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OPTIMAL ERROR ESTIMATES OF THE DIRECT

DISCONTINUOUS GALERKIN METHOD FOR

CONVECTION-DIFFUSION EQUATIONS

HAILIANG LIU

Abstract. In this paper, we present the optimal L2-error estimate ofO(hk+1)
for polynomial elements of degree k of the semidiscrete direct discontinuous

Galerkin method for convection-diffusion equations. The main technical diffi-
culty lies in the control of the inter-element jump terms which arise because of
the convection and the discontinuous nature of numerical solutions. The main
idea is to use some global projections satisfying interface conditions dictated
by the choice of numerical fluxes so that trouble terms at the cell interfaces are
eliminated or controlled. In multi-dimensional case, the orders of k + 1 hinge
on a superconvergence estimate when tensor product polynomials of degree k
are used on Cartesian grids. A collection of projection errors in both one- and
multi-dimensional cases is established.

1. Introduction

In this article, we introduce an approach for proving optimal L2-error esti-
mates for the semidiscrete direct discontinuous Galerkin (DDG) method solving
convection-diffusion problems. To demonstrate the main idea, we will focus on the
one-dimensional model equations

(1) ∂tU + ∂xf(U) = ∂2
xU,

with zero flux f = 0, linear flux f = αU and nonlinear smooth flux f(U), followed
by multi-dimensional extensions. The DDG method was introduced in [27], refined
with interface corrections in [28], and has since been extended to multi-dimensional
settings as well as equations with nonlinear diffusion, for which extensive numerical
tests have shown the optimal (k + 1)th order of accuracy for polynomial elements
of degree k. However, the optimal L2-error estimate has not been available. In this
work we present a novel approach to obtain such an estimate. We will give the
details of the proof for linear diffusion with different convections to illustrate the
main ideas.

The discontinuous Galerkin (DG) method we discuss in this paper is a class
of finite element methods, using a completely discontinuous piecewise polynomial
space for the numerical solution and the test functions. One main advantage of the
DG method was the flexibility afforded by local approximation spaces combined
with the suitable design of numerical fluxes crossing cell interfaces. It was first de-
signed and has been quite successful for solving first order PDEs such as hyperbolic
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conservation laws [15, 17, 18, 21, 31]. However, the application of the DG method
to diffusion problems has been a challenging task because of the subtle difficulty
in defining appropriate numerical fluxes for the solution gradient. There have been
several DG methods suggested in the literature to solve the problem, including the
method originally proposed by Bassi and Rebay [5] for compressible Navier-Stokes
equations, its generalization called the local discontinuous Galerkin (LDG) meth-
ods introduced in [19] by Cockburn and Shu and further studied in [8,10,14,16], as
well as the method introduced by Baumann-Oden [6,29]. See also the earlier works
[1, 3, 35] using the so-called interior penalty (IP) method, and the unified analysis
of DG methods in [2] for elliptic problems and background references for the IP
methods.

The idea of DDG methods for higher order partial differential equations, such
as the convection diffusion equation (1), is to directly force the weak solution for-
mulation of the PDE into the DG function space for both the numerical solution
and test functions. Unlike the traditional LDG method, the DDG method does
not introduce any auxiliary variables or rewrite the original equation into a larger
first order system. A key ingredient for the success of such methods is the correct
interface corrections. These corrections must be selected to guarantee stability and
solvability of the unknown to approximate the solution. The main novelty in the
DDG schemes proposed in [27,28] lies in numerical flux choices for the solution gra-
dient, which involves high order derivatives evaluated on cell interfaces, motivated
by a trace formula for the solution derivatives of the heat equation [27]. With this
choice, the obtained schemes are provably stable and optimally convergent. There
are other recent works also featuring the direct DG discretization, such as those
by van Leer and Nomura in [25], Gassner et al. in [22], and Cheng and Shu in
[20]. Stability and convergence of the schemes are presented in [20] which takes
advantage of some carefully designed numerical fluxes.

Obtaining a priori error estimates for various DG methods has been a main sub-
ject of research. For smooth solutions of scalar conservation laws, error estimates
have been given in several earlier works [24, 26, 30, 32] and the more recent one
[40] for the fully discrete Runge-Kutta DG methods, and [41] for symmetrizable
systems. The first a priori error estimate of order O(hk) for the LDG method of
linear convection-diffusion was obtained in [19]. With a particular numerical flux,
the optimal convergence rate of order O(hk+1) was obtained in [7, 10, 11]. For the
numerical method of Baumann and Oden [6] when applied to nonlinear convection-
diffusion equations, the optimal error estimate for at least quadratic polynomials
was obtained by Riviere and Wheeler [33]. The L2 a priori error estimates for
nonlinear PDEs with high order derivatives such as the KdV equations have been
obtained [20, 36, 38] using certain special local projections. The optimal L2-error
estimate for the linearized KdV equation was obtained in [37], where authors take
advantage of stability estimates for auxiliary variables. A conservative discontinu-
ous Galerkin-method for the generalized KdV equation was recently proposed by
Bona et al. [4], in which a global projection was used in obtaining error estimates
in some cases.

For the DDG method, the first a priori error estimate of order O(hk) for linear
diffusion was obtained in [28]. The accurate recovery algorithm of the normal
derivatives presented in [23] provides a set of effective choices of parameters in the
DDG numerical fluxes. An accuracy analysis using Fourier modes for some special
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solutions was presented in [39]. The main objective of this article is to present
an approach to obtain the optimal a priori error estimate of order O(hk+1) for
polynomial elements of degree k.

In this paper, the main procedure to obtain the a priori error estimates is the
following. First, we obtain the error equation for the DDG method. Second, we
introduce a new global projection on PU :

∫
Ij
(U − PU)vdx = 0 for any v ∈ P k−2

subject to interface conditions dictated by the DDG numerical fluxes, and prove
the existence of such a projection and obtain the projection error. Third, we split
the error into two parts by using the global projections: u − PU and PU − U ,
which enables us to control both cell integrals and the inter-element jump terms
simultaneously. In the multi-dimensional case with nonlinear convection, we use
tensor product polynomials of degree at most k and show that the optimal error
estimate of order k + 1 for k ≥ d−1

2 ; this restriction is unnecessary for the linear
convection. In multi-dimensional case, a superconvergence result is established by
taking advantage of the Cartesian structure of the grid and a similar argument to
that in [9] for the LDG method to solve elliptic problems on Cartesian grids.

The paper is organized as follows. In §2 we illustrate a natural way to derive
the global version of the DG formulation from the PDE weak solution formulation.
We further discuss how a careful choice of numerical fluxes can be made to ensure
some desired features including consistency, conservation, stability and accuracy.
In §3, we quantify the admissible set of numerical fluxes for the solution gradient
and the convection to ensure the L2 stability. In §4 we estimate the L2-error
of the numerical solution from the original solution for the case of purely linear
diffusion and linear convection-diffusion with two different global projections. In
§5 we present the L2-error estimate for linear diffusion with nonlinear convection.
The extension to multi-dimensions is given is §6. A collection of projection errors
in both one and multi-dimensional cases is presented in §7.

2. Scheme formulation

We begin with the one-dimensional convection diffusion equation

(2) ∂tU + ∂xf(U)− ∂2
xU = 0,

subject to initial data

(3) U(x, 0) = U0(x)

posed on Ω := [0, 1] with periodic boundary conditions. The weak solution formu-
lation for this problem is to find a function U ∈ C(0, T ;H1(Ω)) such that for all
v ∈ H1

0 (Ω),

〈∂tU, v〉 − 〈f(U), ∂xv〉+ 〈∂xU, ∂xv〉 = 0, ∀v ∈ H1
0 (Ω),(4)

〈U(x, 0), v〉 = 〈U0, v〉.(5)

Here 〈·, ·〉 denotes the inner product of two functions over Ω. To discretize this

weak formulation, we set up a partition of the domain Ω =
⋃N

j=1 Ij , with mesh

Ij = [xj−1/2, xj+1/2] and mesh size h := Δx = xj+1/2 − xj−1/2, and define the
finite element space

Vk
h := {v ∈ L2(Ω) : v|Ij ∈ P k(Ij), j = 1, . . . , N},
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where P k(Ij) denotes the space of polynomials on Ij with degree at most k. We
will also adopt the following notation:

u± = u(x± 0, t), [u] = u+ − u−, {u} =
u+ + u−

2
.

The idea of the direct discontinuous Galerkin (DDG) method in [28] is to enforce
the weak formulation (4), (5) in such a way that both u and v are approximated
in Vk

h. The discontinuous nature of numerical solutions and test functions crossing
interfaces necessarily requires some interface corrections, leading to the following:

N∑
j=1

∫
Ij

∂tuvdx+
N∑
j=1

(
−
∫
Ij

f(u)∂xvdx+

∫
Ij

∂xu∂xvdx

)
(6)

+

N∑
j=1

(
(−f̂ + ∂̂xu)[v] + ∂̂xv[u]

)
j+1/2

= 0,

N∑
j=1

∫
Ij

u(x, 0)vdx =

N∑
j=1

∫
Ij

U0vdx.(7)

Here, periodicity is realized by using same polynomials in I1 as in IN+1, and the
“hat” terms are determined as numerical fluxes. Crucial for the scheme stability as
well as for the accuracy of the DG method is the choice of numerical fluxes. The
guiding principle is that numerical fluxes are chosen in such a way that they depend
only on the left and right polynomials and that

(i) they are consistent with −f(u) + ∂xu when u is smooth;
(ii) they are conservative in the sense that they are single valued on xj+1/2,
(iii) they ensure stability, and
(iv) they enforce the high order accuracy of the method.

For convection we take the numerical flux

(8) f̂ = f̂(u−, u+),

which is Lipschitz continuous in its arguments, and consistent with f in the sense

that f̂(u, u) = f(u), and satisfies

(9)

∫ u+

u−
(f̂(u+, u−)− f(u))du =

⎛⎝f̂(u+, u−)−
∫ u+

u− f(u)du

[u]

⎞⎠ [u] ≤ 0.

This corresponds to the entropy flux with only quadratic entropy, and it may be
called the quadratic entropy flux.

For diffusion, following [28], we take ∂̂xv = {∂xv} and

(10) ∂̂xu =
β0

h
[u] + {∂xu}+ β1h[∂

2
xu].

The algorithm is now well defined once the two parameters βi are chosen, and a

particular f̂ is selected.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OPTIMAL ERROR ESTIMATES OF THE DDG METHOD 2267

If we define two operators as

A(u, v) =
N∑
j=1

∫
Ij

∂xu∂xv dx+
N∑
j=1

(∂̂xu[v] + [u]{∂xv})|j+ 1
2
,(11)

F (u, v) =
N∑
j=1

∫
Ij

f(u)∂xv dx+
N∑
j=1

f̂ [v]|j+ 1
2
,(12)

then the scheme may be compactly written as

(13) 〈∂tu, v〉+A(u, v) = F (u, v), ∀v ∈ Vk
h.

This formulation is particularly convenient to analyze the scheme.
Restrict v to only one cell Ij and we may obtain the local version

(14)

∫
Ij

∂tuvdx =

∫
Ij

(f(u)− ∂xu)∂xvdx+
[
(−f̂ + ∂̂xu)v + (u− û)∂xv

] ∣∣∣
∂Ij

,

with û = {u}, ∂̂xu defined in (10) and f̂ in (8).
We end this section by some further discussions on choices of the numerical flux

f̂ . After Osher [42], a numerical flux may be called the entropy flux if it satisfies∫ u+

u−
ηuu

(
f̂(u+, u−)− f(u)

)
du ≤ 0

for any convex entropy function η, for it is equivalent to the E-flux as defined by

(15) sign(u+ − u−)(f̂(u+, u−)− f(u)) ≤ 0

for all u between u− and u+. A popular subclass is the so-called monotone fluxes for

which f̂ is nondecreasing in u− and nonincreasing in u+. A well-known monotone
flux is the Lax-Friedrich flux of the form

(16) f̂ = {f(u)} − σ

2
[u], σ = max|f ′|.

Such a choice will dissipate the entropy, and be particularly suitable for discon-
tinuous solutions or solutions with sharp fronts when convection dominates. To
summarize the relation between the different types of fluxes considered above, we
have

monotone flux (16) ⇒ entropy flux (15) ⇒ quadratic entropy flux (9) .

In other words, examples of monotone and entropy fluxes are actually also the
quadratic entropy flux (9). In the presence of diffusion, one may take

(17) f̂ =

∫ u+

u− f(u)du

[u]
=:

u+∫
−
u−

f(u)du,

which is a quadratic entropy flux.
For any piecewise smooth function u ∈ L2, on any cell interface we define

(18) α(f̂ ; ξ) :=

{
[u]−1(f(ξ)− f̂), ∀ξ ∈ (min(u−, u+),max(u−, u+)),
1
2 max |f ′|, if [u] = 0,
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where f̂ ≡ f̂(u−, u+) is an entropy satisfying flux consistent with the given flux
f(u). We then find that for the quadratic entropy flux (9),

(19) α(f̂ , u∗) ≥ 0, f(u∗) =
u+∫
−
u−

f(u)du,

and for monotone fluxes we have

(20) α(f̂ , ξ) ≥ 0, ∀ξ ∈ (min(u−, u+),max(u−, u+)).

Notations. Throughout the paper we use unmarked norm ‖ · ‖B or ‖ · ‖0,B as the
L2-norm on domain B, ‖ · ‖m,B as the Hm-norm and | · |m,B as the seminorm of

Hm defined by |u|m,B = (
∑

|α|=m

∫
B
|∂α

x u|2dx)1/2. We use ‖ · ‖∞,B to denote the

L∞-norm. B may not be included in the norm expression if it is the whole domain
or the domain is clear in the context.

3. Numerical flux and L2
stability

We define the discrete energy norm by

(21) ‖v‖2E =

N∑
j=1

∫
Ij

|∂xv|2dx+

N∑
j=1

β0

h
[v]2

∣∣∣
j+ 1

2

, v ∈ Vk
h,

and introduce a quantity

Γ(β1) = sup
v∈Pk−1[−1,1]

(v(1)− 2β1∂ξv(1))
2∫

−1
−1 v

2(ξ)dξ
,

where ξ may be interpreted as 2(x− xj)/Δx for x ∈ Ij . It is clear that Γ depends
on both β1 and the polynomial degree k. Note that, for any v1, v2 ∈ P k−1([−1, 1])
and v = v1 + v2, we have

(v(1)− 2β1∂ξv(1))
2 ≤ Γ

2

∫ 1

−1

v2(ξ)dξ ≤ Γ

(∫ 1

−1

|v1(ξ)|2 dξ +
∫ 1

−1

|v2(ξ)|2 dξ
)
.

(22)

This, when applied to the numerical solution u with

v1(ξ) = v1

(
x− xj

h/2

)
= ∂xu|Ij , v2(ξ) = v2

(
xj+1 − x

h/2

)
= ∂xu|Ij+1

,

gives

(2{∂xu}+ β1h[∂
2
xu])

2 ≤ 2Γ

h

(∫
Ij

|∂xu|2 dx+

∫
Ij+1

|∂xu|2 dx
)
, u ∈ Vk

h.(23)

Summing over j = 1, . . . , N we obtain

h

N∑
j=1

({∂xu}+
β1

2
h[∂2

xu])
2 ≤ Γ

N∑
j=1

∫
Ij

|∂xu|2 dx.

Here we have used u|I1 = u|IN+1
to incorporate the periodic boundary condition.

This implies that

Γ ≥ sup
u∈Pk(Ij)

h
∑N

j=1({∂xu}+
β1

2 h[∂2
xu])

2∑N
j=1

∫
Ij
|∂xu|2 dx

.
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The right hand side is the lower bound for β0 obtained in [28], using the admissibility
criteria. We thus conclude that there exists γ ∈ (0, 1) such that

(24) A(v, v) ≥ γ‖v‖2E , ∀v ∈ Vk
h,

provided

(25) β0 > Γ(β1).

We next present a simple evaluation of Γ.

Lemma 3.1. For any k ≥ 1, it holds that

(26) Γ(β1) = k2
(
1− β1(k

2 − 1) +
β2
1

3
(k2 − 1)2

)
.

Moreover, Γ(β1) achieves its minimum k2

4 at β∗
1 = 3

2(k2−1) .

Proof. Let ψ(ξ) be a vector basis function, satisfying
∫ 1

−1
ψi(ξ)ψl(ξ)dξ = δil for

1 ≤ i, l ≤ k, and let v(ξ) =
k∑

i=1

aiψi(ξ), then

∫ 1

−1

|v|2 dξ = aT
(∫ 1

−1

ψψT dξ

)
a =

k∑
j=1

|aj |2 = |a|2.

On the other hand, for any number γ,

(v(1)+γ∂ξv(1))
2 = aT (ψ(1)+γ∂ξψ(1))(ψ(1)+γ∂ξψ(1))

Ta ≤ |ψ(1)+γ∂ξψ(1)|2|a|2.

Hence for γ = −2β1 as in (22) we may take

(27) Γ(β1) = 2|ψ(1) + γ∂ξψ(1)|2.

To make this bound more precise, we choose the normalized Legendre polynomial
vector basis {ψi}ki=1. Using

ψi(1) =

√
2i− 1

2
, ∂ξψi(1) =

√
2i− 1

2

i(i− 1)

2
, i = 1, . . . , k,

we obtain for any γ ∈ R,

2|ψ(1) + γ∂ξψ(1)|2 = 2
k∑

i=1

2i− 1

2
|1 + γ

2
i(i− 1)|2

=

k∑
i=1

(2i− 1)+γ

k−1∑
i=1

i(i+ 1)(2i+ 1) +
γ2

4

k−1∑
i=1

i2(i+ 1)2(2i+ 1)

= k2
(
1 +

γ

2
(k2 − 1) +

γ2

12
(k2 − 1)2

)
.

The desired result follows by taking γ = −2β1. Particularly, it achieves the mini-

mum k2

4 at γ∗ = − 3
k2−1 . �

Lemma 3.2. For the quadratic entropy flux f̂ defined in (9), it holds that

F (u, u) ≤ 0.
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Proof. Using the periodic boundary condition, we calculate

N∑
j=1

∫
Ij

f(u)∂xudx

= −
N∑
j=1

(f(u∗)[u])j+1/2 with f(u∗) =
u+∫
−
u−

f(u)du.

Hence for quadratic entropy flux (9),

F (u, u) =

N∑
j=1

(f̂(u−, u+)[u])j+1/2 −
N∑
j=1

(f(u∗)[u])j+1/2

= −
N∑
j=1

(α(f̂ , u∗)[u]2)j+1/2 ≤ 0. �

This lemma and (24) ensures that the DDG scheme (13) has the following prov-
able properties.

Theorem 3.3. Consider the semidiscrete DG (13) with (β0, β1) satisfying (25)
and the quadratic entropy flux (9) for convection, then it satisfies the following
properties:

(1) Conservation of mass:
∑N

j=1

∫
Ij
u(t, x)dx =

∫
Ω
U0(x) dx, ∀t > 0.

(2) The energy ‖u‖2 :=
∑N

j=1

∫
Ij
u2dx is nonincreasing in time. More pre-

cisely, there exists γ ∈ (0, 1) such that

(28)
d

dt
‖u‖2 ≤ −2γ‖u‖2E ≤ 0.

(3) The scheme is L2 stable in the sense that

‖u‖2 ≤
∫
Ω

U2
0 dx, ∀t > 0.

Proof. (1) Taking v = 1 in (13) we have d
dt

∑N
j=1

∫
Ij
udx = 0, which when combined

with (7) with v = 1 leads to the mass conservation.
(2) Take v = u in (13) and we obtain

1

2

d

dt
‖u‖2 +A(u, u) = F (u, u).

For the quadratic entropy flux, we have

F (u, u) ≤ 0.

This together with the lower bound of A ensures the energy dissipation property
(28).

(3) From (2) it follows that

‖u‖2 ≤ ‖u(·, 0)‖2 =

N∑
j=1

∫
Ij

u2(x, 0)dx ≤
N∑
j=1

∫
Ij

U2
0 dx,

by using (7). �
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4. Error estimates

The idea for obtaining the optimal error estimate is to introduce some special
global projection. We illustrate this idea for diffusion first, and then discuss its
extension to convection-diffusion equations.

4.1. A global projection and projection error. We define a special projection
P as follows. For a given smooth function w, the projection Pw is the unique
function in Vk

h which satisfies∫
Ij

(Pw(x)− w(x))v(x)dx = 0, ∀v ∈ P k−2(Ij), j = 1, . . . , N,(29a)

̂∂x(Pw) := β0h
−1[Pw] + {∂x(Pw)}+ β1h[∂

2
x(Pw)]

∣∣∣
j+1/2

= ∂xw(xj+1/2),(29b)

{Pw}
∣∣∣
j+1/2

= w(xj+1/2).(29c)

At xN+1/2 we use a periodic extension to be consistent with the periodic boundary
condition for problems (2) and (3). For a piecewise smooth function w with w|Ij ∈
Hk+1(Ij), the above definition needs to be modified so that the right of (29b) and
(29c) is replaced by ŵx and {w}, respectively.

Lemma 4.1. For (β0, β1) such that β0 > Γ(β1), the projection P defined in (29)
exists, and

(30)

(∫ 1

0

(Pw(x)− w(x))2dx

)1/2

≤ Chk+1

for a smooth function w, where C is a constant depending on w and its derivatives
but independent of h.

Proof. We first show the existence of such a projection. Define the affine map

x = x(ξ) = xj +
h

2
ξ, −1 ≤ ξ ≤ 1,

which maps [−1, 1] onto Ij . The Legendre polynomials φk(2(x− xj)/h) = Lk−1(ξ)
are the Legendre polynomials on [−1, 1], then the projection can be expressed in
terms of the Legendre polynomials

Pw(x)|Ij =
k+1∑
i=1

ajiφi(ξ), 1 ≤ j ≤ N.

From (29a) with v = {φi}k−1
i=1 it follows that for 1 ≤ j ≤ N ,

aji =
2i− 1

2

∫ 1

−1

w(xj +
h

2
ξ)φi(ξ)dξ, i = 1, . . . , k − 1,

where we have used ‖φi‖2 = 2
2i−1 . It remains to determine ajk and ajk+1 by using

the interface conditions; that is, {Pw}|j+1/2 = w(xj+1/2) and

β0[Pw] + 2{∂ξ(Pw)}+ 4β1[∂
2
ξ (Pw)] = h∂xw(xj+1/2),
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which lead to

k+1∑
i=k

[φi(1)a
j
i + φi(−1)aj+1

i ] = bj1 := 2w(xj+1/2)−
k−1∑
i=1

[φi(1)a
j
i + aj+1

i φi(−1)],

k+1∑
i=k

[g0(i)a
j
i + g1(i)a

j+1
i ] = bj2 := hwx(xj+1/2)−

k−1∑
i=1

[g0(i)a
j
i + g1(i)a

j+1
i ],

where

g0(i) = −β0φi(1) + φ′
i(1)− 4β1φ

′′
i (1), g1(i) = β0φi(−1) + φ′

i(−1) + 4β1φ
′′
i (−1).

Set two matrices

A =

(
φk(1) φk+1(1)
g0(k) g0(k + 1)

)
, B =

(
φk(−1) φk+1(−1)
g1(k) g1(k + 1)

)
,

then the coefficient matrix of {aj}Nj=1 with aj = (ajk, a
j
k+1)

� is an N × N block
circulant matrix with the first row [A B 0 · · · 0] and the last row [B 0 · · · 0 A],
denoted by D. The determinant of this matrix is

detD = |A|N |I + (−1)N−1(A−1B)N |,

which is nonzero as long as |A±B| �= 0. Recall that, for i ≥ 1, we have

φi(±1) = (±1)i−1, i = 1, 2, . . . ,

φ′
i(±1) =

1

2
(±1)ii(i− 1), i = 2, 3, . . . ,

φ′′
i (±1) =

1

8
(±1)i−1(i− 2)(i− 1)i(i+ 1), i = 3, 4, . . . ;

hence,

g0(i) = −β0 +
1

2
i(i− 1)− β1

2
(i− 2)(i− 1)i(i+ 1), g1(i) = (−1)ig0(i).

By a direct calculation we see that |A ± B| �= 0 is equivalent to the requirement
that

(31) g0(i) + (−1)ig1(i) �= 0, i = k, k + 1;

that is, g0(i) �= 0 for i = k, k + 1. Under this condition the determinant of the
coefficient matrix will not vanish, thus is nonsingular. The existence of global
projection (29) follows. In fact, for β0 > Γ(β1) we do have g0(i) �= 0 for i = k, k+1.
This can be verified by a straightforward calculation, leading to

g0(k) < −1

2
k(k + 1), g0(k + 1) < −1

2
k(k − 1)

for β0 > Γ(β1).
The desired L2-error estimate follows from the refined estimates stated in Lemma

4.2 below. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OPTIMAL ERROR ESTIMATES OF THE DDG METHOD 2273

Lemma 4.2 (The projection estimates). If w is a smooth function satisfying w ∈
Hk+1(Ω), then we have the following estimates:

N∑
j=1

‖Pw − w‖20,Ij ≤ Ch2k+2|w|2k+1,Ω,(32)

N∑
j=1

|Pw − w|2j+1/2 ≤ Ch2k+1|w|2k+1,Ω,(33)

N∑
j=1

|Pw − w|2∞,Ij ≤ Ch2k|w|2k+1,Ω,(34)

where C depends on k, β0, β1 but is independent of Ij and w.

These projection error estimates follow from those stated in Theorem 7.1, which
is proved in §7.

4.2. Projection and inverse properties. Let ε = PU −U denote the projection
error, then Lemma 4.2 implies the following inequality:

(35) ‖ε‖+ h‖ε‖∞ + h1/2‖ε‖Γh
≤ Chk+1,

where Γh denotes the set of interface points of all cells Ij , and the constant C
depends on k and |U |k+1.

For any function e ∈ Vk
h, the following inverse inequalities hold [13]:

‖∂l
xe‖ ≤ Ch−l‖e‖,(36a)

‖e‖Γh
≤ Ch−1/2‖e‖,(36b)

‖e‖∞ ≤ Ch−1/2‖e‖.(36c)

4.3. Error analysis. If we assume the exact solution of (2) is smooth, we can
obtain optimal L2-error estimates.

Theorem 4.3 (Diffusion without convection f = 0). The solution u to the semidis-
crete DDG scheme (13) for problem (2)-(3) with f = αu which admits a smooth
solution U satisfies the following error estimate:

(37)

∫ 1

0

(u(x, t)− U(x, t))2dx ≤ Ch2(k+1),

where C depends on U and its derivatives but is independent of h.

Proof. The DG scheme can be written as

(38) 〈∂tu, v〉+A(u, v) = 0

for all v ∈ Vk
h. The scheme consistency ensures that the exact solution U of (2)

also satisfies

(39) 〈∂tU, v〉+A(U, v) = 0

for all v ∈ Vk
h. Subtracting (38) from (39) and using the linearity of A with respect

to its first arguments, we obtain the error equation

(40) 〈∂t(U − u), v〉+A(U − u, v) = 0

for all v ∈ Vk
h.
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We now take v = PU − u in the error equation (40), and denote

(41) e = PU − u, ε = PU − U,

to obtain

(42) 〈∂te, e〉+A(e, e) = 〈∂tε, e〉+A(ε, e).

For the left hand side of (42), we use the L2 stability estimate in Theorem 3.3 to
obtain

(43) 〈∂te, e〉+A(e, e) ≥ 1

2

d

dt

∫ 1

0

e2dx+ γ‖e‖2E .

As to the right hand side of (42), we first write out all the terms in A(ε, e):

A(ε, e) =

N∑
j=1

∫
Ij

∂xε∂xedx+

N−1∑
j=1

(∂̂xε[e] + {∂xe}[ε])j+1/2

= −
N∑
j=1

∫
Ij

∂2
xeεdx+

N−1∑
j=1

(−[∂xeε] + ∂̂xε[e] + {∂xe}[ε])j+1/2

= −
N∑
j=1

∫
Ij

∂2
xeεdx+

N−1∑
j=1

(∂̂xε[e]− {ε}[∂xe])j+1/2.

Noticing the properties of the projection P , we have∫
Ij

∂2
xeεdx = 0

because ∂2
xe are polynomials of degree at most k − 2, and at xj+1/2,

∂̂xε = ̂∂x(PU)− ∂xU = 0, {ε} = {PU} − U = 0.

Therefore A(ε, e) = 0 and the right hand side of (42) becomes

(44) 〈∂tε, e〉 ≤
1

2

∫ 1

0

(∂tε)
2dx+

1

2

∫ 1

0

e2dx.

Plugging (43) and (44) into the equality (42) and using the approximation result
in Lemma 4.1, we obtain

d

dt

∫ 1

0

e2dx+ 2γ‖e‖2E ≤
∫ 1

0

e2dx+ Ch2k+2.

The Gronwall inequality, the fact of the initial error (initial data is obtained by a
standard L2 projection),

‖U0 − u(·, 0)‖ ≤ Chk+1,

and the approximation result in Lemma 4.1 finally give us the desired error estimate.
�
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4.4. Linear convection. The same optimal error estimate can be obtained for
the convection-diffusion equation with linear convection f(u) = αu. We modify
the projection as follows. For a given smooth function w, the projection Qw is the
unique function in Vk

h which satisfies∫
Ij

(Qw(x)− w(x))v(x)dx = 0, ∀v ∈ P k−2(Ij), j = 1, . . . , N,(45a)

̂∂x(Qw)− f̂(w) = ∂xw(xj+1/2)− αw(xj+1/2),(45b)

{Qw} = w(xj+1/2),(45c)

where at xN+1/2 periodic extension of Qw is applied. For piecewise smooth function
w, a similar modification to that for (29) suffices.

Lemma 4.4. For (β0, β1) such that β0 > Γ(β1) and any real number α, the pro-
jection Q defined in (45) exists, and

(46)

(∫ 1

0

(Qw(x)− w(x))2dx

)1/2

≤ Chk+1

for a smooth function w, where C is a constant depending on w and its derivatives
but independent of h.

Proof. The proof is entirely similar to that in Lemma 4.1, except for a modification
of g0 and g1,

g̃0(i) = g0(i)−
α

2
h, g̃1(i) = (−1)i(g0(i) +

α

2
h).

From (31) in the proof of Lemma 4.1 it follows that the projection Q exists, provided

g̃0(i) + (−1)ig̃1(i) �= 0, i = k, k + 1.

In fact, the above quantity gives

g̃0(i) + (−1)ig̃1(i) = 2g0(i), i = k, k + 1.

Hence the result in Lemma 4.1 remains valid for the projection Q. �

Theorem 4.5 (Diffusion with linear convection f = αu). The solution u to the
semidiscrete DDG scheme (13) for problem (2)-(3) with f = αu which admits a
smooth solution U satisfies the following error estimate:

(47)

∫ 1

0

(u(x, t)− U(x, t))2dx ≤ Ch2(k+1),

where C depends on U and its derivatives but is independent of h.

Proof. Following the proof of Theorem 4.3, we set

(48) e = QU − u, ε = QU − U,

to obtain

(49) (∂te, e) +A(e, e)− F (e, e) = (∂tε, e) +A(ε, e)− F (ε, e).

For the left hand side of (49), we use the L2 stability estimate and F (e, e) ≤ 0 to
obtain

(50) (∂te, e) +A(e, e)− F (e, e) ≥ 1

2

d

dt

∫ 1

0

e2dx+ γ‖e‖2E .
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As to the right hand side of (49), we first write out all the terms in A(ε, e)−F (ε, e)

A(ε, e)− F (ε, e) = −
N∑
j=1

(∫
Ij

exxε+ f(ε)ex

)
dx

+

N−1∑
j=1

((ε̂x − f̂(ε))[e]− {ε}[ex])j+1/2

= −
N∑
j=1

∫
Ij

f(ε)exdx,

by the properties of the projectionQ. Therefore, the right hand side of (49) becomes

(51) (∂tε, e) +A(ε, e)− F (ε, e) ≤ 1

2

∫ 1

0

ε2tdx+

∫ 1

0

e2dx+
α2

2γ

∫ 1

0

ε2dx+
γ

2
‖e‖2E .

Plugging (50) and (51) into the equality (49) and using the approximation results
in Lemma 4.4, we obtain

d

dt

∫ 1

0

e2dx+ γ‖e‖2E ≤
∫ 1

0

e2dx+ Ch2k+2.

Again by the Gronwall inequality, the initial error and the approximation result in
Lemma 4.4, we obtain the desired error estimate. �

Remark 4.1. For nonlinear convection, we can still obtain the optimal error esti-
mates, yet the above proof relying on a modified projection is no longer applicable.
In the rest of this paper we present an approach to overcome the difficulty caused
by the nonlinear convection, and the argument applies to linear convection as well.

5. Error estimates with nonlinear convection

Theorem 5.1. The solution u to the semidiscrete DDG scheme (13) (using a

monotone flux for f̂ ) for problem (2), (3) with a smooth solution U satisfies the
following error estimate:

(52)

∫ 1

0

(u(x, t)− U(x, t))2dx ≤ Ch2(k+1),

where C depends on U and its derivatives but is independent of h.

Proof. Let PU be defined in (29). Following the proof of Theorem 4.3, we set

(53) e = PU − u, ε = PU − U,

to obtain

(54) 〈∂te, e〉+A(e, e) = 〈∂tε, e〉+A(ε, e) +H, H := F (U, e)− F (u, e).

Using the coercivity A(e, e) ≥ γ‖e‖2E , and A(ε, e) = 0 due to the special projection,
we have

(55)
1

2

d

dt
‖e‖2 + γ‖e‖2E ≤ 1

2

∫ 1

0

ε2tdx+
1

2

∫ 1

0

e2dx+H.
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To estimate H from above, we take the average of u± as a reference value {u},
hence

H =
N∑
j=1

∫
Ij

(f(U)− f(u))exdx+
N∑
j=1

((f(U)− f({u}))[e])j+ 1
2

(56)

+

N∑
j=1

((f({u})− f̂(u))[e])j+ 1
2
,

where we have taken the periodic boundary condition into account.
First we establish the estimate of the last term in (56) as

H2 ≤ γ

3

N∑
j=1

β0
[e]2

h
+ Ch2k+2.

In fact, using notation (18) and the fact that the exact solution is continuous with
[U ] = 0 so that [u] = [ε]− [e], we obtain

H2 =

N∑
j=1

(α(f̂ ; {u})[u][e])j+ 1
2
= −

N∑
j=1

(α(f̂ ; {u})[e]2)j+ 1
2
+

N∑
j=1

(α(f̂ ; {u})[ε][e])j+ 1
2
.

For the monotone flux, the first term is nonpositive; see (20). Using the Young
inequality, we bound the last term further by

γ

3

N∑
j=1

β0
[e]2

h
+

3h

4β0γ

N∑
j=1

(
α2[ε]2

)
j+ 1

2

.

The claimed bound for H2 follows from these estimates with the projection error
inequality (30),

N∑
j=1

|[ε]|2j+1/2 ≤ C|ε|2Γ ≤ Ch2k+1.

To estimate the first two sums in H, we use the following Taylor expansions

f(U)− f(u) = f ′(U)(e− ε)− f ′′

2
(e− ε)2,(57)

f(U)− f({u}) = f ′(U)({e} − {ε})− f̃ ′′

2
({e} − {ε})2,(58)

where f ′′ and f̃ ′′ are the mean values. These imply the following regrouping

H1 := H −H2 = H11 +H12 +H13,

where

H11 =

N∑
j=1

∫
Ij

f ′(U)e∂xedx+

N∑
j=1

(f ′(U){e}[e])j+ 1
2
,

H12 = −

⎛⎝ N∑
j=1

∫
Ij

f ′(U)ε∂xedx+

N∑
j=1

(f ′(U){ε}[e])j+ 1
2

⎞⎠ ,

H13 = −1

2

⎛⎝ N∑
j=1

∫
Ij

f ′′(e− ε)2∂xedx+

N∑
j=1

(f̃ ′′({e} − {ε})2[e])j+ 1
2

⎞⎠
will be estimated separately as below.
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For the H11 term, a simple integration by parts gives

H11 = −1

2

N∑
j=1

∫
Ij

f ′′(U)∂xUe2dx ≤ C‖e‖2.

Using Young’s inequality and (30) we obtain

H12 ≤ γ

3

N∑
j=1

∫
Ij

e2xdx+
3

4γ

N∑
j=1

∫
Ij

(f ′(U)ε)2dx

+
γ

3

N∑
j=1

β0
[e]2

h
+

3h

4β0γ

N∑
j=1

(f ′(U){ε})2j+ 1
2

≤ γ

3
‖e‖2E + Ch2k+2.

To deal with the higher order terms we use both projection and inverse inequalities,
(30) and (36), to get

H13 ≤ γ

3

N∑
j=1

∫
Ij

(∂xe)
2dx+

3

16γ

N∑
j=1

∫
Ij

(f ′′(e− ε)2)2dx

+
γ

3

N∑
j=1

β0
[e]2

h
+

3h

16β0γ

N∑
j=1

(f̃ ′′{e− ε}2)2j+ 1
2

≤ γ

3
‖e‖2E + C‖e− ε‖2∞(‖e‖2 + ‖ε‖2 + h‖ε‖2Γh

+ h‖ε‖2Γh
+ h‖e‖2Γh

).

Plugging all above estimates on H into the inequality (54), we obtain

d

dt
‖e‖2 ≤ C(‖e‖2 + h2k+2)(1 + ‖e− ε‖2∞).(59)

Using the approximation results in (30) and (36), we have

d

dt
‖e‖2 ≤ C(‖e‖2 + h2k+2)(1 + h−1‖e‖2 + h2k+1)(60)

≤ C
[
‖e‖2(1 + h−1‖e‖2) + h2k+2

]
.

Note that for u0 to be the standard L2 projection of U0 the initial error gives

‖e0‖ = ‖U0 − u0‖ ≤ Chk+1.

For fixed finite time interval [0, T ], integration of (60) over [0, t] for t ≤ T gives

‖e(t)‖2 ≤ C(T )[h2k+2 +

∫ t

0

‖e(τ )‖2(1 + h−1‖e(τ )‖2)dτ ] := CW.

This implies that W (0) = h2k+2, and

(61)
d

dt
W = ‖e(t)‖2(1 + h−1‖e(t)‖2) ≤ CW (1 + Ch−1W ).

We define a constant C̃ depending on T such that

CT =

∫
˜C

1

dη

η(1 + Cηh2k+1)
=: G(C̃),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OPTIMAL ERROR ESTIMATES OF THE DDG METHOD 2279

which ensures a uniformly bound C̃ in terms of h. Integration of inequality (61)
leads to

G(W/W (0)) ≤ CT = G(C̃).

Hence W (T ) ≤ C̃W (0) = C̃h2k+2, leading to ‖e‖2 ≤ CW ≤ Ch2k+2, implying the
desired error estimate. �

6. Extension to multi-dimensions

The extension to multi-dimensions with rectangular meshes is straightforward,
for which we need to first clarify some notations. Consider the following model
equation

(62) ∂tU +∇x · f(U) = ΔxU, t > 0,

posed on x = (x1, . . . , xd) ∈ Ω = Πd
i=1[0, Lxi ] ⊂ Rd with periodic boundary condi-

tions. Here f : R → Rd is a smooth vector function.

6.1. Scheme formulation. For a rectangular partition of

Ω =
N⋃

α=1

Kα,

where α = (α1, . . . αd), N = (N1, . . . , Nd). Here we use rectangular meshes {K} ⊂
Th, with Kα = I1α1

× · · · × Idαd
, where Iiαi

= [xi
αi−1/2, x

i
αi+1/2] for αi = 1, . . . , Ni.

The cell lengths are denoted by hxi

= max1≤αi≤Ni
|Iiαi

|, with h = max1≤i≤d h
xi

being the maximum mesh size. We again assume that the mesh is regular.
We define the DG space as the space of tensor product of piecewise polynomials

of degree at most k in each variable on every element, i.e.,

Wk
h = {v : v ∈ Qk(Kα), ∀x ∈ Kα, α = 1, . . . , N},

where Qk is the space of tensor products of one-dimensional polynomials of degree
up to k. For the one-dimensional case, we have Qk(K) = P k(K), which is the space
of polynomials of degree at most k defined on K.

We also introduce some trace operators that will help us to define the interface
terms. Let K1 and K2 be two neighboring cells with a common edge e; for w
defined on ∂Ki, i = 1, 2, we define the average {w} and the jump [w] as

{w} =
1

2
(w1 + w2), [w] = w2 − w1 on e,

where the jump is calculated as a forward difference along the normal direction �n,
which is defined to be oriented from K1 to K2, with wi = w|∂Ki . We start with
the weak formulation of (62) of the form∫

Ω

∂tUvdx+

∫
Ω

∇U · ∇vdx =

∫
Ω

f(U) · ∇xvdx, ∀ v ∈ H1
0 (Ω),

and approximate U by u ∈ Wk
h, and also allow v ∈ Wk

h to be discontinuous crossing
∂K. With such a DG discretization the above formulation has to be refined by
including some interface corrections, leading to the following DG scheme,

(63) 〈ut, v〉+A(u, v) = F (u, v),
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where 〈·, ·〉 denotes the L2 inner product over Ω, and

A(u, v) =
∑

K∈Th

∫
K

∇xu · ∇xv dx+
∑
e∈Γ

∫
e

(∂̂nu[v] + [u]{∂nv})ds,(64a)

F (u, v) =
∑

K∈Th

∫
K

f(u) · ∇xv dx+
∑
e∈Γ

∫
e

f̂n[v]ds.(64b)

This is a complete DG discretization as long as the “hat” terms are defined.

6.2. Stability. For nonlinear flux we take f̂ as an entropy satisfying numerical
flux: let e = ∂K1 ∩ ∂K2 and ui = u|∂Ki ,

(65)

∫
e

(f̂n(u1, u2)− f(ξ) · �n)[u]ds ≤ 0

for all ξ between u1 and u2. For the directional derivative of the solution induced
from the diffusion we take

∂̂nu = β0h
−1[u] + {∂nu}+ β1h[∂

2
nu]

with (β0, β1) chosen so that β0 is suitably large (> Γ(β1)) to ensure the following
coercivity

(66) A(v, v) ≥ γ‖v‖2E
for some γ > 0, where

(67) ‖v‖2E =
∑

K∈Th

∫
K

|∇xv|2dx+
∑
e∈Γ

∫
e

β0

h
[v]2ds, v ∈ Wk

h.

Lemma 6.1. For the entropy flux f̂ defined in (65), it holds that

F (v, v) ≤ 0, ∀v ∈ Wk
h.

Proof. Set g′i(v) = fi(v) with g(v) = (g1(v), . . . , gd(v)), then∫
K

f(v) · ∇xvdx =

∫
K

∇x · g(v)dx =

∫
∂K

g(v) · �nKds,

which can be rewritten as∫
∂K

{g(v)} · �nKds− 1

2

∫
∂K

[g(v)] · �nKds.

Hence, using (65) we have

F (v, v) =
∑
e∈Γ

[
−
∫
e

[g] · �nds+
∫
e

f̂n[v]ds

]
=
∑
e∈Γ

∫
e

(f̂n − f(ξ) · �n)[v]ds ≤ 0,

where we have used the mean value theorem and the definition of g; ξ is between
v|∂K and vext. �

Both A(u, u) ≥ γ‖u‖2E and F (u, u) ≤ 0 imply the desired energy stability

(68)
d

dt
‖u‖2 ≤ −γ‖u‖2E ≤ 0.
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6.3. Projection and projection properties. To prove the error estimates for
multi-dimensional problems with rectangular meshes, we need a suitable projection
similar to the one-dimensional case. Such a projection can be defined as

(69) Πw = P (x1) ⊗ · · · ⊗ P (xd)w,

where the superscripts indicate the application of the one-dimensional operator

P (xi) with respect to the corresponding variable xi.
In other words, for a given (piecewise) smooth function w, the projection Πw is

the unique function in Wk
h defined in (69), with P (xi) determined by∫

Ii
αi

(P (xi)w(x)− w(x))∂2
xiv(x)dxi = 0, ∀v ∈ P k(Iiαi

), αi = 1, . . . , Ni,(70a)

̂∂xi(P (xi)w) := β0(h
i)−1[P (xi)w](70b)

+ {∂xi(P (xi)w)}+ β1h
i[∂2

xi(P (xi)w)]
∣∣∣
xi
αi+1/2

= ∂̂xiw
∣∣∣
xi
αi+1/2

,

{P (xi)w}
∣∣∣
xi
αi+1/2

= {w}
∣∣∣
xi
αi+1/2

,(70c)

where periodic extensions are used at the domain boundary. Similar to the one-
dimensional case, there are some approximation results for the above multi-
dimensional projection:

(71) ‖ε‖+ h
d+1
2 ‖ε‖∞ + h1/2‖ε‖Γh

≤ Chk+1,

where ε = ΠU − U . The positive constant C, solely depending on |U |k+1, is
independent of h. Γh denotes the boundary sets of all elements Kα. We present
more refined estimates than (71) in Theorem 7.3. The proof presented in §7 for the
two-dimensional setting is for simplicity only.

Finally, we list some inverse properties of the finite element space Wk
h that will

be used in our error analysis. For any function wh ∈ Wk
h, the following inverse

inequalities hold [13]:

‖∂l
xwh‖ ≤ Ch−l‖wh‖,(72a)

‖wh‖Γh
≤ Ch−1/2‖wh‖,(72b)

‖wh‖∞ ≤ Ch−d/2‖wh‖,(72c)

where d is the spatial dimension. For more details of these inverse properties, we
refer to [13].

6.4. Error estimates. The stability result also yields the following error estimate.

Theorem 6.2. Let u be the solution to the semidiscrete DDG scheme (63) for
problem (62) subject to initial data U0 using polynomial elements of degree k, and
U be a smooth solution of (62) subject to initial U0. If k ≥ d−1

2 , then the following
error estimate holds:

(73)

∫
Ω

(u(x, t)− U(x, t))2dx ≤ Ch2(k+1),

where C depends solely on |U |k+2 and data given, but is independent of h.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2282 HAILIANG LIU

Remark 6.1. Note that for purely diffusion problem with no convection (i.e., f(u) =
0) or with linear diffusion f(u) = cu, the restriction k ≥ d−1

2 is unnecessary. For
nonlinear convection, this restriction suggests that one may use polynomials of
degree k ≥ 1 for d = 2, 3.

Remark 6.2. In the multi-dimensional case, the proof requires a stronger smooth-
ness assumptions on the exact solution than the ones in the one-dimensional case.
In this sense, Theorem 6.2 may be regarded as a superconvergence result.

Proof. Let Ũ ∈ Wk
h be determined to approximate U , and set

(74) w = Ũ − u, ε = Ũ − U,

so that U − u = w − ε, We take v = w in (63) to obtain

(75) 〈∂tw,w〉+A(w,w) = 〈∂tε, w〉+A(ε, w) +H, H := F (U,w)− F (u,w).

The choice of (β0, β1) can be made so that

(76) A(w,w) ≥ γ‖w‖2E .

We take Ũ = ΠU as the projection of U defined in (70). In multi-dimensional case,
A(ε, w) is no longer zero, but still controllable with the following superconvergence
result.

Lemma 6.3. Let A be defined in (64a). Then we have for any s ≥ 0,

(77) A(ε, w) ≤ C
(
‖w‖2 + h2min{k,s}+2

)
+

1

2
A(w,w).

The constant C depends on |U |s+2.

We postpone the proof of this result to the end of this section, and proceed to
estimate H in (75). We take the average of u|∂Ki as a reference value {u}, hence

H =
∑

K∈Th

∫
K

(f(U)− f(u)) · ∇xwdx+

∫
Γ

(fn(U)− fn({u}))[w]ds(78)

+

∫
Γ

(fn({u})− f̂n)[w]ds,

where we use the notation fn(ξ) = f(ξ) · �n and have taken the periodic boundary
condition into account.

Using the Taylor expansions

f(U)− f(u) = f ′(U)(w − ε)− f ′′

2
(w − ε)2,(79)

f(U)− f({u}) = f ′(U)({w} − {ε})− f̃ ′′

2
({w} − {ε})2,(80)

where f ′′ and f̃ ′′ are the mean values, and αn(f̂ ; ξ) := [u]−1(f(ξ)− f̂) with [u] =
[ε]− [w] we obtain

H = H1 +H2 +H3 +H4,
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where

H1 =
∑

K∈Th

∫
K

wf ′(U) · ∇xwdx+

∫
Γ

�n · f ′(U){w}[w]ds,

H2 = −
( ∑

K∈Th

∫
K

εf ′(U) · ∇xwdx+

∫
Γ

�n · f ′(U){ε}[w]ds
)
,

H3 = −1

2

( ∑
K∈Th

∫
K

(w − ε)2f ′′ · ∇xwdx+

∫
Γ

�n · f̃ ′′({w} − {ε})2[w]ds
)
,

H4 = −
∫
Γ

αn(f̂ ; {u})[w]2ds+
∫
Γ

αn(f̂ ; {u})[ε][w]ds

will be estimated separately as below.
For the H1 term, a simple integration by parts gives

H1 =

∫
Γ

�n · f ′(U){w}[w]ds− 1

2

∫
Γ

�n · f ′(U)[w2]ds+
1

2

∑
K∈Th

∫
K

f ′′(U) · ∇xUw2dx

=
1

2

∑
K∈Th

∫
K

f ′′(U) · ∇xUw2dx ≤ C‖w‖2.

Using Young’s inequality and (71) we obtain

H2 ≤ γ

6

∑
K∈Th

∫
K

|∇xw|2dx+
3

2γ

∑
K∈Th

∫
K

(f ′(U)ε)2dx

+
γ

6

∫
Γ

β0
[w]2

h
ds+

3h

2β0γ

∫
Γ

(f ′(U)ε)2ds

≤ γ

6
‖w‖2E + Ch2k+2.

To deal with the higher order terms we use both projection and inverse inequalities,
(71) and (72), to get

H3 ≤ γ

6

∑
K∈Th

∫
K

|∇xw|2dx+
3

8γ

∑
K∈Th

∫
K

(f ′′(w − ε)2)2dx

+
γ

6

∫
Γ

β0
[w]2

h
ds+

3h

8β0γ

∫
Γ

(f̃ ′′{w − ε}2)2ds

≤ γ

6
‖w‖2E + C‖w − ε‖2∞(‖w‖2 + ‖ε‖2).

For the entropy flux, the first term in H4 is nonpositive; using the Young inequality,
we bound the last term further by

H4 ≤ γ

6

∫
Γ

β0
[w]2

h
ds+

3h

2β0γ

∫
Γ

(
(αn)2[ε]2

)
ds

≤ γ

6

∫
Γ

β0
[w]2

h
ds+ Ch2k+2.

The above estimates lead to

H ≤ γ

2
‖w‖2E + C(‖w‖2 + h2k+2)(1 + ‖w − ε‖2∞).
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Substituting this, (76) and (77) into the equality (75), we obtain

d

dt
‖w‖2 ≤ C(‖w‖2 + h2k+2)(1 + ‖w − ε‖2∞).(81)

Using the approximation results (71) and (72), for small h, we have

‖w − ε‖∞ ≤ ‖w‖∞ + ‖ε‖∞ ≤ C(h−d/2‖w‖+ hk+1− d+1
2 ) ≤ C(h−d/2‖w‖+ 1),

where we have used the assumption that k ≥ d−1
2 . Hence (81) reduces to

d

dt
‖w‖2 ≤ C

[
‖w‖2(1 + h−d‖w‖2) + h2k+2

]
.(82)

Using the same argument as that estimating (60), with G replaced by

CT = G(C̃) =

∫
˜C

1

dη

η(1 + Cηh2k+2−d)
,

which defines a uniform bound of C̃ in terms of h since 2k + 2 − d ≥ 1, we obtain

that ‖w‖2 ≤ CC̃h2k+2, leading to the desired error estimate. �
Proof of Lemma 6.3. Let us use the notation

∫
Γ

:=
∑

e∈Γ

∫
e
. A straightforward

calculation shows that for all K ∈ Th,∑
K∈Th

∫
∂K

ε∂nwds = −
∫
Γ

[ε] · {∂nw}ds−
∫
Γ

{ε} · [∂nw]ds,

with which we have

A(ε, w) =
∑

K∈Th

∫
K

∇xε · ∇xw dx+

∫
Γ

(∂̂nε[w] + [ε]{∂nw})ds

= −
∑

K∈Th

∫
K

Δxwεdx+

∫
Γ

(∂̂nε[w]− {ε}[∂nw])ds.

In multi-dimensional case, this is no longer zero. To estimate it, we rewrite

A(ε, w) =

d∑
i=1

Ai(U,w),

where

Ai(U,w) = −
N∑

α=1

∫
Kα

wxixiεdx+

∫
Kα/Ii

αi

(
∂̂xiε[w]− {ε}[∂xiw]

)
xi
αi+1/2

dx̂i

with ε = ΠU − U and dx̂i =
∏

j �=i dx
j . The proof of the approximation results

for Ai, i = 1 · · · d is analogous; therefore we only present the one for A1. Here we
use an argument similar to the one in the proof of Lemma 3.6 in [9] for a local
projection, with the unsettled part further absorbed by A(w,w).

We first claim that

(83) A1(U,w) = 0, ∀U |Kα
∈ P k+1(Kα), w ∈ Wk

h.

To prove this claim, we fix w ∈ Wk
h. Since Π is a polynomial preserving operator,

(83) holds true for every U ∈ Wk
h. Therefore, we only need to consider the cases

U(x)|Kα
= aα(x

j)k+1,

where constant aα may vary from element to element. Below we shall use the
notation Ui = U(xi) to denote the dependence only on variable xi.
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For j = 1, we have ΠU = P (x1)U1 and wx1x1 is a polynomial of degree at most
k − 2 in x1, we obtain

∑∫
Kα

(ΠU − U)wx1x1dx =
∑∫

Kα

(P (x1)U1 − U1)wx1x1dx = 0.

In addition, we have

{ΠU} = {P (x1)U1} = {U}, ̂∂x1(ΠU) = ̂∂x1P (x1)U1 = ∂̂x1U.

Thus, A1(U,w) = 0 for U |Kα
= aα(x

1)k+1.
In the case j �= 1, we integrate by parts and obtain

A1(U,w) = −
∑∫

Kα/Ix1
1

dx̂1

(
−
∫
Ix1
1

wx1∂x1εdx1 +
(
∂̂x1ε[w]+{wx1}[ε]

)
x1
α1+1/2

)
.

Due to the special form of U we have ∂x1ε = ∂x1(ΠU − U) = 0 and

ΠU = P (xj)Uj

on the interface x1 = x1
α1+1/2, where ∂̂x1ε = 0 and [ε] = 0 by a direct check. We

thus conclude that A1(U,w) = 0 for U |Kα
= aα(x

j)k+1. This completes the proof
of (83).

For fixed w ∈ Wk
h, the linear functional U → A1(U,w) is continuous on Hs+2

with norm bounded by C
[∑

α ‖w‖22,Kα

]1/2
. Due to (83), it vanishes over P s+1 for

any 0 ≤ s ≤ k. Hence, by applying the Bramble-Hilbert lemma combined with the
standard scaling argument, we obtain for U ∈ Hs+2 that

|A1(U,w)| ≤ Chs+2|U |s+2

[∑
α

‖w‖22,Kα

]1/2

.

Applying this to all Ai and using the inverse inequality (72a), we proceed with

|A(U,w)| ≤ Chs+2|U |s+2

(
‖w‖2 + (1 + Ch−2)

∑
α

‖∇xw‖20,Kα

)1/2

≤ Chs+2|U |s+2(‖w‖2 + h−2‖w‖2E)1/2

≤ Chs+2|U |s+2(‖w‖+ h−1‖w‖E)

≤ Chs+2|U |s+2‖w‖+
C2

2γ
|U |2s+2h

2s+2 +
γ

2
‖w‖2E

≤ C(|U |s+2)(‖w‖2 + h2s+2) +
1

2
A(w,w).

Hence we have proved Lemma 6.3. �
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7. Some estimates for the projection error

Theorem 7.1 (The projection estimates). Let P : Hs+1 → Vk
h denote the one-

dimensional global projection (29). If w|Ij ∈ Hs+1(Ij) for j = 1, . . . , N , then we
have the following estimates:

N∑
j=1

‖Pw − w‖20,Ij ≤ Ch2p+2
N∑
j=1

|w|2p+1,Ij ,(84)

N∑
j=1

|Pw − w|2j+1/2 ≤ Ch2p+1
N∑
j=1

|w|2p+1,Ij ,(85)

N∑
j=1

|Pw − w|2∞,Ij ≤ Ch2p
N∑
j=1

|w|2p+1,Ij ,(86)

for any 1 ≤ p ≤ min{k, s}, where C depends on k, β0, β1 but is independent of Ij
and w.

This leads to the estimates stated in Lemma 4.2.
We present a self-contained proof using Legendre polynomials; see [34] for details

of using Legendre polynomials to estimate the local projection error.

Proof. This proof is carried out in four steps.

Step 1. First, we derive bounds on the difference w−Pw in terms of the Legendre
coefficients of w. To do so, denote by φi+1 = Li(ξ), i ≥ 0, the Legendre polynomial
of degree i on I = [−1, 1] and expand the function w and Pw on Ij into the series

w|Ij = w̃j(ξ) :=

∞∑
i=1

ωj
iφi(ξ),(87)

Pw|Ij = P̃wj(ξ) :=

k−1∑
i=1

ωj
iφi(ξ) + ajkφk(ξ) + ajk+1φk+1(ξ),(88)

which satisfies the orthogonal property (29a). Hence we have

(89) (w − Pw)|Ij =

∞∑
i=k+2

ωj
i φi(ξ) + (ωj

k − ajk)φk(ξ) + (ωj
k+1 − ajk+1)φk+1(ξ).

Let Qk be the standard L2-projection from L2(I) onto P k(I) with

Qkw̃j =
k+1∑
i=1

ωj
iφi(ξ).

Then

inf
v∈Pk[−1,1]

‖w̃j − v‖ = ‖w̃j −Qkw̃j‖,
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where w̃j−Qkw̃j =
∑∞

i=k+2 ω
j
iφi(ξ) with ‖φi‖2 = 2/(2i−1) and φi(±1) = (±1)i+1,

we obtain from the above expression the following bounds:

‖w̃j − P̃wj‖2 = ‖w̃j −Qkw̃j‖2 +
k+1∑
i=k

|ωj
i − aji |2

2

2i− 1
,(90a)

(w̃j − P̃wj)(+1) =

∞∑
i=k+2

ωj
i +

k+1∑
i=k

(ωj
i − aji ),(90b)

|(w̃j − P̃wj)(ξ)| ≤ |w̃j −Qkw̃j |∞ +

k+1∑
i=k

|ωj
i − aji | · |φi|∞.(90c)

Step 2. In order to estimate the sum of the coefficient ωj
i , following [11], we consider

∂ξw̃j(ξ) =

∞∑
i=1

βj
i φi(ξ).

Integration of this yields

w̃j(ξ) = w̃j(−1) +

∞∑
i=1

βj
i

∫ ξ

−1

φi(ν)dν,

and for i ≥ 2 using the identity∫ ξ

−1

φi(ν)dν =
1

2i− 1
(φi+1(ξ)− φi−1(ξ)) ,

we obtain

w̃j(ξ) = (w̃j(−1) + βj
1)φ1 +

∞∑
i=2

βj
i−1

2i− 3
φi(ξ)−

∞∑
i=1

βj
i+1

2i+ 1
φi(ξ).

Comparing coefficients in the Legendre expressions, one can conclude that

ωj
i =

βj
i−1

2i− 3
−

βj
i+1

2i+ 1
, i ≥ 2;

therefore
∞∑

i=k+2

ωj
i =

βj
k+1

2k + 1
+

βj
k+2

2k + 3
,(91a)

∞∑
i=k+2

ωj
i (−1)i+1 = (−1)k+1

(
βj
k+1

2k + 1
−

βj
k+2

2k + 3

)
.(91b)

Since ‖∂ξw̃j‖2I =
∑∞

i=1(β
j
i )

2 2
2i−1 , we then have∣∣∣∣∣

∞∑
i=k+2

ωj
iφi(±1)

∣∣∣∣∣
2

≤ 1

2k + 1
‖∂ξw̃j‖2,(92)

k+1∑
i=2

|ωj
i |2 ≤ 2‖∂ξw̃j‖2.(93)
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Step 3. We now estimate the difference ωj
i −aji for i = k, k+1. From two interface

conditions (29b)-(29c) it follows that

k+1∑
i=k

[φi(1)a
j
i + φi(−1)aj+1

i ] = 2{w}j+1/2 −
k−1∑
i=1

[φi(1)ω
j
i + ωj+1

i φi(−1)],

k+1∑
i=k

[g0(i)a
j
i + g1(i)a

j+1
i ] = hŵxj+1/2 −

k−1∑
i=1

[g0(i)ω
j
i + g1(i)ω

j+1
i ].

This can be expressed as

k+1∑
i=k

[φi(1)(a
j
i − ωj

i ) + φi(−1)(aj+1
i − ωj+1

i )] = b̃j1 := 2{w}j+1/2

−
k+1∑
i=1

[φi(1)ω
j
i + ωj+1

i φi(−1)],

k+1∑
i=k

[g0(i)(a
j
i − ωj

i ) + g1(i)(a
j+1
i − ωj+1

i )] = b̃j2 := hŵxj+1/2

−
k+1∑
i=1

[g0(i)ω
j
i + g1(i)ω

j+1
i ].

Since this system is uniquely solvable, using periodicity we obtain

(94)
N∑
j=1

k+1∑
i=k

|aji − ωj
i |2 ≤ C

N∑
j=1

((b̃j1)
2 + (b̃j2)

2).

From

b̃j1 =

∞∑
i=k+2

[φi(1)ω
j
i + ωj+1

i φi(−1)] =

∞∑
i=k+2

ωj
i +

∞∑
i=k+2

ωj+1
i (−1)i+1

and (92) we have

N∑
j=1

|̃bj1|2 ≤
N∑
j=1

2

2k + 1
(‖∂ξw̃j‖2 + ‖∂ξw̃j+1‖2) ≤

4

2k + 1

N∑
j=1

‖∂ξw̃j‖2.

We rewrite b̃j2 as

b̃j2 = β0(w̃j+1(−1)− w̃j(1))−
k+1∑
i=1

[g0(i)ω
j
i + g1(i)ω

j+1
i ]

+ (∂ξw̃j+1(−1) + ∂ξw̃j(1)) + 4β1

(
∂2
ξ w̃j+1(−1)− ∂2

ξ w̃j(1)
)
.

The terms in the first line reduce to

β0

∞∑
i=k+2

ωj+1(−1)i+1 − β0

∞∑
i=k+2

ωj −
k+1∑
i=2

[(g0(i) + β0)ω
j
i + (g1(i) + β0(−1)i)ωj+1

i ].

Note that here the i = 1 term in the sum vanishes since g0(1) = −β0 and g1(1) =

(−1)ig0(1). Based on all terms in b̃j2, using (92), (93) and |v|2∞,[−1,1] ≤ 2‖v‖21,[−1,1],
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we obtain

N∑
j=1

(b̃j2)
2 ≤ 8

N∑
j=1

⎛⎝β2
0

∣∣∣∣∣
∞∑

i=k+2

ωjφi(±1)

∣∣∣∣∣
2

+ k(max
i

|g0(i)|+ β0)
2
k+1∑
i=2

(ωj
i )

2

+ |∂ξw̃j |2 + 16β2
1 |∂2

ξ w̃j |2
⎞⎠

≤ 8

N∑
j=1

((
β2
0

2k + 1
+ 2k(max

i
|g0(i)|+ β0)

2

)
‖∂ξw̃j‖2

+ 2‖∂ξw̃j‖21 + 32β2
1‖∂2

ξ w̃j‖21

⎞⎠
≤ C(k, β0, β1)

N∑
j=1

‖∂ξw̃j‖2min{k,2}.

This is valid for k ≥ 1 since when k = 1, β1 = 0 is the default value.
These, when inserted into (94), yield

(95)

N∑
j=1

k+1∑
i=k

|aji − ωj
i |2 ≤ C

N∑
j=1

‖∂ξw̃j‖2k.

Step 4. We finally complete the desired estimates. Inserting (92), (93) and (95)
into (90), we obtain

N∑
j=1

‖ w − Pw‖2Ij ≤ h

2

N∑
j=1

‖w̃j −Qkw̃j‖2 + C
h

2

N∑
j=1

‖∂ξw̃j‖2k,

N∑
j=1

|(w − Pw)j+1/2|2 ≤ C

N∑
j=1

‖∂ξw̃j‖2k,

N∑
j=1

‖w − Pw‖2∞,Ij ≤ C

⎛⎝ N∑
j=1

‖w̃j −Qkw̃j‖2∞ +

N∑
j=1

‖∂ξw̃j‖2k

⎞⎠ .

Replacing w in these inequalities by w − v, where v is an arbitrary element in Vk
h,

and taking into account that Qkṽj = ṽj gives

N∑
j=1

‖ w − Pw‖2Ij ≤ h

2

N∑
j=1

‖w̃j −Qkw̃j‖2 + C
h

2

N∑
j=1

‖∂ξw̃j − ∂ξ ṽj‖2k,(96a)

N∑
j=1

|(w − Pw)j+1/2|2 ≤ C
N∑
j=1

‖∂ξw̃j − ∂ξ ṽj‖2k,(96b)

N∑
j=1

‖w − Pw‖2∞,Ij ≤ C

⎛⎝ N∑
j=1

‖w̃j −Qkw̃j‖2∞ +
N∑
j=1

‖∂ξw̃j − ∂ξ ṽj‖2k

⎞⎠ .(96c)

The standard projection estimates give

‖w̃j −Qkw̃j‖ ≤ C|w̃j |k+1, ‖w̃j −Qkw̃j‖∞ ≤ Chk+1/2|w|k+1,Ij = Ch−1/2|w̃j |k+1.
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By Theorem 3.1.1 in [13], there exists a constant C such that

inf
q∈Pk−1[−1,1]

‖∂ξw̃j − q‖k ≤ C|∂ξw̃j |k = C|w̃j |k+1.

We now simply insert these estimates into (96) to conclude that

N∑
j=1

‖ w − Pw‖2Ij ≤ C
h

2

N∑
j=1

|w̃j |2k+1,

N∑
j=1

|(w − Pw)j+1/2|2 ≤ C
N∑
j=1

|w̃j |2k+1,

N∑
j=1

|w − Pw|2∞,Ij ≤ C
N∑
j=1

(
h−1|w̃j |2k+1 + |w̃j |2k+1

)
≤ Ch−1

N∑
j=1

|w̃j |2k+1

for any k ≥ 1. The corresponding estimate at xj−1/2 is obtained by symmetry.
From these estimates we obtain by standard scaling the estimates as claimed. �

In order to extend the above estimates to the multi-dimensional projection we
need the following estimates which follow easily from the above analysis.

Corollary 7.2. Assume that w|Ij ∈ Hs+1(Ij). Then we have

(97) ‖Pw‖2 ≤ C

min{k,2}∑
l=0

h2l
N∑
j=1

|w|2l,Ij

and

(98) ‖∂m
x (w − Pw)‖2 ≤ Ch2(p+1−m)

N∑
j=1

|w|2p+1,Ij

for any 1 ≤ p ≤ min{s, k}.

Proof. From (87) and (88) it follows that

‖w‖2 =
N∑
j=1

‖w‖2Ij =
h

2

N∑
j=1

∞∑
i=1

(ωj
i )

2 2

2i− 1

and

‖Pw‖2 =

N∑
j=1

‖Pw‖2Ij =
h

2

N∑
j=1

(
k+1∑
i=1

(ωj
i )

2 2

2− 1
+

k+1∑
l=k

|ajl − ωj
l |2

2

2l − 1

)
.

Hence using (95) we have

‖Pw‖2 ≤ ‖w‖2 + Ch

2

N∑
j=1

‖∂ξw̃j‖2min{k,2},

which by a rescaling gives (97).
From (89) we have

∂m
x (w − Pw)|Ij =

(
∂m
ξ (w̃j −Qkw̃j) + (ωj

k − ajk)φ
(m)
k (ξ)(99)

+(ωj
k+1 − ajk+1)φ

(m)
k+1(ξ)

)(h

2

)−m

.
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We continue as in the proof of Theorem 7.1 for the case m = 0; finally, a standard
scaling leads to (98). �
Theorem 7.3. Let P : Hs+1 → Vk

h denote the one-dimensional global projection

defined by (29) and denote by Π = P (x) ⊗ P (y) its tensor product along the two
dimensions (or (69) with d = 2). Then Π is well defined on Ω. If w ∈ Hs+1(Ω)
for some s ≥ 1, then

‖w − Πw‖ ≤ Chp+1|w|p+1,Ω,(100a)

‖w −Πw‖Γh
≤ Chp+1/2|w|p+1,Ω,(100b)

‖w −Πw‖∞ ≤ Chp−1/2|w|p+1,Ω(100c)

for any 1 ≤ p ≤ min{s, k}.

Proof. By the definition of the tensor product, we see that (P (y)w)(x, y) is a poly-
nomial of degree k in y with x-dependent coefficients that belong to Hs+1(0, Lx);
hence Πw = P (x)(P (y)w) is well defined and also

Πw = P (y)(P (x)w).

To prove the error estimate (100a), we use (97), (98) through

‖w −Πw‖ ≤ ‖w − P (x)w‖+ ‖P (x)(w − P (y)w)‖.
We bound the first term using (98) with m = 0 to obtain

‖w − P (x)w‖2 ≤ Ch2(p+1)
∑∫

Kij

|∂p+1
x w|2dxdy.

Here and below
∑

denotes the sum over all 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, unless index
is explicitly specified.

From (97) we have

‖P (x)w‖2 ≤ C

min{k,2}∑
l=0

h2l
∑∫

Kij

|∂l
xw|2dxdy,

with which the second term is bounded by

‖P (x)(w − P (y)w)‖2 ≤ C

min{k,2}∑
l=0

h2l
∑∫

Kij

|∂l
x(w − P (y)w)|2dxdy

= C

min{k,2}∑
l=0

h2l
∑∫

Kij

|∂l
xw − P (y)∂l

xw|2dydx

≤ C

min{k,2}∑
l=0

h2lh2(t+1)
∑∫

Kij

|∂t+1
y ∂l

xw|2dxdy

for any 0 ≤ t ≤ p− l. Selecting t = p− l gives

‖P (x)(w − P (y)w)‖2 ≤ Ch2(p+1)

min{k,2}∑
l=0

∑∫
Kij

|∂l
x∂

p−l+1
y w|2dxdy.

Thus (100a) follows. In order to prove (100b) we write

(101) ‖w −Πw‖2Γh
=
∑∫

Jj

|w − Πw|2xi+1/2
dy +

∑∫
Ii

|w −Πw|2yj+1/2
dx.
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In virtue of (85) and (97), the first term on the right is bounded from above by

2
∑∫

Jj

|w − P (x)w|2xi+1/2
dy + 2

∑∫
Jj

|P (x)(w − P (y)w)|2xi+1/2
dy

≤ 2Ch2p+1
∑∫

Kij

|∂p+1
x w|2dxdy + 2C

∑min {k,2}∑
l=0

h2l

∫
Ii

|∂l
x(w − P (y)w)|2yj+1/2

dx

≤ 2Ch2p+1
∑∫

Kij

|∂p+1
x w|2dxdy+2C

∑min {k,2}∑
l=0

h2lh2(t+1)

∫
Kij

|∂t+1
y ∂l

xw|2dxdy.

Selecting t = p− l gives∑∫
Jj

|w −Πw|2xi+1/2
dy ≤ Ch2p+1|w|2p+1,Ω.

The second term in (101) shares this bound as well. Hence (100b) is justified.
Finally we prove (100c), starting from

(102)
∑

|w−Πw|2∞,Kij
≤ 2

∑
|w−P (x)w|2∞,Kij

+2
∑

|P (x)(w−P (y)w)|2∞,Kij
.

Rescaling the Sobolev estimate |ṽ|2∞,[−1,1] ≤ 2‖ṽ‖21,[−1,1] we have

Ny∑
j=1

|v(y)|2∞,Jj
h ≤ 2

1∑
l=0

h2l‖∂l
yv‖20,[0,Ly ]

.

Note that if y ∈ Rd−1, the factor h on the left should be hd−1 and the summation
index on the right runs up to q > d−1

2 . With this, (86), and (98) with m = 0,
estimating the first term in (102) gives∑

|w − P (x)w|2∞,Kij
≤ 2Ch2t1

∑∫
Ii

|∂t1+1
x w|2∞,Jj

dx

≤ 2Ch2t1
∑∫

Kij

h−1
1∑

l=0

h2l|∂l
y∂

t1+1
x w|2dxdy

≤ Ch2p−1|w|2p+1,Ω,

where we have selected t1 = p− l.
Estimating the second term with (97) and (98) with m = 0 yields

2
∑

|P (x)(w − P (y)w)|2∞,Kij
≤ 2C

∑min{k,2}∑
l=0

h2l

∫
Ii

|∂l
x(w − P (y)w)|2∞,Jj

dx

= 2C
∑min{k,2}∑

l=0

h2l

∫
Ii

|∂l
xw − P (y)(∂l

xw)|2∞,Jj
dx

≤ 2C

min{k,2}∑
l=0

h2l
∑∫

Kij

h2t|∂t+1
y ∂l

xw|2dxdy

≤ Ch2p|w|2p+1,Ω,

where we have selected t = p− l.
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Therefore, ∑
|w −Πw|2∞,Kij

≤ Ch2p−1|w|2p+1,Ω. �

Remark 7.1. Note that the above analysis when applied to the d-dimensional case
yields the following estimate:∑

|w −Πw|2∞,Kα
≤ Ch2p+1−d|w|2p+1,Ω.

Hence, for d > 2, (100c) needs to be replaced by

(103) ‖w −Πw‖∞ ≤ Chp+1/2−d/2|w|p+1,Ω,

while (100a) and (100b) remain valid; these together lead to (71) as needed.
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