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OPTIMAL ERROR ESTIMATES OF THE DIRECT
DISCONTINUOUS GALERKIN METHOD FOR
CONVECTION-DIFFUSION EQUATIONS

HAILIANG LIU

ABSTRACT. In this paper, we present the optimal L2-error estimate of O(h*+1)
for polynomial elements of degree k of the semidiscrete direct discontinuous
Galerkin method for convection-diffusion equations. The main technical diffi-
culty lies in the control of the inter-element jump terms which arise because of
the convection and the discontinuous nature of numerical solutions. The main
idea is to use some global projections satisfying interface conditions dictated
by the choice of numerical fluxes so that trouble terms at the cell interfaces are
eliminated or controlled. In multi-dimensional case, the orders of k£ 4 1 hinge
on a superconvergence estimate when tensor product polynomials of degree k
are used on Cartesian grids. A collection of projection errors in both one- and
multi-dimensional cases is established.

1. INTRODUCTION

In this article, we introduce an approach for proving optimal L?-error esti-
mates for the semidiscrete direct discontinuous Galerkin (DDG) method solving
convection-diffusion problems. To demonstrate the main idea, we will focus on the
one-dimensional model equations

(1) aU + 0, f(U) = 83U,

with zero flux f = 0, linear flux f = aU and nonlinear smooth flux f(U), followed
by multi-dimensional extensions. The DDG method was introduced in [27], refined
with interface corrections in [28], and has since been extended to multi-dimensional
settings as well as equations with nonlinear diffusion, for which extensive numerical
tests have shown the optimal (k + 1)th order of accuracy for polynomial elements
of degree k. However, the optimal L2-error estimate has not been available. In this
work we present a novel approach to obtain such an estimate. We will give the
details of the proof for linear diffusion with different convections to illustrate the
main ideas.

The discontinuous Galerkin (DG) method we discuss in this paper is a class
of finite element methods, using a completely discontinuous piecewise polynomial
space for the numerical solution and the test functions. One main advantage of the
DG method was the flexibility afforded by local approximation spaces combined
with the suitable design of numerical fluxes crossing cell interfaces. It was first de-
signed and has been quite successful for solving first order PDEs such as hyperbolic
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conservation laws [15,[17,[18,21,31]. However, the application of the DG method
to diffusion problems has been a challenging task because of the subtle difficulty
in defining appropriate numerical fluxes for the solution gradient. There have been
several DG methods suggested in the literature to solve the problem, including the
method originally proposed by Bassi and Rebay [5] for compressible Navier-Stokes
equations, its generalization called the local discontinuous Galerkin (LDG) meth-
ods introduced in [19] by Cockburn and Shu and further studied in [8|[T0,14.[16], as
well as the method introduced by Baumann-Oden [6129]. See also the earlier works
[T,BI35] using the so-called interior penalty (IP) method, and the unified analysis
of DG methods in [2] for elliptic problems and background references for the IP
methods.

The idea of DDG methods for higher order partial differential equations, such
as the convection diffusion equation (dI), is to directly force the weak solution for-
mulation of the PDE into the DG function space for both the numerical solution
and test functions. Unlike the traditional LDG method, the DDG method does
not introduce any auxiliary variables or rewrite the original equation into a larger
first order system. A key ingredient for the success of such methods is the correct
interface corrections. These corrections must be selected to guarantee stability and
solvability of the unknown to approximate the solution. The main novelty in the
DDG schemes proposed in [27,28] lies in numerical flux choices for the solution gra-
dient, which involves high order derivatives evaluated on cell interfaces, motivated
by a trace formula for the solution derivatives of the heat equation [27]. With this
choice, the obtained schemes are provably stable and optimally convergent. There
are other recent works also featuring the direct DG discretization, such as those
by van Leer and Nomura in [25], Gassner et al. in [22], and Cheng and Shu in
[20]. Stability and convergence of the schemes are presented in [20] which takes
advantage of some carefully designed numerical fluxes.

Obtaining a priori error estimates for various DG methods has been a main sub-
ject of research. For smooth solutions of scalar conservation laws, error estimates
have been given in several earlier works [24]26][30,82] and the more recent one
[40] for the fully discrete Runge-Kutta DG methods, and [4I] for symmetrizable
systems. The first a priori error estimate of order O(h*) for the LDG method of
linear convection-diffusion was obtained in [19]. With a particular numerical flux,
the optimal convergence rate of order O(h*+1) was obtained in [7J[I0,[IT]. For the
numerical method of Baumann and Oden [6] when applied to nonlinear convection-
diffusion equations, the optimal error estimate for at least quadratic polynomials
was obtained by Riviere and Wheeler [33]. The L? a priori error estimates for
nonlinear PDEs with high order derivatives such as the KdV equations have been
obtained [20,[36,38] using certain special local projections. The optimal L2-error
estimate for the linearized KdV equation was obtained in [37], where authors take
advantage of stability estimates for auxiliary variables. A conservative discontinu-
ous Galerkin-method for the generalized KdV equation was recently proposed by
Bona et al. [4], in which a global projection was used in obtaining error estimates
in some cases.

For the DDG method, the first a priori error estimate of order O(h*) for linear
diffusion was obtained in [28]. The accurate recovery algorithm of the normal
derivatives presented in [23] provides a set of effective choices of parameters in the
DDG numerical fluxes. An accuracy analysis using Fourier modes for some special
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solutions was presented in [39]. The main objective of this article is to present
an approach to obtain the optimal a priori error estimate of order O(h**+1) for
polynomial elements of degree k.

In this paper, the main procedure to obtain the a priori error estimates is the
following. First, we obtain the error equation for the DDG method. Second, we
introduce a new global projection on PU: flj (U — PU)vdz = 0 for any v € P¥—2
subject to interface conditions dictated by the DDG numerical fluxes, and prove
the existence of such a projection and obtain the projection error. Third, we split
the error into two parts by using the global projections: u — PU and PU — U,
which enables us to control both cell integrals and the inter-element jump terms
simultaneously. In the multi-dimensional case with nonlinear convection, we use
tensor product polynomials of degree at most k and show that the optimal error
estimate of order k + 1 for k > dz;l; this restriction is unnecessary for the linear
convection. In multi-dimensional case, a superconvergence result is established by
taking advantage of the Cartesian structure of the grid and a similar argument to
that in [9] for the LDG method to solve elliptic problems on Cartesian grids.

The paper is organized as follows. In §2 we illustrate a natural way to derive
the global version of the DG formulation from the PDE weak solution formulation.
We further discuss how a careful choice of numerical fluxes can be made to ensure
some desired features including consistency, conservation, stability and accuracy.
In §3, we quantify the admissible set of numerical fluxes for the solution gradient
and the convection to ensure the L? stability. In §4 we estimate the L2-error
of the numerical solution from the original solution for the case of purely linear
diffusion and linear convection-diffusion with two different global projections. In
65 we present the L2-error estimate for linear diffusion with nonlinear convection.
The extension to multi-dimensions is given is §6. A collection of projection errors
in both one and multi-dimensional cases is presented in §7.

2. SCHEME FORMULATION

We begin with the one-dimensional convection diffusion equation

(2) U + 0, f(U) — 03U =0,

subject to initial data

(3) U(z,0) = Uo(x)

posed on  := [0, 1] with periodic boundary conditions. The weak solution formu-
lation for this problem is to find a function U € C(0,T; H'(Q2)) such that for all
v € Hy(Q),

(4) (0uU,v) — (f(U), 0,0) + (0,U, 0,v) = 0,Yv € H} (),

(5) (U(x,0),v) = (Uo,v).

Here (-,-) denotes the inner product of two functions over 2. To discretize this
weak formulation, we set up a partition of the domain ) = U;.Vzl I;, with mesh
I; = [xj_1/2,7j41/2] and mesh size h := Az = 2412 — T;_1/2, and define the
finite element space

Vii={veL*Q): w|;, eP";), j=1,...,N},
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where PF(I ;) denotes the space of polynomials on I; with degree at most k. We
will also adopt the following notation:

+ —_
ut 4 u
uF=u(z+0,t), [u=uv"—u", {u}= +
The idea of the direct discontinuous Galerkin (DDG) method in [2§] is to enforce
the weak formulation (@), (&) in such a way that both u and v are approximated
in VX, The discontinuous nature of numerical solutions and test functions crossing
interfaces necessarily requires some interface corrections, leading to the following:

N N
(6) jzz:l /Ij Oyuvdz + ; (— /Ij f(u)Ozvdx + /Ij 8Iu6xvdx>

+§: ((=F +amw)le) + 8:0fu]) =0

J+1/2

(7) é /1 RGOS é /1 Uy

Here, periodicity is realized by using same polynomials in I3 as in Iny1, and the
“hat” terms are determined as numerical fluxes. Crucial for the scheme stability as
well as for the accuracy of the DG method is the choice of numerical fluxes. The
guiding principle is that numerical fluxes are chosen in such a way that they depend
only on the left and right polynomials and that

(i) they are consistent with — f(u) 4+ 9,u when u is smooth;

(ii) they are conservative in the sense that they are single valued on x; s,
(iii) they ensure stability, and
(iv) they enforce the high order accuracy of the method.

For convection we take the numerical flux
(8) f=Ffw,ub),

which is Lipschitz continuous in its arguments, and consistent with f in the sense
that f(u,u) = f(u), and satisfies

© [ Gt - = [ W =R AL F

- [u] -

This corresponds to the entropy flux with only quadratic entropy, and it may be
called the quadratic entropy flux.
For diffusion, following [28], we take d,v = {9yv} and

_ b

(10) Oz 5

[u] + {0zu} + BLh[O7u].

The algorithm is now well defined once the two parameters [3; are chosen, and a
particular f is selected.
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If we define two operators as

N N
(11) A(u,v) = Z /1 Opulyv dx + Z(@xu[v] + [u]{@xv})|j+%,

N N )
(12) Flu0) =Y /I F)dvde+ 3 Filyyy.

then the scheme may be compactly written as
(13) (Oyu,v) + A(u,v) = F(u,v), Yo e VL.

This formulation is particularly convenient to analyze the scheme.
Restrict v to only one cell I; and we may obtain the local version

(14) / dpuvdz = / (f(u) — Bpw)dyvda + [(—f + Do)+ (u— a)azv} ‘81 ,
I; I; J

with @ = {u}, d,u defined in (D) and f in @®).

~ We end this section by some further discussions on choices of the numerical flux

f. After Osher [42], a numerical flux may be called the entropy flux if it satisfies

ut
[ e () = f@) du < 0
for any convex entropy function 7, for it is equivalent to the E-flux as defined by

(15) sign(u —u™) (f(ut u) — f(w) <0

for all u between v~ and u™. A popular subclass is the so-called monotone fluxes for
which f is nondecreasing in v~ and nonincreasing in u™. A well-known monotone
flux is the Lax-Friedrich flux of the form

(16) f=1{f} =M, o=max|f|

Such a choice will dissipate the entropy, and be particularly suitable for discon-
tinuous solutions or solutions with sharp fronts when convection dominates. To
summarize the relation between the different types of fluxes considered above, we
have

monotone flux ([[6) = entropy flux ([T = quadratic entropy flux (@) .

In other words, examples of monotone and entropy fluxes are actually also the
quadratic entropy flux ([@). In the presence of diffusion, one may take

Ju SO0

[u] i

(17) f=

which is a quadratic entropy flux.
For any piecewise smooth function u € L2, on any cell interface we define

(18) a(f;€) = { W] =L(f(€) = f), V€€ (min(u™,ut), max(u—,ut)),

Lmax|f, it fu] =0,
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where f = f (u™,uT) is an entropy satisfying flux consistent with the given flux
f(u). We then find that for the quadratic entropy flux (@),

ut
(19) alfou) 20, f(u) = F flw)du,
and for monotone fluxes we have
(20) a(f,€) >0, V¢e (min(u”,u’), max(u",ut)).
Notations. Throughout the paper we use unmarked norm || - || or | - |lo,s as the
L?-norm on domain B, || - |, 5 as the H™-norm and | - |, p as the seminorm of

H™ defined by |ulm,p = (3|0)=m I |0%u|?dx)/2. We use || - ||oo.5 to denote the
L*°-norm. B may not be included in the norm expression if it is the whole domain
or the domain is clear in the context.

3. NUMERICAL FLUX AND L? STABILITY

We define the discrete energy norm by

N N
21 2 = /8m2d+ Bory
(21) ol =3, el ;;“ﬂ]

and introduce a quantity

bl NS 327
s 1
jt+=

v(1) — 2310:v(1))?
F(ﬁl): sup ( ( )1 51 § ( ))
vePki=11] £y v (€)d¢
where ¢ may be interpreted as 2(x — x;)/Ax for « € I;. It is clear that I' depends

on both B; and the polynomial degree k. Note that, for any vy, v, € P*=1([—1,1])
and v = v1 + v9, we have

(22)
0 - 2007 < § [ i <r ([ mepas [ uere).

-1 1 —1

This, when applied to the numerical solution u with

vl(g) =V (xh_/;]> = 6acu|lj7 U2(€) = U2 <%) = 8:cu|1j+17

gives

(23)  (2{0,u} + B1h[0%u])* < % (/IJ |0z u|? dx —l—/

Ijqq

|0, ul? d:z:) , u€eV
Summing over j =1,..., N we obtain
N 3 N
1
hjEZl({amu} + 7h[8§u})2 < FjEZl /Ij |0z u|? d.

Here we have used u|;, = u|s,,, to incorporate the periodic boundary condition.
This implies that

h3 L ({0zu} + BEh[02u])?
I'> sup d ~ .
uweP*k(I;) Zj:l flj |0, ul? dz
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The right hand side is the lower bound for 5y obtained in [28], using the admissibility
criteria. We thus conclude that there exists v € (0,1) such that

(24) A(v,v) > 9|3, Wwve VZ,
provided
(25) Bo > T'(B1)-

We next present a simple evaluation of T'.

Lemma 3.1. For any k > 1, it holds that

2
(2) () = (1= 5102 = 1)+ G102 - 1),
Moreover, I'(1) achieves its minimum %2 at py = m

Proof. Let ¥(£) be a vector basis function, satisfying filwi(f)wl(ﬁ)dﬁ = ¢y for
k
1 <4,l <k,and let v(§) = > a;1p; (), then

i=1

1 1 k
[ wpde=a ([ v de)a=3 o =1or
On the other hand, for any number 7,
(0(1) #2901 = & (6(1) +206 (D) (1) 41 (1) @ < [9(1) 470 (D
Hence for y = —28; as in (ZJ) we may take
@) T(B) = 206(1) + 106 (D

To make this bound more precise, we choose the normalized Legendre polynomial
vector basis {1;}¥_,. Using

22’—1 22—12

e, =1,...,k,
5 (1
we obtain for any v € R,
2@ ..
2[yp(1) + 709 (1) _QZ |1—|— 52(@— 1)?
k k-1 9 k—1
222—14—721 i(i+ 1) (20 + 1) + %;ﬁz—kl (2i+1)

— k2 <1 + %(k 1)+ ?Z(kQ - 1)2) .

The desired result follows by taking v = —23,. Particularly, it achieves the mini-

mumk—Qat —— |
1 T =T

Lemma 3.2. For the quadratic entropy ﬂumf defined in [@), it holds that
F(u,u) <0.
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Proof. Using the periodic boundary condition, we calculate

N
f(w)0udx

N ut
Z j+1/2 with f(’U,*) =
Jj=1 v
Hence for quadratic entropy flux (@),
N N
Flu,u) =Y (flu™un)ul)jiao = D (FW)u]) iy
j=1 j=1
N

= Z )[u]? )j+1/2 < 0.

O

This lemma and ([24)) ensures that the DDG scheme (I3) has the following prov-

able properties.

Theorem 3.3. Consider the semidiscrete DG ([[3) with (8o, 81) satisfying (28]
and the quadratic entropy flur @) for convection, then it satisfies the following

properties:

(1) Conservation of mass: Z] 1f1 u(t,z)de = [, Uo(z)dx, Vt>O0.

(2) The energy |u|* := ijl J; wPdx is nonincreasing in time. More pre-
J

cisely, there exists v € (0,1) such that
d
(28) Tl < =29llulE <0.
(3) The scheme is L? stable in the sense that

Hu||2§/U§dﬂc, vt > 0.
Q

Proof. (1) Taking v = 1 in ([I3]) we have % Zjvzl J; udz = 0, which when combined

with () with v =1 leads to the mass conservation.
(2) Take v = w in (I3) and we obtain

2
2dt”uH + A(u,u) = F(u,u).

For the quadratic entropy flux, we have

F(u,u) <0.

This together with the lower bound of A ensures the energy dissipation property

@).

(3) From (2) it follows that

N
Jul® < ffu(- 0|2 = Z/ (2,0)d sZ/Uodx

by using ().
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4. ERROR ESTIMATES

The idea for obtaining the optimal error estimate is to introduce some special
global projection. We illustrate this idea for diffusion first, and then discuss its
extension to convection-diffusion equations.

4.1. A global projection and projection error. We define a special projection
P as follows. For a given smooth function w, the projection Pw is the unique

function in Vﬁ which satisfies

(29a) / (Pw(z) — w(z))v(z)de =0, Yve P*2(I;), j=1,...,N,

I;
(295)  0(Pw) = foh ™" [Pu] + {0u(Pu)} + Buh(F (Pw)]| | = Ouwljanyo),
(290) {Pu}| | =w(ap)

At xn41/2 We use a periodic extension to be consistent with the periodic boundary
condition for problems (2)) and (B). For a piecewise smooth function w with w|;, €
H**1(1;), the above definition needs to be modified so that the right of (29b) and
([29k) is replaced by w, and {w}, respectively.

Lemma 4.1. For (Bg, 81) such that By > T'(B1), the projection P defined in (29)
exists, and

1/2

(30) ( /O 1(Pw(x) —~ w(a:))2da:> < ChMH

for a smooth function w, where C is a constant depending on w and its derivatives
but independent of h.

Proof. We first show the existence of such a projection. Define the affine map
h
55:3”(5):%“"55, -1<¢£<1,

which maps [—1, 1] onto I;. The Legendre polynomials ¢ (2(x — z;)/h) = Li_1(§)
are the Legendre polynomials on [—1, 1], then the projection can be expressed in
terms of the Legendre polynomials

k+1 _
Pw(x)|;, =Y al¢i(€), 1<j<N.
=1

From [2%) with v = {¢;}*= it follows that for 1 < j < N,

o2i—1 [t h
o — 12 /_lw(xj+5g)¢i(g)dg, i=1,.. k-1,

2 = 2

) . . j j .
where we have used ||¢; 577 It remains to determine a; and ay, by using

the interface conditions; that is, { Pw}|j11/2 = w(x;41/2) and

B[Pu] + 2{0(Pw)} + 441102 (Pw)] = hdpw(z;s12),
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which lead to

k+1 k—1
Z[dh(l)@f + ¢i(—1)al ] = b] == 2w(wj41)0) Z Ja] +al ™ gi(=1)),
1=k i=1
k+1 ‘ k—1
> lgo(al + g1 (i)al™] = b = hwa(z41/2) = Y _[go(i)al + g1 (i)al ™,
i=k i=1
where

90(1) = =Bo¢i(1) + ¢;(1) = 45197 (1),  g1(1) = Bodi(—1) + @i (—1) + 4614 (—1).
Set two matrices

_ o (1) dr4a(1) _{ o(=1) Sri1(-1)
A= ( go(k) 90(1:+1) ) B( g1(k) g1(+k+1) >

then the coefficient matrix of {a/}, with o/ = (ai:,aiJrl)—r is an N x N block
circulant matrix with the first row [A B0 --- 0] and the last row [B O --- 0 A],
denoted by D. The determinant of this matrix is

det D = [AIN|1 + ()N} (A7'B)Y]

which is nonzero as long as |A + B| # 0. Recall that, for ¢ > 1, we have

bi(£1) = (1) Hi=1,2,...,
Pi(£1) = %(:tl) i(i—1),1=2,3,...,
o (£1) = %(il)z Yi—2)(i—1)i(i+1), i=3,4,...;
hence,
90(6) = —Bo + gili — 1)~ D~ )i~ Vili +1), 01(6) = (~1'go(i).
By a direct calculation we see that |A &+ B| # 0 is equivalent to the requirement
that
(31) 90(1) + (=1)'g1(6) #0, i =k k+1;

that is, go(#) # 0 for ¢ = k,k 4+ 1. Under this condition the determinant of the
coefficient matrix will not vanish, thus is nonsingular. The existence of global
projection (29) follows. In fact, for 5y > I'(81) we do have go(7) # 0 for i = k, k+1.
This can be verified by a straightforward calculation, leading to

go(k) < —%k(k—k D, golk+1) < —%k(k .y

for By > T'(By).
The desired L2?-error estimate follows from the refined estimates stated in Lemma

below. 0
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Lemma 4.2 (The projection estimates). If w is a smooth function satisfying w €
H*(Q), then we have the following estimates:

N
(32) Do lPw —wl 5, < CRP** 2wl o
j=1
N
(33) Z |Pw — w|§+1/2 < Ch2k+1|w\i+1’ﬂ,
j=1
N
(34) Z |Pw — w\go,lj < Ch%m‘iﬂ,sz,
j=1

where C' depends on k, Bo, 1 but is independent of I; and w.

These projection error estimates follow from those stated in Theorem [.I] which
is proved in §7.

4.2. Projection and inverse properties. Let ¢ = PU — U denote the projection
error, then Lemma implies the following inequality:
(35) lell + Blielloo + A2 [lellr, < CRFTY,

where I', denotes the set of interface points of all cells I;, and the constant C
depends on k and |U|g41.
For any function e € Vfl, the following inverse inequalities hold [13]:

(36a) 1zell < Ch™" el
(36b) lellr, < CR=Y2]el,
(36¢) leloo < CRTH2e].

4.3. Error analysis. If we assume the exact solution of (2) is smooth, we can
obtain optimal L2-error estimates.

Theorem 4.3 (Diffusion without convection f = 0). The solution u to the semidis-
crete DDG scheme ([@3) for problem [@)-@) with f = au which admits a smooth
solution U satisfies the following error estimate:

1
(37) /0 (u(x,t) — Uz, t))?de < Ch2HF+D),

where C' depends on U and its derivatives but is independent of h.
Proof. The DG scheme can be written as
(38) (Oru,v) + A(u,v) =0

for all v € V§. The scheme consistency ensures that the exact solution U of (2)
also satisfies

(39) (0U,v) + A(U,v) =0

for all v € V§. Subtracting (B8] from (B9) and using the linearity of A with respect
to its first arguments, we obtain the error equation

(40) (U — u),v)y + A(U —u,v) =0
for all v € Vlfr
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We now take v = PU — u in the error equation ([0), and denote

(41) e=PU—-u, e=PU-U,
to obtain
(42) (Ore, e) + Ale,e) = (Ore,e) + Ale, e).
For the left hand side of ([@2)), we use the L? stability estimate in Theorem B.3] to
obtain
1d (', )
(43) (Gre,e) + Alere) = 2L [ 2zt el

As to the right hand side of [{2), we first write out all the terms in A(e,e):

=2

N —
Aee) =Y /1 Opcdyedr+ Y (Grele] + {0ue )y o

-

N —~
-y / Decdr + 3 (—[0sed + Dacle] + {Oue}el) o1/
j=1"1%

Z .

<.
Il
i

2

N —
-y /I eedz+ Y (Drele] — {}0rel) 112

1

<.
I

Noticing the properties of the projection P, we have

/ D2eedr =0
I

because d2e are polynomials of degree at most k — 2, and at Tjy1/2,

—~

Jye = 0,(PU) — 0,U =0, {e} = {PU}—U =0.

Therefore A(e,e) = 0 and the right hand side of ([@2]) becomes

1 1
(44) (Ore, e) < 1/ (0r€)?dx + l/ eda.
2 Jo 2 Jo

Plugging @3) and [@4)) into the equality [@2]) and using the approximation result
in Lemma 1] we obtain

1 1
— [ e2dx +27y|e||% < / edx + Ch* 2,

The Gronwall inequality, the fact of the initial error (initial data is obtained by a
standard L? projection),

1Uo = u(-,0)[| < CR*TY,

and the approximation result in Lemmal4 ]finally give us the desired error estimate.
|
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4.4. Linear convection. The same optimal error estimate can be obtained for
the convection-diffusion equation with linear convection f(u) = au. We modify
the projection as follows. For a given smooth function w, the projection Qw is the
unique function in V¥ which satisfies

(45a) /I(Qw(x) —w(z))v(z)de =0, Yve P*2(I;), j=1,...,N,
() 0.(Qu) — f(w) = Dyw(wjiryz) — aw(wjisa).
(45c¢) {Qu} = w(@jt1/2),

where at z 1 /o periodic extension of Quw is applied. For piecewise smooth function
w, a similar modification to that for ([29) suffices.

Lemma 4.4. For (B, 1) such that By > I'($1) and any real number «, the pro-
jection Q defined in (D) exists, and
1/2

(16) ([ @u) —wiwpar) <o

for a smooth function w, where C is a constant depending on w and its derivatives
but independent of h.

Proof. The proof is entirely similar to that in Lemma 1] except for a modification
of g and ¢y,

3 B0 = (=D (g(0) + Fh).

From (31 in the proof of Lemma[1]it follows that the projection @ exists, provided
9o()) + (=1)'gu (i) #0, i =kk+1.
In fact, the above quantity gives
90(0) + (=1)'q1(0) = 2g0(i), i =k k+1.

Hence the result in Lemma [£.J] remains valid for the projection Q. O

go(i) = go(i) —

Theorem 4.5 (Diffusion with linear convection f = au). The solution u to the
semidiscrete DDG scheme ([I3) for problem @)-@l) with f = au which admits a

smooth solution U satisfies the following error estimate:
1
(47) / (u(z, £) — Uz, ))%dx < CH2HD),
0

where C' depends on U and its derivatives but is independent of h.

Proof. Following the proof of Theorem [A.3], we set

(48) e=QU —u, e=QU-UT,
to obtain
(49) (Ore,e) + A(e,e) — F(e,e) = (Ore, ) + A(e, e) — F(e, e).
For the left hand side of (@), we use the L? stability estimate and F(e,e) < 0 to
obtain

1d [, 2
(50) (Ore,e) + Ale,e) — F(e,e) > sq | €t 7Vllell%-

0
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As to the right hand side of ([49]), we first write out all the terms in A(e, e) — F'(e, e)

/1- Con€ + f(€)6x> dx

J
N—

+ 3 (& — ()] — e eal)jr1y2

j=1

J

N
A(e,e) — Fe,e) = — (

Ju

N
= _;/jj fle)eydx,

by the properties of the projection Q. Therefore, the right hand side of ([#9) becomes

1t 1 2 1
(51) (Ore,e) + A(e,e) — F(e,e) < 5/ e2dx +/ ed + g—/ 2dr + %HeH%
0 0 7 Jo

Plugging (B0) and (&I)) into the equality (#9) and using the approximation results
in Lemma [£4 we obtain

1 1
— | dx+|e|% < / e*dx + Ch?F T2,

Again by the Gronwall inequality, the initial error and the approximation result in
Lemma [£4] we obtain the desired error estimate. O

Remark 4.1. For nonlinear convection, we can still obtain the optimal error esti-
mates, yet the above proof relying on a modified projection is no longer applicable.
In the rest of this paper we present an approach to overcome the difficulty caused
by the nonlinear convection, and the argument applies to linear convection as well.

5. ERROR ESTIMATES WITH NONLINEAR CONVECTION

Theorem 5.1. The solution u to the semidiscrete DDG scheme ([I3) (using a

monotone fluzx for f) for problem @), B) with a smooth solution U satisfies the
following error estimate:

(52) /Ol(u(x,t) — Uz, t))2dz < Ch2k+D),

where C' depends on U and its derivatives but is independent of h.

Proof. Let PU be defined in (29). Following the proof of Theorem [£.3] we set
(53) e=PU—-u, e€=PU-U,

to obtain

(54) (Oe,€) + Ale,e) = (Ore,e) + Ae,e) + H, H :=F(U,e)— F(u,e).

Using the coercivity A(e,e) > v|e[|%, and A(e, e) = 0 due to the special projection,
we have

(55) Lz etez <L [ @dot )t [ avn
5 7 lle ’yeE_Qoetx 206.23 .
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To estimate H from above, we take the average of u* as a reference value {u},
hence

(56)  H= Z / w)e,da + Z CC G

+Z ({u}) = Fw)lel) 43

where we have taken the periodic boundary condition into account.
First we establish the estimate of the last term in (B0]) as

N
<7 2k+2
<3 z_: L on
In fact, using notation ([I8)) and the fact that the exact solution is continuous with
[U] = 0 so that [u] = [¢] — [e], we obtain
N N R N R
Hy =Y (a(fi {uh)lle]) 41 = = D (alfs {uh) )y + D (alfs {uh)dle]) 41
j=1 j=1 j=1

For the monotone flux, the first term is nonpositive; see ([20). Using the Young
inequality, we bound the last term further by

The claimed bound for Hs follows from these estimates with the projection error
inequality (30),

N
D o ldl31ye < Clelf < CRP*HL,
j=1
To estimate the first two sums in H, we use the following Taylor expansions
f//
(57) FO) = f(w) = f(U)(e =€) = G (e =),

f//
(58) FO) = f{u}) = FO) (e} —{e}) = T ({e} = {e})*,
where f” and f” are the mean values. These imply the following regrouping
Hy:=H — Hy = Hi1 + Hiz + H3,

where

Hll—Z/f U)ed, edx—l—z U){etle]) ;11
H12— Z/ f 68 €d$+z {6} 5

1 al " 2 - rz 2
Hys = -3 z_:l/lf (e —¢) 8zedx+z_:1(f ({e} —{e})7leD) ;12

will be estimated separately as below.
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For the Hy; term, a simple integration by parts gives

N
1 " 2 2
= —— < .
11 5 jél /Ij 1o, Uedx < C|le]

Using Young’s inequality and ([B0) we obtain

N
H12S%Z/6diE+— /

_l_
WlQ
Q
=]
_|_
<.

i ng
~
—
=
e}
—
N—
<
J’_

< g||e |,%J + Ch2k+2,

To deal with the higher order terms we use both projection and inverse inequalities,

@B0) and (B8, to get

Y 3 "
Hyis < 3 ;:1 /IJ (Dp€)%dx + 6 ;:1 /IJ (f"(e — €)*)?dx
N N
Y [6]2 3h Z
t32 00 Tean jZ:l(f te=eii

&+ Clle — el (llel® + [lell® + Allell7,
+hlellf, + Rlell?,).
Plugging all above estimates on H into the inequality (54)), we obtain
d
(59) S el < Clllell” + R#2) (1 + [le = €] %).
Using the approximation results in B0) and (B6]), we have
d
(60) %H@H2 < C(llelf® + h**2) (1 + h~ e + n25*)
< C [llel®(X 4+~ e]?) + n**2].
Note that for ug to be the standard L? projection of Uy the initial error gives
lleoll = 1T — u°|| < CR**.
For fixed finite time interval [0, T], integration of (B0) over [0,¢] for ¢t < T gives
t
le()]* < C(T)[p?*+2 +/ le()II*(X + A7 le(r)|[*)dr] := CW.
0
This implies that W (0) = h2*+2 and
d
(61) W = le@IP+ a7 e®)|?) < CW(L+ Ch™W).

We define a constant C depending on T such that

CT_/CL —: G(0)
~ 1 on(1+ Cphht) 7
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which ensures a uniformly bound C in terms of h. Integration of inequality (61I)
leads to

G(W/W(0)) < CT = G(C).
Hence W (T) < CW(0) = Ch2+2| leading to |le]|2 < CW < Ch?**+2, implying the
desired error estimate. ]

6. EXTENSION TO MULTI-DIMENSIONS

The extension to multi-dimensions with rectangular meshes is straightforward,
for which we need to first clarify some notations. Consider the following model
equation

(62) U +Vu - f(U) =AU, >0,

posed on x = (z!,...,2%) € Q =1L [0, L,:] C R? with periodic boundary condi-
tions. Here f : R — R? is a smooth vector function.

6.1. Scheme formulation. For a rectangular partition of

N
0= J K.,
a=1
where oo = (aq,...aq), N = (N1,..., Ng). Here we use rectangular meshes {K} C
Ty, with Ko = 12 x -+ x I | where I}, = [:vgﬁl/z,xgﬁlﬂ] for a; = 1,...,N;.

The cell lengths are denoted by et = mMaxi<a,;<N; IZ”|, with h = max;<i<q he'
being the maximum mesh size. We again assume that the mesh is regular.

We define the DG space as the space of tensor product of piecewise polynomials
of degree at most k in each variable on every element, i.e.,

WE={v: veQ"K,),VzeKya=1,...,N},

where QF is the space of tensor products of one-dimensional polynomials of degree
up to k. For the one-dimensional case, we have Q*(K) = P*(K), which is the space
of polynomials of degree at most k defined on K.

We also introduce some trace operators that will help us to define the interface
terms. Let K' and K? be two neighboring cells with a common edge e; for w
defined on 0K, i = 1,2, we define the average {w} and the jump [w] as

1
{w} = §(w1 +ws), [w]=ws—w; on e,

where the jump is calculated as a forward difference along the normal direction 77,
which is defined to be oriented from K! to K2, with w; = w|yx:. We start with
the weak formulation of (62)) of the form

/athder/ VU - Vodr = / f(U) - Vyvde, Y v e Hy(Q),
Q Q Q
and approximate U by u € W’fb, and also allow v € Wﬁ to be discontinuous crossing

OK. With such a DG discretization the above formulation has to be refined by
including some interface corrections, leading to the following DG scheme,

(63) (ug, vy + A(u,v) = F(u,v),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2280 HAILIANG LIU

where (-,-) denotes the L? inner product over €2, and

(64a) Au / Vou- Vevdz +» / wu[v] 4 [u]{8,v})ds

KEeT, =
(64b) F(u,v) Z /f Vvd:v—i—Z/f"
KeTy, ecll

This is a complete DG discretization as long as the “hat” terms are defined.

6.2. Stability. For nonlinear flux we take f as an entropy satisfying numerical
flux: let e = OK' NOK? and u; = ulgg,

(65) / (F(uns u) — F(€) - 70) ulds < 0

e

for all £ between u; and us. For the directional derivative of the solution induced
from the diffusion we take

Ot = Boh ™ [u] + {Onu} + B1h[02u]

with (8o, 1) chosen so that Sy is suitably large (> I'(81)) to ensure the following
coercivity

(66) A(v,0) > 7llv| 5
for some v > 0, where
(67) iz = > / V0] dx+z/5° 12ds, v e WE.
KeTy, ecll
Lemma 6.1. For the entropy fluz f defined in (B5), it holds that
F(v,v) <0, YveWr.
Proof. Set gi(v) = fi(v) with g(v) = (91(v), ..., 94(v)), then

/f Vvdx—/ V- gl / g(v) - figds,
oK

which can be rewritten as

/BK{g(v)} Freds — %/(?K[g(v)] Fieds.

Hence, using (63]) we have

Flo,0) =Y {_ /[g]-ﬁds+/fﬁ[v]ds]

ecl’

_Z/ ) [v]ds < 0,

ecl’

where we have used the mean value theorem and the definition of g; £ is between
v|ox and vox¢, O

Both A(u,u) > v|lul|% and F(u,u) < 0 imply the desired energy stability

d
(68) Zllull® < =z < 0.
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6.3. Projection and projection properties. To prove the error estimates for
multi-dimensional problems with rectangular meshes, we need a suitable projection
similar to the one-dimensional case. Such a projection can be defined as

(69) Mw =P @...@ PEy,

where the superscripts indicate the application of the one-dimensional operator
P with respect to the corresponding variable .

In other words, for a given (piecewise) smooth function w, the projection Iw is
the unique function in W’fL defined in ([©9), with P@") determined by

(70a) / (Pw(z) — w()Owo(z)da’ =0, Voe PHIL), a;=1,...,N,,
Iéi

(70b) (9901(73(7”11;) = Bo(hi)fl[P(””i)w]

i i
Ta;+1/2 Ta;+1/2

(70c) {P(”i)w}

L=,

Ta;+1/2 a;+1/2

where periodic extensions are used at the domain boundary. Similar to the one-
dimensional case, there are some approximation results for the above multi-
dimensional projection:

d+1
(71) lell +h7= Nlelloo + 22 [lellr, < CRM,

where ¢ = IIU — U. The positive constant C, solely depending on |Ulxy1, is
independent of h. I'j, denotes the boundary sets of all elements K,. We present
more refined estimates than ([7T) in Theorem [[3l The proof presented in §7 for the
two-dimensional setting is for simplicity only.

Finally, we list some inverse properties of the finite element space W’g that will
be used in our error analysis. For any function w;, € W’fb, the following inverse
inequalities hold [I3]:

(72a) [0Lwn | < Ch™*wsl,
(72b) Jwnllr, < Ch™2|wyll,
(72c) [whlloe < CR™Y2|wy

where d is the spatial dimension. For more details of these inverse properties, we
refer to [13].

6.4. Error estimates. The stability result also yields the following error estimate.

Theorem 6.2. Let u be the solution to the semidiscrete DDG scheme ([63) for
problem (62) subject to initial data Uy using polynomial elements of degree k, and
U be a smooth solution of [62) subject to initial Uy. If k > dz;l, then the following
error estimate holds:

(73) /Q(U(x’t) — U(x,t))Qd:z: < C«hz(kﬂ)7

where C' depends solely on |U|k2 and data given, but is independent of h.
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Remark 6.1. Note that for purely diffusion problem with no convection (i.e., f(u) =
0) or with linear diffusion f(u) = cu, the restriction k > %=1 is unnecessary. For
nonlinear convection, this restriction suggests that one may use polynomials of
degree k > 1 for d = 2, 3.

Remark 6.2. In the multi-dimensional case, the proof requires a stronger smooth-
ness assumptions on the exact solution than the ones in the one-dimensional case.
In this sense, Theorem may be regarded as a superconvergence result.

Proof. Let Ue Wﬁ be determined to approximate U, and set

(74) w=U—-u, e=U-U,

so that U — u = w — €, We take v = w in (G3) to obtain

(75)  (Opw,w) + A(w, w) = (Ope, w) + A(e,w) + H, H :=F(U,w)— F(u,w).
The choice of (By, £1) can be made so that

(76) Aw, w) > 7wl

We take U = IIU as the projection of U defined in (0)). In multi-dimensional case,
A(e, w) is no longer zero, but still controllable with the following superconvergence
result.

Lemma 6.3. Let A be defined in [©4h). Then we have for any s > 0,
; 1
() Alew) < 0 ([l + 12mmE42) 4 2 A, ).

The constant C' depends on |U|sy2.

We postpone the proof of this result to the end of this section, and proceed to
estimate H in ([75). We take the average of u|gy: as a reference value {u}, hence

(78) H=Y /K (F(U) = f(w) - Vywd + / (F(U) - f({u}) fwlds

KeTy
+ / (P ({u}) — F) wlds,

where we use the notation f"(¢) = f(§) - @ and have taken the periodic boundary
condition into account.
Using the Taylor expansions

1"

(79) FU) — flu) = F0)w — )~ Lot — o)

(80) fO) = f{u}) = FO){w} = {e}) = %ﬁ({w} —{eh)?,

where f” and f” are the mean values, and a™(f;€) := [u]"2(f(¢) — f) with [u] =
[€] — [w] we obtain

H=H,+ Hy,+ H3 + Hy,
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where

H= Y [ wr@)-Vowde+ [ 75wl

KeTy,

<K; / wada:+/rﬁ'f/(U){f}[w]d5>7

- _Z NVowdr + | 7 f({w} = {e})?[wlds |,
(é;/ [ {D[]>
1ﬂ:—Aﬁ%ﬁmDmﬁh+AaWﬁMDHM®

will be estimated separately as below.
For the H; term, a simple integration by parts gives

fﬂzAﬁJWDMN]%—l/ SOy Y [ )

KETh
=3 3 / F(U) - VoUw?de < Cllwl|?.

KeT
Using Young’s inequality and (1)) we obtain

H2<—Z/\Vw|dx+—2/

KeTy, KeTy,

et I ! 2
+1 [l wﬂ/uamwk
>~ EH'LUHE + Ch2k+2.

To deal with the higher order terms we use both projection and inverse inequalities,

[ and (72, to get
/|V w|2dx+— Z/ " (w—€)*)?dx

KET; KGT
LMW%+£—W% ))ds
< Tl + Cllw — el (ol + elP).

For the entropy flux, the first term in H, is nonpositive; using the Young inequality,
we bound the last term further by

[(ao5E s+ 2 [ ((@ny2ie) as
< /ﬁ w]zd + OR2k+2,

H,

| /\

h

The above estimates lead to

gl
H < Sllwlf + C(lwll* + 272 (1 + [lw - €]%).
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Substituting this, ([fQ) and (77) into the equality (75]), we obtain
(81) %Ilwll2 < O(llwl® + P2 F2) (1 + [lw — €l|3)-
Using the approximation results (7)) and (Z2)), for small h, we have
lw = ellos < [[wlloc + lelloc < CR™¥2w]| + BFF1=5