e., Ω = 0) an angular momentum rotation term, we refer to [15, 23, 24, 29]
and the references therein. In fact, it is easy to show that the GPE (1.1) conserves
the total mass

(1.5) N(ψ(·, t)) :=
∫
U

|ψ(x, t)|2 dx ≡ N(ψ(·, 0)) = N(ψ0), t ≥ 0,

and the energy
(1.6)

E(ψ(·, t)) :=
∫
U

[
1

2
|∇ψ|2 + V (x)|ψ|2 + 1

2
β|ψ|4 − Ωψ̄Lzψ

]
dx ≡ E(ψ0), t ≥ 0,

where f̄ denotes the conjugate of f . Along the numerical front, different effi-
cient and accurate numerical methods including the time-splitting pseudospectral
method [7, 25, 36, 37], finite difference method [2, 3], and Runge-Kutta or Crank-
Nicolson pseudospectral method [14, 20] have been developed for the GPE without
and with [6, 9, 11] the angular momentum rotation term. Of course, each method
has its advantages and disadvantages. For numerical comparisons between different
numerical methods for GPE without angular momentum rotation, or in a more gen-
eral case, for the nonlinear Schrödinger (NLS) equation, we refer to [8, 17, 31, 39]
and references therein.

Error estimates for different numerical methods of NLS, e.g. the GPE (1.1) with-
out the angular momentum rotation (Ω = 0) and/or d = 1, have been established in
the literatures. For the analysis of splitting error of the time-splitting or split-step
method for NLS, we refer to [13, 19, 30, 33, 38] and the references therein. For the
error estimates of the implicit Runge-Kutta finite element method for NLS, we refer
to [4, 34]. Error bounds of conservative Crank-Nicolson finite difference (CNFD)
method for NLS in 1D was established in [16, 21, 22, 41]. In fact, their proofs for
CNFD rely strongly on the conservative property of the method and the discrete
version of the Sobolev inequality in 1D

‖f‖2L∞ ≤ ‖∇f‖L2 · ‖f‖L2 , ∀f ∈ H1
0 (U) with U ⊂ R,

which immediately imply an a priori uniform bound for ‖f‖L∞ . However, the ex-
tension of the discrete version of the above Sobolev inequality is no longer valid
in 2D and 3D. Thus the techniques used in [16, 21] for obtaining error bounds
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of CNFD for NLS only work for conservative schemes in 1D and they cannot be
extended to either high dimensions or nonconservative finite difference schemes.
To our knowledge, no error estimates are available in the literature of finite differ-
ence methods for NLS either in high dimensions or for a non-conservative scheme.
However, the GPE with the angular momentum rotation is either in 2D or 3D
[6, 9, 11, 35]. The main aim of this paper is to use different techniques to estab-
lish optimal error bounds of CNFD and the semi-implicit finite difference (SIFD)
method for the GPE (1.1) with the angular momentum rotation in 2D and 3D.
Based on our results, both CNFD and SIFD have the same second-order conver-
gence rate in space and time. In our analysis, besides the standard techniques of
the energy method, for SIFD, we adopt the mathematical induction; for CNFD,
we first derive the l2-norm error estimate and then obtain an a priori bound of the
numerical solution in the l∞-norm by using the inverse inequality.

The paper is organized as follows. In section 2, we present SIFD and CNFD for
the GPE with the angular momentum rotation and state our main error estimate
results. In section 3, optimal error bounds of SIFD for GPE are established by using
the energy method and the mathematical induction; and optimal error estimates
of CNFD for GPE is built in section 4. In section 5, extensions of our results to
other cases are discussed. In section 6, numerical results are reported to confirm
our error estimates. Finally, some conclusions are drawn in section 7. Throughout
the paper, we adopt the standard Sobolev spaces and their corresponding norms,
let C denote a generic constant which is independent of mesh size h and time step
τ , and use the notation p � q to represent that there exists a generic constant C
which is independent of time step τ and mesh size h such that |p| ≤ C q.

2. Finite difference methods and main results

In this section, we introduce SIFD and CNFD methods for the GPE (1.1) in 2D
on a rectangle U = [a, b]× [c, d], and resp., in 3D on a cube U = [a, b]× [c, d]× [e, f ],
and state our main error estimate results.

2.1. Numerical methods. For the simplicity of notation, we only present the
methods in 2D, i.e., d = 2 and U = [a, b] × [c, d] in (1.1). Extensions to 3D are
straightforward, and the error estimates in l2-norm and discrete H1-norm are the
same in 2D and 3D. Choose time step τ := Δt and denote time steps as tn := n τ
for n = 0, 1, 2, . . .; choose mesh sizes Δx := b−a

M and Δy := d−c
K with M and K two

positive integers and denote h := hmax = max{Δx, Δy}, hmin := min{Δx,Δy}
and grid points as

xj := a+ jΔx, j = 0, 1, . . . ,M ; yk := c+ kΔy, k = 0, 1, . . . ,K.

Define the index sets

TM = {(j, k) | j = 1, 2, . . . ,M − 1, k = 1, 2, . . . ,K − 1},
T 0
M = {(j, k) | j = 0, 1, 2 . . . ,M, k = 0, 1, 2 . . . ,K}.

Let ψn
jk be the numerical approximation of ψ(xj , yk, tn) for (j, k) ∈ T 0

M and n ≥ 0

and denote ψn ∈ C(M+1)×(K+1) be the numerical solution at time t = tn. Introduce
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the following finite difference operators:

δ+x ψ
n
jk =

1

Δx
(ψn

j+1 k − ψn
jk), δ+y ψ

n
jk =

1

Δy
(ψn

j k+1 − ψn
jk),

δ+t ψ
n
jk =

1

τ
(ψn+1

jk − ψn
jk), δ−x ψ

n
jk =

1

Δx
(ψn

jk − ψn
j−1 k),

δ−y ψ
n
jk =

1

Δy
(ψn

jk − ψn
j k−1), δ−t ψ

n
jk =

1

τ
(ψn

jk − ψn−1
jk ),

δxψ
n
jk =

ψn
j+1 k − ψn

j−1 k

2Δx
, δyψ

n
jk =

ψn
j k+1 − ψn

j k−1

2Δy
,

δtψ
n
jk =

ψn+1
jk − ψn−1

jk

2τ
, δ2xψ

n
jk =

ψn
j+1 k − 2ψn

jk + ψn
j−1 k

(Δx)2
,

δ2yψ
n
jk =

ψn
j k+1 − 2ψn

jk + ψn
j k−1

(Δy)2
, (j, k) ∈ TM ,

δ+∇ψn
jk = (δ+x ψ

n
jk, δ

+
y ψ

n
jk), δ2∇ψn

jk = δ2xψ
n
jk + δ2yψ

n
jk,

Lh
zψ

n
jk = −i(xjδyψ

n
jk − ykδxψ

n
jk).

Then the conservative Crank-Nicolson finite difference (CNFD) discretization of
the GPE (1.1) reads
(2.1)

iδ+t ψ
n
jk=

[
−1

2
δ2∇ + Vjk − ΩLh

z +
β

2
(|ψn+1

jk |2 + |ψn
jk|2)
]
ψ
n+1/2
jk , (j, k) ∈ TM , n ≥ 0,

where

Vjk = V (xj , yk), ψ
n+1/2
jk =

1

2

(
ψn+1
jk + ψn

jk

)
, (j, k) ∈ T 0

M , n = 0, 1, 2, . . . .

The boundary condition (1.2) is discretized as

(2.2) ψn
0k = ψn

Mk = 0, ψn
j0 = ψn

jK = 0, (j, k) ∈ T 0
M , n = 0, 1, . . . ,

and the initial condition (1.3) is discretizaed as

(2.3) ψ0
jk = ψ0(xj , yk), (j, k) ∈ T 0

M .

As proven in section 4, the above CNFD method conserves the mass and energy in
the discretized level. However, it is a fully implicit method, i.e., at each time step,
a fully nonlinear system must be solved, which may be very expensive, especially
in 2D and 3D. In fact, if the fully nonlinear system is not solved numerically to
extremely high accuracy, e.g., at machine accuracy, then the mass and energy of
the numerical solution obtained in practical computation are no longer conserved.
This motivates us also consider the following discretization for the GPE.

The semi-implicit finite difference (SIFD) discretization for the GPE (1.1) is
to use Crank-Nicolson/leap-frog schemes for discretizing linear/nonlinear terms,
respectively, as
(2.4)

iδtψ
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ψn+1
jk + ψn−1

jk

2
+ β|ψn

jk|2ψn
jk, (j, k) ∈ TM , n ≥ 1.

Again, the boundary condition (1.2) and initial condition (1.3) are discretized in
(2.2) and (2.3), respectively. In addition, the first step can be computed by any
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explicit second or higher order time integrator, e.g., the second-order modified Euler
method, as

(2.5)

ψ1
jk = ψ0

jk − iτ

[(
−1

2
δ2∇ + Vjk − ΩLh

z

)
ψ
(1)
jk + β|ψ(1)

jk |2ψ(1)
jk

]
, (j, k) ∈ TM ,

ψ
(1)
jk = ψ0

jk − i
τ

2

[(
−1

2
δ2∇ + Vjk − ΩLh

z

)
ψ0
jk + β|ψ0

jk|2ψ0
jk

]
.

For this SIFD method, at each time step, only a linear system is to be solved, which
is much less expensive than that of the CNFD method in practical computation.

2.2. Main error estimate results. Before we state our main error estimate re-
sults, we denote the space

XM =
{
u = (ujk)(j,k)∈T 0

M
| u0k = uMk = uj0 = ujK = 0, (j, k) ∈ T 0

M

}
⊂ C

(M+1)×(K+1),

and define norms and inner product over XM as

‖u‖22 = Δx Δy

M−1∑
j=0

K−1∑
k=0

|ujk|2,(2.6)

‖δ+∇u‖22 = Δx Δy

M−1∑
j=0

K−1∑
k=0

(∣∣δ+x ujk

∣∣2 + ∣∣δ+y ujk

∣∣2) ,
‖u‖∞ = sup

0≤j≤M−1,0≤k≤K−1
|ujk|,(2.7)

‖u‖pp = Δx Δy

M−1∑
j=0

K−1∑
k=0

|ujk|p, 0 < p < ∞,

E(u) = 1

2
‖δ+∇u‖22 +Δx Δy

M−1∑
j=1

K−1∑
k=1

[
Vjk|ujk|2 − Ω ūjk L

h
zujk

]
, ∀u ∈ XM ,(2.8)

Eh(u) =
1

2
‖δ+∇u‖22 +

β

2
‖u‖44 +Δx Δy

M−1∑
j=1

K−1∑
k=1

[
Vjk|ujk|2 − Ω ūjk L

h
zujk

]
,(2.9)

(u, v) = Δx Δy

M−1∑
j=0

K−1∑
k=0

ujkv̄jk,(2.10)

〈u, v〉 = Δx Δy
M−1∑
j=1

K−1∑
k=1

ujkv̄jk, ∀u, v ∈ XM .

We also make the following assumptions:
(A) Assumption on the trapping potential V (x) and rotation speed Ω, i.e., there

exists a constant γ > 0 such that

V (x) ∈ C1(U), V (x) ≥ 1

2
γ2(x2 + y2), ∀x ∈ U, |Ω| < γ;
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and assumption on the exact solution ψ, i.e., let 0 < T < Tmax with Tmax be the
maximal existing time of the solution [15, 23]:

(B)
ψ ∈ C3([0, T ];W 1,∞(U)) ∩ C2([0, T ];

W 3,∞(U)) ∩ C0([0, T ];W 5,∞(U) ∩H1
0 (U)).

Define the “error” function en ∈ XM as

(2.11) enjk = ψ(xj , yk, tn)− ψn
jk, (j, k) ∈ T 0

M , n ≥ 0.

Then for the SIFD method, we have

Theorem 2.1 (Convergence of SIFD). Assume h � hmin and τ � h, under as-
sumptions (A) and (B), there exist h0 > 0 and 0 < τ0 < 1

4 sufficiently small, when
0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following optimal error estimate for the
SIFD method (2.4) with (2.2), (2.3) and (2.5)

(2.12) ‖en‖2 � h2 + τ2, ‖δ+∇en‖2 � h3/2 + τ3/2, 0 ≤ n ≤ T

τ
.

In addition, if either Ω = 0 and V (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have the

optimal error estimates:

(2.13) ‖en‖2 + ‖δ+∇en‖2 � h2 + τ2, 0 ≤ n ≤ T

τ
.

Similarly, for the CNFD method, we have

Theorem 2.2 (Convergence of CNFD). Suppose h � hmin, τ � h and either β ≥ 0

or β < 0 with ‖ψ0‖22 < 1
|β|

(
1− Ω2

γ2

)
, under assumption (A), there exists h0 > 0

sufficiently small, when 0 < h ≤ h0, the discretization (2.1) with (2.2) and (2.3)
admits a unique solution ψn (0 ≤ n ≤ T

τ ). Furthermore, under assumption (B),
there exist h0 > 0 and τ0 > 0 sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0,
we have the following error estimate:

(2.14) ‖en‖2 � h2 + τ2, ‖δ+∇en‖2 � h3/2 + τ3/2, 0 ≤ n ≤ T

τ
.

In addition, if either Ω = 0 and V (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have the

optimal error estimates:

(2.15) ‖en‖2 + ‖δ+∇en‖2 � h2 + τ2, 0 ≤ n ≤ T

τ
.

3. Error estimates for the SIFD method

In this section, we establish optimal error estimates for the SIFD method (2.4)
with (2.2), (2.3) and (2.5) in l2-norm, discrete H1-norm and l∞-norm. Let ψn ∈
XM be the numerical solution of the SIFD method and en ∈ XM the error function.

From (2.8) and (2.10), we have

Lemma 3.1. The following equalities hold:

〈δxu, v〉 = −〈u, δxv〉 ,
〈
δ2xu, v

〉
= −
(
δ+x u, δ

+
x v
)
,(3.1)

〈δyu, v〉 = −〈u, δyv〉 ,
〈
δ2yu, v

〉
= −

(
δ+y u, δ

+
y v
)
, ∀u, v ∈ XM ,(3.2)

‖u‖22 � ‖δ+∇u‖22, ‖u‖44 ≤ ‖u‖22 · ‖δ+∇u‖22, ∀u ∈ XM .(3.3)
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In addition, under assumption (A), we have

(3.4)
1

2

(
1− Ω2

γ2

)
‖δ+∇u‖22 ≤ E(u) � ‖δ+∇u‖22 + ‖u‖22 � ‖δ+∇u‖22, ∀u ∈ XM .

Proof. The equality (3.1) follows from (2.10) by using summation by parts as

〈δxu, v〉 = ΔxΔy
M−1∑
j=1

K−1∑
k=1

uj+1 k − uj−1 k

2Δx
v̄jk

= ΔxΔy
M−1∑
j=1

K−1∑
k=1

ujk
v̄j−1 k − v̄j+1 k

2Δx
= −〈u, δxv〉 ,

〈
δ2xu, v

〉
= ΔxΔy

M−1∑
j=1

K−1∑
k=1

uj+1 k − 2ujk + uj−1 k

(Δx)2
v̄jk

= ΔxΔy

M−1∑
j=0

K−1∑
k=0

uj+1 k − ujk

Δx

v̄j,k − v̄j+1 k

Δx

= −
(
δ+x u, δ

+
x v
)
, ∀u, v ∈ XM .

Similarly, we can get (3.2). For u ∈ XM , we have∣∣∣(ujk)
2
∣∣∣ =

∣∣∣∣∣
j−1∑
l=0

[
(ul+1 k)

2 − (ulk)
2
]∣∣∣∣∣ = Δx

∣∣∣∣∣
j−1∑
l=0

[ul+1 k + ulk]δ
+
x ulk

∣∣∣∣∣
≤ Δx

j−1∑
l=0

|ul+1 k + ulk| ·
∣∣δ+x ulk

∣∣
≤

√
2Δx

√√√√M−1∑
l=0

|δ+x ulk|2

√√√√M−1∑
l=0

|ulk|2, (j, k) ∈ TM .(3.5)

Similarly, we have

(3.6)
∣∣∣(ujk)

2
∣∣∣ ≤ √

2Δy

√√√√K−1∑
m=0

|δ+y ujm|2

√√√√K−1∑
m=0

|ujm|2, (j, k) ∈ TM .

Combining (3.5) and (3.6), using the Cauchy inequality, we get

‖u‖44 = ΔxΔy

M−1∑
j=0

K−1∑
k=0

|ujk|4 = ΔxΔy

M−1∑
j=0

K−1∑
k=0

|ujk|2 · |ujk|2

≤ 2(ΔxΔy)2
M−1∑
j=0

K−1∑
k=0

⎛
⎝
√√√√M−1∑

l=0

|δ+x ulk|2

√√√√M−1∑
l=0

|ulk|2

√√√√K−1∑
m=0

|δ+y ujm|2

√√√√K−1∑
m=0

|ujm|2
⎞
⎠

= 2(ΔxΔy)2
K−1∑
k=0

⎛
⎝
√√√√M−1∑

l=0

|δ+x ulk|2

√√√√M−1∑
l=0

|ulk|2
⎞
⎠

M−1∑
j=0

⎛
⎝
√√√√K−1∑

m=0

|δ+y ujm|2

√√√√K−1∑
m=0

|ujm|2
⎞
⎠

≤ 2(ΔxΔy)2

√√√√K−1∑
k=0

M−1∑
l=0

|δ+x ulk|2

√√√√K−1∑
k=0

M−1∑
l=0

|ulk|2
√√√√

M−1∑
j=0

K−1∑
m=0

|δ+y ujm|2
√√√√

M−1∑
j=0

K−1∑
m=0

|ujm|2

≤ ‖δ+∇u‖22 · ‖u‖22, u ∈ XM .
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The first inequality in (3.3) can be proved in a similar way. From (2.8) and
summation by parts, we get

M−1∑
j=1

K−1∑
k=1

ūjk L
h
zujk = −i

M−1∑
j=1

K−1∑
k=1

ūjk (xjδyujk − ykδxujk)

= −i

M−1∑
j=1

K−1∑
k=1

ujk (xjδyūjk − ykδxūjk)

=
M−1∑
j=1

K−1∑
k=1

ujk L̄
h
z ūjk ∈ R, ∀u ∈ XM ,(3.7)

which immediately implies that E(u) ∈ R for all u ∈ XM . In addition, using
the Cauchy inequality and triangle inequality, noticing assumption (A), we get for
u ∈ XM ,

− Ω

M−1∑
j=1

K−1∑
k=1

ūjk L
h
zujk

=
Ω

2

M−1∑
j=1

K−1∑
k=1

iūjk

[
xj

(
δ+y ujk + δ+y uj,k−1

)
− yk

(
δ+x ujk + δ+x uj−1,k

)]
≥ −

M−1∑
j=0

K−1∑
k=0

[
Vjk|ujk|2 +

Ω2

2γ2

(
|δ+x ujk|2 + |δ+y ujk|2

)]
.

(3.8)

Plugging (3.8) into (2.8) and noticing (2.6), we get (3.4) immediately. �
From now on, without loss of generality, we assume that Δx = Δy = h. From

(3.4) in Lemma 3.1, we have

Lemma 3.2 (Solvability of the difference equations). Under assumption (A), for
any given initial data ψ0 ∈ XM , there exists a unique solution ψn ∈ XM of (2.5)
for n = 1 and (2.4) for n > 1.

Proof. The assertion for n = 1 is obviously true. In SIFD (2.5), for given ψn−1, ψn ∈
XM (n ≥ 1), we first prove the uniqueness. Suppose there exist two solutions
ψ(1), ψ(2) ∈ XM satisfying the SIFD scheme (2.4), i.e., for (j, k) ∈ TM ,

i
ψ
(1)
jk − ψn−1

jk

2τ
=

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ψ
(1)
jk + ψn−1

jk

2
+ β|ψn

jk|2ψn
jk,(3.9)

i
ψ
(2)
jk − ψn−1

jk

2τ
=

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ψ
(2)
jk + ψn−1

jk

2
+ β|ψn

jk|2ψn
jk.(3.10)

Denote u = ψ(1) − ψ(2) ∈ XM and subtract (3.10) from (3.9), we have

(3.11) i
ujk

τ
=

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ujk, (j, k) ∈ TM .

Multiplying both sides of (3.11) by ūjk and summing together for (j, k) ∈ TM ,
using the summation by parts formula and taking imaginary parts, using (3.4)
from Lemma 3.1, we obtain ‖u‖22 = 0, which implies u = 0. Hence ψ(1) = ψ(2), i.e.,
the solution of (2.4) is unique.
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Next, we prove the existence. For (j, k) ∈ TM , rewrite equation (2.4) as

(3.12) iψn+1
jk + τ

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ψn+1
jk + Pjk = 0,

where P ∈ XM is defined as

(3.13) Pjk = −iψn−1
jk + 2τβ|ψn

jk|2ψn
jk + τ

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ψn−1
jk .

Consider the map G : ψ∗ ∈ XM → G(ψ∗) ∈ XM defined as

(3.14) G(ψ∗)jk = iψ∗
jk + τ

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ψ∗
jk + Pjk, (j, k) ∈ TM .

We know that G is continuous from XM to XM . Noticing (3.4) in Lemma 3.1, we
have

(3.15) Im(G(ψ∗), ψ∗) = ‖ψ∗‖22 + Im(P, ψ∗) ≥ ‖ψ∗‖22 − ‖P‖2‖ψ∗‖2,
which immediately implies

(3.16) lim
‖ψ∗‖2→∞

|(G(ψ∗), ψ∗)|
‖ψ∗‖2

= ∞.

Hence G : XM → XM is surjective [27] and there exists a solution ψn+1 ∈ XM

satisfying G(ψn+1) = 0. Then ψn+1 satisfies the equation (2.4). The proof is
complete. �

Define the local truncation error ηn ∈ XM of the SIFD method (2.4) with (2.2),
(2.3) and (2.5) for n ≥ 1 as

ηnjk := iδtψ(xj , yk, tn)−
[
−1

2
δ2∇ − ΩLh

z + Vjk

]
ψ(xj , yk, tn−1) + ψ(xj , yk, tn+1)

2

(3.17)

− β|ψ(xj , yk, tn)|2ψ(xj , yk, tn), (j, k) ∈ TM ,

and by noticing (2.3) for n = 0 as

η0jk := iδ+t ψ(xj , yk, 0)−
(
−1

2
δ2∇ + Vjk − ΩLh

z

)
ψ
(1)
jk(3.18)

− β|ψ(1)
jk |2ψ(1)

jk , (j, k) ∈ TM ,

ψ
(1)
jk = ψ0(xj , yk)− i

τ

2

[(
−1

2
δ2∇ + Vjk − ΩLh

z

)
ψ0(xj , yk)

+ β|ψ0(xj , yk)|2ψ0(xj , yk)

]
.

Then we have

Lemma 3.3 (Local truncation error). Assuming V (x) ∈ C(U), under assumption
(B), we have

(3.19) ‖ηn‖∞ � τ2 + h2, 0 ≤ n ≤ T

τ
− 1, and ‖δ+∇η0‖∞ � τ + h.

In addition, assuming V (x) ∈ C1(U) and τ � h, we have for 1 ≤ n ≤ T
τ − 1,

(3.20) |δ+∇ηnjk| �
{
τ2 + h2, 1 ≤ j ≤ M − 2, 1 ≤ k ≤ K − 2,

τ + h, j = 0,M − 1, or k = 0,K − 1.
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Furthermore, assuming either Ω = 0 and V (x) = 0 or u ∈ C([0, T ];H2
0 (U)), we

have

(3.21) ‖δ+∇ηn‖∞ � τ2 + h2, 1 ≤ n ≤ T

τ
− 1.

Proof. First, we prove (3.19) and (3.21) when n = 0. Rewriting ψ
(1)
jk and then using

Taylor’s expansion at (xj , yk, 0), noticing (1.1) and (1.3), we get
(3.22)

ψ
(1)
jk = ψ

(
xj , yk,

τ

2

)
+ i

τ

2

[(
1

2
δ2∇ − Vjk +ΩLh

z

)
ψ0(xj , yk)

− β|ψ0(xj , yk)|2ψ0(xj , yk) + i
ψ
(
xj , yk,

τ
2

)
− ψ0(xj , yk)

τ/2

]
= ψ
(
xj , yk,

τ

2

)
+ i

τ

2

[
h

6

[
∂xxxψ0

(
xj + hθ

(2)
jk , yk

)
+ ∂yyyψ0

(
xj , yk + hθ

(3)
jk

)
−3iΩ

(
xj∂yyψ0

(
xj , yk + hθ

(4)
jk

)
− yk∂xxψ0

(
xj + hθ

(5)
jk , yk

))]
+ i

τ

4
∂ttψ

(
xj , yk, τθ

(1)
jk

)]
= ψ
(
xj , yk,

τ

2

)
+O
(
τ2 + τh

)
, (j, k) ∈ TM ,

where θ
(1)
jk ∈ [0, 1/2] and θ

(2)
jk , θ

(3)
jk , θ

(4)
jk , θ

(5)
jk ∈ [−1, 1] are constants. Similarly,

using Taylor’s expansion at (xj , yk, τ/2) in (3.18), noticing (1.1) and (3.22), using
triangle inequality and assumption (B), we get

|η0jk| � τ2‖∂tttψ‖L∞ + h2 [‖∂xxxxψ‖L∞ + ‖∂yyyyψ‖L∞ + ‖∂xxxψ‖L∞ + ‖∂yyyψ‖L∞ ]

+ τ2
[
‖∂ttxxψ‖L∞ + ‖∂ttyyψ‖L∞ + ‖∂ttxψ‖L∞ + ‖∂ttyψ‖L∞ + ‖∂ttψ‖L∞ ‖ψ‖2L∞

]
+ τh

[
‖ψ0‖W 5,∞(U) + ‖ψ‖2L∞ ‖ψ0‖W 3,∞(U)

]
+O
(
h4 + τ4

)
� τ2 + h2, (j, k) ∈ TM ,

where the L∞-norm means ‖f‖L∞ := sup0≤t≤T supx∈U |f(x, t)|. This immediately
implies (3.19) when n = 0 as

‖η0‖∞ = max
(j,k)∈T 0

M

|η0jk| � τ2 + h2.

Similarly, noticing τ � h,

|δ+∇η0jk| � 1

h
|η0jk| � τ + h, (j, k) ∈ TM ,

which immediately implies (3.21) when n = 0. Now we prove (3.19), (3.20) and
(3.21) when n ≥ 1. Using Taylor’s expansion at (xj , yk, tn) in (3.17), noticing (1.1),
using triangle inequality and assumption (B), we have

|ηnjk| � h2 [‖∂xxxxψ‖L∞ + ‖∂yyyyψ‖L∞ + ‖∂yyyψ‖L∞ + ‖∂xxxψ‖L∞ ]

+ τ2 [‖∂tttψ‖L∞ + ‖∂ttxxψ‖L∞ + ‖∂ttyyψ‖L∞ + ‖∂yttψ‖L∞ + ‖∂xttψ‖L∞ ]

� τ2 + h2, (j, k) ∈ TM , 1 ≤ n ≤ T

τ
− 1,
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which implies (3.19) for n ≥ 1 and (3.20) for j = 0,M−1 or k = 0,K−1. Similarly,
we have

|δ+∇ηnjk| � h2 [‖∂xxxx∇ψ‖L∞ + ‖∂yyyy∇ψ‖L∞ + ‖∂yyy∇ψ‖L∞ + ‖∂xxx∇ψ‖L∞ ]

+ τ2 [‖∂ttt∇ψ‖L∞ + ‖∂ttxx∇ψ‖L∞ + ‖∂ttyy∇ψ‖L∞

+‖∂ytt∇ψ‖L∞ + ‖∂xtt∇ψ‖L∞ ]

� τ2 + h2, 1 ≤ j ≤ M − 2, 1 ≤ k ≤ K − 2, 1 ≤ n ≤ T

τ
− 1,(3.23)

which immediately implies (3.20) for n ≥ 1. In addition, if Ω = 0 and V (x) = 0,
using equation (1.1), we obtain the following derivatives of ψ on the boundary are
0, i.e.,

(3.24) ∂xxψ
∣∣
∂U

= ∂yyψ
∣∣
∂U

= ∂xxxxψ
∣∣
∂U

= ∂yyyyψ
∣∣
∂U

= 0.

Hence (3.23) holds for the boundary case, i.e., j = 0,M −1 or k = 0,K−1, and we
could obtain (3.21) for n ≥ 1. If ψ ∈ C0([0, T ];H2

0 (U)), using the equation (1.1),
we obtain that

(3.25) ∂m
x ∂n

yψ
∣∣
∂U

= 0, m ≥ 0, n ≥ 0, m+ n ≤ 4,

and similarly (3.23) holds for j = 0,M − 1 or k = 0,K − 1, then we could obtain
(3.21) for n ≥ 1. Thus, the proof is complete. �

Theorem 3.1 (l2-norm estimate). Assume τ � h, under assumptions (A) and
(B), there exist h0 > 0 and 0 < τ0 < 1

4 sufficiently small, when 0 < h ≤ h0 and
0 < τ ≤ τ0, we have

(3.26) ‖en‖2 � τ2 + h2, ‖ψn‖∞ ≤ 1 +M1, 0 ≤ n ≤ T

τ
,

where M1 = max0≤t≤T ‖ψ(·, t)‖L∞(U).

Proof. We will prove this theorem by the method of mathematical induction. From
(1.3) and (2.3), it is straightforward to see that (3.26) is valid when n = 0. From
(2.5) and (3.18), noticing (3.19), we get

|e1jk| =
∣∣ψ(xj , yk, t1)− ψ1

jk

∣∣ = ∣∣−iτη0jk
∣∣(3.27)

� τ
(
τ2 + h2

)
� τ2 + h2, (j, k) ∈ TM ,

which immediately implies the first inequality in (3.26) when n = 1. This, together
with the triangle inequality, when τ and h are sufficiently small, we obtain

|ψ1
jk| ≤ |ψ(xj , yk, t1)|+ |e1jk| ≤ M1 + C

(
τ2 + h2

)
≤ 1 +M1, (j, k) ∈ TM ,

which immediately implies the second inequality in (3.26) when n = 1. Now we
assume that (3.26) is valid for all 0 ≤ n ≤ m − 1 ≤ T

τ − 1, then we need to show
that it is still valid when n = m. In order to do so, subtracting (3.17) from (2.4),
noticing (1.2) and (2.2), we obtain the following equation for the “error” function
en ∈ XM :
(3.28)

iδte
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
en+1
jk + en−1

jk

2
+ ξnjk + ηnjk, (j, k) ∈ TM , n ≥ 1,
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where ξn ∈ XM (n ≥ 1) is defined as

ξnjk = β|ψ(xj , yk, tn)|2ψ(xj , yk, tn)− β|ψn
jk|2ψn

jk

= β|ψ(xj , yk, tn)|2enjk + β(enjkψ
n
jk

+ ψ(xj , yk, tn)e
n
jk)ψ

n
jk, (j, k) ∈ TM .(3.29)

Noticing (3.26), we have the following estimate,
(3.30)
‖ξn‖22 ≤ 9β2(1 +M1)

4‖en‖22, ‖δ+∇ξn‖22 � ‖δ+∇en‖22 + ‖en‖22, 1 ≤ n ≤ m− 1.

Multiplying both sides of (3.28) by en+1
jk + en−1

jk and summing all together for

(j, k) ∈ TM , taking imaginary parts, using the triangular and Cauchy inequalities,
noticing (3.19) and (3.30), we have for 1 ≤ n ≤ m− 1,

‖en+1‖22 − ‖en−1‖22
= 2τ Im

(
ξn + ηn, en+1 + en−1

)
≤ 2τ

[
‖en+1‖22 + ‖en−1‖22 + ‖ηn‖22 + ‖ξn‖22

]
≤ Cτ (h2 + τ2)2 + 2τ

(
‖en+1‖22 + ‖en−1‖22

)
+ 18τβ2(1 +M1)

4‖en‖22.

When τ ≤ 1
4 , we have

‖en+1‖22 − ‖en−1‖22 ≤ Cτ
[
(h2 + τ2)2 + ‖en−1‖22 + β2(1 +M1)

4‖en‖22
]
.

Summing the above inequality for n = 1, 2, . . . ,m− 1, we get
(3.31)

‖em‖22 + ‖em−1‖22 ≤ CT (h2 + τ2)2 + Cτ
[
1 + β2(M1 + 1)4

]m−1∑
l=1

‖el‖22, 1 ≤ m ≤ T

τ
.

Using the discrete Gronwall inequality [16, 21, 28] and noticing ‖e0‖2 = 0 and
‖e1‖2 � h2 + τ2, we immediately obtain the first inequality in (3.26) for n = m.
Using the inverse inequality, triangle inequality and l2-norm estimate, noticing
τ � h, we obtain

|ψm
jk| ≤ |ψ(xj , yk, tm)|+ |emjk| ≤ M1 + ‖em‖∞ ≤ M1 +

C

h
‖em‖2

≤ M1 +
C

h

(
h2 + τ2

)
≤ M1 + Ch, (j, k) ∈ T 0

M .

Thus there exists a constant h0 > 0 sufficiently small, when 0 < h ≤ h0 and
0 < τ � h, we have

‖ψm‖∞ ≤ 1 +M1, 1 ≤ m ≤ T

τ
,

which is the second inequality in (3.26) when n = m. Therefore the proof of the
theorem is completed by the method of mathematical induction. �

Combining Theorem 3.1 and Lemmas 3.1, 3.2 and 3.3, we are now ready to prove
the main Theorem 2.1.

Proof of Theorem 2.1. We first prove the optimal discrete semi-H1 norm conver-
gence rate in the case of either Ω = 0 and V (x) = 0 or ψ ∈ C0([0, T ];H2

0 (U)). From
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(2.3), we know e0 = 0 and thus (2.12) is valid for n = 0. From (2.5) and (3.18),
noticing (3.19), we get

|δ+∇e1jk| =
∣∣δ+∇ (ψ(xj , yk, t1)− ψ1

jk

)∣∣ = ∣∣−iτδ+∇η0jk
∣∣

� τ (τ + h) � τ2 + h2, (j, k) ∈ TM ,(3.32)

which immediately implies (2.12) when n = 1. Multiplying both sides of (3.28) by

en+1
jk − en−1

jk , summing over index (j, k) ∈ TM and summation by parts, taking real

part and noticing (2.7), we have

(3.33) E(en+1)− E(en−1) = −2 Re
〈
ξn + ηn, en+1 − en−1

〉
, n ≥ 1,

where Re(f) denotes the real part of f . Rewriting (3.28) as

(3.34) en+1
jk − en−1

jk = −2iτ
[
ξnjk + ηnjk + χn

jk

]
, (j, k) ∈ TM ,

where χn ∈ XM is defined as

(3.35) χn
jk =

[
−1

2
δ2∇ + Vjk − ΩLz

h

]
en+1
jk + en−1

jk

2
, (j, k) ∈ TM ,

then plugging (3.34) into (3.33), we obtain

E(en+1)− E(en−1) = −4τ Im 〈ξn + ηn, ξn + ηn + χn〉
= −4τ Im 〈ξn + ηn, χn〉 , n ≥ 1.(3.36)

From (3.35) and (3.29), noticing (3.1), (3.2) and (3.4), we have

|〈ξn, χn〉| =
1

2

∣∣∣∣〈ξn,(−1

2
δ2∇ + V − ΩLh

z

)(
en+1 + en−1

)〉∣∣∣∣
�
∣∣〈δ+∇ξn, δ+∇

(
en+1 + en−1

)〉∣∣+ ∣∣〈ξn, V (en+1 + en−1
)〉∣∣

+
∣∣〈ξn,ΩLh

z

(
en+1 + en−1

)〉∣∣
� ‖δ+∇en+1‖22 + ‖δ+∇en‖22 + ‖δ+∇en−1‖22 + ‖en+1‖22 + ‖en‖22 + ‖en−1‖22

+‖δ+∇ξn‖22 + ‖ξn‖22

� ‖δ+∇en+1‖22 + ‖δ+∇en‖22 + ‖δ+∇en−1‖22, 1 ≤ n ≤ T

τ
− 1.(3.37)

Similarly, noticing (3.30), (3.19) and (3.21), we have

|〈ηn, χn〉| = 1

2

∣∣∣∣〈ηn,(−1

2
δ2∇ + V − ΩLh

z

)(
en+1 + en−1

)〉∣∣∣∣
�
∣∣〈δ+∇ηn, δ+∇

(
en+1 + en−1

)〉∣∣+ ∣∣〈ηn, V (en+1 + en−1
)〉∣∣

+
∣∣〈ηn,ΩLh

z

(
en+1 + en−1

)〉∣∣
� ‖δ+∇en+1‖22 + ‖δ+∇en‖22 + ‖δ+∇en−1‖22 + ‖en+1‖22 + ‖en‖22 + ‖en−1‖22
+ ‖δ+∇ηn+1‖22 + ‖ηn‖22
� ‖δ+∇en+1‖22 + ‖δ+∇en‖22 + ‖δ+∇en−1‖22

+ (τ2 + h2)2, 1 ≤ n ≤ T

τ
− 1.(3.38)
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Plugging (3.37) and (3.38) into (3.36), using (3.4) and the triangle inequality, we
get

E(en+1)− E(en−1) � τ (τ2 + h2)2 + τ
[
‖δ+∇en+1‖22 + ‖δ+∇en‖22 + ‖δ+∇en−1‖22

]
� τ (τ2+h2)2+τ

[
E(en+1)+E(en)+E(en−1)

]
, 1 ≤ n ≤ T

τ
− 1.

There exists τ0 > 0 sufficiently small, when 0 < τ ≤ τ0, we have

(3.39) E(en+1)−E(en−1) � τ (τ2+h2)2+τ
[
E(en) + E(en−1)

]
, 1 ≤ n ≤ T

τ
−1.

Summing the above inequality for 1 ≤ n ≤ m− 1 ≤ T
τ − 1, we get

E(em) + E(em−1) � T (τ2 + h2)2 + E(e1) + E(e0) + τ
m−1∑
l=1

E(el), 1 ≤ m ≤ T

τ
.

Using the discrete Gronwall inequality [28], noticing (3.26) and (3.32), we have

‖δ+∇em‖22 � E(em) ≤ E(em) + E(em−1) � (τ2 + h2)2 + E(e1) + E(e0)

� (τ2 + h2)2 + ‖e1‖22 + ‖δ+∇e1‖22 � (τ2 + h2)2, 1 ≤ m ≤ T

τ
.

This together with (3.26) imply (2.12). For the case of assumptions (A) and (B)
without further assumptions, we will lose half-order convergence rate in the semi-
H1-norm because of the boundary (3.20). Notice that the reminder term is O(h2+
τ2)3/2 instead of O(h2 + τ2) in (3.38), and the the remaining proof is the same.
Hence, we will have the 3/2 order convergence rate for discrete semi-H1-norm. The
proof is complete. �

Similarly, as in the proof of Theorem 2.1, we can get error estimate for the mass
and energy in the discretized level as

Lemma 3.4 (Estimates on mass and energy). Under the same conditions of The-
orem 2.1 with assumptions (A) and (B), we have for 0 ≤ n ≤ T

τ ,∣∣ ‖ψn‖22 −N(ψ0)
∣∣ = ∣∣ ‖ψn‖22 −N(ψ(·, tn))

∣∣
≤
∣∣ ‖ψn‖22 − ‖Πhψ(tn)‖22

∣∣+ ∣∣‖Πhψ(tn)‖22 −N(ψ(·, tn))
∣∣

� h3/2 + τ3/2,

|Eh(ψ
n)− E(ψ0)| = |Eh(ψ

n)− E(ψ(·, tn))|
≤ |Eh(ψ

n)− Eh(Πψ(tn))|+ |Eh(Πψ(tn))− E(ψ(·, tn))|
� h3/2 + τ3/2,

where Πh : X := {f ∈ C(Ū) | f |∂U = 0} → XM is the standard project operator
defined as
(3.40)

(Πhf)jk = f(xj , yk), f ∈ X, (Πhψ(tn))jk = ψ(xj , yk, tn), (j, k) ∈ T 0
M .

In addition, assume either Ω = 0 and V (x) = 0 or ψ ∈ C([0, T ];H2
0 (U)), then we

have

(3.41)
∣∣ ‖ψn‖22 −N(ψ0)

∣∣+ |Eh(ψ
n)− E(ψ0)| � h2 + τ2, 0 ≤ n ≤ T

τ
.

In addition, from Theorem 2.1 and using the inverse inequality [40], we get
immediately the error estimate in l∞-norm for the SIFD method as
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Lemma 3.5 (l∞-norm estimate). Under the same conditions of Theorem 2.1 with
assumptions (A) and (B) and assume h < 1, we have the following error estimate
for the SIFD

‖en‖∞ �
{

(h3/2 + τ3/2)| ln(h)|, d = 2,
h+ τ, d = 3.

In addition, if either Ω = 0 and V (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

‖en‖∞ �
{

(h2 + τ2)| ln(h)|, d = 2,
h3/2 + τ3/2, d = 3.

Remark 3.1. If the cubic nonlinear term β|ψ|2ψ in (1.1) is replaced by a general
nonlinearity f(|ψ|2)ψ, the numerical discretization SIFD and its error estimates in
l2-norm, l∞-norm and discrete H1-norm are still valid provided that the nonlinear
real-valued function f(ρ) ∈ C2([0,∞)).

4. Error estimates for the CNFD method

In this section, we prove optimal error estimate for the CNFD method (2.1) with
(2.2) and (2.3) in l2-norm, discrete H1-norm and l∞-norm. Let ψn ∈ XM be the
numerical solution of the CNFD method and en ∈ XM be the error function.

Lemma 4.1 (Conservation of mass and energy). For the CNFD scheme (2.1) with
(2.2) and (2.3), for any mesh size h > 0, time step τ > 0 and initial data ψ0, it
conserves the mass and energy in the discretized level, i.e.,

(4.1) ‖ψn‖22 ≡ ‖ψ0‖22, Eh(ψ
n) ≡ Eh(ψ

0), n = 0, 1, 2, . . . .

Proof. Follow the analogous arguments of the CNFD method for the NLS [16, 21]
and we omit the details here for brevity. �

Lemma 4.2 (Solvability of the difference equations). For any given ψn, there
exists a solution ψn+1 of the CNFD discretization (2.1) with (2.2) and (2.3). In

addition, assume τ � h and either β ≥ 0 or β < 0 with ‖ψ0‖22 < 1
|β|

(
1− Ω2

γ2

)
,

under assumption (A), there exists h0 > 0 sufficiently small, when 0 < h ≤ h0, the
solution is unique.

Proof. First, we prove the existence of a solution of the CNFD discretization (2.1).
In order to do so, for any given ψn ∈ XM , we rewrite the equation (2.1) as

(4.2) ψn+1/2 = ψn + i
τ

2
Fn(ψn+1/2), n = 0, 1, . . . ,

where Fn : XM → XM defined as

(Fn(u))jk =

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ujk

+
β

2
(|2ujk − ψn

j,k|2 + |ψn
j,k|2)ujk, (j, k) ∈ TM .

Define the map Gn : XM → XM as

Gn(u) = u− ψn − i
τ

2
Fn(u), u ∈ XM ,

and it is easy to see that Gn is continuous from XM to XM . Moreover,

Re (Gn(u), u) = ‖u‖22 − Re(ψn, u) ≥ ‖u‖2(‖u‖2 − ‖ψn‖2), u ∈ XM ,
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which immediately implies

lim
‖u‖2→∞

| (Gn(u), u) |
‖u‖2

= ∞.

Thus Gn is surjective. By using the Brouwer fixed point theorem (cf. [27]), it is easy
to show that there exists a solution u∗ with Gn(u∗) = 0, which implies that there
exists a solution ψn+1/2 to the problem (4.2) and thus the CNFD discretization
(2.1) is solvable for any given ψn. In addition, for the solution ψn+1 to (2.1), using
(4.1), we have

(4.3) ‖δ+∇ψn+1‖22 ≤ C Eh(ψ
n+1) = C Eh(ψ

0), n = 0, 1, . . . ,

where when β ≥ 0, we have C = 2, and when β < 0 with ‖ψ0‖22 < 1
|β| (1 −

Ω2

γ2 ), it

comes from

Eh(ψ
0) = Eh(ψ

n+1) ≥ 1

2

(
1− Ω2

γ2

)
‖δ+∇ψn+1‖22 −

|β|
2

‖δ+∇ψn+1‖22 · ‖ψn+1‖22

=
1

2

(
1− Ω2

γ2

)
‖δ+∇ψn+1‖22 −

|β|
2

‖δ+∇ψn+1‖22 · ‖ψ0‖22

=
|β|
2

[
1

|β|

(
1− Ω2

γ2

)
− ‖ψ0‖22

]
‖δ+∇ψn+1‖22.

Thus assume h < 1, when β ≥ 0 or β < 0 with ‖ψ0‖22 < 1
|β|

(
1− Ω2

γ2

)
, using (4.3)

and the inverse inequality [40], we obtain

(4.4) ‖ψn+1‖∞ ≤ C| lnh| ‖δ+∇ψn+1‖2 ≤ C| lnh|Eh(ψ
0), n = 0, 1, . . . .

Next, we show the uniqueness of the solution of the CNFD scheme (2.1). For
given ψn ∈ XM , suppose that there are two solutions un+1 ∈ XM and vn+1 ∈ XM

to (2.1). From (4.4), we get

‖un+1‖∞ ≤ C Eh(ψ
0) | lnh|, ‖vn+1‖∞ ≤ C Eh(ψ

0) | lnh|.(4.5)

Denoting w := un+1 − vn+1 ∈ XM , from (2.1), we have

i
wjk

τ
=

(
−1

2
δ2∇ + Vjk − ΩLh

z

)
wjk + R̂jk, (j, k) ∈ TM ,(4.6)

where

R̂jk =
β

2
(|un+1

ij |2+ |ψn
jk|2)wjk +

β

2
(vn+1

jk +ψn
jk)(|un+1

jk |2− |vn+1
jk |2), (j, k) ∈ TM .

Multiplying both sides of (4.6) with w̄jk, summing for (j, k) ∈ TM , and then taking
imaginary parts, using (4.4) and (4.5), we have

‖w‖22 ≤ τC
[
‖un+1‖2∞ + ‖vn+1‖2∞ + ‖ψn‖2∞

]
‖w‖22 ≤ Cτ

[
Eh(ψ

0) lnh
]2 ‖w‖22.

Thus under the assumption τ � h, there exists h0 > 0, when 0 < h ≤ h0, we have
Cτ (lnhEh(ψ

0))2 < 1 which immediately implies

‖w‖2 = ‖un+1 − vn+1‖2 = 0 =⇒ un+1 = vn+1,

i.e., the solution of CNFD (2.1) is unique. �
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Denote the local truncation error η̃n ∈ XM (n ≥ 0) of the CNFD scheme (2.1)
with (2.2) and (2.3) as

η̃njk : = iδ+t ψ(xj , yk, tn)−
[
−1

2
δ2∇ − ΩLh

z + Vjk +
β

2

(
|ψ(xj , yk, tn+1)|2

+|ψ(xj , yk, tn)|2
) ]

×ψ(xj , yk, tn) + ψ(xj , yk, tn+1)

2
, (j, k) ∈ TM .(4.7)

Then we have

Lemma 4.3 (Local truncation error). Assume V (x) ∈ L∞(U) and under assump-
tion (B), we have

(4.8) ‖η̃n‖∞ � τ2 + h2, 0 ≤ n ≤ T

τ
− 1.

In addition, assuming V (x) ∈ C1(U) and τ � h, we have for 1 ≤ n ≤ T
τ − 1,

(4.9) |δ+∇η̃njk| �
{
τ2 + h2, 1 ≤ j ≤ M − 2, 1 ≤ k ≤ K − 2,

τ + h, j = 0,M − 1, or k = 0,K − 1.

In addition, if either Ω = 0 and V (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

(4.10) ‖δ+∇η̃n‖∞ � τ2 + h2, 1 ≤ n ≤ T

τ
− 1.

Proof. Follow the analogous line for Lemma 3.3 and we omit it here for brevity. �

Theorem 4.1 (l2-norm estimate). Assume τ � h and either β ≥ 0 or β < 0 with

‖ψ0‖22 < 1
|β|

(
1− Ω2

γ2

)
, under assumptions (A) and (B), there exist h0 > 0 and

τ0 > 0 sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have

(4.11) ‖en‖2 � τ2 + h2, ‖ψn‖∞ ≤
√
2(1 +M1), 0 ≤ n ≤ T

τ
.

Proof. Choose a smooth function α(ρ) (ρ ≥ 0)∈ C∞([0,∞)) defined as

(4.12) α(ρ) =

⎧⎨⎩
1, 0 ≤ ρ ≤ 1,
∈ [0, 1], 1 ≤ ρ ≤ 2,
0, ρ ≥ 2.

Denote M0 = 2(1 +M1)
2 > 0 and define

FM0
(ρ) = α

(
ρ

M0

)
ρ, 0 ≤ ρ < ∞,

then FM0
(ρ) ∈ C∞([0,∞)) and it is global Lipschitz, i.e.,

(4.13) |FM0
(ρ1)− FM0

(ρ2)| ≤ CM0
|√ρ1 −

√
ρ2| , 0 ≤ ρ1, ρ2 < ∞.

Choose φ0 = ψ0 ∈ XM and define φn ∈ XM (n = 0, 1, . . .) as, for (j, k) ∈ TM ,
(4.14)

iδ+t φ
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLh

z +
β

2

(
FM0

(|φn+1
jk |2) + FM0

(
|φn

jk|2
))]

φ
n+1/2
jk ,

where

φ
n+1/2
jk =

1

2
(φn+1

jk + φn
jk), (j, k) ∈ T 0

M , n ≥ 0.
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In fact, φn can be viewed as another approximation of ψ(x, tn). Define the “error”
function ên ∈ XM ,

ênjk := ψ(xj , yk, tn)− φn
jk, (j, k) ∈ T 0

M , n ≥ 0,

and the local truncation error η̂n ∈ XM of the scheme (4.14) as

η̂njk := iδ+t ψ(xj , yk, tn)−
[
−1

2
δ2∇ − ΩLh

z + Vjk +
β

2

(
FM0

(|ψ(xj , yk, tn+1)|2)

(4.15)

+ FM0
(|ψ(xj , yk, tn)|2)

)]
×ψ(xj , yk, tn) + ψ(xj , yk, tn+1)

2
, (j, k) ∈ TM , n≥0.

Similar to Lemma 4.3, we can prove

‖η̂n‖∞ � τ2 + h2, 0 ≤ n ≤ T

τ
.

Subtracting (4.15) from (4.14), we obtain

(4.16)

iδ+t ê
n
j,k =

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
ê
n+1/2
jk

+
β

2

(
FM0

(|φn+1
jk |2) + FM0

(|φn
jk|2)
)
ê
n+1/2
jk

+
β

4
(ψ(xj , yk, tn+1) + ψ(xj , yk, tn)) ξ̂

n
jk + η̂njk, (j, k) ∈ TM , n ≥ 0,

where ξ̂n ∈ XM is defined as

ξ̂njk = FM0
(|φn+1

jk |2) + FM0
(|φn

jk|2)− FM0
(|ψ(xj , yk, tn+1)|2)

− FM0
(|ψ(xj , yk, tn)|2), (j, k) ∈ T 0

M .

This together with (4.13) implies∣∣∣∣β4 (ψ(xj , yk, tn+1) + ψ(xj , yk, tn)) ξ̂
n
jk

∣∣∣∣ � C
(
|ên+1

jk |+ |ênjk|
)
, (j, k) ∈ T 0

M .

Multiplying both sides of (4.16) with ên+1
jk + ênjk, summing for (j, k) ∈ TM , taking

imaginary part and applying the Cauchy inequality, we obtain

‖ên+1‖22 − ‖ên‖22 � τ
(
|η̂n|2∞ + C(‖ên+1‖22 + ‖ên‖22)

)
� τ

[
(h2 + τ2)2 + (‖ên+1‖22 + ‖ên‖22)

]
, 0 ≤ n ≤ T

τ
− 1.

Then there exists τ0 > 0 sufficiently small, when 0 < τ ≤ τ0, applying the discrete
Gronwall inequality [16, 21, 28], we get

‖ên‖2 � τ2 + h2, 0 ≤ n ≤ T

τ
.

Applying the inverse inequality in 2D, we have

(4.17) ‖ên‖∞ � 1

h
‖ên‖2 � h+

τ2

h
� h, 0 ≤ n ≤ T

τ
,

which implies

‖φn‖∞ ≤ ‖Πhψ(tn)‖∞ + ‖ên‖∞ ≤
√
M0

2
+ Ch, 0 ≤ n ≤ T

τ
.
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Thus under the assumption τ � h, there exists h0 > 0, when 0 < h ≤ h0, we have
(4.18)

‖φn‖∞ ≤
√
M0

2
+

√
M0

2
=
√
M0 =⇒ ‖φn‖2∞ ≤ M0, 0 ≤ n ≤ T

τ
.

Therefore, the discretization (4.14) collapses exactly to the CNFD discretization
(2.1) with (2.2) and (2.3), i.e.,

ψn = φn, en = ên, 0 ≤ n ≤ T

τ
.

This together with (4.17) and (4.18) complete the proof. �

Again, combining Theorem 4.1 and Lemmas 4.2 and 4.3, we are now ready to
prove the main Theorem 2.2.

Proof of Theorem 2.2. As in the proof of Theorem 2.1, we only prove the optimal
convergence under assumptions (A) and (B) with either Ω = 0 and V (x) = 0 or
ψ ∈ C0([0, T ];H2

0 (U)). Subtracting (4.7) from (2.1), we get

iδ+t e
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
e
n+1/2
jk + ξ̃njk + η̃njk, (j, k) ∈ TM , n ≥ 0,(4.19)

where ξ̃n ∈ XM is defined as

ξ̃njk =
β

2

[
enjkψ(xj , yk, tn) + ψn

jke
n
jk + en+1

jk ψ(xj , yk, tn+1) + ψn+1
jk en+1

jk

]
ψ
n+1/2
jk

+
β

2
(|ψ(xj , yk, tn)|2 + |ψ(xj , yk, tn+1)|2)en+1/2

jk , (j, k) ∈ TM .

Again, rewrite (4.19) as

(4.20) en+1 − en = −iτ
(
χ̃n + ξ̃n + η̃n

)
, n ≥ 0,

where χ̃n ∈ XM is defined as

χ̃n
jk =

[
−1

2
δ2∇ + Vjk − ΩLh

z

]
e
n+1/2
jk , (j, k) ∈ TM , n ≥ 0.

Multiplying both sides of (4.19) with en+1
jk − enjk, summing for (j, k) ∈ TM , noticing

(3.1), (3.2) and (4.20), taking real parts, we obtain

E(en+1)− E(en) = −2Re
〈
ξ̃n + η̃n, en+1 − en

〉
= −2Re

〈
ξ̃n + η̃n,−iτ (χ̃n + ξ̃n + η̃n)

〉
= 2τ Im

〈
ξ̃n + η̃n, χ̃n

〉
, 0 ≤ n ≤ T

τ
− 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



118 WEIZHU BAO AND YONGYONG CAI

Similar to those in the proof of Theorem 2.1, we can prove∣∣∣∣Im〈ξ̃n + η̃n, χ̃n
〉 ∣∣∣∣ � (h2 + τ2)2 + E(en+1) + E(en), 0 ≤ n ≤ T

τ
− 1.

Combining the above two inequalities, we get

E(en+1)− E(en) � τ
[
(τ2 + h2)2 + E(en+1) + E(en)

]
, 0 ≤ n ≤ T

τ
− 1.(4.21)

Then there exists τ0 > 0 sufficiently small, when 0 < τ ≤ τ0, using the discrete
Gronwall inequality [16, 21, 28] and noticing e0 = 0 and E(e0) = 0, we get

E(en) � (τ2 + h2)2, 0 ≤ n ≤ T

τ
,

which immediately implies (2.14). If we only have assumptions (A) and (B) without
further assumption, the convergence rate in the semi-H1 norm will be O(h3/2 +
τ3/2). The proof is the same as in Theorem 2.1, and we omit it here. �

Similarly, from Theorem 2.2 and using the inverse inequality [40], we get imme-
diately the error estimate in l∞-norm for the CNFD method as

Lemma 4.4 (l∞-norm estimate). Under the same conditions of Theorem 2.2 with
assumptions (A) and (B) and assume h < 1, we have the following error estimate
for the CNFD:

‖en‖∞ �
{

(h3/2 + τ3/2)| ln(h)|, d = 2,
h+ τ, d = 3.

In addition, if either Ω = 0 and V (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

‖en‖∞ �
{

(h2 + τ2)| ln(h)|, d = 2,
h3/2 + τ3/2, d = 3.

Remark 4.1. If the cubic nonlinear term β|ψ|2ψ in (1.1) is replaced by a general
nonlinearity f(|ψ|2)ψ, the numerical discretization CNFD and its error estimates in
l2-norm, l∞-norm and discrete H1-norm are still valid provided that the nonlinear
real-valued function f(ρ) ∈ C3([0,∞)).

5. Extension to other cases

In this section, we will discuss a discretization of the GPE with an angular
momentum rotation (1.1) when U is a disk in 2D, and resp., a cylinder in 3D and
its error estimates. As noticed in [6], the angular momentum rotation is constant
coefficient in 2D with polar coordinates and 3D with cylindrical coordinates. Thus
the original problem of GPE with an angular momentum rotation term defined in
R

d (d = 2, 3) for rotating BEC is usually truncated onto a disk in 2D and a cylinder
in 3D as bounded computational domain. Again, for simplicity of notation, we only
consider SIFD in 2D, i.e., d = 2 and U = {x | |x| < R} with R > 0 fixed. Extension
to 3D are straightforward. In 2D with polar coordinate, the problem collapses

i∂tψ=

[
−1

2

(
1

r
∂r (r∂r)+

1

r2
∂θθ

)
+V0(r)+W (r, θ)+iΩ∂θ+β|ψ|2

]
ψ, (r, θ) ∈ U,

(5.1)
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with boundary condition

(5.2) ψ(R, θ) = 0, ψ(r, θ) = ψ(r, θ + 2π), 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R,

and initial condition

(5.3) ψ(r, θ, 0) = ψ0(r, θ), 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,

where ψ = ψ(r, θ, t) and here we split the external trapping potential V (x) into a
radial symmetry part V0(r) and a left-over part W (x), i.e.,

V (x) = V0(r) +W (r, θ), x ∈ U.

Let M, K > 0 be two positive integers, and Δr := 2R
2M+1 , Δθ := 2π

K , define the
grid points

rj = jΔr, rj+ 1
2
=

(
j +

1

2

)
Δr, j = 0, 1, . . . ,M ;

θk = kΔθ, k = 0, 1, . . . ,K.

Let ψn
j+ 1

2 k
be the approximation of ψ(rj+ 1

2
, θk, tn) and ψn be the numerical solution

at time t = tn. We adopt similar notations as those in section 2.
Then a semi-implicit finite difference (SIFD) discretization reads for n ≥ 1

(5.4)

iδtψ
n
j+ 1

2
k =

−r−1

j+ 1
2

4(Δr)2
[
rj+1(ψ

n+1

j+ 3
2
k
+ ψn−1

j+ 3
2
k
)

− (rj+1 + rj)(ψ
n+1

j+ 1
2
k
+ rj(ψ

n+1

j− 1
2
k
+ ψn−1

j− 1
2
k
)
]

− 1

4r2
j+ 1

2

(Δθ)2

[
ψn+1

j+ 1
2
k+1

− 2ψn+1

j+ 1
2
k
+ ψn+1

j+ 1
2
k−1

+ ψn−1

j+ 1
2
k+1

− 2ψn−1

j+ 1
2
k
+ ψn−1

j+ 1
2
k−1

]

+
V0(rj+ 1

2
)

2

(
ψn+1

j+ 1
2
k
+ ψn−1

j+ 1
2
k

)
+

iΩ

2Δθ

[
ψn+1

j+ 1
2
k+1

− ψn+1

j+ 1
2
k−1

+ ψn−1

j+ 1
2
k+1

− ψn−1

j+ 1
2
k−1

]

+ β|ψn
j+ 1

2
k|

2ψn
j+ 1

2
k +W (rj+ 1

2
, θk)ψ

n
j+ 1

2
k, 0 ≤ j ≤ M − 1, 0 < k ≤ K.

The boundary condition (5.2) is discretized as
(5.5)
ψM+ 1

2 k = 0, 0 ≤ k ≤ K, ψj+ 1
2 0 = ψj+ 1

2 K , ψj+ 1
2 K+1 = ψj+ 1

2 1, 0 ≤ j ≤ M,

and the initial condition (5.3) is discretized as

(5.6) ψ0
j+ 1

2 k = ψ0(rj+ 1
2
, θk), 0 ≤ j ≤ M, 0 ≤ k ≤ K.

The first step ψ1 can be obtained by using the same spatial discretization combining
with any explicit second-order time integrator.

For this SIFD method, although it is implicit, however, at each time step, the
linear system can be solved directly via fast direct Poisson solver via fast discrete
Fourier transform in θ-direction with computational cost at O (MK lnK), i.e., it is
very efficient in practical computation [6]. In fact, this method is also widely used
in simulating quantized vortex dynamics of rotating Bose-Einstein condensate [6].
In addition, let enj+1/2 k = ψn

j+1/2 k − ψ(rj+ 1
2
, θk, tn), similar to those in section 3,

we can prove the following error estimate.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 WEIZHU BAO AND YONGYONG CAI

Theorem 5.1. Assume h := hmax = max{Δr,Δθ} � hmin := min{Δr,Δθ} and
τ � h, under assumptions (A) and (B), there exist h0 > 0 and 0 < τ0 < 1

4
sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following optimal
error estimate for the SIFD method (5.4) with (5.5), (5.6)

(5.7) ‖en‖2 � h2 + τ2, ‖δ+∇en‖2 � h3/2 + τ3/2, 0 ≤ n ≤ T

τ
,

where

‖en‖22 = ΔrΔθ

M−1∑
j=0

K−1∑
k=0

rj+ 1
2

∣∣∣enj+ 1
2 k

∣∣∣2 , n = 0, 1, . . . ,

‖δ+∇en‖22 = ΔrΔθ
M−1∑
j=0

K−1∑
k=0

⎡⎣rj+1

∣∣∣∣∣e
n
j+ 3

2 k
− en

j+ 1
2 k

Δr

∣∣∣∣∣
2

+
1

rj+ 1
2

∣∣∣∣∣e
n
j+ 1

2 k+1
− en

j+ 1
2 k

Δθ

∣∣∣∣∣
2
⎤⎦ .

In addition, assuming ψ ∈ C0([0, T ];H2
0 (U)), we have

(5.8) ‖en‖2 + ‖δ+∇en‖2 � h2 + τ2, 0 ≤ n ≤ T

τ
.

The CNFD method and its error estimate can be extended to this case directly
and we omit the details for brevity. Again, it is implicit and at every time step, a
nonlinear system must be solved.

6. Numerical results

In this section, we report numerical results of the SIFD (2.4) and CNFD (2.1)
discretizations of the GPE (1.1) to confirm the error estimates.

We take d = 2, U = [−8, 8] × [−8, 8], V (x) = 1
2 (x

2 + y2), β = 10 in (1.1)

and ψ0(x) =
2√
π
(x+ iy)e−(x2+y2) in (1.3). For comparison, the numerical “exact”

solution ψe is obtained by the CNFD with a very fine mesh and a small time step,
e.g., h = 1/64 and τ = 0.0001. For SIFD scheme, at each time step, we use Gauss-
Seidel iteration method to solve the linear system. For CNFD scheme, to solve the
fully nonlinear system, at each iteration, the system is linearized, i.e., the CNFD
(2.1) is linearized as

i
ψ
(m)
jk − ψn

jk

τ

=

[
−1

2
δ2∇ + Vjk − ΩLh

z +
β

2
(|ψn

jk|2 + |ψ(m−1)
jk |2)

]
1

2
(ψ

(m)
jk + ψn

jk), m ≥ 1,

and we solve this inner problem to get ψ
(m)
jk by Gauss-Seidel iteration method.

Then the solution ψn+1
jk is numerically reached once ψ

(m)
jk converges.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE METHODS 121

Let ψh,τ be the numerical solution corresponding to mesh size h and time step τ
and define the error function as e := ψe−ψh,τ . The convergence rates are calculated
as log2(‖e(h, τ )‖/‖e(h/2, τ/2)‖) with the corresponding norms. Table 1 shows the
errors ‖e‖2, ‖δ+∇e‖2 and ‖e‖∞ for the CNFD method (2.1) with different Ω, h and τ ,
and Table 2 displays similar results for SIFD method (2.4). Figures 1 and 2 depict
time evolution of the errors between the discretized mass and energy with their
continuous counterparts, respectively, i.e.,

∣∣ ‖ψn‖22 −N(ψ0)
∣∣ and |Eh(ψ

n)− E(ψ0)|
of the SIFD method (2.4) for different Ω, h and τ . Figure 3 displays similar results
of the CNFD method (2.1) when the nonlinear system is iteratively solved up to a
given accuracy ε > 0.

From Tables 1 and 2, we demonstrate the second-order convergence rate of both
SIFD and CNFD methods in l2-norm, l∞-norm and discrete H1-norm. From Fig-
ures 1, 2 and 3, we can draw the following conclusions:

(i) the SIFD discretization approximates the mass very well (up to 4 significant
digits, cf. Figure 1) and the energy at second order accurate in practical computa-
tion when τ = O(h) are not too big (cf. Figure 1). When the final computational
time t increases, the errors in mass or energy are either oscilatting or slightly in-
creasing (cf. Figures 1 and 2). An interesting observation is that, for fixed h > 0
small, when τ > 0 very small, the errors in mass and energy increase with time,
especially in long time (cf. Figure 2).

(ii) For the CNFD discretization, when the fully nonlinear system is iteratively
solved at every time step to extremely high accuracy, e.g., machine accuracy, the
solution obtained in practical computation conserves the mass and energy very
well (cf. Figure 3). However, if the nonlinear system is solved accurately but
not extremely accurately, the solution obtained in practical computation does not
conserve the mass and energy very well, especially in long time (cf. Figure 3).

(iii) From the accuracy point of view, SIFD method is the same accurate as
CNFD method and it approximates the mass very well and the energy in the same
order as the numerical solution in the discretized level. It is much cheaper than
CNFD method, especially in high dimensions and/or when fast Poisson solver is
applied in practical computation.
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Table 1. Error analysis of the CNFD method (2.1) for the GPE
(1.1) at time t = 0.5 for different Ω, mesh size h and time step τ .

h = 1/4
τ = 2−5

h = 1/8
τ = 2−6

h = 1/16
τ = 2−7

h = 1/32
τ = 2−8

‖e‖2 5.424E-2 1.574E-2 3.907E-3 8.268E-4
Rate 1.78 2.01 2.24

Ω = 0 ‖δ+∇e‖2 2.257E-1 8.008E-2 2.066E-2 4.448E-3
Rate 1.50 1.95 2.22
‖e‖∞ 1.521E-2 3.273E-3 7.676E-3 1.585E-4
Rate 2.22 2.09 2.28
‖e‖2 4.758E-2 1.408E-2 3.502E-3 7.425E-4
Rate 1.76 2.01 2.24

Ω = 0.5 ‖δ+∇e‖2 2.097E-1 7.535E-2 1.943E-2 4.186E-3
Rate 1.48 1.96 2.21
‖e‖∞ 1.259E-2 3.081E-3 7.233E-4 1.489E-4
Rate 2.03 2.09 2.28
‖e‖2 4.406E-2 1.315E-2 3.272E-3 6.934E-4
Rate 1.74 2.01 2.24

Ω = 0.9 ‖δ+∇e‖2 2.007E-1 7.240E-2 1.863E-2 4.011E-3
Rate 1.47 1.96 2.22
‖e‖∞ 1.196E-2 3.105E-3 7.284E-4 1.494E-4
Rate 1.95 2.09 2.29

Table 2. Error analysis of the SIFD method (2.4) for the GPE
(1.1) at time t = 0.5 for different Ω, mesh size h and time step τ .

h = 1/4
τ = 2−7

h = 1/8
τ = 2−8

h = 1/16
τ = 2−9

h = 1/32
τ = 2−10

‖e‖2 4.943E-2 1.360E-2 3.285E-3 6.661E-4
Rate 1.92 1.99 2.30

Ω = 0 ‖δ+∇e‖2 2.084E-1 6.726E-2 1.663E-2 3.399E-3
Rate 1.63 2.02 2.29
‖e‖∞ 1.298E-2 2.867E-3 6.709E-4 1.346E-4
Rate 2.18 2.10 2.32
‖e‖2 4.350E-2 1.212E-2 2.927E-3 5.938E-4
Rate 1.84 2.05 2.30

Ω = 0.5 ‖δ+∇e‖2 1.940E-1 6.319E-2 1.561E-2 3.191E-3
Rate 1.62 2.02 2.29
‖e‖∞ 1.165E-2 2.748E-3 6.449E-4 1.295E-4
Rate 2.08 2.09 2.32
‖e‖2 4.060E-2 1.136E-2 2.741E-3 5.557E-4
Rate 1.84 2.05 2.30

Ω = 0.9 ‖δ+∇e‖2 1.863E-1 6.085E-2 1.499E-2 3.062E-3
Rate 1.61 2.02 2.29
‖e‖∞ 1.101E-2 2.726E-3 6.339E-4 1.271E-4
Rate 2.01 2.10 2.32

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE METHODS 123

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20
x 10

−4

t

Er
ro

r o
f M

as
s

 Ω=0

 

 

τ=2−10,h=1/32

τ=2−9,h=1/16

τ=2−8,h=1/8

τ=2−7,h=1/4

0 5 10 15 20

0

0.01

0.02

0.03

0.04

0.05

0.06

t

Er
ro

r o
f E

ne
rg

y

 Ω=0

 

 

τ=2−10,h=1/32

τ=2−9,h=1/16

τ=2−8,h=1/8

τ=2−7,h=1/4

0 5 10 15 20

0

2

4

6

8

10
x 10

−4

t

Er
ro

r o
f M

as
s

 Ω=0.9

 

 

τ=2−10,h=1/32

τ=2−9,h=1/16

τ=2−8,h=1/8

τ=2−7,h=1/4

0 5 10 15 20

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t

Er
ro

r o
f E

ne
rg

y

 Ω=0.9

 

 

τ=2−10,h=1/32

τ=2−9,h=1/16

τ=2−8,h=1/8

τ=2−7,h=1/4

Figure 1. Time evolution of the errors between the dis-
cretized mass and energy with their continuous counterparts, i.e.,∣∣ ‖ψn‖22 −N(ψ0)

∣∣ and |Eh(ψ
n)− E(ψ0)|, of the SIFD scheme (2.4)

for different Ω and τ = O(h).
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Figure 2. Time evolution of the errors between the dis-
cretized mass and energy with their continuous counterparts, i.e.,∣∣ ‖ψn‖22 −N(ψ0)

∣∣ and |Eh(ψ
n)− E(ψ0)|, of the SIFD scheme (2.4)

with h = 1/32 for different Ω and time steps τ .
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Figure 3. Time evolution of the errors between the dis-
cretized mass and energy with their continuous counterparts, i.e.,∣∣ ‖ψn‖22 −N(ψ0)

∣∣ and |Eh(ψ
n)− E(ψ0)|, of the CNFD scheme

(2.1) with mesh h = 1/16 and time step τ = 2−9 when the nonlin-
ear system is iteratively solved up to the accuracy ε for different
Ω and ε.

7. Conclusions

We carried out rigorous numerical analysis on the conservative Crank-Nicolson
finite difference (CNFD) method and semi-implicit finite difference (SIFD) method
for discretizing the Gross-Pitaevskii equation (GPE) with an angular momentum
rotation in two and three dimensions for rotating Bose-Einstein condensates (BEC).
For both CNFD and SIFD, we obtained optimal convergence rate at the order of
O(h2+τ2) in l2-norm and discreteH1-norm with time step τ and mesh size h. In the
proof for the SIFD method, we made use of the method of mathematical induction,
and for the CNFD scheme, we obtained an a priori bound of the numerical solution
in the l∞-norm by approximating the nonlinearity with a Lipschitz function and
using the inverse inequality. Numerical results confirmed our error estimates. In
practice, the CNFD is unconditionally stable and it conserves mass and energy
in the discretized level, however, it is implicit and a fully nonlinear system needs
to be solved at every time step, which may be very expensive in 2D and/or 3D.
The SIFD is conditionally stable and it conserves the mass and energy well when
h = O(τ ) small, and a linear system needs to be solved at every time step. In
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addition, when the computational domain is a disk in 2D, and resp., a cylinder in
3D, the SIFD discretization can be extremely efficient in practical computation by
using polar coordinates in 2D, and resp., cylindrical coordinates in 3D, together
with fast direct Poisson solver. A similar idea to this method has been used in
simulating quantized vortex dynamics in rotating BEC [6, 9, 12].
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